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Abstract
In the Arctic Ocean, sea-ice decline will significantly change the structure of biological communities. At the same time, 
changing nutrient dynamics can have similarly strong and potentially interacting effects. To investigate the response of the 
taxonomic and trophic structure of planktonic and ice-associated communities to varying sea-ice properties and nutrient 
concentrations, we analysed four different communities sampled in the Eurasian Basin in summer 2012: (1) protists and (2) 
metazoans from the under-ice habitat, and (3) protists and (4) metazoans from the epipelagic habitat. The taxonomic com-
position of protist communities was characterised with 18S meta-barcoding. The taxonomic composition of metazoan com-
munities was determined based on morphology. The analysis of environmental parameters identified (i) a ‘shelf-influenced’ 
regime with melting sea ice, high-silicate concentrations and low  NOx (nitrate + nitrite) concentrations; (ii) a ‘Polar’ regime 
with low silicate concentrations and low  NOx concentrations; and (iii) an ‘Atlantic’ regime with low silicate concentrations 
and high  NOx concentrations. Multivariate analyses of combined bio-environmental datasets showed that taxonomic com-
munity structure primarily responded to the variability of sea-ice properties and hydrography across all four communities. 
Trophic community structure, however, responded significantly to  NOx concentrations. In three of the four communities, 
the most heterotrophic trophic group significantly dominated in the  NOx-poor shelf-influenced and Polar regimes compared 
to the  NOx-rich Atlantic regime. The more heterotrophic,  NOx-poor regimes were associated with lower productivity and 
carbon export than the  NOx-rich Atlantic regime. For modelling future Arctic ecosystems, it is important to consider that 
taxonomic diversity can respond to different drivers than trophic diversity.

Keywords Arctic Ocean · Sea ice · Community structure · Protists · Zooplankton · Under-ice fauna · Nutrients · Trophic 
ecology

Introduction

The Arctic Ocean has been experiencing a rapid decline 
in sea-ice volume (Kwok and Rothrock 2009; Laxon et al. 
2013) and sea-ice extent over the past two decades (Serreze 
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simulations have indicated that an ice-free Arctic Ocean 
during summer is likely to occur by the mid of the twenty-
first century (Wang and Overland 2009; Stroeve et al. 2012). 
In the water column, significant environmental changes are 
expected to occur, such as an increase in surface water tem-
peratures, changing circulation patterns, increased ocean 
acidification, enhanced stratification, and nutrient limita-
tion (IPCC 2014). These changes will profoundly impact 
on ecosystem structure and function, such as carbon and 
nutrient cycling, carbon export, and availability of marine-
living resources. Studies on Arctic plankton communities 
have demonstrated ongoing change in community com-
position and in the distribution of ecological key species 
related to ocean warming and sea ice decline (e.g. Bluhm 
et al. 2011; Wassmann 2011; Wassmann et al. 2011; Kraft 
et al. 2013; Nöthig et al. 2015; Hardge et al. 2017a, b). Sea-
ice decline has been linked to enhanced pelagic primary 
production (Arrigo and van Dijken 2011, 2015), mainly 
due to increased light availability (Nicolaus et al. 2012). In 
contrast, increased freshwater input due to river runoff may 
result in decreased primary production, because of lower 
nutrient availability (Yun et al. 2016). Besides nutrient sup-
ply, other factors are also likely to affect Arctic ecosystem 
structure, such as oceanic  CO2 uptake and increased tem-
peratures (Tremblay et al. 2015).

In the central Arctic Ocean, the bulk of the total primary 
production is often generated by sea-ice algae rather than 
phytoplankton (Gosselin et al. 1997; Fernández-Méndez 

et al. 2015). Reduced sea-ice algae production due to habi-
tat/substrate loss can influence fundamental patterns of 
carbon flux in the food web. Recently, it was shown that 
abundant ecological key species, such as Calanus spp. and 
juvenile polar cod Boreogadus saida, significantly depend 
on carbon produced by ice algae (Budge et al. 2008; Søreide 
et al. 2010; Wang et al. 2015; Kohlbach et al. 2016, 2017). 
Kohlbach et al. (2016) demonstrated that the cumulative 
carbon demand by metazoan grazers far exceeded primary 
production rates by phytoplankton and sea-ice algae during 
summer. This suggests that intermediate trophic levels of 
the food web depend on heterotrophic carbon sources to a 
much greater extent than previously suggested (David et al. 
2015; Kohlbach et al. 2016). While the transformation of 
Arctic sea-ice habitats continues, increased dependency on 
heterotrophic carbon transmitters may be a significant factor 
changing the trophic functioning of biological communities 
in the future Arctic Ocean.

In summer 2012, the lowest sea-ice extent since the 
beginning of satellite-based observations was recorded 
in the Arctic Ocean (Parkinson and Comiso 2013). In the 
Eurasian Basin of the Arctic Ocean, a vast area of rapidly 
degrading sea ice opened up in regions that are normally ice-
covered year-round (Fig. 1; Stroeve et al. 2012; Boetius et al. 
2013). Interacting with the anomalous 2012 sea ice situation 
was a contrast between nutrient-rich Atlantic Water enter-
ing through the Fram Strait, nutrient-depleted Polar Water 
advected from the central Arctic Ocean, and shelf-influenced 

Fig. 1  Overview of the research area with sampling locations and 
major topographic features. Sea-ice concentration derived from 
SSMIS satellite data (www.meere ispor tal.de) is shown on 14th of 

August (a) and 13th of September 2012 (b). Capital letters indicate 
sampling locations from Table 1

http://www.meereisportal.de
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water from the Laptev Sea (Lalande et al. 2014; David et al. 
2015; Fernández-Méndez et al. 2015; Metfies et al. 2016). 
Sampling this unprecedented situation of extreme reduction 
of sea ice during Polarstern expedition PS80 gave the unique 
opportunity to sample both protist and metazoan communi-
ties simultaneously with hydrographical conditions, nutrient 
concentrations and sea-ice properties.

Changes in the taxonomic and trophic structure of these 
communities can have a strong impact on key ecosystem 
functions, such as primary and secondary production, car-
bon-, and nutrient cycling. The rapid environmental changes 
in the Arctic Ocean likely act differently on sea ice-associ-
ated communities compared to planktonic communities. In 
high-Arctic ecosystems, however, the response of biological 
communities to different drivers interacting with each other 
is poorly understood, especially in the under-ice habitat 
(Wassmann et al. 2011). In this study, we use a range of 
morphological, molecular, and statistical tools to analyse the 
structure of protist and metazoan communities both in the 
under-ice habitat and in the epipelagic habitat in the Eura-
sian Basin of the Arctic Ocean. We hypothesize that (1) the 
structure of both protist and metazoan communities responds 
to similar environmental drivers in each habitat; and (2) that 
changes in taxonomic composition in relation to environ-
mental variability will be resembled in the trophic structure 
of these communities. To test these hypotheses, we:

(a) identified physical–chemical drivers structuring envi-
ronmental regimes, such as sea-ice properties, hydrog-
raphy and nutrient concentrations;

(b) analysed the relationship of the taxonomic composition 
of Arctic protist and metazoan communities with these 
environmental drivers;

(c) investigated if environmental drivers were associated 
with both the taxonomic and the trophic community 
structure.

Material and methods

Research area

The samples were collected from 7 August to 29 Septem-
ber 2012 during the RV Polarstern expedition PS80 (ARK-
XXVII/3, “IceArc”) in the central Arctic Ocean (Fig. 1). 
The area sampled extended over the Eurasian Basin, ranging 
from 82° to 89°N, and from 30° to 130°E, and was entirely 
situated in deep-sea waters (depth range 3409–4384 m; 
Table 1). Samples and data were collected with various 
sampling gear at altogether 46 stations. For the purpose 
of this study, we grouped these stations into 11 locations 
identified by the letters A to K, based on spatio-temporal 
proximity. Most sampling locations were associated with 

drifting sea-ice stations. The sampling around these loca-
tions, therefore, extended over a period of up to 3 days, and 
covered a latitudinal drift distance of up to 14.5 nm (28 km). 
A complete account of all stations sampled for this study was 
provided in Table 1.

Sampling of environmental parameters

Water column

A conductivity temperature depth probe (CTD) with a carou-
sel water sampler was used to collect environmental parame-
ters from the water column. The CTD (Seabird SBE9+) was 
equipped with a fluorometer (Wetlabs FLRTD), a dissolved 
oxygen sensor (SBE 43) and a transmissiometer (Wetlabs 
C-Star). Details of the CTD sampling procedure were pro-
vided by Boetius et al. (2013). Data are available online in 
the PANGAEA database (Rabe et al. 2012). Nutrient sam-
ples were collected at multiple depths, and analysed in an 
air-conditioned lab container with a continuous flow auto 
analyser (Technicon TRAACS 800) following the proce-
dure described by Boetius et al. (2013). Measurements were 
made simultaneously on four channels:  PO4, Si,  NO2 + NO3 
together and  NO2 separately. Nutrient values for the purpose 
of this study were taken from the depth of the chlorophyll 
a maximum. The depth of the upper mixed layer (MLD) 
was calculated from the ship CTD profiles after Shaw et al. 
(2009). Integrated values for water temperature and salinity 
within the MLD were derived by averaging continuous CTD 
profile data between the surface and the MLD. A stratifica-
tion index was estimated as the density gradient between the 
density of the mixed layer and the density of the water 5 m 
below the MLD.

Under‑ice habitat

Under-ice metazoans and environmental parameters of the 
ice–water interface layer (0–2 m) were sampled with a Sur-
face and Under-Ice Trawl (SUIT) (van Franeker et al. 2009). 
The SUIT consisted of a steel frame with a 2 m × 2 m open-
ing and two parallel 15 m-long nets attached: (1) a 7 mm 
half-mesh commercial shrimp net, which covered 1.5 m of 
the opening width; and (2) a 0.3 mm mesh zooplankton net, 
which covered 0.5 m of the opening width. SUIT haul dura-
tions varied between 17 and 42 min (mean = 29 min) over an 
average distance of 1.5 km. Water inflow speed and direction 
were calculated using a Nortek Aquadopp® Acoustic Dop-
pler Current Profiler (ADCP). The trawled area was calcu-
lated by multiplying the distance trawled in water, estimated 
from ADCP data, with the net width. The SUIT sampling 
technique and performance has been described in detail 
by David et al. (2015) and Flores et al. (2012). A sensor 
array was mounted on the SUIT frame, comprising among 
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Table 1  Stations sampled during the expedition PS80. Nearby stations were grouped together as ‘locations’ represented by letters A to K

CTD water column parameters sampled with the ship’s CTD (temperature, salinity, nutrients), ice sea-ice parameters, ui under ice, ep epipelagic

Location Station Date Latitude (°N) Longitude (°E) Depth (m) Parameters

A PS80/215–1 08/07/2012 82.488 30.001 3618 CTD
PS80/216–1 08/07/2012 82.483 30.027 3610 ui-metazoans

B PS80/223–1 08/09/2012 84.070 30.434 4016 ui-metazoans
PS80/224–1 08/09/2012 84.051 31.112 4014 ice/ui-protists
PS80/226–1 08/09/2012 84.028 31.236 4013 ep-metazoans
PS80/227–1 08/09/2012 84.026 31.225 4011 CTD
PS80/230–1 08/11/2012 84.022 31.221 4011 CTD/ep-protists
PS80/233–1 08/11/2012 84.045 31.298 4011 ui-metazoans

C PS80/237–1 08/14/2012 83.987 78.103 3585 ice
PS80/242–1 08/16/2012 83.902 76.067 3409 CTD
PS80/243–1 08/16/2012 83.911 75.971 3418 ep-metazoans
PS80/248–1 08/16/2012 83.934 75.500 3424 ui-metazoans

D PS80/254–1 08/19/2012 82.696 109.119 3571 CTD
PS80/255–1 08/20/2012 82.671 109.590 3569 ice/ui-protists
PS80/256–1 08/20/2012 82.674 109.590 3571 CTD/ep-protists
PS80/258–1 08/20/2012 82.743 109.627 3575 ui-metazoans
PS80/261–1 08/21/2012 82.939 109.864 3599 ep-metazoans

E PS80/276–1 08/25/2012 83.076 129.125 4188 ui-metazoans
PS80/277–1 08/25/2012 82.883 130.130 4161 ice
PS80/279–1 08/25/2012 82.887 129.969 4166 ep-metazoans
PS80/281–1 08/26/2012 82.893 129.826 4186 CTD
PS80/285–1 08/26/2012 82.896 129.782 4174 ui-metazoans

F PS80/321–1 09/04/2012 81.717 130.033 4011 ui-metazoans
PS80/323–1 09/04/2012 81.926 131.129 4031 ice/ep-protists
PS80/324–1 09/04/2012 81.925 131.120 4040 CTD
PS80/328–1 09/05/2012 81.889 130.792 4036 ep-metazoans
PS80/329–1 09/05/2012 81.876 130.878 4032 CTD/ep-protists/ui-protists
PS80/331–1 09/05/2012 81.905 130.863 4011 ui-metazoans

G PS80/333–1 09/06/2012 82.989 127.103 4036 ui-metazoans
PS80/333–2 09/06/2012 83.003 127.177 4188 CTD

H PS80/335–1 09/07/2012 85.102 122.245 4355 ice/ep-protists/ui-protists
PS80/336–1 09/07/2012 85.100 122.255 4357 CTD/ep-protists
PS80/337–1 09/07/2012 85.092 122.262 4356 ep-metazoans
PS80/342–1 09/09/2012 85.158 123.349 4353 CTD
PS80/345–1 09/09/2012 85.254 123.842 4354 ui-metazoans

I PS80/349–1 09/18/2012 87.934 61.217 4380 CTD/ep-protists/ui-protists
PS80/351–1 09/18/2012 87.933 60.991 4384 ep-metazoans
PS80/354–1 09/19/2012 87.925 60.954 4384 CTD
PS80/357–1 09/19/2012 87.925 61.125 4381 CTD/ep-protists

J PS80/360–1 09/22/2012 88.828 58.864 4374 ice/ep-protists/ui-protists
PS80/364–1 09/22/2012 88.811 57.411 4375 CTD
PS80/367–1 09/23/2012 88.792 56.674 4375 ep-metazoans
PS80/370–1 09/23/2012 88.771 55.936 4377 CTD/ep-protists

K PS80/384–1 09/28/2012 84.375 17.454 3513 ice/ep-protists/ui-protists
PS80/387–1 09/28/2012 84.368 17.525 3897 CTD
PS80/386–1 09/28/2012 84.371 17.503 3774 ep-metazoans
PS80/396–1 09/29/2012 84.346 17.815 4015 CTD/ep-protists
PS80/397–1 09/29/2012 84.172 17.922 4028 ui-metazoans
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other devices a CTD probe with built-in fluorometer and an 
altimeter used to derive ice thickness profiles and under-ice 
chlorophyll a concentrations (David et al. 2015). Gridded 
daily sea-ice concentrations for the Arctic Ocean derived 
from SSMIS satellite data using the algorithm specified by 
Spreen et al. (2008), were downloaded from the sea-ice por-
tal hosted at the University of Bremen (www.meere ispor 
tal.de). For each sea-ice station, sea-ice concentration was 
averaged from nine adjacent grid cells, with the grid cell 
in which the station was situated as the centre. A detailed 
description of environmental sampling and parameter esti-
mations was provided by David et al. (2015). An overview of 
the environmental parameters and their ranges was provided 
in Table 2.

Chlorophyll a concentration

Particulate organic matter (POM) from water samples was 
collected on Whatman GF/F glass fibre glass fibre filters 
(0.7 µm), extracted in 90% acetone and analyzed with a 
Turner-Design fluorometer according to standard procedure 
(Edler 1979; Evans et al. 1987). Calibration of the fluorom-
eter was carried out with standard solutions of Chlorophyll 
a (Sigma, Germany). To estimate chlorophyll a content of 
sea ice, ice cores were collected at each ice stations using a 
9 cm-diameter ice corer (Kovacs). Ice cores were cut in seg-
ments, which were each melted in 4 °C with 0.2 µm filtered 
sea water in the dark. For details of sea-ice sampling see 
Boetius et al. (2013) and Lange et al. (2016). For pigment 
analysis of filtered ice core samples to each filter 50 µl inter-
nal standard (canthaxanthi), 1.5 ml acetone and small glass 
beads were added and the samples kept frozen at – 20 °C for 
15 min. Cell were disrupted for 20 s with a Precellys® tis-
sue homogenizer. The centrifugation of the extract was per-
formed in a cooled centrifuge (0°) and the supernatant liquid 
was kept and filtered through a 17 mm HPLC 0.2 µm PTFE 

filter (LABSOLUTE). Pigment measurement was carried 
out with a Waters HPLC-system equipped with an auto sam-
pler (717 plus), a pump (600), a Photodiode array detector 
(2996), a fluorescence detector (2475) and the EMPOWER 
software. The analysis of the pigments was conducted by 
reverse-phase HPLC, with a VARIAN Microsorb-MV3 C8 
column (4.6 × 100 mm) and HPLC-grade solvent (Merck). 
For details see Kilias et al. (2013).

Sampling of organisms from the under‑ice 
and the pelagic habitats

Protists

Sampling of epipelagic protists was carried out with a rosette 
sampler equipped with 24 Niskin bottles attached to the 
ship CTD. Samples were taken during the up-cast at the 
vertical maximum of chlorophyll a fluorescence determined 
during the downcast. The sampling depth varied between 
10 and 50 m. Two-litre subsamples were transferred into 
PVC bottles. Under-ice protist samples were collected with a 
Kemmerer bottle (6.3 l) lowered through an ice hole directly 
below the ice. Protists were collected for molecular analyses 
by sequential filtration of one water sample through three 
different mesh sizes (10 µm, 3 µm, 0.4 µm) at a vacuum 
pressure of − 200 mbar using Isopore Membrane Filters 
(Millipore, USA). Filters were stored in Eppendorf tubes 
(Eppendorf, Germany) at − 80 °C until further processing 
in the laboratory.

In this study, we used a subset of an 18S meta-barcoding-
data set comprising a total of 56 samples collected in differ-
ent ice-influenced habitats (Hardge et al. 2017a). DNA sam-
ples were processed as described in Hardge et al. (2017a). 
DNA extraction was carried out with the NucleoSpin® Plant 
II kit (Macherey–Nagel) following the manufacturer’s pro-
tocol. The V4 region was amplified in triplicates using the 

Table 2  Environmental 
parameters used in analyses

Chl a chlorophyll a, Min minimum value, Max maximum value

Parameter Code Unit Device Min Max

Mean sea ice concentration SIC % Satellite 4 100
Modal ice thickness SIT m SUIT CTD 0 1.4
Mean temperature in the mixed layer T.ML °C Ship CTD  − 1.79  − 0.96
Mean salinity in the mixed layer S.ML PSU Ship CTD 30.06 33.36
Mean turbidity in the mixed layer Tb.ML % Ship CTD 93.22 95.56
Mixed layer depth MLD m Ship CTD 9 34
Stratification index Strat Ship CTD 0.02 1.19
SiO4

2− conc. at the chl a maximum Si µmol  l−1 Ship CTD 1.17 4.80
NO3

2− + NO2
3− conc. at the chl a maximum NOx µmol  l−1 Ship CTD 0.12 6.84

Mean chlorophyll a conc. in sea ice Chl.ice mg  m−3 Ice cores 0.19 6.25
Mean chl a conc. in the under-ice habitat Chl.ui mg  m−3 SUIT CTD 0.19 1.13
Mean chl a conc. in the mixed layer Chl.ML mg  m−3 Ship CTD 0.06 0.30

http://www.meereisportal.de
http://www.meereisportal.de
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universal primer set TAReuk454FWD1 and TAReukREV3 
(Stoeck et al. 2010). The DNA amplification was carried out 
in two rounds using a Mastercycler (Eppendorf, Germany). 
Resulting PCR products were purified with NucleoSpin® 
Gel & PCR Clean up kit (Macherey–Nagel) according to the 
manufacturer’s protocol. Pooled triplicates were sequenced 
on the MiSeq 18S meta-barcoding platform (2 × 300 
paired-end reads). The library preparation was done with 
the TruSeq RNA Library Preparation Kit v2 according to 
the manufacturer’s protocol. We used QIIME version 1.8.0 
(Caporaso et al. 2010) for sequence analysis. Operational 
taxonomic units (OTUs) were determined de novo at a mini-
mum similarity threshold of 98%. According to Bokulich 
et al. (2013), OTUs consisting of less than 0.005% of pro-
cessed sequences were removed. Representative sequences 
of each OTU were aligned with the bioinformatics pipeline 
called PhyloAssigner (Vergin et al. 2013). The compiled 
reference database is available on request in ARB-format.

164 of the 210 protist taxa identified with sequence analy-
sis were assigned to the trophic groups “autotrophs”, “mixo-
trophs” and “heterotrophs” based on published knowledge 
on their trophic function (Online Resource ESM1). Based 
on the relative sequence abundance of combined OTUs with 
identical taxonomic labels, the proportional contribution of 
autotrophs, mixotrophs and heterotrophs was calculated for 
each sampling location.

Metazoans

Under-ice metazoans were sampled with the SUIT. After 
retrieval of the catch from the SUIT, the material was pre-
served in 4% formaldehyde/seawater solution for quantita-
tive analysis. The samples were analysed for species com-
position and abundance at the Alfred Wegener Institute 
following the procedure described by David et al. (2015). 
In all macrofauna species, total body length was measured 
to the nearest 1 mm using a stereo microscope coupled to 
a digital image analysis system (Leica Model M 205C and 
image analysis software LAR 4.2). Copepods were classi-
fied by developmental stage and sex. Epipelagic metazo-
ans were sampled with a Multinet (Hydrobios, Kiel). The 
Multinet had a mouth opening area of 0.25  m2 and was 
equipped with five nets (150 µm), which were sequentially 
opened and closed to five sample discrete depth intervals 
(1500–1000–500–200–50–0 m). In the present study, only 
samples from the uppermost depth stratum (0–50 m) were 
considered. The samples were preserved in 4% formalde-
hyde/seawater solution buffered with borax. In the labora-
tory, the samples were subdivided with a plankton splitter 
(Hydrobios) usually to 1/8 and at maximum to 1/64. Abun-
dant species (n > 50 in an aliquot) were sorted only from one 
subsample, while less abundant species were sorted from 
at least two subsamples. Areal abundances (ind.  m−2) were 

calculated by dividing the total number of animals in each 
net by the water volume filtered, and multiplying the result-
ing volumetric density by the vertical depth range sampled.

We estimated the individual dry mass of freeze-dried 
SUIT samples of the five most abundant amphipod spe-
cies. To account for the high variability in size distribution 
between sampling sites of the amphipod Themisto libellula, 
a size-dry weight relationships was established. This rela-
tionship was then used to estimate the dry mass of Themisto 
spp. at each station based on their total biovolume and mean 
size, respectively. Dry mass of Calanus copepods was esti-
mated based on size- and stage composition data (Ehrlich 
2015) and published individual dry mass values (Ashjian 
et al. 2003). Dry mass of all other taxa was calculated using 
published mean individual dry mass values (e.g. Falk-
Petersen et al. 1981; Ashjian et al. 2003). An account of 
individual dry weights, both measured and estimated from 
the literature, was provided in the Online Resource (ESM2).

Metazoan taxa were assigned to the trophic groups 
“herbivores”, “omnivores” and “carnivores” based on pub-
lished knowledge of their feeding ecology (Online Resource 
ESM2). Based on the relative dry mass of each taxon, the 
proportional contribution by mass of herbivores, omnivores 
and carnivores was calculated for each sampling location.

Statistical analysis

Environmental data

We used principal component analysis (PCA) to analyse 
spatial patterns in the environmental properties of sampling 
locations. In the PCA ordination, sampling locations hav-
ing a similar structure in their environmental properties are 
grouped closer together than locations that show greater 
differences in environmental properties. The environmental 
gradients are shown relative to the ordination axes. Near-
normal distribution of data, as assumed by PCA, was con-
firmed by visual inspection of histograms. To achieve near-
normal distribution of the data, sea-ice concentration (SIC) 
was double-square transformed, mixed layer depth (MLD) 
and nitrate + nitrite concentration  (NOx) were square-root 
transformed, and the Stratification Index (Strat) was log-
transformed (for all parameter codes see Table 2). To obtain 
an optimal representation of the structure of environmental 
data, we first performed a PCA with the full set of environ-
mental parameters (Table 2), and then performed a stepwise 
backward selection, until the combination of parameters was 
found in which the cumulative proportion of variance of 
the first four components reached a maximum. From the 
PCA biplot, groups of locations with similar environmental 
properties (‘regimes’) were identified visually. Statistically 
significant differences in single environmental parameters 
between these regimes were assessed with an analysis of 
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variance (ANOVA), followed by the Tukey Honest Signifi-
cance test (Tukey HSD).

Community analysis

To analyse the relationship of the community structure with 
environmental parameters, we performed canonical cor-
respondence analyses (CCA). The CCA ordination groups 
sampling locations that have a similar taxonomic structure 
closer together than locations that show greater differences 
in taxonomic structure. In addition, it projects this ordina-
tion in relation to environmental gradients for assessing 
the association of taxonomic structure with environmental 
parameters. CCAs were conducted for each of the four com-
munities: under-ice protists, epipelagic protists, under-ice 
metazoans, and epipelagic metazoans. Square-root trans-
formation and Wisconsin standardization were applied 
to under-ice and epipelagic metazoan data. In each CCA, 
combinations of up to four environmental parameters were 
sequentially selected based on the maximum contribution 
of eigenvalues to the mean-squared contingency coefficient 
(cumulative proportion). In the final CCA of each commu-
nity, the cumulative proportion reached at least 50%, and the 
joint effect of constraints was significant. The significance 
of the joint effect of constraints was tested with an ANOVA-
like permutation test for CCA using 1000 permutations (in 
R termed ‘anova.cca’, Oksanen et al. 2013).

Trophic structure

We used Student’s t test to test for significant differences 
in the proportional contribution of single trophic groups 
between NOx-poor and NOx-rich regimes. To analyse the 
relationship of trophic groups with environmental param-
eters in more detail, we used generalized linear models 
(GLM, McCullagh and Nelder 1989). GLMs are used to fit 
relationships of single response variables (e.g. ‘percentage 
of herbivores’) with combinations of one or more explana-
tory variables (here: environmental parameters), thereby 
allowing to choose appropriate assumptions about the error 
distribution of the model. In this study, we modelled the pro-
portion of each trophic group in each community (response 
variable) in relation to up to two environmental parameters 
(explanatory variables). Because the response variables were 
proportional data, we assumed a binomial error distribution 
with a flexible dispersion parameter (in R termed ‘quasibino-
mial’). The same transformations as in the PCA were applied 
to SIC, MLD, Strat and  NOx to achieve near-normal distribu-
tion of the data. To find the most parsimonious model, we 
sequentially added up to two environmental parameters to 
each model and retained those parameters which had signifi-
cant model terms and the lowest residual deviance.

For all analyses, we used Rs software version 3.5.2 (R 
Core Team 2017).

Results

Environmental properties

The research area was characterised by mixed layer depths 
(MLD) between 9 and 34 m, and chlorophyll a concen-
trations in the mixed layer (Chl.ML) ranged from 0.06 to 
0.30 mg m−3 (Table 2). Location A was situated at the ice 
edge and was the only location where water temperatures in 
the mixed layer (T.ML) were > − 1 °C (Fig. 2a). All other 
stations were situated within the pack-ice during the early 
(locations B–D; Fig. 1a), or during the late phase of the sam-
pling period (locations I–K; Fig. 1b). Locations A and E–H 
were positioned close to large open water areas (Fig. 1b). 
They shared low values of salinity in the mixed layer (S.ML) 
and relatively low values of sea-ice concentration (SIC) and 
thickness (SIT), indicating an advanced state of sea-ice melt 
(Fig. 2b, g, h). Locations D–J were characterised by lower 
nitrate + nitrite concentrations at the depth of the chloro-
phyll a maximum  (NOx; < 2.5 µmol l−1) than the other loca-
tions. In this group, locations E–H showed elevated silicate 
concentrations at the depth of the chlorophyll a maximum 
(Si; Fig. 2e). At locations A–C and K,  NOx values exceeded 
3.5 µmol l−1 (Fig. 2f).

A principle component analysis (PCA) including the 
environmental parameters  NOx, S.ML, SIC, Si and T.ML 
could explain 99.85% of the first four principle compo-
nents. The biplot of the first two components (explaining 
altogether 92.64% of the variance) showed that the most 
pronounced environmental gradient in the research area fol-
lowed the variability of S.ML and Si along component axis 
1 (Fig. 3). This ‘shelf-ocean’ gradient reflected the transition 
from locations E–H off the Laptev Sea, characterised by 
the fresh, silicate-rich waters and decaying sea ice (‘shelf-
influenced regime’) to the silicate-poor, more oceanic loca-
tions A–D and I–K. (Figs. 2b, e, 3). Crossing this shelf-
ocean gradient, an ‘NOx’ gradient reflected the transition 
from  NOx-poor waters at the shelf-influenced regime (E–H) 
and a ‘Polar regime’ with low Si values (D, I, J) to  NOx-rich 
waters entering from the Fram Straight at locations A–C 
and K (‘Atlantic regime’; Figs. 2f, 3). Mean values of Si 
and  NOx were significantly different between the regimes 
separated by these two interacting gradients (Si: ANOVA, 
F2 = 23.18, p < 0.001, Tukey HSD: Shelf-influenced ver-
sus Atlantic regime p = 0.001/Shelf-influenced versus Polar 
regime p < 0.001;  NOx: ANOVA, F2 = 14.01, p = 0.002, 
Tukey HSD: Polar versus Atlantic regime p = 0.009/Shelf/
influenced versus Atlantic regime p = 0.003).
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Community structure

General community composition

From the 11 locations considered in this study, we sampled 
7 locations for under-ice and epipelagic protists, 9 locations 
for under-ice metazoans, and 9 locations for epipelagic meta-
zoans (Table 1). In each community, the sampling included 
locations from all three environmental regimes. In the protist 
community from under-ice water, OTUs from dinoflagel-
lates ( ~ 40% of total sequences) dominated, with the high-
est sequence abundances in the Gymnodiniaceae (Gymno-
dinium spp., Karlodinium spp. and Gyrodinim spp.). In the 
epipelagic layer, the share of OTUs from non-dinoflagellate 
heterotrophic protists was often higher than the share of 
dinoflagellate OTUs, with the highest sequence abuncances 
in Ciliophora (Oligotrichea). The under-ice metazoan com-
munity comprised both ice-associated and pelagic species. It 
was numerically dominated by the ice-associated amphipod 

Apherusa glacialis, and the pelagic copepods Calanus gla-
cialis and C. hyperboreus. The epipelagic metazoan commu-
nity was dominated by copepods in numbers and biomass. 
By far the most abundant species were C. hyperboreus and 
Calanus spp. (predominantly C. finmarchicus). Detailed 
analyses of the taxonomic composition of protist and meta-
zoan communities were provided in David et al. (2015), Ehr-
lich (2015) and Hardge et al. (2017a).

Community structure in relation to environmental 
parameters

In all four communities, the ordination followed gradients 
of sea-ice influence (SIC, SIT), stratification (MLD, Strat) 
and shelf influence (S.ML, Si; Table 3). With two excep-
tions (under-ice metazoans: location A in Fig. 4c; epipe-
lagic metazoans: location C in Fig. 4d), locations with high 
sea-ice influence (B–C, I–K) were separated along the SIC/
SIT gradient from those with lower sea-ice influence (D–H; 

Fig. 2  Environmental proper-
ties at the sampling locations. 
Environmental parameters have 
the same codes as shown in 
Table 2: T.ML water tem-
perature in the mixed layer (a), 
S.ML salinity in the mixed layer 
(b), MLD mixed layer depth (c), 
Strat stratification index (d), 
Si  Silicate concentration at the 
depth of the chlorophyll a maxi-
mum (e), NOx Nitrate + Nitrite 
concentration at the depth of the 
chlorophyll a maximum (f), SIC 
sea ice concentration (g), SIT 
ice thickness (h). Capital letters 
indicate sampling locations 
from Table 1. The bars are col-
oured according to environmen-
tal regimes identified with the 
PCA (Fig. 3): brown shelf-influ-
enced regime (Locations E-H); 
orange Atlantic regime (Loca-
tions A-C, K), turquoise =  Polar 
regime (Locations D, I, J). 
(Color figure online)
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Figs. 2, 4).  NOx was only important in protist communities 
(Table 3, Fig. 4a, b).

Trophic structure

Whereas the taxonomic structure of all four communities 
predominantly reflected the variability of sea-ice influence, 
stratification and shelf influence (Table 3, Fig. 4), the trophic 
structure differed predominantly between locations in the 

 NOx-rich Atlantic regime and locations in the  NOx-poor 
Polar and shelf-influenced regimes.

The protist community of the under-ice water was domi-
nated by OTUs of mixotrophic taxa, reflecting the high share 
of OTUs from dinoflagellates (Hardge et al. 2017a). Loca-
tions in  NOx-poor waters of the polar and shelf-influenced 
regimes (D, F and H–J) had a significantly higher share of 
heterotrophy-associated OTUs than locations of the Atlantic 
regime (B, K; t test: t2.24 = 6.32, p < 0.05; Fig. 5a). Within 
the  NOx-poor regimes, locations associated with thicker ice 
(H–J) had proportionally higher shares of OTUs indica-
tive of autotrophic taxa compared to locations with thinner, 
decaying sea ice (D, F; Figs. 2h, 5a).

In the epipelagic protist community, OTUs of hetero-
trophs were generally more abundant compared to the pro-
tist community sampled in the under-ice layer, reflecting 
the high share of protozoan sequences in this community 
(Hardge et al. 2017a). Similar to the under-ice protist com-
munity, the proportion of heterotrophic OTUs was higher 
at the  NOx-poor locations in the Shelf-influenced and Polar 
regimes (D, F, H–J) than at locations in the Atlantic regime 
(B, K), but this pattern was not statistically significant (t 
test: p > 0.05). Rather, the share of OTUs from mixotrophs 
was significantly lower, and the share of OTUs from auto-
trophs was significantly higher at  NOx-poor locations com-
pared to locations in the Atlantic regime (t test; mixotrophs: 
t4.42 = – 4.58, p < 0.01; autotrophs: t4.63 = 4.98, p < 0.01; 
Fig. 5b).

The under-ice metazoan community was characterized 
by a high variability in the biomass share of herbivores, 
ranging from < 30 to > 90% (Fig. 5c). The biomass share of 
herbivores decreased along the more open and fresher sur-
face water at stations D–G with relatively thin ice (Figs. 1, 
2h, 5c). At  NOx-poor locations in the shelf-influenced and 
Polar regimes (D–H), the proportional biomass of herbivores 
was significantly lower, and proportional biomasses of car-
nivores was significantly higher compared to locations in 
the Atlantic regime (A–C, K) (t test: herbivores: t9.75 = 2.91, 
p < 0.05; carnivores: t6.93 = − 2.56, p < 0.05).

Fig. 3  Biplot of a principle component analysis (PCA) of environ-
mental properties in the research area. Capital letters represent sam-
pling locations from Table 1. Letters were colour-coded according to 
visually identified oceanographic regimes: brown = shelf-influenced 
regime  (Locations E-H); orange = Atlantic regime  (Locations A-C, 
K), turquoise = Polar regime  (Locations D, I, J). Blue arrows point 
into the direction of increasing values of environmental parameters 
in the ordination. Percentage values in axis annotations indicate 
proportion of explained variance of the PCA. Environmental param-
eters (Table 2): NOx Nitrate + Nitrite concentration at the depth of the 
chlorophyll a maximum, S.ML salinity in the mixed layer, Si Silicate 
concentration at the depth of the chlorophyll a maximum, SIC sea 
ice concentration, T.ML temperature in the mixed layer. (Color figure 
online)

Table 3  Significant (CCA-ANOVA; p < 0.05) combinations of envi-
ronmental parameters explaining > 50% of the variability in the CCA 
ordination of protist and metazoan communities at the ice–water 

interface and in the epipelagic habitat. In each CCA, the selected sig-
nificant environmental parameters were indicated by the letter “x”

Habitats: uiw under-ice water, ep pipelagic; Env. parameters: MLD mixed layer depth,  NOx = Nitrate + Nitrite concentration at the depth of the 
chlorophyll a maximum, S.ML salinity in the mixed layer, Si silicate concentration at the depth of the chlorophyll a maximum, SIC sea ice con-
centration, Strat stratification index, SIT ice thickness. Statistics: prop. = proportional contribution of eigenvalues to constraints

Community Prop MLD Strat NOx S.ML Si SIC SIT

uiw-protists 0.81 x x x x
uiw-metazoans 0.55 x x x x
ep-protists 0.75 x x x x
ep-metazoans 0.58 x x x x
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In the epipelagic metazoan community, the variability of 
the biomass share of herbivores versus carnivores showed a 
similar pattern compared to the under-ice protist and under-
ice metazoan communities (Fig. 5 a, b, d). Accordingly, at 
 NOx-poor locations in the shelf-influenced and Polar regimes 
(D–F, H–J), the proportional biomass of herbivores was sig-
nificantly lower, and the proportional biomass of omnivores 
and carnivores was significantly higher compared to loca-
tions in the Atlantic regime (B, C, K) (t test; herbivores: 
t3.06 = 4.10, p < 0.05; omnivores: t3.19 = − 3.45, p < 0.05; 
carnivores: t3.06 = − 3.85, p < 0.05).

To more accurately investigate the relationship of 
trophic structure with the variability of environmental 
parameters interacting with each other, we used GLMs to 
analyse the combined effect of up to two environmental 
parameters on the relative share of each trophic group from 

each community in each habitat. In 10 of the 12 models, 
the selection procedure resulted in ‘best’ models with sig-
nificant effects (p < 0.05) (Table 4). In under-ice communi-
ties, the proportional contribution of each trophic group 
was associated with different environmental parameters. 
For the under-ice protist community, the selected GLMs 
indicated that temperature and turbidity of the mixed layer 
had a positive effect on the share of autotrophs, while 
heterotrophs were negatively related to  NOx values and 
positively related to chlorophyll a concentrations in sea 
ice. The share of mixotrophs was negatively related to ice 
thickness (Table 4). In under-ice metazoan models, S.ML 
was the only environmental parameter related to the two 
trophic groups to which a GLM could be fitted. S.ML had 
a positive effect on the share of herbivores, and a negative 
effect on the share of carnivores (Table 4). Because this 

Fig. 4  Biplots from a canonical correspondence analysis (CCA) of 
under-ice protist (a), epipelagic protist (b), under-ice metazoan (c) 
and epipelagic metazoan (d) communities in relation to environmen-
tal gradients. Capital letters in biplots indicate sampling locations 
(Table  1). Letters were colour-coded according to oceanographic 
regimes (Fig.  3): brown = shelf-influenced regime  (Locations E-H); 
orange = Atlantic regime  (Locations A-C, K), turquoise = Polar 
regime  (Locations D, I, J). Blue arrows point into the direction of 
increasing values of environmental parameters in the ordination. Grey 

dots indicate the position of individual protist OTUs and metazoan 
taxa in the ordination. The corresponding taxonomic information 
is provided in the Online Resource (ESM1, ESM2). Environmental 
parameters (Table  2): MLD mixed layer depth, NOx Nitrate + Nitrite 
concentration at the depth of the chlorophyll a maximum, S.ML salin-
ity in the mixed layer, Si Silicate concentration at the depth of the 
chlorophyll a maximum, SIC sea ice concentration, Strat = stratifica-
tion index, SIT = ice thickness. (Color figure online)
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community was not sampled at locations I and J, however, 
the variability of S.ML largely coincided with the vari-
ability of  NOx in this dataset.

In the epipelagic layer,  NOx had a significant effect in all 
five GLMs fitted (Table 4). The two trophic groups of pro-
tist communities to which a GLM could be fitted were both 
associated with the chlorophyll a concentration in the mixed 
layer (Chl.ML) and  NOx, with a positive effect in the model 
of mixotrophs, and a negative effect of these parameters in 
the model of heterotrophs (Table 4). In epipelagic metazoan 
models,  NOx was the only environmental parameter signifi-
cantly related to all three trophic groups, with a positive 

effect in the model of herbivores and negative effects in the 
models of omnivores and carnivores (Table 4).

Discussion

Structure of the environment

In summer 2012, the Eurasian Basin was characterised by 
extremely low sea-ice coverage, super-imposed on environ-
mental gradients determined by the large-scale hydrogra-
phy of the Arctic Ocean. Sea-ice-conditions changed from a 

Fig. 5  Trophic structure of under-ice protist (a), epipelagic protist 
(b), under-ice metazoan (c) and epipelagic metazoan (d) communi-
ties. The heights of the coloured sections in the bars indicate the pro-
portional abundances of operational taxonomic units (OTU) in protist 
communities and biomass shares in metazoan communities. Capital 
letters indicate sampling locations from Table  1. Duplicate letters 
indicate repeated sampling at the same location (Table  1). Symbols 

above the bars indicate either ‘high’ or ‘low’ conditions of sea ice 
and NOx, respectively, based on the data shown in Fig.  2. The col-
oured horizontal blocks below the bars indicate the 3 hydrographical 
regimes of the research area: Atlantic regime (orange), shelf-influ-
enced regime (brown), and Polar regime (turquoise). (Color figure 
online)
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nearly closed sea-ice cover at the beginning of our sampling 
in the Nansen Basin (Fig. 1a), through an opening area of 
rapid sea-ice melt in the Laptev Sea sector south of 86°N, 
and back into freezing conditions at higher latitudes and 
towards the end of the survey in late September (Fig. 1b). 
Sea-ice concentration (SIC) was a significant, but not very 
pronounced contributor to our PCA (Fig. 3). However, the 
vast ice-free zone in the Laptev Sea sector may have been 
under-represented by our satellite-derived sea-ice concentra-
tion values from the relatively small areas around our ice-
covered sampling stations (Fig. 1b). In the epipelagic layer, 
the most pronounced environmental gradient was created 
by the silicate concentration in the chlorophyll a maximum 
(Si). The high-silicate concentrations at locations E–H in 
the shelf-influenced regime reflected the influence of Laptev 
Sea water carrying high amounts of silicate originating from 
the Lena delta inflow, as compared to the low Si values at 
all other locations (Fig. 2; Bauch et al. 2014; Bluhm et al. 
2015). The salinity in the mixed layer (S.ML) varied largely 
in the opposite direction of the silicate gradient (Figs. 2, 
3). Crossing this silicate/salinity gradient, Nitrate + Nitrite 
concentrations in the chlorophyll a maximum  (NOx) changed 
from high values in the Atlantic regime (locations A–C, K) 
to low values in the shelf-influenced and Polar regime (loca-
tions D–J). This large-scale  NOx-gradient was consistent 

with the known pattern of  NOx distribution in the Arctic 
Ocean during summer (Codispoti et al. 2013; Bluhm et al. 
2015): In the Eurasian Basin, nitrate is predominantly 
advected by the Atlantic water inflow through the Fram 
Strait and across the Barents Sea, and transported along the 
Eurasian shelf break, where our sampling locations A–C 
and K were situated. After reaching the Laptev Sea sector, 
surface waters are depleted of  NOx and recirculated across 
the Eurasian Basin towards the Fram Strait, passing the posi-
tions of our  NOx-poor sampling locations D–J (Kattner et al. 
1999; Rudels et al. 2013; Bluhm et al. 2015).

Taxonomic community structure

Gradients of sea-ice influence (SIC, SIT), stratification of 
the water column (MLD, Strat) and shelf influence (S.ML, 
Si) were common drivers of the community structure in all 
four communities (Table 3). The effects of these drivers on 
community composition cannot be entirely disentangled 
from each other, because the directions of their gradients 
often overlapped in the CCA ordination (Fig. 4). However, 
the general pattern in the four CCA ordinations showed 
that locations associated with low sea-ice influence were 
separated from stations with high sea-ice influence along 
gradients of sea-ice properties (SIC, SIT; Fig. 4). Sea ice 

Table 4  Summary of ‘best’ Generalized Linear Models (GLM) of the relationship between the proportional contribution of trophic groups and 
environmental parameters in protist and metazoan communities in the under-ice layer and the epipelagic layer

Community Trophic 
group

RD T.ML S.ML Tb.ML Chl.ML NOx SIT Chl.ice

uiw-protists Autotrophs 0.04 + +

uiw-protists Mixotrophs 0.02 -

uiw-protists Heterotrophs 0.02 - +

uiw-metazoans Herbivores 0.50 +

uiw-metazoans Omnivores - no model fitted

uiw-metazoans Carnivores 2.16 -

ep-protists Autotrophs - no model fitted

ep-vprotists Mixotrophs 0.02 + +

ep-protists Heterotrophs 0.01 - -

ep-metazoans Herbivores 0.29 +

ep-metazoans Omnivores 0.03 -

ep-metazoans Carnivores 0.30 -

The directional effect of each parameter on the response variable is indicated by “+” signs (dark shading) and “−” signs (light shading)
Habitats: ep epipelagic, uiw under-ice water; Environmental parameters: Chl.ice chlorophyll a concentration in sea ice, Chl.ML chlorophyll a 
concentration in the mixed layer, NOx nitrate + nitrite concentration at the depth of the chlorophyll a maximum, S.ML salinity in the mixed layer, 
SIT ice thickness, Tb.ML turbidity in the mixed layer, T.ML temperature in the mixed layer; statistics: RD residual deviance of GLM
Significance of model terms: *p < 0.05, **0.05 < p < 0.001; ***p < 0.001
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influences protist communities in the water column pri-
marily by limiting light intrusion, affecting photo-auto-
trophic growth (Sakshaug 2004). Other important factors 
influencing protist community composition are limita-
tion of nutrient supply from deeper water layers due to 
enhanced stratification under melting sea ice (Fujiwara 
et al. 2014), and exchange between the water column and 
in-ice communities through physical processes and active 
migration (Hardge et al. 2017a). The observed relation-
ship between protist community structure and sea-ice 
properties contrasts an extensive analysis by Ardyna et al. 
(2011) in the Canadian Arctic, which found that sea ice-
conditions played only a minor role. The work of Ardyna 
et al. (2011) was conducted on the Pacific-influenced shelf 
of the Canadian Archipelago, whereas our study was con-
ducted in the deep Eurasian Basin. Apart from these bio-
geographical differences, it is possible that the range of 
mean sea-ice concentrations (2–23%) observed by Ardyna 
et al. (2011) in late summer was too limited to significantly 
affect protist communities through shading, stratification, 
or organism exchange. In agreement with Ardyna et al. 
(2011), the structure of protist communities in our study 
was also significantly related to  NOx gradients. In meta-
zoan communities, however, a significant influence of  NOx 
was not observed in our dataset (Table 3).

In the under-ice metazoan community, a strong response 
to sea-ice influence was expected due to the high propor-
tional abundance of sea ice-associated (sympagic) amphi-
pods, e.g. Apherusa glacialis and Onisimus glacialis (Hop 
et al. 2000; Poltermann et al. 2000; Gradinger and Bluhm 
2004; Bluhm et al. 2010). David et al. (2015) observed 
that the under-ice metazoan community structure differed 
between a densely ice-covered ‘Nansen Basin regime’ 
(corresponding to the Atlantic regime in the present 
study), and a more open ‘Amundsen Basin regime’ (the 
Shelf-influenced regime in the present study) in summer 
2012. Our observation that sea-ice concentration was an 
important factor structuring the epipelagic metazoan com-
munity (Table 3) is in agreement with a multi-annual study 
in the Western Arctic Ocean finding that the contribution 
of sea-ice concentration to the variability in zooplank-
ton community structure ranked highest together with 
bathymetry among numerous investigated environmental 
parameters (Hunt et al. 2014). In the epipelagic metazoan 
community ordination, crossing gradients of sea-ice prop-
erties (SIC) and shelf influence (S.ML, Si) indicated that, 
in combination with sea-ice influence, the epipelagic meta-
zoan community structure responded to shelf influence 
(Fig. 4d). Most high-Arctic zooplankton studies focused 
on horizontal and vertical differences in community struc-
ture in relation to large, physically defined water masses 
and bathymetrically defined habitats (e.g., Mumm et al. 

1998; Kosobokova and Hirche 2000; Wassmann et  al. 
2015). The shelf-influence gradient (S.ML/Si) of our CCA 
resembled such a hydrographical pattern (Fig. 4d).

In the Eurasian Basin, plankton communities are 
strongly influenced by Atlantic species advected through 
the Fram Strait and the Barents Sea (Wassmann et  al. 
2015). While in our research area, the advection of Atlan-
tic species is tied to the distribution of Atlantic water flow-
ing eastward along the continental slope at depths below 
100 m, surface waters of Polar origin are associated with 
the westward Transpolar Drift transporting sea ice from 
Siberia towards the Fram Strait. Advection of Polar spe-
cies with surface waters thus probably contributed partly 
to the sea ice-associated gradient in protist and metazoan 
community structure. The sea ice itself may have advected 
species from the Siberian shelf, as has been found for sea-
ice protists by Hardge et al. (2017a), and for polar cod 
Boreogadus saida by David et  al. (2016). Besides the 
physical properties of sea ice, the presence of ice algae 
may have attracted certain zooplankton and sympagic spe-
cies, and contributed to a sea-ice-driven trend in under-
ice and epipelagic metazoan community composition. 
Ice algae were an important carbon source of abundant 
metazoan species in summer 2012, accounting for up to 
about 50% of the carbon demand in the pelagic copepods 
Calanus spp., and over 90% in the sympagic amphipod 
Apherusa glacialis (Kohlbach et al. 2016).

Hydrographical structures, sea-ice properties and 
advection patterns were major drivers of community com-
position. Several of these drivers were intrinsically linked 
to seasonal changes in both habitats, impeding a clear dis-
entanglement of seasonal change and environmental driv-
ers. In 2012, the sampling period extended over 9 weeks 
from summer to the onset of winter (Table 1). Seasonal 
changes were indicated by decreasing temperatures in the 
mixed layer (T.ML), increasing mixed layer depth (MLD) 
and high sea-ice concentrations (SIC) towards the end of 
the sampling period (Fig. 2). In the under-ice habitat, sea-
sonal processes, such as the increased exchange of protist 
communities between water column and sea ice during 
the onset of freezing (Hardge et al. 2017b) and the sea-
sonal downward migration of copepods (David et al. 2015) 
probably influenced community structure at locations I–K 
(Fig. 4a, c). In the epipelagic habitat, seasonal change of 
community composition appeared less pronounced, as the 
hydrographically similar earliest and latest locations B and 
K grouped closely together in the CCA (Fig. 4b, d). This 
indicates that seasonal change of community composition 
was most pronounced at the ice–water interface due to the 
more extreme physical changes at the surface, e.g. from 
melting conditions to freeze-up.
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Trophic community structure

Variability of sea-ice properties was an important driver 
of the taxonomic community structure in both protists and 
metazoans (Table 3, Fig. 4). This pattern, however, was not 
mirrored in the trophic structure of the communities. In all 
four communities, a stronger dominance of the most het-
erotrophic trophic group (protists: heterotrophs; metazoans: 
carnivores) was associated with sampling locations of the 
shelf-influenced and Polar regimes with low nitrate + nitrite 
concentrations  (NOx) (Fig. 5). Conversely, the dominance of 
the most heterotrophic trophic group was negatively related 
with  NOx in both protist communities and in epipelagic 
metazoans (Table 4). When primary production is limited by 
nutrient depletion, heterotrophic processes can be expected 
to increase in relative importance, because autotrophs and 
their herbivorous grazers cannot realise their full growth 
potential relative to their heterotrophic competitors and 
predators. Basedow et al. (2010) explained an increase in 
mean trophic levels of the zooplankton community from a 
bloom- to a post-bloom situation in the Barents Sea by a 
switch from a dominance of small herbivorous zooplankton 
to a dominance of carnivorous zooplankton, combined with 
a change in the diet of omnivorous grazers, such as Calanus 
spp. Our results show that similar processes take place in 
the central Arctic Ocean. A dominance of heterotrophic 
processes has been linked with nutrient limitation in sev-
eral ecosystems of the Western Arctic Ocean bordering the 
Canada Basin, due to either hydrographical structures (e.g. 
shelf versus basin), or seasonal succession (Cota et al. 1996; 
Levinsen et al. 1999; Nielsen and Hansen 1999; Forest et al. 
2014). The Canada Basin is a mostly oligotrophic environ-
ment, because nutrient input through the Bering Strait and 
by riverine input is used up on the shelf (Tremblay et al. 
2015). In contrast, the Eurasian Basin receives substantial 
nutrient input through the Fram Strait, which is redistributed 
by the surface currents, leading to strong gradients. Because 
of these more intensive nutrient dynamics in the Eurasian 
Basin, changes in the trophic structure of the ecosystem due 
to changing nutrient distribution can be expected to be more 
pronounced. Therefore, we consider the Eurasian Basin a 
well-suited model system to study the interacting effects of 
sea-ice distribution and nutrient availability on the ecosys-
tem of the central Arctic Ocean.

Our analysis of trophic structure faces several caveats 
that are founded in the quantification of protist community 
structure by OTUs rather than abundances or biomass, and 
in limited knowledge about the trophic ecology of various 
protist and metazoan taxa. Generally, it is difficult to relate 
sequence abundances of protists to cell number or biomass, 
because the number of target gene copies varies between 
protist species (Prokopowich et al. 2003; Zhu et al. 2005; 
Godhe et al. 2008; Egge et al. 2013). A microscopic analysis 

of two subsurface water samples (locations C and H; Online 
Resource ESM3) found that diatoms constituted 3–5% of 
the protist biomass, which was in agreement with the low 
share of diatom sequences and biomass in our study region 
(Roca-Martí et al. 2016; Hardge et al. 2017b). Microscopic 
analysis further confirmed the dominance of dinoflagellates 
in OTU abundances (Hardge et al. 2017b), but indicated 
that the relative biomass of ciliates could have been higher 
by a factor of 2–3 compared to the relative OTU abundance. 
Furthermore, we likely underestimated the abundance of 
haptophytes due to insufficient coverage of the 18S rRNA 
gene primer set used (Balzano et al. 2012; Bradley et al. 
2016). In spite of these limitations, we assume that relative 
differences in OTU abundance patterns between environ-
mental regimes realistically reflect the intrinsic variability 
of the system investigated here, because the potential bias of 
relative OTU abundances compared to relative abundance 
or biomass affected all samples equally. In our approach to 
analyse the trophic structure of the two protist communities 
we classified dinoflagellates as mixotrophs, because many 
dinoflagellates can switch between a photo-autotrophic 
and a heterotrophic mode of life. Dinoflagellates in auto-
trophic mode, however, are rare in Arctic oceanic ecosys-
tems during late summer (Levinsen et al. 1999; Nielsen and 
Hansen 1999), and they constituted less than 0.1% of the 
dinoflagellate biomass in the microscopic analysis (Online 
Resource ESM3). Likewise, we classified Calanus copep-
ods as herbivores, although they can prey substantially on 
microzooplankton (Ohman and Runge 1994; Levinsen et al. 
2000; Campbell et al. 2009). Bulk stable isotope data from 
Calanus spp. from our sampling campaign showed that 
mean δ15N values ranged between 2.7–3.5 and 3.0–3.8‰ 
above the trophic baselines of ice algae and phytoplankton 
in C. glacialis and C. hyperboreus, respectively (Kohlbach 
et al. 2016). Assuming a mean δ15N enrichment of 3.4‰ 
per trophic level (Minagawa and Wada 1984), the two most 
abundant Calanus copepods in our study would be consid-
ered herbivores. Yet, even a conservative approach consider-
ing Calanus spp. as omnivores would not change the general 
pattern of an increased dominance of carnivores in locations 
with low  NOx values compared to locations with high  NOx 
values (Fig. 5c, d).

The ecosystem investigated in this study has been charac-
terised as a system with low primary productivity (Fernán-
dez-Méndez et al. 2015), supporting a food web that was 
nonetheless capable of sustaining a significant population 
of polar cod Boreogadus saida (David et al. 2016; Kohlbach 
et al. 2017). In high-Arctic ecosystems, primary productivity 
is usually limited to a short period in springtime, from the 
onset of light intrusion through sea-ice, until the available 
nutrient stocks are consumed to depletion (e.g. Hill et al. 
2013). This springtime bloom starts with ice algae and con-
tinues in the water column under thinning sea ice, and in 
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ice-free areas. During the survey period of our study, large 
amounts of fresh ice algal material on the seafloor indicated 
that an ice-algae bloom period had occurred in parts of the 
investigation area only shortly before our sampling (Boetius 
et al. 2013; Roca-Martí et al. 2016). During our sampling 
campaign, the food demand of abundant herbivorous graz-
ers alone exceeded primary production of both ice algae and 
phytoplankton (David et al. 2015; Kohlbach et al. 2016). 
This suggests that in the Eurasian Basin the predominantly 
heterotrophic food web observed in this study was largely 
fuelled by an early-season ice algae production peak.

In the central Arctic Ocean ecosystem, the already exist-
ing natural dominance of heterotrophic organisms during 
late summer could be significantly enhanced when nutrients 
are further depleted. A tentative comparison of key ecosys-
tem parameters and -functions indicates that in summer 2012 
sampling locations in the more heterotrophic,  NOx-poor 

shelf-influenced and Polar regimes were associated with 
considerably lower median ice algae primary production, 
metazoan biomass, secondary production, carbon demand, 
and carbon export, compared to sampling locations in the 
less heterotrophic, nutrient-rich Atlantic regime (Table 5). 
In spite of lower metazoan biomass, the median ratio of 
metazoan carbon demand versus primary production was 
twice as high in the Polar regime as in the Atlantic regime, 
emphasising the strong heterotrophic character of the food 
web in nutrient-poor conditions. In the  NOx-poor regimes, 
a lower export flux was predominantly related to low algal 
production, but may have been further diminished by the 
high grazing pressure of heterotrophic protists, transforming 
potentially exported particulate carbon into dissolved carbon 
by respiration and excretion (Forest et al. 2014). Further-
more, low abundances of herbivorous zooplankton caused 
only a low flux of fast-sinking faecal pellets (Lalande et al. 

Table 5  Ecological key parameters of the study area during PS80

Values are medians; interquartile ranges are shown in parentheses
a Assuming a C:Chl ratio of 50:1 (Hansen et al. 1996)
b Assuming a carbon content of 40% by dry mass (Thibault et al. 1999)
c Assuming a production:biomass ratio of 1.2% (Forest et al. 2014)
d Assuming a gross growth efficiency of about ~ 25% (Forest et al. 2011)

Parameter Unit Shelf-influenced Polar Atlantic Total Source

Ice algae (incl. 
melt ponds)

Chlorophyll a 
biomass

mg  m−3 0.29 (0.24–0.51) 1.05 (0.40–2.54) 0.43 (0.36–0.50) 0.57 (0.30–1.38) This study

Carbon  biomassa mg C  m−3 14.5 (12.0–25.5) 52.5 (20.0–
127.0)

21.5 (18.0–25.0) 28.5 (15.0–69.0) This study

Primary produc-
tion

mg C  m−2  d−1 0.30
(0.26–0.45)

0.65 (0.38–2.05) 8.01 (4.51–
11.50)

0.86 (0.53–3.08) Fernández-
Méndez et al. 
(2015)

Phytoplankton Chlorophyll a 
biomass

mg  m−3 0.26 (0.22–0.29) 0.21 (0.15–0.26) 0.17 (0.14–0.20) 0.19 (0.15–0.23) This study

Carbon  biomassa mg C  m−3 13.00 (11–14.5) 10.50 (7.5–13) 8.50 (7–10) 9.50 (7.5–11.5) This study
Primary produc-

tion
mg C  m−2  d−1 28.00 (17.00–

44.00)
8.50 (1.88–

23.75)
28.00 (26.50–

29.50)
18.0 (4.63–

28.75)
Fernández-

Méndez et al. 
(2015)

Under-ice meta-
zoans

Biomass mg  m−2 4.40 (3.86–7.11) 9.93 17.35 (5.48–
16.40)

6.72 (4.10–
17.30)

This study

Carbon  biomassb mg  m−2 1.76 (1.54–2.84) 3.97 6.94 (2.19–6.56) 2.61 (1.64–6.92) This study
Secondary 

 Productionc
mg C  m−2  d−1 0.02 (0.02–0.03) 0.05 0.08 (0.03–0.08) 0.03 (0.02–0.08) This study

Carbon  demandd mg C  m−2  d−1 0.08 (0.08–0.12) 0.19 0.33 (0.12–0.32) 0.13 (0.08–0.32) This study
Epipelagic meta-

zoans
Biomass mg  m−2 1972 (1463–

3412)
1611 (1250–

1738)
3121 (2876–

3491)
1972 (1661–

3121)
This study

Carbon  biomassb mg  m−2 789 (585–1365) 644 (500–695) 1248 (1150–
1396)

789 (664–1248) This study

Secondary 
 Productionc

mg C  m−2  d−1 9.47 (7.02–
16.38)

7.73 (6.00–8.34 14.98 (13.80–
16.75)

9.47 (7.97–
14.98)

This study

Carbon  demandd mg C  m−2  d−1 37.86 (28.08–
65.52)

30.93 (24–
33.36)

59.92 (55.2–67) 37.86 (31.88–
59.92)

This study

Export Carbon flux mg C  m−2  d−1 40.0 (27.5–45) 27.5 (11.3–47.5) 70.0 (42.5–85.0) 45.0 (15.0–50.0) Lalande et al. 
(2014)
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2014). This indicates that a potential spatial and/or tempo-
ral increase of nutrient-depleted areas in the central Arctic 
Ocean may be associated with profound, potentially nega-
tive, changes in key ecosystem functions.

Conclusions

Our results demonstrate that, besides hydrographical con-
ditions, sea-ice influence can be an important driver of the 
taxonomic structure of protist and metazoan communities, 
both in the under-ice and the epipelagic habitats of the cen-
tral Arctic Ocean. Nutrient concentration, however, was the 
single important driver of the trophic structure in these com-
munities, showing that low-nutrient concentrations in the 
epipelagic and under-ice habitat of the Arctic Ocean were 
associated with increasing heterotrophy. Understanding how 
nutrient limitation enhances heterotrophy in ecosystems, 
and quantifying the potential impact this has on ecosystem 
functions, is fundamental for the development of future 
scenarios of the changing Arctic ecosystems. The relation-
ships of taxonomic and trophic community structure with 
sea-ice properties, hydrography and nutrient concentrations 
presented in this snapshot of the ecosystem in the historical 
sea-ice minimum year 2012 may be indicative of the future 
central Arctic Ocean. For modelling future Arctic ecosys-
tems, it is important to consider that taxonomic biodiversity 
can respond to different drivers than trophic diversity.
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