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Abstract

Background: The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve
of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been
somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a
first reference genome of the family Arcidae. Findings: A total of 75.79 Gb clean data were generated with the Pacific
Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome.
De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of
45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome.
Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045
protein-coding genes were predicted and 84.7% of them were annotated. Conclusions: We report here a chromosomal-level
assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a
reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector.
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2 Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii

Background

The blood clam, Scapharca (Anadara) broughtonii (Schrenck,
1867; NCBI:txid148819; marinespecies.org: taxname:504357), is
a species of ark shell of the family Arcidae, class Pteriomor-
phia, phylum Mollusca. Although most of the approximately 200
species of the family Arcidae are distributed in tropical areas [1],
S. broughtonii lives in temperate areas along the coasts of North-
ern China, Japan, Korea, and the Russian Far East [1, 2]. The name
“blood clam” originated from the red color of their visceral mass,
which is due to the presence of hemoglobin in both tissues and
hemolymph [1, 2], a rare trait in molluscs but a hallmark of Ar-
cidae species [3]. S. broughtonii specimens are characterized by
thick and harder calcareous shells, covered by a hairy brown pe-
riostracum (Fig. 1) [2]. Adult blood clams can reach a shell length
of 100 mm [4] and are harvested as a source of sashimi, which
has contributed to the depletion of wild resources in the past
century. Many efforts have been made to recover the wild popu-
lation stocks of S. broughtonii in China, Japan, and Korea, includ-
ing intensive farming. Such aquaculture practices have revealed
the susceptibility of S. broughtonii to many pathogenic bacteria
and viruses, including a variant of the Ostreid herpesvirus 1 [1, 5–
7]. Compared with other aquaculture-important bivalve species,
such as oysters, mussels, and scallops, the genomic and tran-
scriptomic resources of Arcidae species are still limited. There-
fore, the understanding of their basic biological processes, as
well as of more complex host-pathogen interactions, is some-
what hampered. Here, we sequenced the complete genome of S.
broughtonii at the chromosomal level and we offer it as a valuable
resource to develop both scientific research and aquaculture in-
dustry related to Arcidae species.

Sample Collection and Sequencing

Adult S. broughtonii specimens were sampled from populations
near Jimo, Shandong Province, China. To overcome the exces-
sive polysaccharide content of S. broughtonii tissues, high-quality
genomic DNA was extracted from hemocytes, using DNeasy R©

Blood & Tissue Kit (Qiagen, Hilden, Germany, p/n 69,504) with a
few protocol modifications to remove polysaccharides (the de-
tailed protocol is reported at protocols.io [8] and Supplemen-
tary Table S1). The DNA quantity and quality were measured
with Qubit 3.0 (Thermo Fisher Scientific, Inc., Carlsbad, CA, USA)
and agarose gel electrophoresis, respectively. High-quality DNA
was used for library preparation and high-throughput sequenc-
ing using PacBio, Nanopore, and Illumina platforms (Table 1,
BioMarker Technology Co. Ltd., Beijing, China).

PacBio sequencing was carried out with the SMRT BellTM li-
brary using a DNA Template Prep Kit 1.0 (Pacific Biosciences
[PacBio], Menlo Park, CA, USA, p/n 100–259-100). All the de-
tailed library preparation protocols are available on protocols.io
[9]. Briefly, the genomic DNA (10 μg) was mechanically sheared
using a Covaris g-Tube (Covaris, Inc., Woburn, MA, USA, p/n
520,079) to get DNA fragments of ∼20 kb in size. The sheared
DNA was DNA-damage and end-repaired using polishing en-
zymes. Then a blunt-end ligation reaction followed by exonucle-
ase treatment was conducted to generate the SMRT BellTM tem-
plate. Finally, large fragments (>10 kb) were enriched with Blue
Pippin device (Sage Science, Inc., Beverly, MA, USA) for sequenc-
ing. A total of 15 single-molecule real-time (SMRT) cells were
processed, 7 with Sequel and 8 with RS II instruments (PacBio), to
generate a total of 67.32 Gb PacBio data. For Oxford Nanopore se-
quencing, ∼5 μg of genomic DNA was sheared and size-selected
(∼20 kb) with the aforementioned procedure. The selected frag-

ments were processed using the Ligation Sequencing 1D Kit (Ox-
ford Nanopore, Oxford, UK, p/n SQK-LSK109) according to the
manufacturer’s instructions and sequenced using the MinION
portable DNA sequencer with the 48 hours run script (Oxford
Nanopore), to generate a total of 8.47 Gb data. For Illumina se-
quencing, a paired-end (PE) library with an insert size of 350 bp
was constructed in accordance with the manufacturer’s proto-
col, and sequenced with an Illumina HiSeq X Ten platform (Il-
lumina, Inc., San Diego, CA, USA) with paired-end 150 (PE150)
read layout. A total of 53.06 Gb Illumina data were generated
and used for genome survey, correction, and evaluation (Supple-
mentary Table S2). All high-throughput sequencing data have
been deposited at the NCBI SRA database under accession ID
SAMN10879241.

Initial Genome Assembly and Evaluation

The Sequel and RS II raw files (bam and H5 formats) were
converted into subreads in fasta format with the standard
PacBio SMRT software package, for a total of 63,330,577,481 and
3,990,849,516 bp, respectively. Subreads shorter than 500 bp in
size were filtered out, to obtain a clean dataset of 4,761,097
PacBio reads for a total of 67,260,156,459 bp, with a read N50
of 21,932 and a mean read length of 14,127 bp (Supplemen-
tary Table S3). The Nanopore reads were base-called from the
raw FAST5 files using Guppy implanted in MinKNOW (Oxford
Nanopore), applying a minimum length cut-off of 500 bp, for a
total of 8,468,912,896 bp, with a read N50 of 20,804 and a read
mean length of 15,143 bp (Supplementary Table S4). Hybrid as-
sembly of the clean reads was carried out using Canu v1.5 (Canu,
RRID:SCR 015880) [10] and WTDBG v1.1 [11] tools. The 2 assem-
blies were joined using Quickmerge v0.2.2 [12], and the redun-
dancy was removed with Numer v4.0.0 [13]. Finally, the genome
assembly was corrected for 3 cycles with the Illumina reads pre-
pared specifically for genome survey using Pilon v1.22 (Pilon,
RRID:SCR 014731) with default settings [14]. This initial genome
assembly was 884,500,940 bp in length with a contig N50 of
2,388,811 bp (Supplementary Table S5). The detailed parameters
of each tool used for genome assembly are available at proto-
cols.io [15].

We evaluated the quality of the initial assembly by mapping
the 360,937,442 Illumina reads for genome survey to the assem-
bly using SAMTools v0.1.18 (SAMTOOLS, RRID:SCR 002105) [16]
and by searching the 303 eukaryotic and 978 metazoan con-
served genes in the assembly using BUSCO v2.0 (BUSCO, RRID:SC
R 015008) [17]. As a result, 97.45% of the Illumina reads were suc-
cessfully mapped to the assembled genome. The BUSCO analy-
sis found 273 and 897 conserved genes belonging to eukaryote
and metazoan datasets, accounting for 90.10% and 91.72% of the
totals, respectively (Supplementary Table S6). These results in-
dicated the considerable quality of this initial genome assembly
of S. broughtonii.

Hi-C Analysis and Chromosome Assembly

Fresh adductor muscle collected from a single S. broughtonii
specimen of the same population was first fixed using formalde-
hyde with a final concentration of 1%. The fixed tissue was then
homogenized with tissue lysis, digested with the restriction en-
zyme (HindIII), in situ labeled with a biotinylated residue, and
end-repaired. Finally, the DNA was extracted and used for Hi-C
library preparation using the Nextera Mate Pair Sample Prepara-
tion Kit (Illumina, p/n FC-132–1001). Briefly speaking, 5–6 μg DNA
was first sheared, end-repaired, and selected for fragments with
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Figure 1: Example of a Scapharca (Anadara) broughtonii, the blood clam.

Table 1: Summary of sequencing data generated for blood clam genome assembly and annotation

Library type Platform Library size (bp) Data size (Gb) Application

Short reads HiSeq X Ten 350 53.06 Genome survey, correction, and evaluation
Long reads PacBio

SEQUEL
20,000 63.33 Genome assembly

PacBio RS II 20,000 3.99
Nanopore
Minion

20,000 8.47

Hi-C HiSeq X Ten 350 52.16 Chromosome construction

a length of 300–700 bp, and the biotin-containing fragments were
captured. Then the basic standard steps of dA-tailing, adapter
ligation, PCR amplification, and purification were carried out.
Finally, the quality of the purified library was evaluated with
Qubit 3.0 (Thermo Fisher Scientific, Inc.), quantitative PCR (Q-
PCR), and Caliper LabChip GX Analyzer (Waltham, MA, USA).
The qualified library was sequenced using an Illumina HiSeq
X Ten platform with 150 PE layout. A total of 174,148,156 read
pairs (52.16 Gb) with a Q30 of 93.16% were generated and used
for the subsequent Hi-C analysis (NCBI SRA accession number:
SAMN10879242).

To get the unique mapped read pairs, the 174 million read
pairs were first truncated at the putative Hi-C junctions and
then aligned to the S. broughtonii genome assembly using the
BWA aligner v0.7.10-r789 (BWA, RRID:SCR 010910) [18]. A total
of 206 million reads (59.23%) mapped to the assembled genome,
of which 51 million read pairs (29.33%) were uniquely mapped
(Supplementary Table S7). Only the uniquely aligned pairs with
a mapping quality >20 were further considered, while the in-
valid interaction pairs due to self-circle ligation, dangling ends,
re-ligation, and the other dumped types were filtered out with
HiC-Pro v2.10.0 [19]. A total of 17 million valid interaction pairs,
accounting for 33.66% of the unique mapped read pairs (Supple-
mentary Table S8), were used for the Hi-C analysis. Detailed Hi-C
assembly parameters are available at protocols.io [20].

To correct misassemblies that occurred in the initial assem-
bly, the contigs were broken into 300-bp fragments and then

assembled on the basis of Hi-C data using Lachesis v2e27abb
[21]. The genomic regions characterized by the sudden drop of
physical coverage were defined as misassemblies, and contigs
were broken at that point [22]. As a result, we identified 343
break points in 156 contigs, and 1,645 corrected contigs with
an N50 of 1.81 Mb and a length of 884.50 Mb. Then the cor-
rected contigs were reassembled into 1677 contigs using Lach-
esis that conbined Hi-C data. Finally, 1,384 contigs (82.53%) were
successfully clustered into 19 groups (Fig. 2), which was con-
sistent with previous karyotype analyses of S. broughtonii [23].
The 1,384 clustered contigs correspond to a length of 878.79 Mb
(99.35% of the length of the corrected contigs). Among the 1,384
clustered contigs, 670 contigs (819.17 Mb) were anchored with
defined order and orientation, accounting for 48.41% and 93.22%
of the reassembled contigs by contig number and length, respec-
tively (Supplementary Table S9). The final chromosomal-level S.
broughtonii genome assembly, which represented the first refer-
ence genome of Family Arcidae, has a contig N50 of 1.80 Mb and
scaffold N50 of 45.00 Mb (Table 2).

Genome Annotation

We used LTR FINDER v1.05 (LTR Finder, RRID:SCR 015247) [24],
RepeatScout v1.0.5 (RepeatScout, RRID:SCR 014653) [25], and
PILER-DF v2.4 [26] to construct a library of repetitive sequences
based on the S. broughtonii genome. We classified these re-
peats using PASTEClassifier v1.0 [27], and we merged them with

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/7/giz067/5530322 by U

niversità degli Studi di Padova user on 11 July 2019

https://scicrunch.org/resolver/RRID:SCR_010910
https://scicrunch.org/resolver/RRID:SCR_015247
https://scicrunch.org/resolver/RRID:SCR_014653


4 Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii

Figure 2: Hi-C interaction heat map for Scapharca (Anadara) broughtonii.

Table 2: Statistics of the final genome assembly of Scapharca (Anadara) broughtonii

Types Number Length (bp) N50 (bp) N90 (bp) Maximum (bp)

Guanine-
cytosine

content (%) Gap (bp)

Scaffold 1,026 884,566,040 44,995,656 25,444,477 55,667,740 33.70 65,100
Contig 1,677 884,500,940 1,797,717 305,905 7,852,409 33.70 0

the Repbase database [28]. Finally, RepeatMasker v4.0.5 (Repeat-
Masker, RRID:SCR 012954) [29] was used to identify and mask
the genomic repeated sequences for a total length of 407.8 Mb,
representing 46.1% of the total genome length. The statistics of

amount, length, and percentage of each repeat type can be found
in Supplementary Table S10. Additional methodological infor-
mation about genome annotation is available at protocols.io
[15].
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Figure 3: Gene ontology (GO) annotation of the predicted genes. The horizontal axis indicates classes of the second-level GO annotation. The vertical axis indicates

the number and percentage of genes in each class.

Protein-coding genes were predicted using the following ap-
proaches: ab initio prediction, homology-based prediction, and
transcriptome-based prediction. For ab initio prediction, Genscan
v3.1 (Genscan, RRID:SCR 012902) [30], Augustus v3.1 (Augustus,
RRID:SCR 008417) [31], GlimmerHMM v1.2 (GlimmerHMM, RRID:
SCR 002654) [32], GeneID v1.4 [33], and SNAP v2006–07-28 (SNAP,
RRID:SCR 002127) [34] were used. For homology-based predic-
tion, protein sequences of 3 closely related mollusc species
(Crassostrea gigas, Mizuhopecten yessoensis, and Mytilus galloprovin-
cialis) and Danio rerio were downloaded from NCBI and aligned
against the assembled genome with GeMoMa v1.3.1 [35]. For the
transcriptome-based prediction, transcriptomic data obtained
from a previous study (NCBI SRA accession ID: PRJNA450478)
[36] were used as input data. In the previous study [36], RNA-seq
data had been de novo assembled with Trinity v.r20140413p1 and
the gene predictions were carried out with Program to Assemble
Spliced Alignments (PASA) v2.0.2 (PASA, RRID:SCR 014656) [37].
We also performed reference-based assembly of the RNA-seq
data with Hisat v2.0.4 (HISAT2, RRID:SCR 015530) and Stringtie
v1.2.3 [38], then we predicted the genes using TransDecoder
v2.0 [39] and GeneMark v5.1 (GeneMark, RRID:SCR 011930) [40].
All the gene predictions were integrated using EVidenceModeler

(EVM) v1.1.1 (EVM, RRID:SCR 014659) [41], and further modified
with PASA v2.0.2, to obtain a final dataset of 24,045 predicted
genes with an average length of 12,549 bp (Supplementary Table
S11).

Pseudogenes emerge from coding genes that have become
non-functional due to accumulation of mutations [42, 43]. A se-
quence that is homologous to a normal protein-coding gene but
not annotated as protein-coding genes is likely to be a pseudo-
gene. Therefore, based on homology to known protein-coding
genes, putative pseudogenes were first searched in the inter-
genic regions of the S. broughtonii genome using genBlastA v1.0.4
[44]. Then GeneWise v2.4.1 (GeneWise, RRID:SCR 015054) [45]
was adopted to search the premature stop codons or frameshift
mutations in those sequences and to finally identify a total of
1,658 pseudogenes, with an average length of 3,151 bp.

The predicted genes were annotated by aligning them to the
NCBI non-redundant protein (nr) [46], non-redundant nucleotide
(nt) [46], Swissprot (Swissprot, RRID:SCR 002380) [47], TrEMBL
(TrEMBL, RRID:SCR 002380) [47], KOG [48], and KEGG (KEGG, RR
ID:SCR 001120) [49] databases using BLAST v2.2.31 [50] with a
maximal e-value of 1e−5; by aligning to the Pfam database
(Pfam, RRID:SCR 004726) [51] using HMMer V3.0 [52]. Gene Ontol-
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Figure 4: Eukaryotic Orthologous Groups (KOG) classification of the predicted genes. Results are summarized in 24 function classes according to their functions. The

horizontal axis represents each class, and the vertical axis represents the frequency of the classes.

Table 3: Statistics of gene annotation to different databases

Annotation database Annotated number Percentage (%)

GO Annotation 5,766 23.98
KEGG Annotation 9,174 38.15
KOG Annotation 13,626 56.67
Pfam Annotation 17,321 72.04
Swissprot Annotation 12,866 53.51
TrEMBL Annotation 21,887 91.03
nr Annotation 21,897 91.07
nt Annotation 12,786 53.18
All Annotated 22,267 92.61

ogy (GO) terms (Gene Ontology, RRID:SCR 002811) [53] were as-
signed to the genes using the BLAST2GO v2.5 pipeline (Blast2GO,
RRID:SCR 005828) [54]. As a result, a total of 22,267 genes were
annotated in ≥1 database (Table 3, Supplementary Table S12).
Among the 21,897 genes annotated in the nr database, 11,772
genes (53.7%) showed homology with C. gigas hits (Supplemen-
tary Fig. S1). A total of 5,766 and 13,626 genes were annotated
in the GO and KOG databases, respectively, and the functional
classifications of these genes are presented in Figs 3 and 4, while
the complete gene annotation table is reported in Supplemen-
tary Table 12.

Finally, we predicted the non-coding RNAs based on the Rfam
v12.1 (Rfam, RRID:SCR 007891) [55] and miRBase v21.0 (miRBase,
RRID:SCR 003152) [56] databases. Putative microRNAs (miRNAs)
and ribosomal RNAs (rRNAs) were predicted using Infernal v1.1
[57], and transnfer RNAs (tRNAs) were predicted with tRNAscan-
SE v1.3.1 (tRNAscan-SE, RRID:SCR 010835) [58]. A total of 27 miR-

NAs, 204 rRNAs, and 1561 tRNAs were detected, corresponding
to 15, 4, and 25 families, respectively.

Availability of supporting data and materials

The DNA sequencing data and genome assembly have been de-
posited at the NCBI SRA database under the BioProject accession
number PRJNA521075. Supporting data are also available via the
GigaScience database GigaDB [59], and supporting protocols are
archived in protocols.io [9].
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Supplementary Table S1: Key protocols for chromosome-level
genome assembly of Scapharca (Anadara) broughtonii.
Supplementary Table S2: Summary of the Illumina sequencing
reads used for genome survey, correction, and evaluation.
Supplementary Table S3: Statistics of the length distribution of
Pacbio subreads.
Supplementary Table S4: Statistics of the length distribution of
Oxford Nanopore reads.
Supplementary Table S5: Statistics of the initial genome assem-
bly of Scapharca (Anadara) broughtonii.
Supplementary Table S6: Summary of BUSCO analysis results.
Supplementary Table S7: Statistics of the mapping results of Hi-
C reads.
Supplementary Table S8: Statistics of different types of the Hi-C
reads.
Supplementary Table S9: Summary of the Hi-C assembly.
Supplementary Table S10: Statistics of the repeated sequences.
Supplementary Table S11: Summary of the gene prediction re-
sults.
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Supplementary Table S12: Integrated lists of gene annotation for
the assembled Scapharca (Anadara) broughtonii genome.
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