
Organic Geochemistry 136 (2019) 103888
Contents lists available at ScienceDirect

Organic Geochemistry

journal homepage: www.elsevier .com/locate /orggeochem
Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian
permafrost: Diversity, environmental controls, and implications for
proxy applications
https://doi.org/10.1016/j.orggeochem.2019.06.009
0146-6380/� 2019 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
Stephanie Kusch a,⇑, Maria Winterfeld b, Gesine Mollenhauer b, Silke T. Höfle a, Lutz Schirrmeister c,
Georg Schwamborn d, Janet Rethemeyer a

a Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
bAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section of Marine Geochemistry, Am Handelshafen 12, 27570 Bremerhaven, Germany
cAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section of Permafrost Research, Telegrafenberg, A45, 14473 Potsdam, Germany
dAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Group Polar Terrestrial Environmental Systems, Telegrafenberg, A45, 14473 Potsdam, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 March 2019
Received in revised form 31 May 2019
Accepted 25 June 2019
Available online 28 June 2019

Keywords:
Glycerol dialkyl glycerol tetraethers
High latitude
Siberia
Permafrost
Soil
pH calibration
Archaeal and bacterial glycerol dialkyl glycerol tetraethers (GDGTs) are globally abundant in soils under
various climatic conditions, but little is known about their sources, relative distribution, and environmen-
tal controls on their diversity in high latitude permafrost deposits. Thus, constraints on GDGT-based
proxies, such as methylation of branched GDGTs (MBT) or cyclization of branched GDGTs (CBT) used
to infer mean annual temperature or soil pH, are also sparse. We investigated the GDGT diversity in typ-
ical North Siberian permafrost deposits including the active layer of polygonal tundra soils (seasonally
frozen ground), fluvial terrace/floodplain sediments, Holocene and Pleistocene thermokarst sediments,
and late Pleistocene Ice Complex (Yedoma). Our data show that isoprenoid GDGTs are produced by both
methanotrophic and methanogenic Euryarchaeota, as well as Thaumarchaeota, but their abundance does
not seem to be controlled by the investigated physicochemical parameters including %TOC, %TN, and soil
pH. Branched GDGTs (brGDGTs) show similar distributional changes to those observed in other high lat-
itude soil samples, i.e., a dominance of pentamethylated and hexamethylated brGDGTs, likely reflecting
the adaptation to low temperatures and a positive correlation of the degree of cyclization with soil pH.
Specifically, brGDGT-IIIa correlates positively with %TOC and %TN and negatively with soil pH, while
brGDGT-Ib and brGDGT-IIb correlate negatively with %TOC and %TN and positively with pH. Moreover,
we observe a negative correlation between 5-methyl and 6-methyl brGDGTs without cyclopentane moi-
eties (except brGDGT-IIIa), but this anticorrelation does not seem to be related to the investigated physic-
ochemical parameters. The observed brGDGT distribution yields a permafrost-specific soil pH calibration,
pH0

PF ¼ 1:8451� CBT 0
PF þ 8:5396 (r2 = 0.60, RMSE = 0.074; n = 109).

The different investigated deposit types show some distinct GDGT distributional changes and appear to
be distinguishable based on the relative abundance of crenarchaeol, GDGT-0/(crenarchaeol + GDGT-0)
ratios, and CBT’PF values, although we also observe strong heterogeneity for each deposit type. In partic-
ular, Yedoma and the active layer of polygonal tundra soils represent distinct endmembers, which differ
from each other, as well as from fluvial terrace/floodplain sediments and thermokarst sediments, while
the latter two deposit types have similar GDGT fingerprints that are not easily distinguishable. Yet, the
observed GDGT distributional differences have implications for GDGT proxies analyzed in aquatic sus-
pended matter and sediments. Quantitative estimates of permafrost erosion, as well as soil pH inferred
using BIT indices or CBT’PF, respectively, may be biased by changing relative contributions of different
deposit types (carrying their respective GDGT signals) to the exported permafrost OC, particularly from
Yedoma and the active layer of polygonal tundra soils.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Glycerol dialkyl glycerol tetraethers (GDGTs; Appendix A) con-
stitute the microbial cell membrane monolayer and are produced
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either with isoprenoid alkyl chains (isoGDGTs) by archaea, or with
methyl-branched alkyl chains (brGDGTs) by bacteria (Schouten
et al., 2013). IsoGDGTs are synthesized by a range of archaeal phy-
logenetic groups, but crenarchaeol and its isomer, isoGDGTs with
four cyclopentane and one cyclohexane moiety, have only been
found in autotrophic ammonia oxidizing Thaumarchaeota. They
are thus useful chemotaxonomic markers for this phylogenetic
group (Schouten et al., 2013 and references therein). Heterotrophic
Acidobacteria are considered the tentative source of brGDGTs
(Weijers et al., 2010). However, Sinninghe Damsté et al. (2018)
recently argued that the search for the biological source of
brGDGTs should be extended to other bacterial phyla since: (i) so
far only a limited amount of acidobacterial strains have been
shown to produce brGDGTs or iso-diabolic acid (the potential
building block for brGDGTs) and (ii) all environmental acidobacte-
rial metagenomes, as well as all but one cultured acidobacterial
strain, lack a newly identified gene cluster tentatively coding for
the ether bond between iso-diabolic acid and glycerol (Sinninghe
Damsté et al., 2018). Both classes of GDGTs occur with different
numbers of cyclic and/or methyl moieties in the alkyl chains and
the relative abundance of these moieties has been shown to vary
with environmental parameters such as temperature (Methylation
of Branched Tetraethers; MBT) and pH (Cyclization of Branched
Tetraethers; CBT), making GDGTs useful paleoenvironmental prox-
ies (Schouten et al., 2002; Weijers et al., 2007).

Globally, soils have been shown to comprise a wide structural
diversity of GDGTs (De Jonge et al., 2014; Weijers et al., 2006).
For brGDGTs in soils, the global pattern reveals a correlation
between the methylation of brGDGTs and mean annual air temper-
ature, as well as the cyclization of brGDGTs and soil pH (De Jonge
et al., 2014). Whether these environmental parameters also govern
the brGDGT distribution in bacterial membranes at high latitudes
(<65�N), however, is poorly constrained. To date, our knowledge
of GDGT diversity in high latitude soils is very limited owing to
the low number of samples investigated from these areas and
missing broader regional spatial coverage. The global soil data set
of De Jonge et al. (2014) contains only 12 samples obtained from
Svalbard, Greenland, and Iceland. These are complemented by 11
samples from Southwest Greenland (Colcord et al., 2015), 7 sam-
ples each from the Colville river catchment in Northern Alaska
(Hanna et al., 2016) and the Yenisei catchment in Siberia (De
Jonge et al., 2015), and one sample each from the Mackenzie and
Kolyma river catchments in Canada and Siberia, respectively
(Peterse et al., 2014). In addition, Bischoff et al. (2013) investigated
GDGTs in 23 samples from a permafrost core recovered from
Kurungnakh Island in the Lena Delta, Siberia, and Sparkes et al.
(2015) investigated three samples from a Kolyma riverbank ero-
sion profile. However, neither of these studies report detailed
abundances of the full suite of GDGTs. Most of these high latitude
studies do not include isoGDGT distributions but focus on brGDGT
diversity and among these, however, only De Jonge et al. (2014)
and De Jonge et al. (2015) report abundances of 5-methyl and 6-
methyl brGDGTs. In fact, many of the high latitude samples were
obtained to provide the ‘‘soil” endmember when tracing the export
of permafrost-derived organic carbon (OC) into aquatic sediments
(Bischoff et al., 2016; De Jonge et al., 2015, 2016b; Doğ rul Selver
et al., 2015; Peterse et al., 2014; Sparkes et al., 2015). Thus, a com-
prehensive study of the GDGT diversity in high latitude soils and
different permafrost deposits is still missing, restricting constraints
on the environmental controls on GDGT distributions at high
latitude.

Here, we present GDGT inventories and proxies of 129 per-
mafrost samples from Arga Island, Samoylov Island, Kurungnakh
Island, the Buor Khaya Peninsula, and Bol’shoy Lyakhovsky Island,
representing typical North Siberian permafrost deposits including
the active layer (the uppermost layer thawing during summer) of
the polygonal tundra soils, Holocene fluvial terrace and floodplain
sediments, Holocene and Eemian thermokarst sediments, and late
Pleistocene Ice Complex (Yedoma). These deposit types have dif-
ferent origins including aquatic sedimentation, thermokarst,
pedogenesis, and nival lithogenesis (e.g. Schirrmeister et al.,
2011a, 2011b) and are characterized by different physicochemical
properties, which are particularly expressed in total OC content
and soil pH with ranges of 0.1–33.8% and 4.3–8.0, respectively;
the most prominent differences occurring in polygonal tundra
soils and Yedoma. We use these data to investigate GDGT diver-
sity among deposit types, constrain GDGT sources and environ-
mental controls, and assess potential implications for GDGT-
based proxies in aquatic sediments as used in (paleo)environmen-
tal studies.
2. Material and methods

2.1. Site description and samples

Samples were obtained from the Lena river delta including Arga
Island, Samoylov Island, Kurungnakh Island, as well as from the
Buor Khaya Peninsula and Bol’shoy Lyakhovsky Island (Fig. 1,
Table S1). These samples represent typical Siberian permafrost
deposits including active layer of polygonal tundra soils (n = 49),
Holocene fluvial terrace/floodplain sediments (n = 21), Holocene
thermokarst sediments (n = 9), and Late Pleistocene Yedoma
(n = 43). In addition, a few samples represented glacial to Holocene
cover deposits (n = 5) and late Pleistocene ice wedges (n = 2). Since
the origin of these (‘other’) 7 samples cannot be further specified,
we do not include the respective data when discussing deposit
type specific GDGT distributions.

The active layer of polygonal tundra soils (referred to as active
layer soils in the following), from the Lena Delta, were sampled
from each of the three geomorphological units including Holocene
fluvial deposits of the active delta (Samoylov Island), late Pleis-
tocene to early Holocene fluvial sands (Arga Island), and late Pleis-
tocene Ice Complex deposits covered by Holocene aeolian silty
sand (Kurungnakh Island) (Schirrmeister et al., 2011a;
Schwamborn et al., 2002). Drill core BK-8 was recovered from a
Yedoma hill, which is composed of late Pleistocene Ice Complex
deposits covered by Late Glacial and Holocene sands on the Buor
Khaya Peninsula (Schirrmeister et al., 2017). Drill cores L14-02,
L14-04, and L14-05 were retrieved from Bol’shoy Lyakhovsky
Island. L14-02 includes a late Pleistocene Ice Complex sequence
(MIS 3) while L14-04 and L14-05 represent interglacial thermo-
karst sediments from the Eemian (MIS 5) and interstadial deposits
from the late Pleistocene (MIS 4 and MIS 3) and Holocene, respec-
tively (Stapel et al., 2018). Each of the Buor Khaya Peninsula and
Bol’shoy Lyakhovsky Island drill cores included an uppermost
active layer soil. Detailed descriptions of the drill cores are given
by Günther et al. (2013), Overduin (2015), Schirrmeister et al.
(2017), Schwamborn and Wetterich (2016, 2015), Stapel et al.
(2018, 2016), and Zimmermann et al. (2017a, 2017b).
2.2. Methods

2.2.1. Bulk parameters
For total organic carbon (%TOC) measurements, 20–50 mg of

sample were reacted with 37% HCl for 1 h at 250 �C. Excess iron
oxide and tungsten oxide were added and samples were analyzed
using an ELTRA CS 2000 elemental analyzer. Total nitrogen (%TN)
was measured on 20–30 mg sample after addition of 20 mg tung-
sten trioxide as an oxidation catalyst using an Elementar Vario
EL III elemental analyzer. Soil pH values were measured on sample
splits after immersion in water (5:2 water:sample, v:v) for 60 min



Fig. 1. Map of the study area and sample locations in Northern Yakutia, Siberia. Detailed sample information is given in Table S1.
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using a Mettler Toledo FiveEasy pH meter and are reported as
means of triplicate measurements. Bulk parameters for the Samoy-
lov and Kurungnakh active layer soils were measured previously
(Table S2; Höfle et al. 2015).
2.2.2. Lipid analyses
Depending on TOC content, GDGTs were extracted from 0.5 to

10 g of freeze-dried sample using either ultrasonication or acceler-
ated solvent extraction (Thermo Fischer ASE 300; 120 bar and
120 �C) with a dichloromethane: methanol 9:1 (v: v) solvent mix-
ture. Subsequently, the total lipid extract was saponified using
0.5 M potassium hydroxide in methanol for 3 h at 85 �C. Neutral
lipids were liquid-liquid extracted into hexane and separated into
polarity fractions via silica gel column chromatography (1% acti-
vated SiO2, 0.063–0.2 mm mesh size). GDGTs eluted in methanol
(Thienemann et al., 2017). The GDGT fraction was evaporated to
dryness and GDGTs were filtered through a 0.45 mm PTFE syringe
filter using 95:5 (v: v) hexane: isopropan-2-ol. GDGTs were ana-
lyzed using an Agilent 1290 UHPLC connected to a 6460 QQQ
equipped with an APCI ion source and operated in SIM mode fol-
lowing the method described in Hopmans et al. (2016). Chromato-
graphic separation was achieved on two serial Waters BEH HILIC
columns (2.1 � 150 mm, 1.7 mm; Waters) guarded by a corre-
sponding 2.1 � 5 mm pre-column. Solvents, solvent gradient, flow
rate, and oven thermostat temperature were set following
Hopmans et al. (2016). GDGTs were detected as [M + H]+ ions
and quantified against an internal C46 GDGT standard (Huguet
et al., 2006).
2.3. Statistical analysis

Principal component analysis (PCA) was performed using the
PAST 3.16 (Hammer et al., 2001) software. Input data included
GDGT fractional abundances, %TOC and %TN content, and pH val-
ues, all of which were standardized prior to running the PCA.
PCA was performed separately for isoGDGTs (PCAiso) and brGDGTs
(PCAbr).

3. Results

3.1. Elemental parameters

Elemental parameters for the different deposit types are shown
in Fig. 2. %TOC ranges from 0.1% to 33.8% and is highest in active
layer soils (10.6 ± 10.0%; mean ± SD; Fig. 2A) and lowest in thermo-
karst sediments (0.9 ± 0.5%). Likewise, the %TN is highest in active
layer soils (0.5 ± 0.5%; Fig. 2B) but is within 0.2 ± 0.2% in all other
deposit types, showing a total range from 0.0% to 1.9%. Soil pH
ranges from 4.3 to 8.0 in all samples. The highest soil pH was mea-
sured in Holocene fluvial terrace/floodplain sediments (6.8 ± 0.8;
Fig. 2C) although soil pH in thermokarst sediments (6.6 ± 0.6)
and Yedoma (6.7 ± 0.8) is very similar. A significantly lower soil
pH was determined for active layer soils (5.2 ± 0.6).

3.2. GDGTs

The average relative abundances of isoGDGTs and brGDGTs in
the different permafrost deposit types are shown in Fig. 3. In gen-



Fig. 2. Elemental data in permafrost deposits of Northern Siberia (active layer: active layer of polygonal tundra soils, fluvial terrace: fluvial terrace and floodplain sediments,
thermokarst: thermokarst sediments, and Yedoma: Ice Complex/Yedoma). (A) Total organic carbon (%TOC), (B) total nitrogen (%TN), and (C) soil pH. Box-whisker plots are
shown in Tukey style with IQR values of 1.5; numbers denote sample count.
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eral, brGDGTs represent the majority of GDGTs in all deposits
(90.0 ± 12.0%; mean ± SD). Highest absolute brGDGT concentra-
tions are found in active layer soils (59.9 ± 135.3 mg/g TOC;
Fig. 3B) and the lowest concentrations are observed in Holocene
fluvial terrace/floodplain sediments (11.0 ± 5.8 mg/g TOC). Like-
wise, the highest relative brGDGT abundances are also observed
in active layer soils (95.4 ± 4.2%; Fig. 3C) and lowest abundances
are detected in Holocene fluvial terrace/floodplain sediments
(84.7 ± 11.8%; Fig. 3D). The Branched and Isoprenoid Tetraether
(BIT) index, as defined by Hopmans et al. (2004), is highest in
active layer soils (1.00 ± 0.01; Fig. 4E) and lowest in Yedoma
(0.91 ± 0.12). The lowest BIT index was 0.52 in a Yedoma sample
in core L14-02 (6.08–6.17 m).

Penta- and hexamethylated brGDGTs dominate in all deposit
types accounting for, on average, 43.6 ± 5.7% and 39.5 ± 10.0%,
respectively (Fig. 3C–F), while tetramethylated brGDGTs only con-
stitute an average of 16.8 ± 6.1% of all brGDGTs. Among the penta-
and hexamethylated brGDGTs, brGDGTs without cyclopentane
moieties are most abundant, particularly brGDGT-IIIa and
brGDGT-IIa, which account for 32.4 ± 10.6% (7.9 ng/g TOC to
304.8 mg/g TOC) and 33.7 ± 8.1% (15.0 ng/g TOC to 433.9 mg/g
TOC) of all brGDGTs, respectively. Accordingly, the weighted aver-
age number of cyclopentane moieties (#ringstetra, #ringspenta,5Me,
and #ringspenta,6Me; Sinninghe Damsté´ (2016)) are relatively low
averaging 0.13 ± 0.10, 0.07 ± 0.08, and 0.12 ± 0.13, respectively,
for all samples (Fig. 5D-F). Mean #ringstetra, #ringspenta,5Me, and
#ringspenta,6Me are lowest in active layer soils (0.05 ± 0.05,
0.03 ± 0.03, and 0.07 ± 0.09, respectively) while mean #ringstetra
(0.19 ± 0.11) and #ringspenta,5Me (0.12 ± 0.11) are highest in
Yedoma and #ringspenta,6Me (0.24 ± 0.25) is highest in thermokarst
sediments.

The highest relative abundance of isoGDGTs is evident in Holo-
cene fluvial terrace/floodplain sediments (15.3 ± 11.8%; Fig. 3D),
while active layer soils have the lowest relative abundance of
isoGDGTs (4.6 ± 4.2%; Fig. 3C). Late Pleistocene Yedoma shows
the only significant relative abundance of crenarchaeol
(6.3 ± 8.2%; Fig. 3F). In contrast, absolute isoGDGT concentrations
are highest in thermokarst sediments (2.5 ± 1.9 mg/g TOC; Fig. 3A)
and lowest in active layer soils (mean 1.6 ± 2.5 mg/g TOC). While
the mean concentrations for the different deposit types agree
within SD, the total isoGDGT concentrations in all samples span
several orders of magnitude ranging from 3.0 ng/g TOC to
29.1 mg/g TOC. GDGT-0/crenarchaeol ratios (Fig. 4A) range from
0.3 to 2841.0 with means from 5.6 ± 9.0 in thermokarst sediments
to 223.4 ± 542.8 in active layer soils. GDGT-2/crenarchaeol ratios
range from 0.0 to 8.0 and are highest in active layer soils
(1.1 ± 2.0) and lowest in thermokarst sediments (0.2 ± 0.1). The
methane index (MI) as defined by Zhang et al. (2011) mirrors these
distributions (Fig. 4C). While the samples show the full MI range
(0.0–1.0), mean values are highest in active layer soils
(0.63 ± 0.34) and lowest in thermokarst sediments (0.38 ± 0.15).

4. Discussion

Bacterial and archaeal metabolic activity at subzero tempera-
tures has been detected in laboratory incubation studies using
stable isotope and radio isotope labelling techniques (Rivkina
et al., 2004, 2007, 2000; Steven et al., 2007; Tuorto et al., 2014).
Tuorto et al. (2014) showed that various bacterial species are active
in both narrow and wide subzero temperature ranges, including
members of the Acidobacteria, the tentative source of brGDGTs
(Sinninghe Damsté et al., 2018, 2014, 2011). Accordingly, GDGTs
in our permafrost samples could derive from active bacteria and
archaea. However, under extreme conditions such as in permafrost,
the majority of GDGTs may simply be present due to exceptional
preservation of labile compounds at subzero temperatures, similar
to what has been observed for DNA (Willerslev et al., 2004). The
activity detected during the exponential growth phase of incuba-
tion labelling studies may be stimulated by the addition of sub-
strate causing an artificial nutrient effect. This may not occur
under natural conditions, which lack influx of energy sources
(Rivkina et al., 2000).

While we consider the majority of GDGTs in active layer soils to
derive from metabolically active microbes, our data set does not
allow us to distinguish contributions of GDGTs from metabolically
active soil microbes and freeze-locked GDGTs preserved over
glacial-interglacial timescales, such as in fluvial terrace/floodplain
sediments, thermokarst sediments, and Yedoma. Accordingly, we
cannot estimate the effect of the archaeal and bacterial metabolic
state on GDGT proxies in these samples, but we expect that the
metabolic origin does affect brGDGT-based temperature estimates,
for example, if bacteria are currently active in deposits accumu-
lated during warmer mean air temperatures (MAT) such as the
Eemian thermokarst lake sediments in core L14-04. As per mass
balance, the effect might be significant even at basal metabolic
rates if the activity happens over prolonged timescales. In addition,
linking brGDGT abundances to MAT would also be hampered by (i)
the uncertainty of past MATs allowing only current active layer
soils to be used, (ii) the small MAT gradient across the study area,
and (iii) the uncertainty as to how seasonally biased the recorded
GDGT MAT signal is. Thus, we will refrain from linking GDGT dis-
tributions to MAT. However, irrespective of whether GDGTs repre-
sent active microbes or preserved cell membrane lipids, their
relative and absolute abundances can still be linked to the



Fig. 3. Absolute and relative abundances of GDGTs in permafrost deposits of Northern Siberia. Summed total (A) isoGDGTs and (B) brGDGTs concentrations in different
deposit types and average relative distribution of GDGTs in (C) the active layer of polygonal tundra soils, (D) fluvial terrace and floodplain sediments, (E) thermokarst
sediments, and (F) Yedoma. Box-whisker plots are shown in Tukey style with IQR values of 1.5; numbers denote sample count. Appendix A shows isoGDGT and brGDGT
structures.
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respective permafrost deposit type and its basic physicochemical
properties including %TOC, %TN, and soil pH, which result from
complex interactions including (but not limited to) the mineralogy
of the parent material, the state of decomposition and pedogenesis,
current microbial and vegetation feedbacks (in case of active layer
soils), and climatic conditions and are, thus, highly variable
between samples and deposit types (Fig. 2). Active layer soils are
currently open systems, while the physicochemical properties of
the other deposit types represent time-integrated signals of past
environmental conditions, which are not constrained. Here, we
make the simplified assumption that in the absence of diffusive
transport of compounds and ions in pore waters, the physicochem-
ical parameters (%TOC, %TN, and pH) of the perennially frozen sam-
ples have not changed significantly since they were frozen
permanently (closed system assumption) including after thermo-
karst or Taberite (thawed and refrozen Yedoma) development.



Fig. 4. IsoGDGT ratios in permafrost deposits of Northern Siberia. (A) GDGT-0/crenarchaeol ratio, (B) GDGT-2/crenarchaeol ratio, (C) the methane index (MI) as defined by
Zhang et al. (2011), (D) cren/isoGDGTs, (E) BIT index, and (F) GDGT-0/(crenarchaeol+GDGT-0). Box-whisker plots are shown in Tukey style with IQR values of 1.5; numbers
denote sample count.

Fig. 5. Fractional abundances of (A) tetramethylated brGDGTs (n=3), (B) pentamethylated brGDGTs (n=6), and (C) hexamethylated brGDGTs (n=6), and weighted average
number of cyclopentane moieties for (D) tetramethylated brGDGTs, (E) 5-methyl pentamethylated brGDGTs, and (F) 6-methyl pentamethylated brGDGTs in permafrost
deposits of Northern Siberia.
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Fig. 6. PCAiso scatter plot based on physicochemical parameters and fractional
isoGDGT abundances in permafrost deposits of Northern Siberia. PC1 and PC2
explain 75.3% of the data variance. Biplot annotations denote isoGDGT structures
(grey; Appendix A) and physicochemical parameters (magenta).
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4.1. GDGT diversity and environmental controls

4.1.1. IsoGDGTs
While crenarchaeol and its isomer are only produced by ammo-

nia oxidizing Thaumarchaeota, the other isoGDGTs (GDGT-0,
GDGT-1, GDGT-2, and GDGT-3) are also synthesized by other
archaea, including methanogenic and methanotrophic Eur-
yarchaeota (Blaga et al., 2008; Weijers et al., 2011). These sources
are particularly likely in permafrost deposits, which have been
shown to harbor a suite of methanogenic and methanotrophic
microbes (Jansson and Tas�, 2014). Archaeal genomic data from per-
mafrost areas are scarce, but 16S rRNA data from methane-rich
permafrost deposits of the Kolyma River floodplain show that
methanogenic Euryarchaeota dominate (57–93%) the archaeal
community (Shcherbakova et al., 2016). Accordingly, we expect
that GDGT-0, GDGT-1, GDGT-2, and GDGT-3 in the investigated
permafrost deposits are influenced by euryarchaeal contributions.
The MI confirms that the majority of the investigated samples
are indeed significantly influenced by methane (Fig. 4C) with mean
values of 0.6 ± 0.3 (n = 45) in active layer soils, 0.6 ± 0.2 (n = 21) in
Holocene fluvial terrace/floodplain sediments, 0.4 ± 0.1 (n = 9) in
thermokarst sediments, and 0.4 ± 0.2 (n = 43) in Yedoma. More-
over, mean GDGT-0/crenarchaeol ratios are �2 in all deposit types
and particularly in active layer soils (Fig. 4A), implying the pres-
ence of methanogenic Euryarchaeota (Blaga et al., 2008). This
agrees well with the detection of archaeol in the Bol’shoy Lya-
khovsky Island L14 cores by Stapel et al. (2018) and archaeol in a
drill core from Kurungnakh Island investigated by Bischoff et al.
(2013). Additionally, mean GDGT-2/crenarchaeol ratios are �0.2
in active layer soils, Holocene fluvial terrace/floodplain sediments,
and Yedoma (Fig. 4B), indicating the presence of methanotrophic
Euryarchaeota in these deposit types (Weijers et al., 2011). While
most thermokarst sediments have GDGT-2/crenarchaeol ratios
�0.2, a few samples (Table S2) have GDGT-2/crenarchaeol ratios
�0.2 showing that methanotrophs are also present in thermokarst
sediments. We observe a strong correlation between GDGT-2 and
GDGT-3 (r2 = 0.96; n = 129) as well as between GDGT-0 and
GDGT-1 (r2 = 0.69; n = 129). This indicates that GDGT-3 and
GDGT-1 are likely also of methanotrophic and methanogenic eur-
yarchaeal origin, respectively. Surprisingly, we also observe partic-
ularly strong correlations between crenarchaeol and GDGT-2
(r2 = 0.93; n = 129) and crenarchaeol and GDGT-3 (r2 = 0.96;
n = 129). Since we consider it unlikely that both GDGT-2 and
GDGT-3 in permafrost are to a significant extent sourced from
Thaumarchaeota, this may indicate that methanotrophic eur-
yarchaeal GDGT-2 and GDGT-3, as well as thaumarchaeal crenar-
chaeol abundances, are determined by the same environmental
parameters. However, PCAiso (Fig. 6) reveals that any of the
isoGDGT fractional abundances are not, or are only weakly, corre-
lated with the investigated physicochemical parameters (%TOC, %
TN or soil pH). Stapel et al. (2018) investigated additional parame-
ters in the L14 cores from Bol’shoy Lyakhovsky Island, including
free and bound acetate and formate concentrations, but none of
these substrates show a correlation with the investigated isoGDGT
(GDGT-0, GDGT-1, GDGT-2, and crenarchaeol) concentrations
(r2 < 0.1). Accordingly, additional independent data are required
to determine the environmental controls on isoGDGT abundances
in permafrost deposits.

4.1.1.1. Thaumarchaeal GDGTs. Thaumarchaeota are important
ammonia oxidizers in soils, which dominate over ammonium oxi-
dizing bacteria in low pH (<5.5) and low ammonia soils (Hong and
Cho, 2015; Leininger et al., 2006; Prosser and Nicol, 2012;
Verhamme et al., 2011). Nicol et al. (2008) showed that soil acidity
is the best predictor of thaumarchaeal abundances in soil, while
Bates et al. (2011) concluded that thaumarchaeal abundances are
most closely related to soil C/N ratios and Hong et al. (2015) found
a negative correlation between thaumarchaeal abundances and
OM and water content. Regression coefficients for crenarchaeol
abundances and physicochemical parameters including %TOC
(Fig. 7A), %TN (Fig. 7B), C/N ratios (Fig. 7C), and pH (Fig. 7D),
respectively, reveal that in the investigated North Siberian per-
mafrost samples no obvious relationships between these physico-
chemical parameters and thaumarchaeal abundances exist. If
anything, we observe a weak positive relationship between soil
pH and crenarchaeol (Fig. 7D). This may indicate that thaumar-
chaeal communities in our permafrost samples differ from those
in other environments, such as temperate soils. This is likely driven
by the origin of the permafrost deposit types, including Yedoma
and thermokarst sediments or fluvial terrace/floodplain sediments,
which seem to be characterized by higher crenarchaeol concentra-
tions and lower %TOC (Fig. 7A). Globally, 16S rRNA sequences sug-
gest that group I.1b and I.1c Thaumarchaeota dominate in soils
(Auguet et al., 2009) while group I.1a Thaumarchaeota represent
only a minority of sequences. This also seems to be confirmed by
available permafrost genetic data (Gittel et al., 2014;
Shcherbakova et al., 2016; Tripathi et al., 2018; Wilhelm et al.,
2011). 16S rRNA clones in permafrost deposits of the Kolyma River
floodplain show that besides the dominant methanogenic Eur-
yarchaeota, 7–43% of the gene sequences represent Thaumar-
chaeota, Woesearchaeota, and Bathyarchaeota (Shcherbakova
et al., 2016). Thaumarchaeal gene sequences belonged to the group
1.2 Thaumarchaeota (C3) and group I.1b Thaumarchaeota (Soil
Crenarchaeota Group). The I.1b Thaumarchaeota were most closely
related to the I.1b Nitrososphaera genus (Shcherbakova et al.,
2016) of which strain JG1 and N. viennensis, as well as the ther-
mophilic N. gargensis, have been shown to produce crenarchaeol
(Pitcher et al., 2010; Sinninghe Damsté et al., 2012; Stieglmeier
et al., 2014). Similarly, Gittel et al. (2014) found 16S rRNA
sequences belonging to the Nitrososphaerales in permafrost soils
in the upper Kolyma River area. Whether the 16S rRNA data from
the Kolyma River are an analogue for our Siberian permafrost sam-
ples is uncertain. Besides the potential of PCR amplification of DNA
from non-viable cells, the spatial heterogeneity might be



Fig. 7. Cross plots of crenarchaeol concentrations against (A) total organic carbon (%TOC), (B) total nitrogen (%TN), (C) C/N ratios, and (D) soil pH in permafrost deposits of
Northern Siberia. Linear fit shown with 95% confidence interval (grey shaded area).
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significant. Alaskan permafrost soils investigated by Tripathi et al.
(2018) revealed a large spatial diversity, with a dominance of
either group I.1b Thaumarchaeota, Euryarchaeota, or group I.1c
Thaumarchaeota (formerly ‘‘Finnish Forest Soil Archaea”) in per-
mafrost soils within a ca. 300 km radius. The latter subgroup seems
to dominate in boreal settings, but have thus far not been shown to
be ammonia oxidizers and it is unknown whether they synthesize
crenarchaeol (Bomberg, 2016; Isoda et al., 2017; Weber et al.,
2015). Thus, while we cannot determine whether group I.1c Thau-
marchaeota are reflected by crenarchaeol concentrations, our data
might distinguish group I.1a and group I.1b Thaumarchaeota.
Sinninghe Damsté et al. (2012) suggested that the relative abun-
dance of the crenarchaeol isomer (cren’) in the total crenarchaeol
(cren) pool, i.e., the cren’/(cren + cren’) ratio, differs between group
I.1a and I.1b soil Thaumarchaeota. In general, cren’/(cren + cren’)
ratios in our permafrost deposits are below 0.1- indicating that cre-
narchaeol and its isomer probably derive from group I.1a Thaumar-
chaeota, irrespective of deposit type (Sinninghe Damsté et al.,
2012). Only six active layer soil samples from Kurungnakh and
Arga Island (particularly profile AG-0103) show significantly
higher cren’/(cren + cren’) ratios (0.12–0.34) suggesting group
I.1b Thaumarchaeota contribute significantly to the crenarchaeol
pool in these soils. Thus, either North Siberian permafrost
soils contain rather unusual thaumarchaeal communities or
cren’/(cren + cren’) ratios do not mirror in situ thaumarchaeal
communities. Independent genomic data will be required to con-
firm the thaumarchaeal subgroup present in our samples.

4.1.2. BrGDGTs
The ternary plot of the relative abundance of bacterial tetra-,

penta-, and hexamethylated brGDGTs (Fig. 8) shows that the Siber-
ian permafrost deposits follow the trend described by the global
soil and peat data sets. Generally, our permafrost samples are dom-
inated by pentamethylated (mean 43.6 ± 5.7%; n = 129) and hex-
amethylated (mean 39.5 ± 10.0%; n = 129) brGDGTs while
tetramethylated brGDGTs average 16.8 ± 6.1% (n = 129). This dis-
tribution agrees well with the composition observed in the Sval-
bard soils in the global data set and the Greenland soils
investigated by Colcord et al. (2015) and is consistent with a tem-
perature control on the methylation of brGDGTs (De Jonge et al.,
2014; Peterse et al., 2009; Weijers et al., 2007). The degree of
methylation is relatively homogenous among deposit types
(Fig. 5A–C), while they are characterized by different weighted
average number of cyclopentane moieties (#rings; Fig. 5D–F). This
is particularly obvious for tetra- and 5-methyl pentamethylated
brGDGTs which correlate positively with each other (r2 = 0.67;
n = 129). Active layer soils show the lowest #ringstetra,
#ringspenta,5Me, and #ringspenta,6Me values while Yedoma has the
highest #ringstetra, #ringspenta,5Me, and #ringspenta,6Me values. This
is consistent with global observations showing that the number



Fig. 9. Cross plot of the degree of isomerization (IR6ME) against soil pH in
permafrost deposits of Northern Siberia. Linear fit shown with 95% confidence
interval (grey shaded area).

Fig. 8. Ternary plot of the relative abundance of tetra-, penta-, and hexamethylated
brGDGTs in permafrost deposits of Northern Siberia (n=129) superimposed on the
global soil data set of De Jonge et al. (2014) and the global peat data set of Naafs
et al. (2017).

Fig. 10. PCAbr scatter plot based on elemental data and fractional brGDGT
abundances in permafrost deposits of Northern Siberia. PC1 and PC2 explain
50.5% of the data variance. Biplot annotations denote brGDGT structures (grey;
Appendix A) and physicochemical parameters (magenta).
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of cyclopentane moieties increases with pH, which is highest in
Yedoma and lowest in active layer soils (Fig. 2C). Likewise, the
abundance of 6-methyl brGDGTs (degree of isomerization; IR6Me)
increases with increasing pH (Fig. 9)- similar to observations in
the global soil data set and in global peats (De Jonge et al., 2014;
Naafs et al., 2017). However, the correlation in the permafrost
deposits is weak (r2 = 0.18; n = 113) since IR6Me values of both flu-
vial terrace/floodplain sediments and thermokarst sediments do
not change significantly with increasing pH. It remains to be inves-
tigated whether the degree of cyclization and degree of isomeriza-
tion are physiological responses of specific (acido)bacterial species
to soil pH, or instead reflect different bacterial species assemblages
with different physiological traits. Sinninghe Damsté et al. (2018)
recently demonstrated that the distribution of 6-methyl
iso-diabolic acid (the potential building block for 6-methyl
brGDGTs) in cultured acidobacterial strains differs between aci-
dobacterial subdivisions. For example, strains belonging to subdi-
visions 1 and 3, which often accumulate in acidic soils, were
shown to produce low amounts of 6-methyl iso-diabolic acid, while
strains belonging to subdivision 6, which occur in high pH soils,
have high 6-methyl iso-diabolic acid contents (Sinninghe Damsté
et al., 2018). As discussed above, these authors highlighted that
the search for the bacterial source organisms of brGDGTs should
be extended to bacterial phyla other than Acidobacteria
(Sinninghe Damsté et al., 2018). Nonetheless, the Acidobacteria
have been shown to be an important phylum in permafrost depos-
its throughout the Arctic, where the occurrence of Acidobacteria
seems to be predominantly linked to pH (e.g. Ganzert et al.,
2014; Gittel et al., 2014; Kim et al., 2014; Wilhelm et al., 2011;
Männistö et al., 2007). Significant acidobacterial 16S rRNA gene
sequence abundances were also detected in permafrost deposits
in the Kolyma Indigirka lowlands (16%; Zhou et al., 1997) and
Samoylov Island active layer soils (ca. 10%; Liebner et al., 2008),
while a 28 m deep sample obtained from Bykovsky Peninsula,
south of the Lena Delta, revealed only minor contributions (1%)
from Acidobacteria (Hinsa-Leasure et al., 2010). We observe the
highest total brGDGT concentrations (Fig. 3B) in the samples with
the lowest pH (active layer soils; Fig. 2C), which may provide cir-
cumstantial evidence for an acidobacterial origin of brGDGTs.
Additional correlations between brGDGT fractional abundances
and the investigated physicochemical parameters are revealed by
PCAbr (Fig. 10). The physicochemical parameters separate on PC1
and show a negative correlation of %TOC and %TN with pH.
BrGDGT-IIIa correlates positively with %TOC and %TN, although
PC3 (9.9% of the variance, not shown) separates a distinct cluster
of a few Arga Island active layer soils which are characterized by
very low abundance of brGDGT-IIIa but high %TOC. Opposite to
brGDGT-IIIa, the other brGDGTs without cyclopentane moieties
(IIIa0, IIa, IIa0, and Ia) do not seem to correlate with any of the
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investigated physicochemical parameters but show a distinct neg-
ative correlation between the 5-methyl (IIa and Ia) and 6-methyl
(IIIa0 and IIa0) brGDGTs on PC2 (Fig. 10). This separation distinctly
clusters permafrost samples from Bol’shoy Lyakhovsky Island (high
5-methyl brGDGT abundances) apart from Samoylov active layer
soils and fluvial terrace/floodplain sediments (high 6-methyl
brGDGT abundances). This likely reflects different bacterial popu-
lations in the respective deposit types and may be caused in part
by their different origin. The PCAbr also shows the strongest posi-
tive correlation with pH (and negative correlation with %TOC and
%TN) for brGDGT-Ib and brGDGT-IIb as well as brGDGTs IIIb and
IIIb’. Abundances of cyclized hexamethylated brGDGTs IIIc, IIIc0,
and pentamethylated brGDGT-IIc0 show no or weak correlations
with any physicochemical parameter- since they only occur in
low concentrations in a subset of the investigated samples. The
correlations observed between brGDGTs and pH indicate that
brGDGT abundances can be used to determine a permafrost-
specific pH transfer function irrespective of whether the observed
changes are caused by physiological responses of specific (acido)
bacterial species or different bacterial species assemblages.

4.1.2.1. Permafrost-specific soil pH calibration. The global soil data
set shows a positive correlation between the relative abundance
of brGDGTs with cyclopentane moieties and soil pH, while
brGDGTs without cyclopentane moieties correlate negatively with
soil pH (De Jonge et al., 2014). Moreover, upon improved chro-
matographic separation, De Jonge et al. (2014) showed that the rel-
ative abundance of 6-methyl brGDGTs correlates positively with
soil pH. Overall, this pattern is mirrored in our permafrost data
set (Fig. 11). However, the observed correlation coefficients are
lower and the trends observed for specific brGDGT abundances dif-
fer from the global data set. Most obviously, we observe no corre-
Fig. 11. Cross plots of fractional relative abundances of brGDGTs against measured soil pH
and letters denote brGDGT structures (see Appendix A).
lation of brGDGT-Ia and pH, which show the strongest negative
correlation in the global soil data set. In contrast, as revealed by
the PCA we observe the strongest negative correlation between
pH and the relative abundance of brGDGT-IIIa (Figs. 10 and 11),
which do not correlate in the global soil data set. Accordingly,
inferring soil pH using a multiple regression transfer function
based on the relative abundance of brGDGTs in the global soil data
set such as pHmr (2014) results in very weak correlation (r2 = 0.12)
with the measured soil pH (Fig. 12C). Using CBT’ as defined by De
Jonge et al. (2014), the correlation improves slightly (r2 = 0.23;
Fig. 12A). This likely results from the lack of correlation between
6-methyl brGDGT relative abundance and soil pH in our per-
mafrost data set (Fig. 11). This is reflected in the weak correlation
between IR6Me and soil pH (Fig. 9) and may result from high water
contents of permafrost (Dang et al., 2016). Accordingly, excluding
6-methyl brGDGTs as defined by the CBT5Me index of De Jonge
et al. (2014), strongly improves correlation with measured soil
pH values (r2 = 0.52; Fig. 12B).

In order to determine a permafrost-specific CBTPF index yielding
the strongest possible correlation with soil pH, we used combina-
torial analysis computed using Wolfram Mathematica software.
We excluded those brGDGTs (IIIc, IIIb0, IIIc0, IIc0, and IIIc) that
occurred in �50% of the samples. The strongest correlation coeffi-
cient was found for CBTPF (Fig. 12D,E) defined as:

CBTPF ¼ log
Ic
IIa

� �
ð1Þ

and pH can be described as a function of CBTPF following:

pHPF ¼ 1:6153� CBTPF þ 9:8909 ðr2 ¼ 0:63;
p < 0:001;RMSE ¼ 0:057;n ¼ 83Þ ð2Þ
. Linear fit shown with 95% confidence interval (grey shaded area). Roman numbers



Fig. 12. Cross plots of measured pH values against (A) CBT’-derived pH values, (B) CBT’5ME-derived pH values, and (C) pHmr-derived soil pH values. Also shown are cross plots
of (D) CBTPF and (F) CBT’PF against measured pH with the respective root mean square error (RMSE) and corresponding residuals shown in panels (E) and (G). Linear fit shown
with 95% confidence interval (grey shaded area).
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However, since brGDGT-Ic was not detected in 23% of the inves-
tigated samples, thus, potentially hampering the use of CBTPF in
other permafrost samples, we opted for the strongest correlation
between CBTPF and soil pH including >95% of the investigated sam-
ples (n = 125), defining CBT’PF as:

CBT 0
PF ¼ log

Ibþ Ic þ IIc
IIa

� �
ð3Þ

with pH modeled as a function of CBT’PF (Fig. 12F, G) defined as:

pH0
PF ¼ 1:8451� CBT 0

PF þ 8:5396 ðr2 ¼ 0:60;
p < 0:001;RMSE ¼ 0:074;n ¼ 109Þ ð4Þ
The residual pH (Fig. 12G) is similar to the residual pH observed

in the global soil data set of De Jonge et al. (2014) and smaller than
the residual pH observed in the peat data set of Naafs et al. (2017).
The residuals show a slight bias towards soil pH underestimation
at high pH and overestimation at low pH; a pattern also evident
in the global soil data set of De Jonge et al. (2014). However, the
residuals are not strongly heteroscedastic, suggesting that they
are random enough to apply a linear model.

Similar to that observed for the peat data set of Naafs et al.
(2017), the correlation between CBT0

PF and soil pH is weaker than
the correlation between CBT0 and soil pH (r2 = 0.85) observed for
the global soil data set. Naafs et al. (2017) attributed the strong
correlation between CBT’ and soil pH in the global data set to
amplification of the pH effect on brGDGT cyclization by the soil
water content effect (Dang et al., 2016), which is absent in water
saturated peats. This most likely also applies to permafrost depos-
its, which have high (frozen) water contents. In addition to the soil
water effect, we cannot exclude that brGDGT cyclization in our
samples is in part also influenced by other parameters, such as
MAT. As shown in Fig. 12, the most pronounced soil pH differences
exist between active layer soils and Yedoma, i.e., between annually
thawing and permanently frozen deposits. If the influence of tem-
perature and pH are unidirectional for specific brGDGTs, e.g.,
observed for brGDGT-Ia in the global soil data set by (De Jonge
et al., 2014), CBT may be biased by MAT and MBT by soil pH. Thus,
care should be taken when applying the CBT0

PF proxy in high lati-
tude locations with different production environments.

4.2. GDGT distributions in the different deposit types and implications
for GDGT-based proxies in marine sediments

Several studies used GDGT distributions, i.e., BIT indices, in
coastal East Siberian Arctic Shelf sediments to determine the sup-
ply of terrestrial permafrost-derived OC to these settings (Doğ rul
Selver et al., 2015; Ho et al., 2014; Sparkes et al., 2015; De Jonge
et al., 2015; van Dongen et al., 2008). While De Jonge et al.
(2015) found a good agreement of BIT index values with bulk sed-
imentary d13C and C/N ratios in the Kara Sea, Doğrul Selver et al.
(2015) and Sparkes et al. (2015) found different trends for BIT
index values (exponential decrease) and other proxies including
Rsoil and bulk sedimentary d13C (linear decrease) across the shelf
in both the Laptev Sea and the East Siberian Sea. Doğrul Selver
et al. (2015) suggested that this may reflect OM contributions of
different deposit types such as permafrost soils and Yedoma sup-
plied via different delivery modes, i.e., fluvial runoff and coastal
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erosion. Yet, the constraints on GDGT distributions in catchment
deposits were limited to a few Yedoma samples. Our data set allows
us to determine more comprehensively whether specific GDGT dis-
tributions may be used to fingerprint the investigated deposit
types and whether erosion of different deposit types may have
implications for the signals recorded in marine (or other aquatic)
sediments.

Doğrul Selver et al. (2015) and Peterse et al. (2014) found that
Yedoma is characterized by low brGDGT concentrations (�3–
10 mg/g TOC) and Doğrul Selver et al. (2015) concluded that high
brGDGT concentrations in coastal sediments thus preclude sub-
stantial contributions from Yedoma via coastal erosion. However,
Peterse et al. (2014) investigated only one, and Doğrul Selver
et al. (2015) only three, Yedoma samples. On average, we observe
higher total brGDGT concentrations in Yedoma samples
(37.6 ± 72.5 mg/g TOC; n = 32) than previously reported, and maxi-
mum concentrations are as high as 419.2 mg/g TOC similar to the
maximum concentrations detected in the other deposit types
(Fig. 3B). Overall, brGDGT concentrations in fluvial terrace/flood-
plain sediments, thermokarst sediments, and Yedoma do not differ
significantly. While active layer soils indeed have higher brGDGT
concentrations, the difference is less than one order of magnitude
for the majority of the data (Fig. 3B). We also observe relatively
similar total isoGDGT concentrations across deposit types
(Fig. 3A). Thus, the different deposit types cannot be easily identi-
fied based on GDGT concentrations and conclusions as to which
deposit type and/or delivery mechanism contributes GDGTs to
coastal sediments should not be based on absolute GDGT abun-
dances alone.

In contrast, the relative contributions of specific GDGTs may be
a better predictor of deposit type. Peterse et al. (2014) first noted
that Yedoma from the Kolyma catchment was characterized by
high relative crenarchaeol abundances. High relative abundances
of crenarchaeol in Kolyma and Indigirka catchment Yedoma were
confirmed by Bischoff et al. (2016), but these authors found lower
relative crenarchaeol abundances in Yedoma from the Lena Delta.
The Yedoma samples in our data set indeed have high crenarchaeol
abundances relative to total GDGTs (Fig. 3F) and relative to
isoGDGTs (Fig. 4D) in particular (mean 30.5 ± 19.0%; n = 43).
Accordingly, Yedoma has lower BIT index values in comparison
to the other deposit types (Fig. 4E). The PCAiso revealed a negative
correlation of crenarchaeol with isoGDGT-0 (Fig. 6), thus, the
GDGT-0/(cren + GDGT-0) ratio (Fig. 4F) may be a useful indicator
to distinguish different deposit types. The GDGT-0/(cren + GDGT-
0) ratio separates active layer soils and Yedoma well from each
other and reasonably well from fluvial terrace/floodplain sedi-
ments and thermokarst sediments. The latter two deposit types
show rather similar overall GDGT distributions (Fig. 3D,E) and
may, thus, not be distinguishable- irrespective of which ratio is
used. Based on the difference in soil pH of the different deposit
types, CBT’PF provides an additional means to distinguish the dif-
ferent deposit types, particularly active layer soils and Yedoma
(Fig. 12F). Using crenarchaeol relative abundances, GDGT-0/
(crenarchaeol + GDGT-0) ratios, and CBT’PF may, thus, aid in distin-
guishing the different deposit types. Nonetheless, it should be
noted that the variance of GDGT distributions and ratios within
each deposit type is quite large, both between sites and at a given
site. For example, total brGDGT concentrations in all Yedoma sam-
ples average 41.2 mg/g TOC with a significant standard deviation of
96.2 mg/g TOC. Yedoma total brGDGT concentrations also differ
between sites, ranging from means of 16.8 ± 14.2 mg/g TOC on the
Buor Khaya Peninsula (BK-8) to 44.6 ± 118.5 mg/g TOC (L14-02) or
124.9 ± 96.8 mg/g TOC on Bol’shoy Lyakhovsky Island (L14-05). At
all sites, however, evidently high standard deviations highlight
the strong heterogeneity, even at a given site. This warrants cau-
tion when defining deposit type-specific endmembers and apply-
ing these endmembers to mass balance calculations. It also
highlights that fingerprinting GDGT assemblages based on a lim-
ited number of samples likely underestimates the natural hetero-
geneity and may cause misinterpretation.

While not all deposit types have distinct GDGT fingerprints (e.g.
fluvial terrace/floodplain sediments and thermokarst sediments), it
is still obvious that variable contributions from different sources
through time may significantly bias GDGT proxy signals in sedi-
mentary downcore records obtained from the Siberian Arctic shelf.
A decrease of BIT, for example, may be caused by a relative increase
of Yedoma, or a relative decrease of active layer soil OC contribu-
tions to the exported terrestrial OC pool, respectively, rather than
providing quantitative estimates of permafrost erosion. This mech-
anism was also invoked by De Jonge et al. (2016a) to explain a
marked shift towards lower BIT indices observed in unit 2d of their
Kara Sea record. The authors observed both a change in brGDGT
distributions and concentrations, which was not accompanied by
an increase of crenarchaeol concentrations or cyclopentane-
containing brGDGTs- indicating increased marine in situ produc-
tion. Similarly, physicochemical changes through time inferred
using GDGT proxies such as CBT (and likely also MBT) might poten-
tially be biased by variable contributions from the different deposit
types, particularly from Yedoma and active layer soils, which have
distinct pH/CBT ranges. Again, such an effect was proposed by De
Jonge et al. (2016a) to explain a pH decrease of about 0.5 units
and a sharp MATmrs increase of ca. 8 �C temperature in unit 2d of
core N9 in the Kara Sea.

In addition to the GDGT signals carried by the erosion of differ-
ent deposit types, in situ production in the river and on the shelf
(De Jonge et al., 2015; Peterse et al., 2014) will contribute OC car-
rying additional GDGT signatures, thus, further complicating the
interpretation of downcore records in the Siberian Arctic Ocean.
De Jonge et al. (2015) showed that suspended particulate matter
(SPM) produced in situ in the Yenisei River is characterized by high
fractional abundances of 6-methyl brGDGTs IIa’ and IIIa’. The rela-
tive contribution of these brGDGTs is rather homogenous in our
samples and their summed abundances average 11.5 ± 8.7%-
although several active layer soils have summed abundances
>30% and maximum summed abundances are as high as 48.7%
(SA-R, 13–18 cm), similar to that observed by De Jonge et al.
(2015) in the Yenisei River SPM. Accordingly, increased 6-methyl
brGDGT abundances in marine sediments may not simply indicate
increased aquatic in situ production, but may also derive from per-
mafrost in the catchment. However, the threshold value for
#ringstetra determined by Sinninghe Damsté (2016) to indicate sig-
nificant in situ production (0.7) is not exceeded by any of the inves-
tigated deposit types in our data set. Thus, #ringstetra should
provide reliable estimates of in situ production in paleoclimatic
studies. Consequently, the effect of aquatic in situ production and
varying contributions from different deposit types may also offset
each other. For example, if marine in situ production of brGDGTs
contributes brGDGTs with low CBT values, while the terrigenous
contribution of brGDGTs derived from Yedoma (high CBT values)
increases, the overall CBT value may not change if the respective
contributions and proxy values are equal in terms of mass balance.
Accordingly, thorough and statistically meaningful investigations
of the GDGT distributions in all sources contributing OC to marine
sediments, including the different terrestrial deposit types in a
given catchment, riverine and lacustrine suspended matter and
sediments and likely even marine suspended matter, are required
to estimate reliably, the effect on GDGT distributions determined
in marine sediments in the Siberian Arctic. Given the large hetero-
geneity of circumpolar permafrost pedons and their carbon stocks
(e.g., Hugelius et al, 2014), GDGT abundances likely differ
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regionally. Thus, we would advise investigation of GDGT abun-
dances in a sufficient number of permafrost deposits from the
respective catchments when studying marine sediments.
5. Conclusions

We investigated the GDGT assemblages in 129 Siberian per-
mafrost samples- representing the active layer of polygonal tundra
soils, fluvial terrace/floodplain sediments, Eemian and Holocene
thermokarst sediments, and late Pleistocene Ice Complex
(Yedoma)- in order to better understand GDGT diversity and envi-
ronmental controls at high latitude. GDGT abundances were dom-
inated by bacterial brGDGTs in all deposit types and showed
distributional changes, which were correlated to physicochemical
parameters, including %TOC, %TN, and soil pH. The positive correla-
tion of the degree of cyclization with soil pH allowed us to propose
a permafrost-specific soil pH calibration with a root mean square
error of 0.074 (n = 109). The dominance of pentamethylated and
hexamethylated brGDGTs agreed well with the global soil data
set of De Jonge et al. (2014), reflecting a low temperature adapta-
tion. However, since most of our permafrost samples were perma-
nently frozen and included a range of Pleistocene and Holocene
deposits, we refrained from using the degree of methylation to
attempt a temperature calibration.

In contrast to brGDGTs, the relative abundance of isoGDGTs was
not correlated to the investigated physicochemical parameters.
However, isoGDGT relative abundances differed between deposit
types and, thus, provide important information when fingerprint-
ing different deposit types. This seems to be largely driven by
changes in the relative contribution of Thaumarchaeota and
methanotrophic and methanogenic Euryarchaeota, i.e., crenar-
chaeol/isoGDGT and GDGT-0/(crenarchaeol + GDGT-0) ratios.
While caution should be taken when defining GDGT endmembers
for the different deposit types due to high heterogeneity in any
deposit type, variable contributions from these sources to the
eroded/exported permafrost OC may severely alter GDGT proxies
analyzed in marine or other aquatic sediments.
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