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Abstract: Underwater light field characterization is of importance for understanding biogeo-
chemical processes and heat budget of the global oceans, which are impacting and reacting to
climate change. Vibrational Raman Scattering (VRS) was retrieved from backscattered radiances
measured by three different hyperspectral satellite sensors, SCIAMACHY, GOME-2, and OMI,
using Differential Optical Absorption Spectroscopy (DOAS). Diffuse attenuation coefficient (Kd)
in the blue spectral range (390 to 426 nm) was derived from the VRS signal via a look-up-table
established through ocean-atmosphere coupled radiative transfer modeling. We processed one
year of data, representative of the overlapping period of optimal operation for all three sensors.
Resulting data sets were evaluated by comparison with Kd at 490 nm from Ocean Colour Climate
Change Initiative (OC-CCI) which was first converted to Kd at 390 to 426 nm. Good agreement
with the OC-CCI Kd product was achieved for all three sensors when Kd was limited to below
0.15m−1. Differences among the hyperspectral sensors and to OC-CCI were attributed to
particular instrumental effects on the DOAS retrieval leading to temporal and spatial biases. This
is in addition to the fact that the spatial and temporal resolution of the hyperspectral sensors
data differ among themselves and are much lower then for the OC-CCI Kd-product. Further
corrections (e.g., empirical) are necessary before these data sets can be merged in order to obtain
a long-term Kd product for the blue spectral range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Vibrational Raman scattering (VRS) in water is an inelastic scattering process occurring when
photons interact with water molecules. It leads to filling-in of Fraunhofer lines [1] and a general
spectral redistribution of the radiation in the ocean and in water-leaving radiance. VRS needs
to be taken into account to accurately determine the underwater light field and to exploit this
information in oceanic remote sensing applications, especially if the spectral resolution of
measurements is high. Not considering oceanic Raman scattering in radiative transfer modeling
affects inversion models on hyperspectral in situ data for determining inherent optical properties
(IOPs) [2] and atmospheric trace gas retrievals on hyperspectral top-of-atmosphere (TOA)
radiances [3]. With upcoming ocean colour satellite missions planned to record radiances at
higher spectral resolution (e.g., PACE, https://pace.gsfc.nasa.gov/), VRS is going to play an
increasingly important role for satellite-based ocean color retrievals.
The VRS signal in water-leaving radiances carries information about the number of inelastic

scattering events in the water and consequently the number of photons in the ocean. Since the
VRS contribution from the atmosphere can be considered negligible [4], the VRS signal in TOA
radiances can be exploited to estimate light levels in the ocean [5]. Global data sets with good
spatio-temporal resolution that characterize the underwater light field are needed for estimating
primary productivity from satellite derived chlorophyll-a concentrations [6] and heat budget [7].
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At present, planar photosynthetically available radiation (PAR) above surface, ultraviolet (UV)
irradiance above surface, and diffuse attenuation coefficient at one wavelength are operationally
provided from earth observations [8]. An independent global data set could be provided by
exploiting the VRS signal in satellite-measured TOA radiances to spectrally derive the light
availability and diffuse attenuation coefficient in the ocean.
Several hyperspectral satellite sensors designed for the retrieval of atmospheric trace gases

have been used not only for quantifying the VRS contribution to TOA radiances and assessing its
retrieval-influence but also for inferring information about environmental parameters. Using
VRS, information on cloud pressure [9] and ocean parameters linking VRS to chlorophyll-a
concentration and light penetration depth [9–11] have been derived.

These earlier studies investigated VRS in the UV whereas more recent publications analyzed
VRS in the visible wavelength region to directly investigate the light used for photosynthesis.
Dinter et al. [5] derived the light availability in the ocean from VRS as the depth and wavelength
integrated scalar irradiance in thewavelength range from 390 to 444.5 nm. Through coupled ocean-
atmosphere radiative transfer modeling, they related the VRS signal in TOA radiances to light
availability in the ocean which was built into a look-up-table (LUT). Using Differential Optical
Absorption Spectroscopy (DOAS), VRS was first retrieved from TOA radiances measured by
the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY)
and converted to the amount of light in the ocean using the LUT. As evaluation of their
light availability product, the diffuse attenuation coefficient is additionally determined using
radiative transfer modeling. For one month of data, it was compared to the diffuse attenuation
coefficient at a wavelength of 490 nm Kd(490) from the merged ocean color product GlobColour
(http://www.globcolour.info/).

The connection between phytoplankton biomass and the VRS signal is more straightforward
in the visible than in the UV, since this is the spectral region where chlorophyll-a absorbs.
VRS retrieved in the visible with DOAS from TOA radiances measured by SCIAMACHY has
been used as a proxy for the light penetration depth to calculate chlorophyll-a concentrations of
different phytoplankton functional types (PFTs) [12].

SCIAMACHY measurements are only available until April 2012. Newer satellite sensors with
improved temporal coverage and spatial resolution can be explored. The Ozone Monitoring
Instrument (OMI) [13] provides data with significantly improved spatial resolution and daily
global coverage from 2004 to date. The Global Ozone Monitoring Experiment 2 (GOME-2) [14]
provides global coverage within one and a half days and long data time series being an operational
mission with the first sensor launched in 2006 on Metop-A, the second sensor in 2012 on
Metop-B, and the third sensor in 2018 on Metop-C. So far, the VRS signature has not been
explicitly investigated in TOA radiances measured by OMI or GOME-2, especially not in the
visible wavelength region. For both sensors, spectral structures caused by VRS in TOA radiances
were pointed out to be interfering with atmospheric signals in various trace gas DOAS retrievals
although often not explicitly accounted for [15–18]. Merely, vibrational and rotational Raman
scattering have been simultaneously included in a model in the UV to retrieve cloud pressure for
OMI [19]. Like SCIAMACHY, OMI and GOME-2 can potentially be used for phytoplankton
functional type retrievals. DOAS retrievals on hyperspectral satellite data generally require an
estimation of the light penetration depth to calculate PFT chlorophyll-a concentrations. Adequate
retrieval of VRS from OMI and GOME-2 are therefore required. The approach developed by
Dinter et al. [5] to derive the amount of light in the ocean from VRS can also be transferred to
other sensors such as OMI and GOME-2. Their study was a feasibility study showing one month
of results. Combining VRS from different satellite sensors could give a time series of global
light availability since 2002.
This study therefore has two objectives. First it is investigated, if VRS can be found in TOA

radiances recorded by OMI and GOME-2 and be adequately retrieved using DOAS. Second it is
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investigated, if and how a VRS derived product, in this case the diffuse attenuation coefficient,
can be merged from different hyperspectral satellite sensors. The study focuses on the diffuse
attenuation coefficient as VRS derived product instead of the light availability. For this quantity,
better possibilities exist to compare with established ocean color products from multispectral
sensors. It is also easier to intercompare diffuse attenuation coefficients from different satellite
sensors with differing overpass times and viewing geometries, since the diffuse attenuation
coefficient is regarded as a quasi-inherent optical property of ocean water [20].
Diffuse attenuation coefficients are calculated from VRS retrieved from TOA radiances

measured by SCIAMACHY, OMI, and GOME-2 closely following the approach presented by
Dinter et al. [5]. The quality of the resulting diffuse attenuation coefficient product is evaluated
by comparison with the diffuse attenuation coefficient at 490 nm provided by the Ocean Colour
Climate Change Initiative (OC-CCI) data set for nearly one year of data. The same time series
data are explored in different Longhurst biogeochemical provinces in order to illustrate their
broader comparability and possibility for a merged product.

2. Instrumentation and methods

2.1. Satellite sensors OMI, SCIAMACHY, and GOME-2

VRS signals are retrieved from three different hyperspectral satellite sensors, theOzoneMonitoring
Instrument (OMI), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY), and the Global Ozone Monitoring Experiment 2 (GOME-2) on Metop-A. All
three sensors are on satellites in sun-synchronous orbits and have the mission goal to monitor
atmospheric trace gases. GOME-2 and SCIAMACHY have a more similar instrument design
compared to OMI, since they are both whisk-broom instruments whereas OMI is a push-broom
sensor.
OMI [13] onboard the satellite Aura operated by NASA was launched on 15 July 2004 and

is still in operation. It has a local overpass time at the equator at 1:45 pm in ascending node.
OMI is designed as a nadir-viewing imaging spectrometer with 60 across track ground pixels
that are measured simultaneously. Ground pixel size is 13 km by 24 km at nadir becoming
significantly larger at the swath edges. With a swath of 2600 km, OMI achieves daily global
coverage. It records spectra in the UV/Vis from 264-504 nm. Level 1b data (collection 003) from
the visible channel (350 to 500 nm) were used for the VRS retrievals. The spectral resolution
of this VIS channel is 0.63 nm. OMI measures the extraterrestrial irradiance spectrum and the
upwelling earthshine spectrum. Daily measured OMI irradiance spectra are of poor quality due
to low signal. For the OMI retrieval, a solar irradiance spectrum averaged over all irradiance
measurements recorded in the year 2005 was used as reference [21].

The ESA instrument SCIAMACHY [22] onboard ENVISAT collected data from 2002 to April
2012. Local overpass time at the equator was 10:00 am in descending node. The instrument had
a spatial resolution of 30 km by 60 km for nadir ground pixels. With a swath width of 960 km and
alternating nadir-limb mode, global coverage was reached within six days. Level 1b data (version
7.04.) from cluster 15 (424 to 525 nm) of channel 3 with a spectral resolution of 0.47 nm were
used for the VRS retrievals. SCIAMACHY daily recorded solar spectral irradiances.
The first GOME-2 [14] is hosted by the Metop-A satellite operated by EUMETSAT. It was

launched in 2006 providing data from January 2007 to date. The spatial resolution was 40 km
by 80 km for nadir ground pixels until 15 July 2013 when it was changed to 40 km by 40 km at
reduced coverage. The sensor has a swath width of 1920 km and reaches global coverage in 1.5
days. Local overpass time at the equator is 9:30 am in descending node. Level 1b data (version
5.3) from visible channel 3 (397 to 604 nm) were used for the retrieval which have a spectral
resolution of 0.51 nm. Solar spectral irradiances are recorded daily.
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2.1.1. Ground pixel selection

Only ground pixels with solar zenith angle (SZA) smaller than 70°were used. Reflectance
thresholds and operationally provided cloud products were used to filter cloud, glint, and ice
affected ground pixels. An average reflectance R over the wavelength window used in the VRS
fit was calculated as R = πITOA/(F0 · cos(SZA)) using the spectrally averaged TOA intensity
ITOA and spectrally averaged solar irradiance F0 as input. Reflectance thresholds were set to
around 0.3. OMI and GOME-2 data were additionally cloud filtered using the O2-O2 [23] and
the FRESCO [14] cloud products, respectively. Cloud fractions were set to 0.05. Backscans
were excluded in SCIAMACHY and GOME-2 data. OMI suffers from a row anomaly which
varies with time (http://projects.knmi.nl/omi/research/product/ rowanomaly-background.php).
It is assumed to be caused by a blocking object in front of the nadir port leading to changes in
radiation level and wavelength shift. It first appeared in June 2007 affecting CCD rows 53 and
54 (0-based). From May 2008 on, the number of affected rows increases. Operationally provided
flagging was used to filter affected ground pixels [24].

2.1.2. Observation period

The year 2007 is chosen as time period for our investigations. This year appears to be optimal for
an intercomparison of the three hyperspectral sensors since all three sensors were measuring and
OMI measurements are not severely affected by the row anomaly yet. GOME-2 measurements
do not exist for the full month of January. For simplicity, the entire analysis for all three sensors
was performed for 01 February 2007 to 31 December 2007.

2.2. Vibrational Raman scattering

Vibrational Raman scattering occurs in liquid water when vibrational modes of the water
molecules are excited by inelastic scattering with photons. The wavelength of the photon
is shifted in this process. In this work, we considered only the shift to a longer wavelength
(Stokes line) around which radiation is emitted in a broad band. Based on experimental work by
Walrafen [25], Haltrin and Kattawar [26] formulated a function to describe the broad band VRS
emission by a combination of four Gaussian functions. In terms of wavelength, the shift and
broad band width is wavelength dependent. In the spectral range from 400 nm to 700 nm, which
phytoplankton use for photosynthesis, the light that has been Raman scattered in water originates
from the wavelength region 352 to 567 nm and the emission band width ranges between 31 and
41 nm. This study evaluated the VRS emission in a spectral window from 450 to 497 nm which
corresponds to an excitation wavelength range from 390 to 426 nm.

VRS leads to filling-in of Fraunhofer lines. It can be treated as a pseudo-absorber. Following
Vountas et al. [3], a VRS pseudo-absorption, also called VRS compensation spectrum σVRS, can
be defined as

σVRS = ln(I+/I−) (1)

where I+ and I− are modeled TOA radiance spectra from a model run including VRS processes
and excluding VRS processes, respectively. The spectral signature of this pseudo-absorption
can be found in hyperspectral TOA radiances measured by satellites and can be retrieved using
Differential Optical Absorption Spectroscopy.

2.3. Differential Optical Absorption Spectroscopy

Differential Optical Absorption Spectroscopy (DOAS) is a technique commonly used for the
retrieval of atmospheric trace gases by distinguishing their high frequency absorption features [27].
The DOAS method has been extended for investigating oceanic parameters. The amount of
VRS [10], light availability [5], chlorophyll-a concentration of different phytoplankton functional
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types [11, 28], and chlorophyll-a fluorescence [29, 30] have been successfully retrieved from
SCIAMACHY and partly (chlorophyll-a fluorescence) from GOME-2 measurements.
Starting from Beer-Lambert’s law, the optical depth τ is separated into broadband and high

frequency components by introducing a low-order polynomial.

ln(I0/I) = τ =
∑
j

σ′jSj +
∑
i

biλi (2)

where I0 is a background spectrum, e.g., extraterrestrial solar spectrum, I is a measured intensity,
e.g., TOA radiance, and σ′j are differential absorption cross sections of j components in the
observed system. The differential cross section is only the high frequency component of the
cross section. The broad band component is included in the polynomial. All relevant absorbing
atmospheric gases and absorbing ocean constituents plus inelastic scattering processes in the
atmosphere and ocean are considered. In the DOAS fit, Eq. (2) is solved for the fit factors Sj of j
components and the polynomial coefficients bi at multiple wavelengths λ using a Levenberg-
Marquardt least-squares minimization. The polynomial accounts for broadband signals such as
elastic scattering and absorption by colored dissolved organic matter (CDOM) and suspended
particulate matter. Retrieved Sj of target components are converted to physical values, e.g., trace
gas concentration, by comparison with radiative transfer model (RTM) simulations. Theoretical
TOA radiances are modeled using an RTM and the same DOAS fit is performed on these.

In this study, the diffuse attenuation coefficient in the ocean was derived from the VRS fit factor
by comparison with theoretical VRS fit factors from modeled data. Details on the comparison
and radiative transfer modeling are elaborated below. Settings for the VRS DOAS fit were chosen
based on the latest SCIAMACHY VRS DOAS fit results as in Losa et al. [12]. Cross sections for
following components were included in the DOAS VRS fit

• absorption cross sections for ozone (O3) [31], nitrogen dioxide (NO2) [32], water vapor
(H2O) [33], oxygen dimer (O4) [34], glyoxal (CHOCHO) [35].

• pseudo-absorption cross section for rotational Raman scattering (RRS) accounting for the
Ring effect [36] in the atmosphere. RRS pseudo-absorption cross sections were calculated
on the same principle as the VRS pseudo-absorption cross section [4].

• pseudo-absorption cross section for VRS that was calculated from modeled case I TOA
radiances for a chlorophyll-a concentration of 0.1mg/m3 and a SZA of 40°.

• ocean weighting function w foc defined as in Dinter et al. [5] calculated from case I TOA
radiances for a SZA of 40°. This weighting function describes the spectral change in
TOA radiances when the chlorophyll-a concentration in the model scenario changes from
0.1 mg/m3 to 0.11 mg/m3. It combinedly accounts for phytoplankton and liquid water
absorption.

Although no weighting function DOAS (WF-DOAS) was used in this study, the ocean weighting
function from Dinter et al. [5] was kept as cross section in the retrieval. Fit factors for w foc were
not used for deriving any oceanic quantities, so their magnitude was not of importance in this
study. The advantage of using w foc is that it combines the effect of absorbing oceanic constituents
and liquid water in a single spectrum, avoiding the fit of multiple correlating absorption cross
sections.
Pseudo-absorption cross sections for RRS and VRS as well as the ocean weighting function

were calculated (see section 2.5) for each OMI CCD row separately and fitted for each row
specifically. The row-specific solar spectrum was used as background spectrum for each CCD row.
Daily recorded solar spectra were used as background spectrum for GOME-2 and SCIAMACHY
(Azimuth Scan Mirror).
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As in Losa et al. [12], instrumental artifacts were characterized by analyzing residual structures
over the Sahara region [37]. A DOAS fit was made over a small region in the Sahara (2°E to 6°E,
23.5°N to 34.5°N) where no VRS signal is expected. In this pre-fit, only atmospheric components
were considered and the resulting residuals were analyzed using a principal component analysis
(PCA). The first two eigenvectors from this PCA were calculated on a monthly basis and included
as cross sections in the DOAS fit. This method was only used for SCIAMACHY and GOME-2.
No correction of instrumental effects through eigenvectors was used for OMI. As a test, the first
two eigenvectors from a PCA over the Sahara region were calculated as for SCIAMACHY and
GOME-2 for each CCD row separately and included in the VRS fit, however, no significant
improvement of the fit was obtained. The global VRS fit factors calculated with and without
eigenvectors had a correlation of r=0.99. To reduce the amount of retrievals and computation
time, we decided not to include eigenvectors in the VRS fit for OMI.
The wavelength window for the fit was set to 450 nm to 497 nm which is slightly larger than

in Losa et al. [12] and significantly shorter than in Dinter et al. [5]. The upper boundary is
limited by OMI’s visible channel. The fit window was set the same for all three sensors, since
this simplifies comparison between the sensors and merging of the data sets.
The only significant difference in the DOAS settings used here in comparison to Losa et

al. [12] is that a second order polynomial was used instead of a third order polynomial. Due to
the modifications in the RTM settings for calculating the pseudo-absorption cross sections (see
section 2.5), a second order polynomial quickly proved to be more optimal.

2.4. Connection between VRS, light availability, and diffuse attenuation

This study exploits the VRS signal to derive the light availability in the ocean. An increased
number of photons in the ocean leads to an increased number of inelastic scattering events. Since
the VRS contribution from the atmosphere is negligible [4], the VRS signal in the TOA radiances
is closely linked to the light availability in the ocean. This section summarizes the approach
presented in Dinter et al. [5] on how to derive light availability and diffuse attenuation coefficient
from VRS. They formulated a relationship between the change in VRS signal at TOA and the
amount of radiation energy in the ocean. For a given wavelength region, the amount of radiation
energy in the ocean ū is the depth and wavelength integrated scalar irradiance Ē0 divided by the
speed of light c given as

ū =
1
c

Ē0 =
1
c

∫ H

0

∫ λ2

λ1

E0(z, λ)dzdλ. (3)

The integration is performed from the surface z = 0 to the ocean bottom z = H. We followed
their approach to connect the VRS signal, retrieved as VRS fit factor SVRS using DOAS, to Ē0.
We established a look-up-table (LUT) relating Ē0 to SVRS using a radiative transfer model. To
derive such a function,

Ē0 = f (SVRS), (4)

two types of radiative transfer calculations are needed. On the one hand, TOA radiances need
to be calculated to obtain SVRS. On the other hand, in-water flux calculations are needed to
obtain Ē0. A DOAS fit was performed on the modeled TOA radiances to get the theoretical
VRS fit factor for a certain ocean scenario. For the same ocean scenario, in-water fluxes were
calculated to give Ē0. For this ocean scenario, a single point in the LUT was obtained. Various
ocean scenarios were modeled to build up the whole LUT covering situations found in the global
oceans. Most of the global ocean can be considered as case I waters where chlorophyll-a is the
main driver for the underwater light field [38]. A range of typical chlorophyll-a concentrations
was therefore used to generate the LUT. As shown in Dinter et al. [5], the relationship between
Ē0 and SVRS depends strongly on SZA. Model runs were made for a variety of SZAs giving a
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twodimensional LUT Ē0(SVRS, SZA). Retrieved DOAS VRS fit factors were then converted into
a global Ē0 map by interpolating the LUT using SVRS and corresponding SZA for each ground
pixel as input.

As pointed out by Dinter et al. [5], it is difficult to evaluate the quality of the resulting Ē0 data
set, since no comparable ocean color satellite product for the depth integrated scalar irradiance in
the investigated wavelength range from 390 to 426 nm exists. However, the diffuse attenuation
coefficient at 490 nm Kd(490) is often retrieved from ocean color satellite data. It is closely linked
to the light availability in the ocean and was used, similar to Dinter et al. [5], for comparison in
this study.

The diffuse attenuation coefficient can be calculated as a mean value over distant depths z1 and
z2 from the change in downwelling irradiance Ed(z) [39]

Kd(z1 ←→ z2, λ) =
1

z2 − z1
ln

(
Ed(z1, λ)

Ed(z2, λ)

)
. (5)

which gives Kd(z90, λ) = 1/z90(λ) for the attenuation depth z90 defined as the depth at which
the downwelling irradiance has reduced to 1/e of its subsurface value [40]. From the flux
calculations, Kd(z90, λ) was calculated for all modeled case I scenarios. As for Ē0, a LUT
relating Kd with SVRS and SZA was established. Since the SVRS were retrieved in a certain
wavelength range (450 - 497 nm), corresponding diffuse attenuation coefficients were averaged
over the excitation wavelength range Kd(z90, λext), λext = 390 − 426 nm. The relationship
Kd(z90, λext) = f (SVRS, SZA) was used to create global Kd(z90, λext) maps which were compared
to Kd(490) products from ocean color satellites. In the following, the dependence on z90 was
omitted for brevity.

2.5. Radiative transfer model simulations

Modeled TOA radiances were used to calculate VRS pseudo-absorption cross sections and to
perform comparative DOAS retrievals whereas underwater fluxes were used to calculate the light
availability and diffuse attenuation coefficient. The model should accurately describe radiative
transfer processes, especially inelastic processes, in the atmosphere and in the ocean at high
spectral resolution matching the spectral resolution of the satellites of about half a nanometer. We
used the ocean-atmosphere coupled RTM SCIATRAN [41–43] version 4.0.8 to model various
case I scenarios. The theoretical description of VRS is based on the above described formulation
of VRS by Haltrin and Kattawar [26]. Correct implementation of the VRS in SCIATRAN has
been evaluated by comparison with other radiative transfer models and experimental data from
satellite, ship-based, and underwater instruments [43].

TOA radiances were modeled for 23 different case I scenarios with chlorophyll-a concentrations
ranging between 0 and 30mg/m3. A standard case I model was used based on Morel and
Maritorema’s [44] parameterization for chlorophyll and CDOM absorption. Model settings
follow Dinter et al. [5] with some changes:

• a more recent clear water absorption spectrum by Mason et al. [45] was used.

• particle scattering was described using a wavelength-independent Fournier-Forand scat-
tering function as in the widely used Hydrolight case 1 water model [46]. The phase
function was parameterized using the backscattering ratio as input [47]. The change in
backscattering ratio with chlorophyll-a concentration is not robust, but as a first estimate
for our global open ocean retrieval, we used the relationship between backscattering ratio
and chlorophyll-a concentration found for case I stations by Twardowski et al. [48]. The
relationship between mass-specific scattering coefficient and chlorophyll-a was taken from
Gordon and Morel [49].
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• instead of an aerosol-free atmosphere, a background maritime aerosol was assumed with
aerosol optical depth (AOD) of 0.1 at 550 nm. AOD was taken from annual mean AOD
measured over the tropical South East Pacific by MODIS-Aqua [50].

• atmospheric profiles for temperature, pressure, and ozone were set according to the
mid-latitude standard atmosphere model [51]. As default, results for April and latitude
45°N were chosen arbitrarily.

Instrument-specific extraterrestrial solar spectra were used for each sensor for the TOA radiance
calculations, since spectral alignment is very important for the DOAS retrieval. For SCIAMACHY,
a solar irradiance measured by SCIAMACHY was used [52]. For OMI, an average over solar
irradiance spectra recorded by OMI in the year of 2005 was used as mentioned above [21]. For
GOME-2, SCIATRAN calculations were made at high spectral resolution of 0.01 nm using a
Kurucz solar spectrum [53]. Resulting radiances were convolved to instrument spectral resolution
using the GOME-2 slit function. Underwater fluxes were calculated instrument-unspecific at a
spectral resolution of 0.5 nm also using the Kurucz solar spectrum since they should be insensitive
to the exact spectral resolution.
Geometry settings were chosen as follows:

• TOA radiances were modeled for 13 different SZAs, i.e., 5° steps between 15° and 70°.

• Line of sight (LOS) was set instrument-specific. For SCIAMACHY and GOME-2, a
nadir-viewing geometry was chosen LOS = 0°. For OMI, the LOS of the different CCD
rows was determined by averaging for each CCD row the LOS as recorded in the level 1
data for globally distributed ground pixels.

• relative azimuth angle was set to 90°.

DOAS fit settings for the retrieval of theoretical VRS fit factors from the modeled TOA
radiances were the same as for the retrieval on satellite radiances (see section 2.3) except for
atmospheric cross sections. Only ozone was included as trace gas in the modeled atmosphere, so
only the ozone absorption cross section was used when fitting modeled TOA radiances.

2.6. Retrieval sensitivity

The LUT used to convert VRS fit factors to Kd(λext) was kept simple with SZA as only
additional input parameter. In the following, the sensitivity of our retrieval with respect to
model assumptions on AOD and CDOM absorption was investigated. Four new sets of model
simulations were calculated. In two of these sets, AOD was increased or reduced to 0.2 or
0.05 at 550 nm, respectively. The other two sets were calculated with increased or reduced
CDOM absorption. The coefficient for CDOM absorption in the Morel and Maritorema
parameterization [44] was changed from 0.2 to 0.4 or 0.1, respectively. VRS retrieval as described
in section 2.3 was performed for each of these four synthetic TOA radiance sets. Retrieved VRS
fit factors were then converted to Kd(λext) using the LUT. For each set, resulting Kd(λext) for
each scenario were compared to the expected Kexp

d
(λext) in this scenario calculated from flux

simulations with the four modified settings, i.e. higher or lower AOD and higher or lower CDOM
absorption. Figure 1 shows the relative deviation of derived Kd(λext) from expected Kexp

d
(λext),

(Kd(λext)−Kexp
d
(λext))/K

exp
d
(λext), as function of Kexp

d
(λext). The analysis is shown in a Kexp

d
(λext)

range from 0 to 0.15m−1, since our retrieval is only applicable in this range due to too low VRS
signals for higher attenuating waters as discussed in section 4. For most SZAs, an increase in
AOD leads to an overestimation of Kexp

d
(λext) whereas a reduction leads to an underestimation.

The retrieval is especially sensitive to AOD when Kexp
d
(λext) < 0.01m−1. For these extremely

clear waters, deviations are significantly larger than in the range 0.01m−1 to 0.15m−1. Here,
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Fig. 1. Retrieval sensitivity analysis: Relative deviation of derived Kd(λext) from expected
Kexp
d
(λext), (Kd(λext) − Kexp

d
(λext))/K

exp
d
(λext), in modeled open ocean scenarios with

reduced (solid lines) and increased (dashed lines) (a) AOD and (b) CDOM absorption.
Compared to the average global open ocean scenario used for the retrieval and described in
section 2.5, AOD and CDOM absorption were reduced and increased by a factor of two.
Deviations are shown for a range of SZAs.

deviations from Kexp
d
(λext) are nearly constant and less than −5% in case of reduced AOD and less

than +20% in case of increased AOD. Higher or lower CDOM absorption in the RTM simulations
leads to underestimated or overestimated Kexp

d
(λext) for most scenarios, respectively. Deviations

increase with increasing Kexp
d
(λext). In the investigated Kexp

d
(λext) range, derived Kd(λext) deviate

from Kexp
d
(λext) by less than +15% in case of a reduced CDOM absorption and between −10%

and +5% in case of an increased CDOM absorption.
The retrieval sensitivity to AOD and CDOM absorption is rather low, but not negligible.

Regarding AOD, the method could be improved by adding another dimension to the LUT and
taking AOD from a data base as third input parameter. Wolanin et al. [29] calculated the average
polynomial, resulting from the DOAS fit, to evaluate the brightness of each ground pixel. They
used this estimate of all broad band effects as input parameter in a LUT. This approach could be
implemented for the method presented here to reduce the sensitivity to broad band effects such as
AOD and CDOM absorption. We decided to keep the LUT simple, since it turned out that the
noise introduced by mismatches between model scenarios and observed scenes is a secondary
effect. As discussed in section 4, spectral features caused by instrumentation have a larger effect
on the results.
Other model settings additionally influence the retrieval. Further sensitivity analyses on the

choice of phytoplankton spectra and vertical profiles of chlorophyll-a concentration can be found
in Dinter et al. [5]. The approaches are not one-to-one comparable, but the sensitivity analyses
presented there give an impression what to expect in our particular approach.

2.7. OC-CCI as reference data set

Diffuse attenuation coefficients were taken from the release version 3.1 of the OC-CCI [54]
of the European Space Agency ESA (http://www.esa-oceancolour-cci.org/) for evaluating the
quality of the diffuse attenuation coefficients derived from VRS fit factors. OC-CCI provides
the diffuse attenuation coefficient at 490 nm merged from three different multispectral sensors
MODIS, MERIS, and SeaWiFS.
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Since OC-CCI diffuse attenuation coefficients are given at a wavelength of 490 nm KOC
d
(490),

diffuse attenuation coefficients from the OC-CCI data set were converted to the wavelength range
of our retrieval output. SCIATRAN flux calculations were performed for wavelengths up to
500 nm to investigate Kd’s wavelength dependence. The modeled diffuse attenuation coefficient
in the excitation wavelength region Kmod

d
(λext) was related to the modeled diffuse attenuation

coefficient at 490 nm Kmod
d
(490). Kmod

d
(490)was calculated by integrating fluxes between 485 nm

and 495 nm. A 10 nm integration width was chosen here to best resemble the band width of
multispectral ocean color sensors used to calculate KOC

d
(490). A linear relationship between

Kmod
d
(490) and Kmod

d
(λext) was found,

Kmod
d (λext) = a · Kmod

d (490) + b, (6)

for all modeled SZA with r2 values above 0.99. Averaging over the slope and intercept found by
linear least squares regression for each SZA gave ā = 1.30 ± 0.02 and b̄ = −0.018 ± 0.002m−1

with standard deviations as uncertainties. The relationship was used to wavelength-convert the
OC-CCI KOC

d
(490) product to KOC

d
(λext) through

KOC
d (λext) = ā · KOC

d (490) + b̄. (7)

Since we modeled different case I ocean scenarios to change the diffuse attenuation in the model,
the impact of the change in chlorophyll concentrations can clearly be seen in the wavelength
conversion function. For simulations with low diffuse attenuation, in our model a scenario
with low chlorophyll content, the diffuse attenuation coefficient at 490 nm is larger than the
diffuse attenuation coefficient in the excitation wavelength range. With increasing chlorophyll
concentration this difference becomes less until it is reversed. For high chlorophyll concentrations,
the diffuse attenuation coefficient in the excitation wavelength range is larger than at 490 nm
due to stronger absorption by chlorophyll at shorter wavelengths. Other studies derived similar
relationships between Kd(490) and, e.g., Kd(412) from experimental measurements of the
spectral diffuse attenuation coefficient. Linear relationships between Kd(490) and Kd(412)
were estimated with a slope around 1.7 for measurements from a variety of different water
types [55–57]. Regional studies predict lower slopes closer to the value found here around 1.28
for the Arctic [58] and 0.95 for the Southern Bay of Bengal [59]. Generally, differences in these
studies show that relating Kd(490) and Kd(λext) through a linear relationship is too simple to
globally describe all open ocean cases. The shape and magnitude of the specific absorption of
the phytoplankton in the water will certainly change the relation between Kd(490) and Kd(λext).
The wavelength conversion found here is merely an average value for a standard case I scenario
which adds uncertainty in the comparison between Kd(λext) from hyperspectral sensors and from
OC-CCI. This stresses the importance of directly determining diffuse attenuation coefficients
from satellite measurements over a wider spectral range and not just at 490 nm.

3. Results

Here, we present the results of the DOAS fits and diffuse attenuation coefficient derivation. A
separate discussion follows in section 4.

3.1. Global vibrational Raman scattering DOAS fit

Fit residuals and global distributions of VRS fit factors were analyzed for May 2007 as a first
quality check of the DOAS fit. Examples of the differential optical depth (second term in Eq. (2))
for VRS and the ocean weighting function accounting for absorption by phytoplankton and liquid
water are shown in Fig. 2. Results are shown for ground pixels from the South Pacific Gyre where
a strong VRS signal is expected. The residual has about the same magnitude as the reference
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(a)

(b)

Fig. 2. Resulting differential optical depth for (a) VRS and (b) other oceanic parameters
from the spectral fit on OMI (upper panel), SCIAMACHY (center panel), and GOME-2
(lower panel) TOA radiances. The solid lines are the references which are the differential
cross sections multiplied by the retrieved fit factor for the corresponding ground pixel. The
dashed line is the retrieval result showing the reference plus the overall fit residual. Results
are from ground pixels in the South Pacific Gyre obtained on 19 May 2007 (OMI: 24.29°S,
235.03°E; SCIAMACHY: 24.25°S, 235.03°E; GOME-2:24.68°S, 235.34°E).
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Fig. 3. Global VRS fit factors retrieved using DOAS on TOA radiances from (a) SCIA-
MACHY, (b) GOME-2, (c) OMI for May 2007. (d) KOC

d
(λext) from OC-CCI. (e) Global

normalized frequency of VRS fit factors excluding land and coast pixels for May 2007
for OMI (blue, horizontally striped), SCIAMACHY (green, dotted), and GOME-2 (red,
diagonally striped). For OMI, only ground pixels of the two nadir rows in the middle of the
CCD are included (row 29 and 30 starting to count at 0). f) Average VRS fit factor for OMI’s
two nadir CCD rows (see (e)) as retrieved from synthetic TOA radiances simulated with
SCIATRAN for different diffuse attenuation coefficients Kd(λext). Only results for every
second simulated SZA are shown for clarity.
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indicating that the signals from VRS and other ocean parameters are found moderately well by
the DOAS fit in the TOA radiances. The mean absolute residual of all cloud-free pixels in a small
region in the South Pacific Gyre (22-30°S, 115-125°E) during the month of May 2007 amounts
to 0.0009 for SCIAMACHY, 0.0006 for GOME-2, and 0.0013 for OMI.

Figure 3 shows monthly gridded global VRS fit factors for May 2007 from (a) SCIAMACHY,
(b) GOME-2, and (c) OMI. For comparison, Fig. 3(d) shows the diffuse attenuation coefficient
KOC
d
(λext) from the OC-CCI data set for the same month. Due to the definition of the VRS pseudo

absorption cross section, VRS fit factors are usually negative. We defined them as positive here
for easier understanding by multiplying with −1. Now, high VRS fit factors correspond to high
VRS signals. VRS fit factors show similar global patterns between the different sensors. These
patterns are in agreement with regions generally known to have high and low amount of light in
the water. Clearly, there is an anti-correlation between high/low VRS fit factors corresponding to
regions with high/low diffuse light attenuation for all three instruments.
Figure 3(e) shows the normalized frequency of global VRS fit factors for the month of May

2007 excluding land and coast pixels. Only ground pixels from OMI’s nadir CCD rows 29
and 30 were considered roughly enabling comparison with distributions from GOME-2 and
SCIAMACHY. VRS fit factor ranges are significantly different between the three sensors which
is expressed in a difference in mean value of 0.81 for OMI, 0.44 for SCIAMACHY, and 0.49
for GOME-2 and standard deviation of 0.35 for OMI, 0.31 for SCIAMACHY, and 0.22 for
GOME-2. For all three instruments, negative VRS fit factors are present in the global distribution.
Among the three sensors, SCIAMACHY has the highest amount of negative values. About 4%
of all ground pixels have negative VRS fit factors. Figure 3(f) shows the VRS fit factor Smod

VRS
as function of Kd(λext) as calculated from SCIATRAN simulations for different SZAs. Since
SCIATRAN simulations were calculated instrument-specific, i.e., for each sensor individually,
this relationship varies among the sensors. Displayed is the averaged result for OMI’s two center
CCD rows 29 and 30 (0-based) for every second SZA that was simulated. The relationship
Kd(λext) ↔ (Smod

VRS, SZA) looks very similar to the one for OMI’s nadir rows if SCIAMACHY
and GOME-2 settings were used. VRS fit factors retrieved on instrument-specific simulated TOA
radiances for SCIAMACHY and GOME-2 deviate by less than 3% from those in Fig. 3(f) for the
lowest simulated diffuse attenuation coefficients.

VRS fit factors are not directly comparable between the sensors, mostly, because they depend
on SZA which differs among the sensors due to different local overpass times, and, minorly,
because of different instrument design. A one-to-one comparison of the VRS fit factors between
the different hyperspectral sensors might not be meaningful. But, comparing the theoretically
expected VRS fit factor range as presented in Fig. 3(f) with the global VRS fit factor frequencies
in Fig. 3(e), differences in fit factor frequencies are expected, but appear to be large. As seen
in Fig. 3(f), the model predicts only positive VRS fit factors over the entire simulated Kd(λext)
range, but negative VRS fit factors are seen in the satellite data. This disagreement between
retrieval results on model and satellite data indicates a correlation between cross sections as
discussed in section 4.1.

3.2. Agreement between model and satellite data

A thorough comparison of the VRS fit performance between the three hyperspectral sensors and
quality estimation of each single sensor can only be made when VRS fit factors are converted to
a physical quantity, here, the diffuse attenuation coefficient in the excitation wavelength region.
A correct conversion from VRS fit factor to diffuse attenuation coefficient requires that the VRS
fit on modeled data accurately represents the VRS fit on real satellite data. The robustness
of the conversion can be estimated from comparing the hyperspectral satellite derived diffuse
attenuation coefficient to an independent data set.

Starting from the retrieved VRS fit factors, the diffuse attenuation coefficient for the excitation
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Fig. 4. Scatter plots show Kd(λext) from VRS obtained with the DOAS fit settings as in Losa
et al. [12] from (a) SCIAMACHY, (b) GOME-2, and (c) OMI in comparison to KOC

d
(λext)

which was wavelength converted from OC-CCI KOC
d
(490). The solid red line is the 1:1 line.

The dash-dotted black line is a linear total least squares regression through the global data
set. Daily gridded data with 0.5°grid cell size were used as input. The comparison contains
all data from 01 Feb 2007 .

wavelength range Kd(λext) was derived using a LUT built up by SCIATRAN calculations (details
in section 2.5) relating Smod

VRS, SZA, and Kd(λext) based on the relationship shown exemplarily
in Fig. 3(f). Figure 4 shows retrieved Kd(λext) from (a) SCIAMACHY, (b) GOME-2, and (c)
OMI in comparison to the wavelength-converted KOC

d
(λext) using KOC

d
(490) from OC-CCI as

input (details in section 2.7). The scatter plot contains data from 01 Feb 2007 to 31 Dec 2007.
The comparison was calculated on a daily basis using data gridded to 0.5°. Kd(λext) derived
from SCIAMACHY and GOME-2 are much larger than KOC

d
(λext) from the OC-CCI data set.

Linear total least squares regression shown by the dash-dotted black line yielded a slope of 3.02
for SCIAMACHY and 2.05 for GOME-2 which indicates that their Kd(λext) are roughly 3 and
2 times, respectively, larger than OC-CCI values. OMI shows a different behavior. Kd(λext)
derived from OMI is smaller than KOC

d
(λext) over the entire data range expressed in a slope of

0.30. Regression statistics are summarized in Table 1.
In summary, the slopes found in comparison with the OC-CCI data differ significantly from

one and indicate a disagreement between the VRS fit factors found by fitting global satellite data
and those found by fitting model data. High slopes for SCIAMACHY and GOME-2 express a
lower VRS fit factor range in satellite data than in model data. Conversely, underestimation of
Kd(λext) by OMI indicates a higher VRS fit factor range than the model predicts.

3.3. Modification of the VRS fit

Modifications of the VRS fit were tested to improve the agreement between VRS fit factor ranges
from fits on model and satellite data. For SCIAMACHY, including zeta and eta functions was
tested which were taken from calibration key data [60] for correcting polarization structures. For
GOME-2 and SCIAMACHY, the number of eigenvectors accounting for instrumental artifacts
were reduced from two to one eigenvector in the DOAS fit. Since no eigenvectors were used
in the DOAS fit on OMI data, no further modifications of the DOAS fit were tested for OMI in
this study. We merely tested if reducing the number of CCD rows to the inner 20 CCD rows
closest to nadir improves the results. Looking at the 11 month comparison between Kd(λext) and
KOC
d
(λext), a slightly different slope was found, but no change in correlation of the data set. Since

no significant improvement was achieved, diffuse attenuation coefficients from all CCD rows
were kept in the data set.

For GOME-2, reducing the number of cross sections from two to one eigenvector significantly
improved the derived diffuse attenuation coefficient product. Changing this fit setting, shifted the
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Fig. 5. Scatter plots showing Kd(λext) from VRS obtained with the modified DOAS fits
from (a) SCIAMACHY, (b) GOME-2, and (c) OMI in comparison to KOC

d
(λext) wavelength

converted from OC-CCI KOC
d
(490). The solid red line is the 1:1 line. The dash-dotted

black line is a linear total least squares regression through the global data set and the dashed
magenta line is a linear total least squares regression through the global data set where values
above 0.15 m−1 were filtered out (grey area). Daily gridded data with 0.5°grid cell size were
used as input. The comparison contains all data from 01 Feb 2007 until 31 Dec 2007.

globally retrieved VRS fit factor distribution towards higher values. For example for May, the
global distribution has now a higher mean value of 0.56 while the standard deviation stayed the
same.

For SCIAMACHY, best results were found when two eigenvectors were included for correcting
instrumental effects and additionally the zeta function was fitted. VRS fit factors generally
increased and the number of negative VRS fit factors decreased. Similar behavior to GOME-2
was found for the example month May. The global distribution has a similar standard deviation of
0.30, but a higher mean value of 0.51 compared to the old DOAS settings without zeta function.

Figure 5 shows Kd(λext) derived from VRS fit factors resulting from the modified DOAS fit on
(a) SCIAMACHY and (b) GOME-2 in comparison to the wavelength-converted OC-CCI diffuse
attenuation coefficient product KOC

d
(λext). Regression results can be found in Table 1 (middle

column). Considering all global ground pixels, linear total least squares regression yielded slopes
of 1.73 for SCIAMACHY and 1.24 for GOME-2. For large values, the spread in the scatter plots
becomes large for both instruments. Especially for SCIAMACHY, two pronounced wings are
observed in the scatter plot, where values from OC-CCI are very large when values derived from
SCIAMACHY are small and vice versa. We decided to restrict the retrieval of Kd(λext) from
hyperspectral satellite data to waters with diffuse attenuation coefficients below 0.15m−1 given
by KOC

d
(λext). Additionally, values of Kd(λext) above 0.15m−1 were discarded. This filtering left

only data outside the grey area in Fig. 5. Linear total least squares regression is shown as dashed
magenta line. Reducing the data set increased the correlation between Kd(λext) and KOC

d
(λext)

from 0.27 to 0.66 for SCIAMACHY and from 0.25 to 0.66 for GOME-2. The slopes changed
for SCIAMACHY from 1.73 to 1.34 and for GOME-2 from 1.24 to 1.25. The same filtering
approach was applied to results for OMI displayed in Fig. 5(c). Correlation increased here from
0.35 to 0.65 and the slope increased from 0.30 to 0.77. Regression results for the reduced data
sets can also be found in Table 1 (right column).
All results presented below were obtained using modified VRS fit settings and data filtering

as described in this section. The hyperspectral satellite Kd(λext) was filtered in waters where
KOC
d
(λext) predicts values above 0.15m−1 by gridding both data sets to the same grid of

0.5° gridsize.
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Table 1. Slope, intercept, and Pearson correlation of the total linear least-squares
regressionbetweenKd(λext) andKOC

d
(λext) comparing 11months of diffuse attenuation

coefficients derived with the original DOAS settings on the full data set (left column:
orig., full), with the modified DOAS settings on the full data set (middle column:
mod., full), and with modified (SCIAMACHY andGOME-2) or original (OMI) DOAS
settings on the reduced data set (Kd(λext) and KOC

d
(λext) < 0.15m−1) (right column:

mod.,red. or orig.,red.).

SCIAMACHY GOME-2 OMI

orig., mod., mod., orig., mod., mod., orig., orig.,

full full red. full full red. full red.

slope 3.02 1.73 1.34 2.05 1.24 1.25 0.30 0.77

intercept -0.070 -0.022 -0.008 -0.024 0.003 0.001 0.020 0.001

correlation 0.22 0.27 0.66 0.34 0.25 0.66 0.35 0.65

3.4. Derived global diffuse attenuation coefficients

Global Kd(λext) maps derived from VRS fit factors obtained with modified DOAS settings are
shown in Fig. 6 for (a) SCIAMACHY, (c) GOME-2, and (e) OMI after Kd(λext) was filtered as
describe in section 3.3. Systematic differences between the three sensors can already be deduced
from these global maps. Diffuse attenuation coefficients derived from OMI VRS fit factors are
globally lower than those derived from SCIAMACHY and GOME-2 VRS fit factors. Higher
values in the northern hemisphere are the most prominent difference between SCIAMACHY and
GOME-2 derived Kd(λext).

To identify regional differences between the hyperspectral satellite and the OC-CCI products,
the difference Kd(λext) − KOC

d
(λext) is shown as global map in Fig. 6 for (b) SCIAMACHY, (d)

GOME-2, and (f) OMI. As the pronounced difference between GOME-2 and SCIAMACHY in
the northern hemisphere suggested, a difference between northern and southern hemisphere is
observed for SCIAMACHY. In the northern hemisphere, Kd(λext) is smaller than KOC

d
(λext) for

most ground pixels, whereas in the southern hemisphere Kd(λext) is larger than KOC
d
(λext) for

most ground pixels. The observed spread in the scatter plot in Fig. 5(a) as two wings, where
KOC
d
(λext) is large when Kd(λext) is small and vice versa, is mainly caused by a north-south

trend in Kd(λext) originating from a north-south trend in SCIAMACHY VRS fit factors. For
GOME-2, no significant north-south trend is observed. In low latitudes, KOC

d
(λext) is larger

than Kd(λext) in the Mauretanian, Benguela, and Malvinas upwelling regions where diffuse
attenuation coefficients are the highest. For open ocean situations such as the Southern Ocean,
GOME-2 derived attenuation coefficients tend to be smaller than the OC-CCI product. However,
especially in the high latitudes in the north, spatial patterns are not so clear. As seen from the
global Kd(λext) map, averaged over one year, OMI derived Kd(λext) are generally smaller than
KOC
d
(λext). Largest differences between the two data sets can be found in northern high latitudes.

3.5. Diffuse attenuation coefficient time series

Figure 7(a) shows mean diffuse attenuation coefficients in the excitation wavelength range for
SCIAMACHY, GOME-2, OMI, and OC-CCI in five different Longhurst provinces [61] over
the course of 2007, starting 01 Feb 2007. Mean Kd(λext) were calculated as 7-day composites.
Relative differences (Kd(λext) − KOC

d
(λext))/KOC

d
(λext) between hyperspectral satellites and OC-

CCI in the five provinces are shown in Fig. 7(b). In general, largest differences between Kd(λext)
and KOC

d
(λext) are observed in the NADR and ARCT region where a significant amount of data
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(a) 

(c) 

(b) 

(d) 

(e) (f) 

Fig. 6. Global distribution of the diffuse attenuation coefficient at the excitation wavelength
region Kd(λext) derived from (a) SCIAMACHY, (c) GOME-2, and (e) OMI VRS fit factors
gridded for the time period 01 Feb 2007 to 31 Dec 2007. Data was gridded to 0.5° grid
cell size. Globally mapped distribution of the difference between the OC-CCI and the
hyperspectral satellite data sets Kd(λext) − KOC

d
(λext) for (b) SCIAMACHY, (d) GOME-2,

and (f) OMI. In all six images, Kd(λext) was filtered below 0.15m−1 and restricted to waters
where KOC

d
(λext) < 0.15m−1.

points deviates by up to ±60%. Positive and negative deviations are observed for GOME-2 in
all five provinces showing a seasonal behavior. E.g., large positive deviations up to +120%
are observed in the winter months February, March, and December. During the other months,
GOME-2 deviates from KOC

d
(λext) by less than ±30% in the ISSG, ARAB, and BENG provinces

and less than ±40% in the NADR and ARCT provinces. OMI and SCIAMACHY diffuse
attenuation coefficients are mostly smaller than KOC

d
(λext). This trend becomes more striking

with increasing latitude. Although SCIAMACHY and OMI generally have a significant bias,
they tend to be more stable with time than GOME-2. E.g., for the ARCT province, OMI time
series has a large bias, but is relatively stable in time in comparison to KOC

d
(λext). Deviations

range between −40% to −65% for most data points while they range between −10% to −60% for
SCIAMACHY and −40% to +40% for GOME-2 (excluding winter months).

4. Discussion

4.1. Correlating cross sections in DOAS

The spectral signature of VRS was identified in all three satellite sensors OMI, SCIAMACHY,
and GOME-2. Global VRS maps can be retrieved from TOA radiances measured by the three
sensors and resulting global patterns agree with regions of high and low diffuse light attenuation.
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Fig. 7. (a) Mean Kd(λext) from SCIAMACHY, GOME-2, OMI, and OC-CCI and (b) relative
deviation of SCIAMACHY, GOME-2, and OMI Ksat

d
(λext) from OC-CCI KOC

d
(λext) in five

different Longhurst provinces [61] over the course of the year 2007. 7-day composites were
calculated starting 01 February 2007. Naming convention follows the original naming by
Longhurst et al. [61]. (i) ISSG - Indian S. Subtropical Gyre Province, (ii) ARAB - NW
Arabian Upwelling Province, (iii) NADR - N. Atlantic Drift Province, (iv) BENG - Benguela
Current Coastal Province, (v) ARCT - Atlantic Arctic Province.
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However, a disagreement in VRS fit factor range between model and satellite data was found. For
nadir viewing geometry, VRS fit factors retrieved from satellite data were lower than predicted
by the model in case of SCIAMACHY and GOME-2, whereas they were slightly higher than
predicted by the model in case of OMI. This discrepancy indicates a correlation between cross
sections in the DOAS fit.
The difficulty of separating VRS from liquid water absorption spectral features in DOAS is

known. For circumventing this problem in phytoplankton DOAS retrievals, Bracher et al. [11]
performed a PCA over clear water regions and included the first two eigenvectors in the DOAS
fit instead of including a separate VRS cross section. Peters et al. [18] tried to experimentally
determine a VRS cross section to improve DOAS NO2 fits, but were not able to separate liquid
water absorption from VRS. They obtained the best NO2 results over water regions when using
a combined spectrum. Since we are particularly interested in the VRS signal, we need it as
separate cross section in the DOAS fit. In principle, a combined spectrum of VRS and liquid
water absorption could also be used as a proxy for the diffuse attenuation coefficient in the ocean.
However, the interpretation of such an approach is more difficult, since the VRS excitation is in
a different wavelength region than the DOAS fit window where liquid water absorbs. It is not
straightforward for which wavelength range the light availability should be calculated.
To a certain extent, the comparison with model results accounts for the correlation between

the spectra, since the same DOAS fit is performed on modeled TOA radiances. A theoretical
correlation between cross sections also impacts retrieved fit factors from modeled data. The
VRS fit factors retrieved from satellite data are directly related to those retrieved from modeled
data to derive the diffuse attenuation coefficient in our approach. Correlating spectra affect the
model retrieval and the satellite retrieval in the same way and the direct comparison of the two
should compensate for this effect. However, in real world applications with satellite spectra that
are noisy and show spectral features caused by the instrumentation, model and satellite results
are not one-to-one comparable.
Differences in VRS fit factors between the three sensors suggest that not only the correlation

between cross sections, but primarily the instrument itself influences the fit results. Major
differences are that SCIAMACHY and GOME-2 are whisk-broom sensors whereas OMI is a
push-broom sensor, that SCIAMACHY and GOME-2 provide higher quality daily sun spectra
than OMI for which a fixed sun spectrum has to be used, and that SCIAMACHY and GOME-2
have no polarization scramblers. All these differences in instrument design plus differences
in light path in the instrument interior cause different spectral signatures in the recorded TOA
radiances and sun spectra, e.g., caused by straylight in the instrument [62] or structures on the
diffuser used for recording sun spectra [63]. The eigenvectors that were used in the DOAS fit in
this study to account for instrumental spectral artifacts that are not removed during the calibration
differ between GOME-2 and SCIAMACHY. The eigenvectors could also correlate with the VRS
pseudo-absorption cross section and change the theoretically expected VRS fit factor. In general,
SCIAMACHY and GOME-2 have a more similar instrument design in comparison to OMI. This
may explain, why the retrieved VRS fit factor ranges are more similar for these instruments and
why including eigenvectors in the DOAS fit for OMI hardly affects the result.

We want to note that the discrepancy found here between VRS results from simulations and
measurements determined with the DOAS settings as in Losa et al. [12] does not mean that their
results on SCIAMACHY measurements suffer from the same issues. For converting their fit
factors into PFT chlorophyll-a concentrations, they use a ratio of fit factors for two quantities, i.e.
PFT and VRS, while here only one fit factor is used in combination with model results. Ratios of
fit factors are more robust providing that instrumental artifacts affect the two quantities similarly.
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4.2. Implications of DOAS setting modifications

Modifications of the DOAS fit for GOME-2 and SCIAMACHY were tested and significantly
improved resulting diffuse attenuation coefficients. Evaluating the results by comparison with
wavelength-converted diffuse attenuation coefficients from OC-CCI data sets yielded slopes
close to one in the scatter plots (Fig. 5). Through modifying the DOAS fit for GOME-2 and
SCIAMACHY, we were able to bring together fit performance on modeled radiances with that on
satellite-recorded radiances.

Including zeta and eta functions for polarization corrections in DOAS fits has been suggested
by McLinden [64] and shown to improve DOAS fit results on SCIAMACHY radiances for various
atmospheric trace gas retrievals [65]. In the VRS DOAS fit studied here, only including the zeta
function worked best. For other retrieval targets, other combinations of zeta and eta function were
found beneficial. E.g., for BrO vertical profile retrievals from SCIAMACHY limb measurements,
including the eta function improved the fit, but including the zeta function destabilized the fit [66].
For OMI, DOAS fit settings were not modified. No significant improvement was achieved

through CCD row filtering for the 20 middle CCD rows which are closest to nadir and have more
optimal viewing geometries for ocean observations than the outer CCD rows. It can be concluded
that for OMI the viewing angle dependence in the model accurately describes the situation found
in measurements.

4.3. Restricting diffuse attenuation coefficient data sets

Large spreads in the scatter plots were observed for high diffuse attenuation coefficients, especially
for OMI and SCIAMACHY, leading to wings in the scatter plot. Such a butterfly-shape has
been already observed by Dinter et al. [5] when comparing one month of derived diffuse
attenuation coefficients from SCIAMACHY to Kd(490) from GlobColour. They suggested the
following reasons for the wings. The horizontal wing is possibly caused by cloud-contaminated
SCIAMACHY ground pixels leading to an overestimation of Kd(λext) and the vertical wing
is caused by deviations of vertical chlorophyll-a profiles and specific chlorophyll-a absorption
from those set in the model. They restricted their statistical analysis of the comparison to
diffuse attenuation coefficients below 0.06m−1 and improved the correlation from 0.42 to 0.69.
One-to-one comparison for SCIAMACHY results found here with those published in Dinter et
al. [5] is not possible since DOAS fit settings, observed time period, and multispectral reference
product used for the comparison differ. However, it can be stated roughly that, when comparing
correlations found here and in their study, a similar degree of agreement was found, when
Kd(λext) from SCIAMACHY is compared to diffuse attenuation coefficients from multispectral
sensor data sets.

We similarly restricted our retrieval for all three hyper-spectral sensors to KOC
d
(λext) < 0.15m−1

to improve data quality justifying and adding general suggestions here for reasons behind the
observed spread in the scatter plots. Waters with high diffuse attenuation coefficients have a low
VRS signal. The sensitivity of the VRS DOAS fit in these waters is therefore low and the fit
is expected to be less accurate there [10]. OC-CCI diffuse attenuation coefficients by the Lee
method [39] have better accuracies for waters with high diffuse light attenuation [67,68]. The
VRS method is expected to be more sensitive to waters with low diffuse light attenuation.

Additionally, derived diffuse attenuation coefficients from the hyperspectral sensors were
cut-off at 0.15m−1 even if OC-CCI predicts values below 0.15m−1. This filtering was necessary
to improve the data quality sufficiently and was easy to apply. From a physical point of view it is
more difficult to understand though: Considering OC-CCI values as correct, the VRS fit gives
wrong results for filtered out ground pixels, although the VRS fit sensitivity should have been
high. Partially this can be caused by noise in the recorded TOA radiances. Cloud-contamination
of ground pixels can significantly reduce the VRS signal as already pointed out by Dinter et
al. [5]. Other possible causes are a mismatch between average ocean scenario used in the model
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simulations and the true state of the ocean during the measurement, e.g. extremely high wind
speeds or aerosol loads. By restricting derived diffuse attenuation coefficients to waters where
OC-CCI predicts values below 0.15m−1 and additionally cutting off all remaining values above
0.15m−1, reduces the data sets by less than four percent. It is unfortunate that these scenes have
to be removed from the data set, since biological activity is high and significantly contributes to
the overall primary production in open oceans, however, valuable information on open ocean
primary productivity may still be drawn from the remaining data points.

4.4. Spatial and temporal biases in diffuse attenuation coefficients

Despite the DOAS fit modifications, issues in the VRS DOAS fit remained. Possible origins of
these issues and impacts on the quality of the derived diffuse attenuation coefficient became
apparent when looking at spatial and temporal patterns of the derived diffuse attenuation
coefficient.

For SCIAMACHY, a clear north-south trend was found in the data which is most likely caused
by spectral features arising from polarization sensitivity of the instrument. Scatter geometries
differ fromNorth to South causing differences in spectral features due to polarization [69]. If these
spectral features, included as eigenvectors in the fit, correlate with the VRS pseudo-absorption
cross section, the north-south trend in these spectral features is passed on to the VRS fit factors.
The zeta function was included to account for polarization. Including the zeta function in the fit
reduced but did not fully remove the north-south trend.
For OMI, agreement with OC-CCI becomes worse with increasing latitude. This finding

suggests that the model predicts a different SZA dependence of the VRS fit factor than found in
the DOAS retrieval results on measured TOA radiances. Detailed investigations on this behavior
have not been performed in this study.

For GOME-2, spread does not arise from spatial trends, but mainly from temporal variations
in the fit factors. Seasonal variations as observed here have been identified in trace gas columns
retrieved with DOAS from GOME and attributed to the diffuser plate causing spectral artifacts
in the irradiances that correlate with absorber cross sections [63]. This effect of seasonal
variation has also been observed for the weak signal of glyoxal in DOAS columns from GOME-2
measurements [16]. Using a constant solar spectrum instead of daily solar spectra could improve
the situation for 2007, but is not a solution for the whole GOME-2 mission period due to
significant instrumental drifts [17, 70]. Another option as background spectrum (e.g. [70], [71])
is to use daily earthshine spectra measured by GOME-2 over a region where no VRS signal is
expected, e.g., over the Sahara. We have quickly tested this option for the month of December
2007. Resulting diffuse attenuation coefficients were closer to OC-CCI compared to results
obtained with daily solar spectra but still too high with a slope in the monthly scatter plot of
0.57 (filtered below 0.15m−1). Other correlating spectral features seem to be introduced that
disturb the fit results. The seasonal variation could also be empirically corrected, e.g., through
adjusting retrieved fit factors by forcing the fit factors in a certain region to a known value [72].
The seasonal variation dominates the time series in the five Longhurst provinces. To build up
a consistent time series over the entire GOME-2 mission period and analyze trends in diffuse
attenuation coefficients from this series, a correction for this variation is required.

Although we clearly saw that biases and seasonal variations in the three hyperspectral sensors
dominate the time series in the Longhurst provinces, also a difference between OC-CCI data
set and hyperspectral data sets arises due to a difference in data coverage in the five Longhurst
provinces. Coverage was calculated for all five provinces by dividing the number of unique
gridded ground pixels in one Longhurst province within one 7-day composite by the total amount
of gridded ground pixels fitting into the Longhurst province. Largest differences in coverage
between OC-CCI and the hyperspectral sensors were found for NADR and ARCT which are
strongly impacted by cloud occurrence (e.g. [73]). In combination with a spatial inhomogeneity

                                                                                     Vol. 27, No. 12 | 10 Jun 2019 | OPTICS EXPRESS A849 

 



in biomass in these provinces due to the occurrences of phytoplankton blooms, this may explain,
why the diffuse attenuation coefficients from hyperspectral sensors compare less well with the
KOC
d
(λext) data set in these two provinces than in the other three provinces.

Due to the large ground pixel sizes of hyper-spectral satellite sensors and the associated
inhomogeneity within a ground pixel, in combination with the rather complex retrieval method
presented in this study, we expect diffuse attenuation coefficients derived from hyperspectral
sensors to be associated with larger uncertainties and regard OC-CCI Kd(490) as a solid data set
to evaluate our retrieval performance. However, also the OC-CCI diffuse attenuation coefficients
are associated with uncertainties. KOC

d
(490) was determined using the semianalytical method by

Lee et al. [39]. This method is a two step process. First, inherent optical properties are derived
with a Quasi-Analytical Approach from remote sensing reflectances [74]. Extensive radiative
transfer simulations have been made to relate these inherent optical properties, i.e., absorption
and backscattering, in a second step, to an apparent optical property, the diffuse attenuation
coefficient. Model runs were made with a whole range of different inherent optical properties
found in different water classes. Other conditions were set to standard values describing the
average global scenario, though, limiting the accuracy of the approach. Similar settings as
chosen for the simulations in this study were used, e.g., a mean wind speed of 5m/s, vertically
homogeneous waters, and clear sky conditions. The OC-CCI data set has been validated in
comparison with in situ matchups. On regional scales, the performance quality of the Lee
method can vary [68,75]. The DOAS-based method presented here and the method by Lee et
al. [39] differ fundamentally in determining diffuse attenuation coefficient, but both approaches
are rather analytical with a similar degree of assumptions that have to be made. One advantage
of the DOAS-based method is that it effectively removes the atmospheric signal from the TOA
radiances. No atmospheric correction is needed as additional step before the VRS retrieval.
As discussed above, the time series analysis showed that biases and seasonal variations are

significant in the five Longhurst provinces. As the diffuse attenuation products are now, the
agreement between the three hyperspectral sensors and overall data quality are not robust enough
for merging the three data sets. Several studies have pointed out how intermission differences
affect trend analysis on merged ocean color time series [76–78]. Based on the findings in this
study, the intersensor consistency of the diffuse attenuation coefficient product should now be
increased, e.g., through empirical corrections of the seasonal variations in GOME-2 as mentioned
above, statistical bias correction [79], better calibration of the level 1 data [80], or a combination
of several correction schemes.

5. Conclusion

We evaluated the possibility of exploiting the VRS signal in radiances measured by hyperspectral
satellite sensors for assessing the diffuse light attenuation over long time scales building up on
the work by Dinter et al. [5]. VRS signals were retrieved and diffuse light attenuation coefficients
were derived for nearly one year of earth observations from three different hyperspectral satellite
sensors, SCIAMACHY, GOME-2, and OMI.

VRS signals were detected in radiances from all three hyperspectral sensors. Starting with the
latest published DOASVRS retrieval settings, VRS fit factors were found to be sensitive to spectral
structures in the measured radiances caused by instrumentation. For example, SCIAMACHY
VRS fit factors were highly influenced by polarization features. Modifying the DOAS retrieval
for SCIAMACHY and GOME-2 by changing how instrumental effects are accounted for in the
retrieval, resulted in significantly improved diffuse attenuation coefficients. For SCIAMACHY,
the zeta function was included to better correct for spectral features caused by polarization
sensitivity of the sensor. For GOME-2, the amount of cross sections accounting for instrumental
effects determined through a PCA on fit residuals over the Sahara were reduced from two to one
eigenvector.
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Through these DOAS fit setting modifications, VRS fit factor ranges from DOAS fits on
satellite measurements were brought in agreement with VRS fit factor ranges predicted by fits on
synthetic radiances calculated by radiative transfer modeling. In comparison to the established
diffuse attenuation coefficient product from OC-CCI, robust correlations and slopes close to unity
were found for all three sensors when only diffuse attenuation coefficients below 0.15m−1 were
used. Highest correlation was found for GOME-2 data.

For further evaluating the quality of the derived diffuse attenuation coefficients from GOME-2,
SCIAMACHY, and OMI, spatial and temporal deviations from the OC-CCI product were
investigated by assessing global maps and time series of 7-day composites in five different
Longhurst provinces. SCIAMACHY and OMI both showed latitudinal trends in derived diffuse
attenuation coefficients. A north-south trend was found for SCIAMACHY indicating that spectral
structures caused by polarization sensitivity could not be completely corrected despite including
the zeta function in the DOAS fit. For OMI, biases with respect to the OC-CCI product become
larger with increasing latitude indicating a disagreement between the SZA dependence of the VRS
fit factor found in measurements in comparison to that predicted by radiative transfer modeling.
This effect was not further investigated here. GOME-2 shows spatially a more homogeneous
agreement with OC-CCI, but exhibits periodic changes in VRS fit factors over time which are
probably caused by spectral structures in recorded solar measurements changing over the course
of one year due to altering measurement geometries.
This first intercomparison of the performance of DOAS ocean retrievals on radiances from

three different hyperspectral satellites revealed how challenging it is to accurately calibrate
hyperspectral sensors to reliably and consistently retrieve small ocean signals. Merging the data
sets is difficult since significant biases between the sensors were found. This study provides a
good basis for further improving overall data quality and intersensor consistency in order to create
a long-term diffuse attenuation coefficient time series in the blue spectral range. Based on the
results of this study, it is unlikely that diffuse attenuation coefficients derived from measurements
of the particular hyperspectral sensors presented here could compete in quality with the diffuse
attenuation coefficient from multispectral sensors. However, since the method presented here
is independent and offers assessing diffuse attenuation in a different spectral range, it is worth
further developing this approach, especially with respect to upcoming satellite missions. Better
calibration of hyperspectral satellite sensors with respect to ocean applications could improve
this situation. Building up on this study, empirical corrections could be introduced to reduce
biases and stabilize the time series of hyperspectrally derived diffuse attenuation coefficients. A
more complex LUT could be build to reduce noise as shown by the presented sensitivity analysis.
A thorough uncertainty estimation is desired. Comparison with in situ measurements becomes
possible for the most recent or upcoming sensors that provide measurements at much higher
spatial resolution. For example since October 2017, TROPOMI (TROPOspheric Monitoring
Instrument) [81], similar in mission goal and design as OMI, provides global hyperspectral
radiances at a spatial resolution of 7 km by 3.5 km. Validating 7 km by 3.5 km large pixels
with in situ point measurements would still be difficult, but becomes more feasable for in situ
measurements from towed systems yielding transects of in situ data. With increased spatial
resolution, DOAS fit quality is also expected to improve due to increased homogeneity in satellite
scenes.
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