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Abstract Microalgae are capable of acclimating to dynamic light environments, as they have developed
mechanisms to optimize light harvesting and photosynthetic electron transport. When absorption of light
exceeds photosynthetic capacity, various physiological protective mechanisms prevent damage of the
photosynthetic apparatus. Xanthophyll pigments provide one of the most important photoprotective
mechanisms to dissipate the excess light energy and prevent photoinhibition. In this study, we coupled a
mechanistic model for phytoplankton photoinhibition with the global biogeochemical model Regulated
Ecosystem Model version 2. The assumption that photoinhibition is small in phytoplankton communities
acclimated to ambient light allowed us to predict the photoprotective needs of phytoplankton. When
comparing the predicted photoprotective needs to observations of pigment content determined by
high‐performance liquid chromatography, our results showed that photoprotective response seems to be
mediated in most parts of the ocean by a variable ratio of xanthophyll pigments to chlorophyll. The
variability in the ratio appeared to be mainly driven by changes in phytoplankton community composition.
Exceptions appeared at high latitudes where other energy dissipating mechanisms seem to play a role in
photoprotection and both taxonomic changes and physiological acclimation determine community pigment
signature. Understanding the variability of community pigment signature is crucial for modeling the
coupling of light absorption to carbon fixation in the ocean. Insights about how much of this variability is
attributable to changes in community composition may allow us to improve the match between remotely
sensed optical data and the underlying phytoplankton community.

1. Introduction

Since phytoplankton organisms are living in a spatially and temporally dynamic light field, their cells have
developed a variety of intracellular mechanisms to optimize light harvesting and utilization. Light fluctua-
tions can be harmful to the photosynthetic machinery of microalgae when the harvesting of light energy
exceeds photosynthetic carbon fixation capacity (Dubinsky & Schofield, 2010). Thus, to prevent damage of
the photosynthetic apparatus caused by rapid light fluctuations, algal cells have evolved various physiologi-
cal protective mechanisms for stress mitigation. These mechanisms are summarized under the term non-
photochemical quenching (NPQ; Lavaud, 2007). NPQ includes mechanistically distinct processes with
likely independent evolutionary origins (Magdaong & Blankenship, 2018), but they share the nonradiative
dissipation of excess energy within the photosynthetic apparatus as a common purpose.

Xanthophyll pigments (oxygenated carotenoids) are involved either directly or indirectly in the NPQ of
excess light energy in the antenna of photosystem II complexes (PSII). They are ubiquitous in the global
ocean (Bricaud et al., 2004; Demmig‐Adams & Adams, 1996; Trees et al., 2000). In eukaryotes, one of the
main mechanisms that xanthophylls use to perform their photoprotective function is the so‐called xantho-
phyll cycle (XC; Lavaud, 2007). This mechanism involves the light‐regulated switching of PSII from a
light‐harvesting state to an energy dissipating state (Brunet et al., 2011). But also, photosynthetic organisms
that do not possess an active XC, such as cyanobacteria, possess xanthophylls with central functions in
energy dissipation (Wilson et al., 2006) and locate some carotenoids in the cytoplasmic membrane for pro-
tection from high light (Masamoto et al., 1999). The role of xanthophylls is crucial in the modulation of
the high light response via the kinetics and amplitude of NPQ that helps to protect the photosynthetic cen-
ters against the destructive influence of harmful radiation (Müller et al., 2001).

©2019. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2018GB006101

Key Points:
• Phytoplankton long‐term

photoprotective response is
mediated in most parts of the ocean
by a variable pool of xanthophyll
pigments

• The variability in the pool of
xanthophyll pigments is mainly
driven by changes in phytoplankton
community composition in the
tropical and subtropical ocean

• At high latitudes other
photoprotection mechanisms play a
role, and both taxonomic shifts and
photoacclimation determine
community pigment signature

Supporting Information:
• Supporting Information S1

Correspondence to:
E. Álvarez,
eva.alvarez@awi.de

Citation:
Álvarez, E., Thoms, S., Bracher, A., Liu,
Y., & Völker, C. (2019). Modeling
photoprotection at global scale: The
relative role of nonphotosynthetic
pigments, physiological state, and
species composition. Global
Biogeochemical Cycles, 33. https://doi.
org/10.1029/2018GB006101

Received 6 OCT 2018
Accepted 16 JUN 2019
Accepted article online 22 JUN 2019

ÁLVAREZ ET AL. 1

https://orcid.org/0000-0002-6776-1029
https://orcid.org/0000-0003-3025-5517
https://orcid.org/0000-0001-7138-9146
https://orcid.org/0000-0003-3032-114X
http://dx.doi.org/10.1029/2018GB006101
http://dx.doi.org/10.1029/2018GB006101
http://dx.doi.org/10.1029/2018GB006101
http://dx.doi.org/10.1029/2018GB006101
http://dx.doi.org/10.1029/2018GB006101
mailto:eva.alvarez@awi.de
https://doi.org/10.1029/2018GB006101
https://doi.org/10.1029/2018GB006101
http://publications.agu.org/journals/


The amount of xanthophyll pigments relative to total chlorophyll (Chla) is a distinctive feature of different
phytoplankton types. It reflects the selective pressure on variable pigment composition in local phytoplank-
ton communities adapted to varying environmental conditions. Accessory pigments have been used as gen-
eral diagnostic markers for specific phytoplankton groups, and changes in the community pigment ratios
can be used to derive changes in taxonomic composition (Mackey et al., 1996). However, the ratios of indi-
vidual accessory pigments to Chla can also vary as a function of physiological state. The plasticity in the
response of phytoplankton to irradiance is species specific (MacIntyre et al., 2002). This plasticity depends
on the photoacclimation ability and light history of the phytoplankton cells (Moore et al., 2006) and on
the species‐specific efficiency of the photoregulative mechanisms (Goss & Jakob, 2010; Lavaud, 2007).
Whereas photoregulation involves fast photoprotective reactions that occur on a shorter time scale than pig-
ment synthesis responses, photoacclimation includes longer‐term mechanisms of photoresponse that
involve changes in pigment content and composition (Demers et al., 1991). Ultimately, photoresponse is
determined by the interaction between fast photoregulation and longer‐term photoacclimation (Brunet &
Lavaud, 2010) in the framework of a given genetic background.

Under acclimation to a prolonged light regime, from hours to seasons, phytoplankton cells change the size of
the light harvesting apparatus to saturate dark reactions or to protect PSII. This means typically that the cel-
lular content of photosynthetic pigments tends to increase under low light and to decrease under high light.
Photoacclimation to low light includes not only chlorophyll (Chla) but also the accumulation of other photo-
synthetic accessory pigments, such as fucoxanthin in diatoms or peridinin in dinoflagellates that ensure an
efficient utilization of the available light by absorbing photons outside the range of wavelengths accessible to
Chla molecules. Photoprotective xanthophyll pigments accumulate in high‐light‐exposed cells that show
higher xanthophyll content relative to Chla (MacIntyre et al., 2002). The ratios of photoprotective pigments
to Chla concentrations can be used as quantitative markers for photophysiological state (Stolte et al., 2000).
The variations in the pool size of xanthophyll pigments can provide information on the “average” light cli-
mate to which the cells have been exposed in the past hours/days.

Xanthophylls participate in the fast photoregulative reactions. Despite differences in their particular
mechanisms of action (Fujiki & Taguchi, 2001; Horton et al., 2000; Jahns et al., 2009; Ting & Owens,
1993), it is clear that the function of the XC takes place in time scales of seconds to minutes and allows algae
to accommodate to rapid changes in the light field without net change in pigments content. XC is activated
when the incident light becomes excessive with respect to the optimum, which is necessary to maximize
photosynthesis (Dubinsky & Stambler, 2009). Two different XCs have been described for eukaryotic algae.
In the violaxanthin cycle, violaxanthin is reversibly converted into zeaxanthin by fast de‐epoxidation using
the intermediate antheraxanthin. The diadinoxanthin‐diatoxanthin cycle involves the reversible conversion
of diadinoxanthin into diatoxanthin. Violaxanthin cycle is active in all land plants, brown algae, and most of
the green algae; diadinoxanthin‐diatoxanthin cycle is active in a wide range of different algae including dia-
toms and haptophytes (for reviews see Goss & Jakob, 2010; Jahns et al., 2009). Since the time scale of xantho-
phyll cycling is much shorter than that of photoacclimation, both epoxidated and de‐epoxidated
xanthophylls act as photoprotection in the medium to long term and contribute to the photoprotection abil-
ity of phytoplankton communities.

Description of photoacclimation via the changes in Chla content is by now virtually standard in ocean bio-
geochemical models, mostly in terms of the parameterization given by Geider et al. (1998) and sometimes
also by Geider et al. (1997). Despite the relevant role of xanthophylls in algae and its possibly important
implications, less emphasis has been placed on the capacity of different phytoplankton species or groups
to acclimate or regulate photophysiology through photoprotective pigments (Brunet & Lavaud, 2010).
There are only a few models that explicitly represent the dynamics of reaction centers and the
xanthophyll‐mediated photoprotection. Polimene et al. (2012) proposed a model of DD and DT production
through conversion of other pigments and de novo synthesis and hence predict the long‐term photoprotec-
tive response in Bacilliarophyta and Haptophyta. Gustafsson et al. (2014) proposed a model that describes
xanthophyll synthesis and cycling in zooxanthella and hence predicts the short‐term oxidative stress that
leads to coral bleaching. In both cases, the focus on a specific pigment type or mechanism of action permitted
the authors to gain insight into particular situations, such as coastal areas dominated by diatoms (Polimene
et al., 2014) or corals reefs of the Great Barrier Reef (Baird et al., 2018). Pigment‐ or mechanism‐dependent
models are challenging to extrapolate to diverse phytoplankton communities.
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Models that do not parameterize short‐term photoprotective mechanisms have the advantage that they can
be generalized to diverse phytoplankton communities across the global ocean (Han, 2002; Han et al., 2000;
Marshall et al., 2000; Ross et al., 2011; Zonneveld, 1998). These models predict the role of NPQ influencing
the activity of PSII and consider the role of photoprotective pigments only implicitly. The mechanistic model
of photoinhibition proposed by Marshall et al. (2000) accounts for changes in Chla‐specific absorption cross‐
section and quantum yield of photosynthesis driven by the relative amount of active PSII. The decrease in
both variables under high light conditions leads to the photoinhibition of the light harvesting apparatus
and therefore to the decrease in photosynthetic rate. The fraction of PSII available for photochemistry
depends on the protective effect of NPQ involving both closed reaction centers and photoprotective pig-
ments. Rather than assuming any particular short‐term mechanism of action for these latter, a variable
xanthophyll pool size simulates the resilience of the phytoplankton community to photodamage.

In this study we used the Marshall model as a tool to evaluate the relevance of the different components of
NPQ in the global ocean. Avoiding the representation of the full details of the species‐specific short‐term
photoprotective mechanisms allowed us to represent long‐term photoprotection in a global diverse ecosys-
tem. We implemented both the phytoplankton growth models of Geider et al. (1998) and Marshall et al.
(2000) into the Regulated Ecosystem model version 2 (REcoM2; Hohn, 2009; Schartau et al., 2007).
Thereby, we present an ecosystem model that represents phytoplankton diversity with two phytoplankton
groups that have group‐specific photoprotective needs. Our approach was based on the major assumption
that the photoinhibition predicted by the Marshall model should be negligible in phytoplankton commu-
nities fully acclimated to ambient light. The difference between the photosynthesis‐irradiance curves pre-
dicted with and without photoinhibition, that is, by the Marshall and Geider models, respectively, can be
considered a measure of the need for photoprotection in order to minimize such photoinhibition. We
hypothesize that these photoprotection needs are covered mostly by a variable pool of photoprotective
xanthophylls. By comparing the predicted photoprotection needs with global field observations of photopro-
tective carotenoid content, we evaluated the relevance of nonphotosynthetic xanthophylls for the photopro-
tection of the phytoplankton community at a global scale. Finally, we explored whether changes in the
community aggregated xanthophyll pool were driven by intragroup physiological acclimation and/or by
changes in community composition.

2. Model
2.1. Phytoplankton Bio‐Optical Model

Within the mechanistic model of photoinhibition by Marshall et al. (2000), the Marshall model, the light
harvesting apparatus is divided into two states, PSII with a functional D1 protein and hence active for light
harvesting and PSII whose D1 protein has been damaged and hence can no longer participate in photosyn-
thetic electron transfer. The relative amounts of these two types of PSII are represented by the state variables
AD1 and DD1, which represent the relative amount of active and damaged PSII, respectively. Definitions of
the variables and their units are summarized in Table 1. The model consists of two parts: The first part
describes the damage‐repair cycle, a set of functions that define the rates of damage to the D1 proteins of
the PSII and the rate at which those damaged proteins are repaired; the second part predicts photoinhibition
based on the statement that the amount of AD1 at a given time influences the light harvesting ability of the
cell and hence the initial slope of the photosynthesis versus light curve (PCphot−E). Since the original paper
by Marshall et al. (2000) contains some equations that do not balance, we included some modifications to
reproduce the model behavior shown in the original publication (equations (1) to (7) in Table 2). For a
detailed analysis of the modifications made to Marshall et al. (2000), see the supporting information
(Flynn et al., 1999; Flynn & Flynn, 1998).
2.1.1. Damage and Repair of D1 Proteins
The rate of damage to AD1 (Gd) is modeled as a linear function of photon dose (equation 1). The slope of the
relationship represents the target size for photodamage to PSII (square meter per Joule). The two NPQ
mechanisms that prevent damage to AD1 are (i) the quenching provided by already damaged reaction cen-
ters (qRC) that protects the cell from further damage via multiplication with the term (1 − DD1) and (ii) the
antenna‐based NPQ (Qe) that decreases Gd via multiplication with the term (1 − Qe). Whereas qRC is pro-
portional to DD1 that is a state variable in the model, Qe is not related to any explicit representation of
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nonphotosynthetic pigments. In the original formulation Qe is modified by a correction factor (Ds) that is
intended to reflect the differential resilience of different species to photodamage via xanthophyll‐based
NPQ. By setting the parameter Ds to a constant value of 1, the Marshall model assumes a constant
xanthophyll pigment pool size.

The repair rate of D1 proteins (Rep) is modeled as a function of DD1, the relative amount of damaged PSII
that are ready to be repaired. Repair of DD1 consists on several steps. The apparent bottleneck of the whole
process is the enzymatic removal of damaged proteins (Mellis, 1999). Hence, Rep must reach a maximum
and has the form of a Michaelis‐Menten function where Y is the maximum repair rate and Z the half satura-
tion constant (equation (2)). As repair requires de novo synthesis of D1 proteins, Rep is limited by nutrient
availability (Nlimit) in the original formulation (Marshall et al., 2000). We included a temperature depen-
dency (Tfunc) given the temperature restrictions on D1‐protein turnover (Ni et al., 2017). The change in
AD1 is set to the difference between the damage and repair rates to D1 proteins (equation (3)) and the
amount of DD1 is equal to 1−AD1 (equation (4)).
2.1.2. Effect of AD1 and NPQ on α
The photochemical efficiency of PSII (ϕ), defined as carbon fixed per unit of light absorbed, depends on the
fraction of AD1 proteins available to photochemistry. The closure of reaction centers leads to a decrease in
the value of ϕ. However, a loss of active photosystems of up to 25% has been found to have no impact on ϕ

Table 1
Definitions of State, Intermediate, and Input Variables in the Phytoplankton Growth model

Variable Definition Units

State variables
C Carbon mmolC m‐3

N Nitrogen mmolN m‐3

Si Silica mmolSi m‐3

Chla Photosynthetic pigments mgChla m‐3

AD1 Functioning D1 relative to total D1 Dimensionless
DD1 Damaged D1 relative to total D1 Dimensionless

Intermediate variables
Gd Damage rate d‐1

Rep Repair rate d‐1

ϕ Quantum yield of photosynthesis mmolC J‐1

Qe Antenna‐based non photochemical quenching Dimensionless
a*NP Cellular absorption cross section m2 mgChla‐1

αNP Initial slope of the photosynthesis light curve of damaged cells m2 molC gChla‐1 J‐1

Q Nitrogen to carbon quota mol mol‐1

QSi Silica to carbon quota mol mol‐1

ϴ Chla to carbon quota g mol‐1

LimQmin Limitation term by approach to Qmin Dimensionless
LimQSi

min Limitation term by approach to Qsi
min Dimensionless

Nlimit Nutrient growth‐limitation term Dimensionless
LimQmax limitation term by approach to Qmax Dimensionless
LimQSi

max Limitation term by approach to Qsi
max Dimensionless

Tfunc Arrhenius function Dimensionless
PCphot Rate of photosynthesis d‐1

PCmax Maximum rate of photosynthesis d‐1

R Phytoplankton respiration d‐1

RChl Loss rate of Chla d‐1

VCN Nitrogen uptake molN molC‐1 d‐1

VNmax Maximum nitrogen uptake molN molC‐1 d‐1

VCSi Silica uptake molSi molC‐1 d‐1

VSimax Maximum silica uptake molSi molC‐1 d‐1

Input variables
T Temperature °K
E Irradiance J m‐2d‐1

Ni Dissolved inorganic nitrogen (DIN) mM
dSi Dissolved silica mM
Fe Dissolved iron μM
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(Park et al., 1995). So for AD1 larger than 0.75, ϕ equals ϕmax, and for AD1 smaller than 0.75, ϕ decreases
linearly with D1 (equation (5)). The slope is set to ϕmax/0.75, so ϕ varies from ϕmax to 0.

The buildup of a proton gradient across the thylakoid triggers the de‐epoxidation of xanthophylls (Goss &
Jakob, 2010) and hence an increase in Qe. Since pH is not explicitly taken into account in the Marshall
model, the latter assumes that ϕ is correlated with pH and uses ϕ as a proxy for Qe (equation (6)). The slope
1/ϕ max makes Qe a relative quantity that varies between 0 and 1.

Qe has two roles in the model. It decreases the damage rate to D1 proteins (equation (1)) and decreases the
Chla‐specific optical absorption cross‐section of photosynthetic pigments (a*NP) (equation (7)). Although

Table 2
Phytoplankton Growth Model Equations

Eq. Equations Source

1 Gd = (X × E) × AD1 × (1 − Qe) Modified from (Marshall et al., 2000)
2

Rep ¼ Y×DD1
ZþDD1

� �
×Nlimit×Tfunc

(Marshall et al., 2000)

3
dAD1
dt ¼ DD1×Rep−AD1×Gd

Modified from (Marshall et al., 2000)

4
dDD1
dt ¼ AD1×Gd−DD1×Rep

Modified from (Marshall et al., 2000)

5
ϕ ¼ min ϕmax

F ×AD1;ϕmax

� � Modified from (Marshall et al., 2000)

6
Qe ¼ 1−ϕ

ϕmax

� Modified from (Marshall et al., 2000)

7
αNP ¼ a*NP×ϕ ; a*NP ¼ a*PH× 1−Qeð Þ (Marshall et al., 2000)

8 LimQmin ¼ 1−e−50× abs Qmin−Qð Þ− Qmin−Qð Þð Þ2 (Hohn, 2009)
9

LimQSi
min ¼ 1−e−1000× abs QSi

min−QSið Þ− QSi
min−QSið Þð Þ2

(Hohn, 2009)

10
Nlimitd ¼ min LimQmin; LimQSi

min;
Fe

FeþkFe

� �
; Nlimitnd ¼ min LimQmin;

Fe
FeþkFe

� � Liebig's law

11 LimQmax ¼ 1−e−1000× abs Q−Qmaxð Þ− Q−Qmaxð Þð Þ2 (Schartau et al., 2007)
12

LimQSi
max ¼ 1−e−1000× abs QSi−Q

Si
maxð Þ− QSi−Q

Si
maxð Þð Þ2

(Hohn, 2009)

13

Tfunc ¼ e
−Ae× 1

T−
1

Tref

� � (Geider et al., 1998)

14
PC
phot ¼ PC

max× 1−e
−αθE=P

maxC
� �

; PC
max ¼ PC

ref×Nlimit×Tfunc
(Webb et al., 1974)

15
R ¼ Rref×LimQmax þ ζ×VC

N þ ϑ×VC
Si

(Geider et al., 1998)

16
dC
dt ¼ C× PC

phot−R−ηC×LimQmax

� � (Geider et al., 1998)

17
dChla
dt ¼ Chla× VC

N×Q
Chl
N

θ ×
PC
phot

α×θ×E−RChl
� � (Geider et al., 1998)

18
RChl ¼ k× 1−e−αθE=P

C
max

� � (Álvarez et al., 2018)

19
VC

N ¼ VN
max×

Ni
NiþkNð Þ ; V

N
max ¼ VC

ref×P
C
max×Qmax×LimQmax

(Geider et al., 1998)

20
dN
dt ¼ C×VC

N−N×ηN×LimQmax

(Geider et al., 1998)

21
VC

Si ¼ VSi
max×

dSi
dSiþkSið Þ ; V

Si
max ¼ VC

ref×P
C
ref×Tfunc×Q

Si
max×LimQmax×LimQSi

max

(Hohn, 2009)

22
dSi
dt ¼ C×VC

Si−Si×ηNSi×LimQmax

(Hohn, 2009)

Note. Details on the modifications made to Marshall et al. (2000) model in the Supporting Information (Flynn et al., 1999; Flynn & Flynn, 1998).
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the latter is the simplest description of the effects of Qe on a*NP, it is sufficient to represent the decrease in
a*NP as observed from saturating to inhibitory light levels (Kolber et al., 1988).

The decrease in the absorption cross‐section acts alongside ϕ decrease to decrease the initial slope of the
PCphot−E curve (αNP). αNP is generally described as the light limited slope of the PCphot−E curve since under
light saturated conditions the photosynthesis is limited by dark reactions. However, the net result of the
Marshall model is making αNP variable along the curve. The decrease in αNP under high light conditions
reverts the limit for photosynthesis from dark to light reactions, which eventually leads to photoinhibition.
2.1.3. Combining the Models by Marshall and Geider et al. (1998)
The dynamic phytoplankton growth model by Geider et al. (1998) sets the initial slope of the PCphot−E curve
(α) as a constant parameter. With α being constant along the whole PCphot−E curve and with no other photo-
inhibitory parameter being considered, photoinhibition does not take place. The differences between Geider
and Marshall approximations are summarized in Figure 1. If we assume that photoinhibition is negligible in
phytoplankton communities acclimated to ambient light (Cullen et al., 1992), the difference between the
PCphot−E curves with (Marshall) and without photoinhibition (Geider) reflects the need for photoprotection
in order to limit such photoinhibition. The difference between Geider andMarshall PCphot−E curves is given
by the difference between α and αNP. Hence, the difference between α and αNP reflects a photoprotection gap
that could be filled by the missing elements in the description of NPQ, such a variable pool of nonphotosyn-
thetic pigments but also by any other mechanism not described explicitly such as constitutive heat dissipa-
tion. By comparing the predicted photoprotection gap to observations of photoprotective carotenoids under
natural conditions, we tested whether the gap is filled by the presence of nonphotosynthetic pigments, or if
further mechanisms are necessary to complete photoprotection.

We performed three experiments with different settings for our model:

EXP‐R equivalent to the dynamic phytoplankton model by Geider, only α was computed and used in the
PCphot−E curve for production.

EXP‐M equivalent to the original Marshall model, only αNP was computed and used in the PCphot−E curve
for production.

EXP‐C both α and αNP were computed, αwas used in the PCphot−E curve for production, and the difference
between α and αNP was explored to evaluate photoprotection requirements.

2.2. Implementation Into REcoM2

The variability in pigment composition in a diverse phytoplankton community is not only dependent on the
direct effect of environmental conditions on light harvesting traits for a particular phytoplankton group.

Figure 1. Schematic showing the parts of the model used in each experiment. The model is divided into photosynthetic
and nonphotosynthetic pigments and reaction center dynamics. State, intermediate, input variables, and parameters are
distinguished.
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Community composition influences the community aggregated pigment signatures. We chose the RecoM2,
which provides the simplest framework to include phytoplankton diversity since it describes the dynamics of
two phytoplankton groups with a detailed description of their elemental composition. The rest of the
ecosystem is completed with zooplankton, detritus, and main nutrients compartments. Ocean circulation
and mixing is derived from the MIT general circulation model. Details about the complete model setup
can be consulted in the appendix to Hauck et al. (2013).
2.2.1. Phytoplankton Diversity
RecoM2 describes the dynamics of two phytoplankton types, diatoms and nondiatoms. The difference
between groups is merely functional, as diatoms require silica and other phytoplankton do not.
However, differences in parameter values between the two groups (Table 3) are size related, and the dia-
tom group can be ascribable to large‐sized phytoplankton while other phytoplankton represents smaller
phytoplankton. We kept α values larger for diatoms compared to the values for small phytoplankton.
This have provided realistic distribution of primary production in previous applications of REcoM2
(Álvarez et al., 2018; Schourup‐Kristensen et al., 2014). With all PSII being active for photochemistry,
αNP should equal α. Since the Marshall model splits αNP into absorption (a*NP) and photochemical (ϕ)
components, we set the maximum values for those, a*PH and ϕmax, in order to match the group specific
α’s (Table 3).

Literature values given for a*PH range from 0.005 to 0.025 m2·mg·Chla‐1 (Kromkamp et al., 2001; Megard
et al., 1979; Oliver & Ganf, 1988) and given the package effect on pigment concentrations, larger cells tend
to have smaller values of a*PH (Bricaud et al., 2004). However, we kept a*PH equal for the two groups in 0.007
m2·mg·Chla‐1, and hence, we have not considered a packaging effect. The light attenuation by phytoplank-
ton (aCHL) was also set constantly to 0.03 m

2·mg·Chla‐1 (Table 3). Experimental values given for ϕmax range
from 2.1·10‐5 to 4.8·10‐4 mmolC/J (Du et al., 2018; Kiefer & Mitchell, 1983; MacIntyre et al., 2002; Raven &

Table 3
Definitions of Parameters With Values for the Two Phytoplankton Groups

Parameter Definition Value diatoms Value nondiatoms Units

α Initial slope of the photosynthesis irradiance curve 0.19 0.14 m2 molC gChla‐1 J‐1

φmax Maximum quantum yield 3.1·10‐4 2.3·10‐4 mmolC J‐1

a*PH Chlorophyll absorption cross section 0.007 0.007 m2 mgChla‐1

F Minimum AD1 to keep φ=φmax 0.75 0.75 relative (0‐1)
X Target size for photoinactivation 1.5·10‐7 7.5·10‐7 m2 J‐1

Y Maximum repair rate 10 10 d‐1

Z Half saturation constant repair 0.3 0.3 relative (0‐1)
PCref Maximum rate of photosynthesis 3.5 3 d‐1

Rref Maintenance respiration rate 0.01 0.01 d‐1

VC
ref Maximum nitrogen uptake 0.7 0.7 molN molC‐1 d‐1

kN Half‐saturation constant nitrate uptake 1 0.55 mmolN m‐3

kSi Half‐saturation constant silica uptake 4 — mmolSi m‐3

kFe Half‐saturation constant iron uptake 0.12 0.02 μmolFe m‐3

Qmin Minimum cell quota of nitrogen 0.04 0.04 molN molC‐1

Qmax Maximum cell quota of nitrogen 0.2 0.2 molN molC‐1

QSi
min Minimum cell quota of silica 0.04 — molSi molC‐1

QSi
max Maximum cell quota of silica 0.2 — molSi molC‐1

QChl
N Maximum Chla to nitrogen ratio 4.2 3.78 gChl molN‐1

QSI
N Minimum silica to nitrogen ratio 0.3 — molSi molN‐1

ζ Cost of N biosynthesis 2.33 2.33 molC molN‐1

? Cost of Si biosynthesis 0 — molC molSi‐1

k Maximum loss rate of Chla 0.25 0.15 d‐1

ηC Phytoplankton loss of C 0.1 0.1 d‐1

ηN Phytoplankton loss of N 0.05 0.05 d‐1

ηSi Phytoplankton loss of Si 0.05 — d‐1

Tref Reference temperature 288.15 °K
Ae Linear slope Arrhenius function 4500 °K
κW Total light attenuation due to water 0.04 m‐1

aCHL Chla‐specific attenuation coefficient 0.03 m2 mg Chla‐1
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Crawfurd, 2012). In the field, higher ϕmax have been documented in communities dominated by diatoms
(Babin et al., 1996). So we gave ϕmax of 3.1·10‐4 mmolC/J to diatoms (which generated an α of 0.19;
Table 3) and 2.3·10‐4 mmolC/J to other phytoplankton (which generated an α of 0.14; Table 3). There were
also group differences regarding the damage‐repair cycle. Picoplankton are generally reported to have
damage coefficients that are higher (Nagy et al., 1995; Six et al., 2007) than for green algae (Oliver et al.,
2003; Serôdio et al., 2017), but not very different from the values in diatoms (Campbell & Tyystjärvi, 2012;
Lavaud et al., 2016). In this work we assigned smaller damage coefficients to diatoms than to other phyto-
plankton and kept equal repair parameters (Table 3).
2.2.2. Phytoplankton Growth Model
The remaining part of the phytoplankton growth model was the same for the three experiments described
above and included the dynamics of the elemental pools of carbon (C), photosynthetic pigments (Chla),
nitrogen (N), and silica (Si; equations (8) to (22) in Table 2). The nutrient limitation terms in REcoM2
include LimQmin and LimQSi

min that limit processes dependent on the content of proteins for enzymatic
reactions and thus decrease when protein content approaches the minimum cellular quota (equations (8)
and (9)). Nlimit (equation (10)) is a combined nutrient‐limitation term that computes the minimum of
LimQmin, LimQSi

min, and a limitation term for Fe in Michaelis‐Menten form for diatoms (Nlimitd) and only
the minimum of LimQmin and the term for Fe for other phytoplankton (Nlimitnd). LimQmax and LimQSi

max

limit processes that saturate when protein content approaches the maximum cellular quota (equations (11)
and (12)). The temperature dependency is an Arrhenius function (Geider et al., 1998; equation (13)). All lim-
itation terms multiply the rates they regulate, and hence, they are 1 for no limitation and approach 0 as
limitation increases.

The PCphot−E curve is used as the exponential formulation in Geider et al. (1998) where maximum photo-
synthesis rate (PCmax) is limited by Nlimit and Tfunc (equation (14)). Phytoplankton respiration includes
maintenance respiration and the cost of biosynthesis (equation (15)). The variation in C content is set to
the rate of photosynthesis minus respiration and excretion (equation (16)).

The synthesis of photosynthetic pigments (represented by Chla) is equivalent to N assimilation regulated by
the photochemical use of absorbed light, a term that allows photoacclimation (Geider et al., 1998; equation
(17)). The loss of Chla is light dependent to account for photodamage in the light harvesting apparatus
(Álvarez et al., 2018; equation (18)).

Although N and Si pools are not central in this work, they both shape the stoichiometric ratios that limit pro-
duction and biosynthetic processes. N uptake (VC

N) depends on available DIN, the half saturation constant
kN, and themaximal uptake rate (VC

max) that is proportional to P
C
max and declines whenQ approachesQmax

(equation (19)). The rate of N assimilation is set to uptake minus excretion rates, and the latter is also limited
by LimQmax (equation (20)). Si uptake (VC

Si) (equation (21)) and assimilation (equation (22)) are formulated
in an equivalent way to those of N (Hohn, 2009).
2.2.3. The Rest of the Ecosystem and the Global Circulation Model
REcoM2 completes the ecological module with one zooplankton and one detritus compartment, and inor-
ganic and organic forms of the main nutrients. Temperature (T) and dissolved nutrients (DIN, dSi, and
Fe), like all other biogeochemical model variables, are advected and mixed by the ocean circulation derived
from the MIT general circulation model. Average light (E) is computed in depth layers as an exponential
decreasing function of depth with a depth‐dependent light attenuation coefficient with two components,
the attenuation coefficient due to water (κW) and the attenuation due to phytoplankton, proportional to total
Chla concentration (aCHL × TChla) (Table 3).

For our study, in each experiment REcoM2 was run in a nearly global model configuration from 80°S to
80°N on a horizontal 2° × 2° grid in the Northern Hemisphere and 2° × 2° times the cosine of the latitude
in the Southern Hemisphere, with 30 depth layers (0 to 5,700 m). The model was initialized with the
January climatological fields of temperature, salinity, nitrate, and silicate from the World Ocean Atlas
2009 (Antonov et al., 2010; Garcia et al., 2010; Locarnini et al., 2010) and with mean alkalinity and preindus-
trial CO2 fields from the Global Ocean Data Analysis Project (GLODAP; Key et al., 2004). The initial field for
dissolved Fe was obtained from PISCES output (Aumont et al., 2003), with values south of 45°S set to average
Southern Ocean vertical profiles from Tagliabue et al. (2012), to avoid a high‐iron bias there. The model was
spun up for 4 years and analyzed for the next fifth year in a 10‐daily temporal resolution.
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Model output provided physical variables, T and E, and biological vari-
ables by phytoplankton group, Nlimit, Chla, C, αNP and α. The group‐
specific values were averaged considering the relative contribution of each
group to total biomass to obtain the values for the whole phytoplankton
community that we indicated with an overbar (see the supporting infor-
mation for details on how we estimated community values for ᾱ and
ᾱNP from several group‐specific α’s; Violle et al., 2007). Each output vari-
able, including biological and physical, was averaged to a global 2° × 2°
grid, within the 33 depth layers (0 to 5,750 m) used in Peloquin et al.
(2013) and over 12 months. This resulted in a 4‐D array per variable that
had a common spatial and temporal resolution to be compared to observa-
tions (180 longitude × 90 latitude × 33 depth × 12 time).

3. Data
3.1. Satellite Observations

To test the consistency between the modeled and observed phytoplankton
biomass, we considered climatologies of Chla and Chla:C from satellite
observations between 2006 and 2010. Monthlymeans of surface Chla were
obtained from the Ocean Colour Climate Change Initiative data set v3.0
by the European Space Agency (http://www.esa‐oceancolour‐cci.org/).
We considered Chla concentration generated by SeaDAS using a blended
combination of OCI (OC4v6 + Hu's CI), OC3, and OC5 depending on
water class memberships (4,320 by 8,640 pixels, monthly means).
Monthly means of surface Chla:C data were obtained from the Ocean
Productivity Dataset by Oregon State University (http://www.science.ore-
gonstate.edu/ocean.productivity/index.php). We considered Chla:C from
the carbon‐based productivity model (updated CbPM; Westberry et al.,
2008) from MODIS r2018 (GSM) data (1,080 by 2,160 pixels,
monthly means).

3.2. Accessory Pigments

Pigment data were obtained from published high‐performance liquid chromatography data sets (Booge
et al., 2018; Bracher et al., 2015b; Liu et al., 2018, 2019b; Peloquin et al., 2013; Soppa et al., 2014;
Taylor et al., 2011a; Trimborn et al., 2015; Zindler et al., 2013), from pigment data in the AEsOP‐
CSIRO database (http://aesop.csiro.au/) and from two not previously published HPLC data sets
(Table 4). These new data sets (Bracher, 2019b; Bracher & Wiegmann, 2019) encompassed the following
cruises: the R/V Heincke cruise HE462 in the North Sea from 30 April to 7 May 2016 and the R/V
Polarstern cruise PS103 in the South Atlantic from 17 December 2016 to 28 January 2017. During the
cruises, 0.25 to 2.5 L of seawater was filtered through Whatman GF/F filters. The sample filters were then
shock‐frozen in liquid N2 and kept at −80 °C until analysis. HPLC pigment analysis was performed fol-
lowing the method of Barlow et al. (1997) that was adjusted to our temperature‐controlled instruments
(Liu et al., 2019a; Taylor et al., 2011a). We determined the concentrations of pigments listed in Table 2
of Taylor et al. (2011a).

In all cases, TChla (micrograms per liter) encompassed all the reported Chla derivatives, monovinyl Chla,
divinyl Chla, and chlorophyllide a. Total accessory pigment concentration (AP; micrograms per liter) was
calculated as the summed concentration of all carotenoids and chlorophyll b and c. Carotenoids were
grouped into photosynthetic (PSC; micrograms per liter) and photoprotective (PPC; micrograms per liter)
carotenoids according to Aiken et al. (2009). PSC consisted of fucoxanthin (Fuco), peridinin (Perid), prasi-
noxanthin (Pras), 19’‐hexanoyloxyfucoxanthin (Hex), and 19’‐butanoyloxyfucoxanthin (But). As we focused
on the long‐term photoprotective response, both epoxidated and de‐epoxidated states of xanthophylls were
considered to be photoprotective and hence PPC consisted of alloxanthin (Allo), lutein (Lut), violaxanthin
(Viola), zeaxanthin (Zea), diadinoxanthin (DD), diatoxanthin (DT), and alpha/beta‐carotenes (Caro).

Table 4
List of Data Sets With HPLC Measurements

Data set Source

MAREDAT pigments Peloquin et al. (2013)
ANT23.1 (PS69) Bracher et al. (2015a, 2015b)
ANT24.1 (PS71.1) Bracher (2015b, 2015e); Bracher et al. (2015b)
ANT24.4 (PS71.4) Bracher (2015b, 2015c); Bracher et al. (2015b)
ANT25.1 (PS73) Taylor et al. (2011a, 2011b)
ANT26.4 (PS75) Bracher (2015c, 2015d ); Bracher et al. (2015b)
ANT27.2 (PS77) Bracher (2015d, 2015e); Trimborn et al. (2015)
ANT28.3 (PS79) Bracher (2014a); Soppa et al. (2014)
MSM18 Bracher (2015a); Bracher et al. (2015b)
MSM09 Bracher and Taylor (2017)
SO202 Taylor and Bracher (2017); Zindler et al. (2013)
SO218 Bracher (2014b); Soppa et al. (2014)
SO234/235 Bracher et al. (2019); Booge et al. (2018)
SO243 (ASTRA) Bracher (2019a); Booge et al. (2018)
PS93.2 Liu et al. (2018, 2019a)
PS99.2 Liu et al. (2018, 2019a)
PS107 Liu et al. (2019a, 2019b)
PS103 Bracher (2019b)
HE462 Bracher and Wiegmann (2019)
CLIVAR AEsOP‐CSIRO
BROKEWEST AEsOP‐CSIRO
Beagle (6 legs) AEsOP‐CSIRO
SOOP AEsOP‐CSIRO
SS (x6) AEsOP‐CSIRO
FR200001 AEsOP‐CSIRO
TIP2000 AEsOP‐CSIRO
NWS‐jun03 AEsOP‐CSIRO
Sniper (x4) AEsOP‐CSIRO
GBR (x5) AEsOP‐CSIRO

10.1029/2018GB006101Global Biogeochemical Cycles

ÁLVAREZ ET AL. 9

http://www.esa-oceancolour-cci.org/
http://www.science.oregonstate.edu/ocean.productivity/index.php
http://www.science.oregonstate.edu/ocean.productivity/index.php
http://aesop.csiro.au/


Within the compilation of pigment observations, theMAREDAT data set (Peloquin et al., 2013) was themost
extensive. It was quality controlled by flagging (i) samples in which TChla was zero or less; (ii) samples in
which fewer than four nonzero accessory pigments were reported; (iii) samples that fell outside the range
of two standard deviations of the regression line of the log linear relationship between TChla and AP; and
(iv) the entire campaign's samples if more than 35 % of samples from a given field campaign was flagged dur-
ing the third step. However, not all cruises in MAREDAT provided concentrations of the full set of PPC pig-
ments. In this case, we limited the analysis to the samples that contained measurements for the seven PPC
pigments. This reduced the MAREDAT data set to 8,574 samples, that is, 25% of the quality‐controlled data.

All the other data sets formed the NEW database in which all cruises provided the seven PPC. This NEW
database was quality controlled independently following Aiken et al. (2009) by flagging (i) samples in which
TChla was zero or less; (ii) samples where the difference of TChla and AP was more than 30% of the total
pigment concentration; and (iii) the entire campaign's samples if the regression between TChla and AP have
a slope outside the range 0.7–1.4, explain less than 90% of total variance or less than 85% of the samples of
that particular cruise passed the previous criteria. This reduced the data set to 5,831 samples, that is, 89%
of the original merged data.

All field data were gridded to the same 4‐D array as described for model output. We obtained 1,985 grid
points (404 in surface) in MAREDAT, and we used this set to derive a purely empirical parameterization
of the relative PPC content from the physical forcing, T, E, and Nlimit, in the three modeling experiments.
With NEW we obtained 2,086 grid points (789 in surface) that we used to validate the empirical predictions,
as they were independent from MAREDAT. The combination of the two data sets (ALL) that encompassed
3,982 grid points (1,122 in surface) was used to test the mechanistic predictions in the experiment EXP‐C.

To estimate the contribution of diatoms to TChla, we calculated the fraction of diatoms in Chla (fdChla) as
1.41xFuco/diagnostic pigment (DP) with D1.41Fuco + 1.41Perid + 1.27Hex + 0.6Allo + 0.35But + 1.01Chlb
+ 0.86Zea (Uitz et al., 2006). As an estimate of the contribution of the diatoms to the total pool of PPC, we
considered the sum of DD and DT (micrograms per liter) as the photoprotective carotenoids in diatoms
(Aiken et al., 2009; Strain et al., 1944). All other PPCs were considered to belong to nondiatoms.

4. Results

The analysis of results comprised three stages: (i) the prediction of PPC/TChla from model output, both
empirically (from E, T, and Nlimit) and mechanistically (from ᾱ and ᾱNP), (ii) the exploration of the spatial
and temporal variability of PPC/TChla and the match between predictions and observations, and (iii) the
analysis on the relative contribution of changes in community composition and physiological acclimation
to the predicted PPC/TChla variability.

4.1. Prediction of PPC/TChla: Empirical and Mechanistic Approaches

We proposed a mechanistic approach of exploring photoprotection by comparing ᾱ and ᾱNP. One can won-
der if a simple empirical prediction of PPC/TChla from the model input variables was comparable to the
mechanistic prediction. The empirical approach relied on the direct prediction of pigments from the input
variables to the phytoplankton growth model, temperature, light, and nutrient availability, and hence, it
can be fitted to all the three experiments. EXP‐C was, however, the only experiment where the two types
of predictions can be performed simultaneously. Hence, we used it to test the ability of the empirical and
mechanistic approaches to match observations.
4.1.1. Empirical Prediction
The in situ pigment content in the MAREDAT data set was plotted against the physical input to the phyto-
plankton growth model (Figure 2). Individual pigment ratios relative to TChla were compared against a gen-
eral rule of photoacclimation: Decreasing ratios with light are typical for light‐harvesting pigments, and
increasing ratios with light characterize photoprotective pigments (Henriksen et al., 2002; Schlüter et al.,
2000). This was the case for all PSC (Fuco, But, Hex, Perid, and Pras) and for six of our PPC (Zea, Viola,
DD, DT, Caro, and Lut). Allo, generally reported as photoprotective (Aiken et al., 2009; Henriksen et al.,
2002; Schlüter et al., 2000), showed a decreasing ratio with increasing E. However, its contribution to the
total pool of PPC was minimal. The ratios of the aggregated photosynthetic accessory pigments (PSPSC +
Chlb + Chlc) and PPC, both relative to TChla, showed a comparable pattern as a function of E
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(Figure 2a). This matched observed trends in the variation of PSP and xanthophyll's relative to Chla in
numerous phytoplankton species (MacIntyre et al., 2002). PSP ad PPC ratios also followed inverse
patterns with respect to T and Nlimit input variables. PSP content decreased with increasing T and
nutrient limitation (limitation increases as Nlimit approaches 0) whereas PPC content responded opposed
to that (Figures 2b and 2c).

The three input variables, E, T, Nlimit, and the interactions E:T and E:Nlimit had a significant effect on
PPC/TChla (three‐factor ANOVA, p value < 0.0001, n = 2,830), whereas the interactions T:Nlimit (p value
= 0.242) and E:T:Nlimit (p value = 0.447) did not. Hence, we examined the ability to predict PPC/TChla
through a simple empirical relationship that included all the three input variables as independent variables.
To select the type of fit for each input variable, we binned pigments data in 30 E, T, and Nlimit classes,
respectively. The best fit to the binned PPC/TChla data was linear for E (Figure 2a) but exponential for T
(Figure 2b). Despite some deviation of the binned data at the extremes of Nlimit, PPC/TChla seemed to be
reasonably well represented by a linear fit (Figure 2c). We fitted a multiple nonlinear model with nonlinear
least squares method, function nls (Bates & Watts, 1988) in R (R Core Team, 2018). The resultant empirical
model of PPC/TChla as a function of E, T, andNlimitwas PPC/TChla ~ 0.195 + 0.003 * E+ (0.045 * exp(0.070
* T)) − 0.193 * Nlimit. We also fitted PPC/TChla to the input variables in the two other experiments, EXP‐R
and EXP‐M. There were slight differences in the values of input variables among experiments, differences

Figure 2. Variability of individual pigments to TChla ratios with light (small panels) and of total photoprotective (PPC), total photosynthetic accessory (PSP), and
total accessory pigments (AP) with (a) light, (b) temperature, and (c) nutrient limitation in the EXP‐C experiment. Dots indicatemean pigment ratios binned in E, T,
andNlimit classes, respectively. Solid lines show regressionmodels fitted to binned data. Gray areas in the panels for individual pigments and narrow orange lines in
the panels for aggregated pigments show percentiles 10 and 90 of the original range of pigment ratios.
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that were given by the effect of Chla on the attenuation of E and the effect
of cellular quotas on Nlimit. Nevertheless, the differences in fitted coeffi-
cients and predictions were small, as shown by the similar metrics of
the three empirical fits to observations of PPC/TChla (Table 5).
4.1.2. Mechanistic Prediction
Our approximation combining the models of Geider et al. (1998) and
Marshall et al. (2000) provided both a maximum alpha (ᾱ) and the alpha
that would appear under the effects of photodamage keeping the xantho-
phyll pigments pool constant (ᾱNP). ᾱ was variable over the global oceans
due to variable pigment composition in local phytoplankton communities
adapted to varying nutrient and light limitation regimes. REcoM2 gener-
ated diversity in ᾱ using constant group‐specific α’s and through changes
in community composition (Figure 3a). This was a simplification but simi-
lar simple approximations have given good results when representing the
variability of α in the global ocean (Arteaga et al., 2016). ᾱNP was also vari-
able over the global ocean and, overall, highlighted the areas where the
risk of photoinhibition was higher (Figure 3b).

To further investigate how ᾱ compared to ᾱNP under the same conditions, we explored how ᾱ and ᾱNP varied
as a function of light and nutrient limitation. With an increase in light and nutrient limitation, the commu-
nity value of ᾱ changed from a diatom‐similar community to a small‐phytoplankton‐similar community,
given a smaller prevalence of diatoms under such conditions (solid black line in Figure 4). ᾱNP was close
to ᾱ under nutrient‐replete and subsaturated light conditions, as represented in the central section of
Figure 4, which indicates favorable conditions to keep a healthy light harvesting apparatus. When deviating
from such favorable conditions, ᾱNP decreased both with increasing light but also with increasing nutrient
stress since repair mechanisms were nutrient limited (dotted lines in Figure 4).

The difference between ᾱ and ᾱNP under a particular set of environmental conditions reflected the degree of
photoprotection necessary to keep ᾱNP at the maximum value ᾱ. We expected that the difference between ᾱ

and ᾱNP was somehow related to the amount of xanthophyll pigments in the case when photoprotection
relied predominantly on photoprotective xanthophylls. The ratio between phytoplankton absorption com-
puted without considering PPC and absorption computed considering all pigments has been used as a rela-
tive measure of the degree of photoprotection in phytoplankton (Lindley et al., 1995) and hence the amount
of photoprotective pigments. We therefore proposed the ratio ᾱNP/ᾱ as a proxy for the photoprotective gap in
our model. When ᾱNP/ᾱ was similar to one photodamage had a small impact on the light harvesting appa-
ratus and hence the need for accumulating photoprotective pigments was small. Alternatively, an ᾱNP/ᾱ

Table 5
Skill Metrics per Experiment

Data set Metric EXP‐R EXP‐M EXP‐C

log10(Chla) (μg L
‐1) R 0.648 0.649 0.644

(n=9491) Bias 0.117 0.219 0.158
Chl:C (g:g) R 0.514 0.520 0.517
(n=9401) Bias 0.000 0.002 0.001
PPC:TChla NEW (g:g) R 0.649 0.651 0.649
(n=747) Bias ‐0.015 ‐0.014 ‐0.014
PPC:TChla ALL (g:g) R ‐ ‐ 0.663
(n=1082) Bias ‐ ‐ ‐0.020
NPP PgC year‐1 35.59 33.84 36.21
ExportP PgC year‐1 6.82 6.71 6.87

Note. Annual average correlations for log10(Chla), Chla:C, and PPC/
TChla at surface waters as compared to satellite OC‐CCI Chla, satellite
CbPM, and NEW (for empirical approach) or ALL (for mechanistic
approach) HPLC data set, respectively. Also, total annual net primary
production (NPP) and exported production (ExportP) integrated in the
euphotic layer from the respective experiment are provided.

Figure 3. Variability of ᾱ and ᾱNP in the upper 15 m of the water column in the EXP‐C experiment: (a) community ᾱ as
derived from standard REcoM2 based on Geider model and (b) ᾱNP as derived from the Marshall model with constant
xanthophyll pool.
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smaller than one indicated that cells, without accumulating PPC or rely-
ing on other heat dissipating mechanisms, would be exposed to photo-
damage. We then used 1 − ᾱNP/ᾱ to predict the amount of accumulated
xanthophylls that would avoid such photodamage and compared those
predictions to observations of PPC/TChla.
4.1.3. Skill Metrics
To assess the predictions of the models against observations, we compared
surface model results against log transformed Chla (micrograms per liter)
from OC‐CCI, Chl:C (in weight) from CbPM, and PPC/TChla (in weight)
from the HPLC data sets, the latter sampled within 0‐ to 15‐m depth.
Correlation coefficients and average errors or bias (Stow et al., 2009) were
computed for the three experiments EXP‐R, EXP‐M, and EXP‐C, against
the observational data sets. For each experiment, the empirical predic-
tions of PPC/TChla were tested against the NEWdata set, as this was inde-
pendent from the MAREDAT data set used to fit the models. The
mechanistic approach was only available for the experiment EXP‐C,
whose predictions were tested against the ALL data set. Results of these
comparisons are presented in Table 5.

EXP‐R predicted phytoplankton dynamics following Geider et al. (1998)
with a photodamage‐dependent loss term for Chla and provided Chla

fields and Chl:C ratios well correlated to satellite derived observations (Álvarez et al., 2018). The inclusion
of the original Marshall et al. (2000) model within REcoM2 (EXP‐M), substituting ᾱ with ᾱNP in the
PCphot‐E curve, did not modify the correlation with surface log‐transformed Chla or Chla:C significantly.
Instead, it increased the bias of both estimates and decreased the total net primary production on an annual
basis from 35.6 to 33.8 PgC/year. This showed that including details on the reversible regulation of PSII
seems not to be relevant to predict Chla at global scale and may not be a high priority given the associated
increase in computational costs.

The combined approach (EXP‐C) provided comparable correlations and bias for Chla and Chl:C as EXP‐R
but allowed to predict PPC/TChla both empirically and mechanistically. The empirical predictions provided
surface values of PPC/TChla highly correlated to observations, with a correlation coefficient of 0.649 and
bias of−0.014. The mechanistic predictions that used ᾱ for production and ᾱNP/ᾱ as a proxy for photoprotec-
tion provided a correlation coefficient of 0.663 but a slightly larger bias of −0.020. Note, however, that the
ALL data set against which we tested mechanistic predictions was larger than NEW.

4.2. Spatial and Temporal Variability of PPC/TChla

In this section, the empirical and mechanistic predictions of PPC/TChla for EXP‐C were compared with
HPLC field data. In surface waters (<15‐m depth), field data (Figure 5a) showed high concentrations of
PPC in tropical and subtropical areas with a decrease around the equator, which was very pronounced in
the Pacific but also visible in the Atlantic (Lindley et al., 1995). Smaller values of PPC/TChla were obtained
in temperate and polar waters. A comparable latitudinal pattern in PPC content has been reported by
Bricaud et al. (2004). The empirical prediction of PPC/TChla showed the same latitudinal pattern with
rather horizontal isolines (Figure 5b). Themechanistic prediction (Figure 5c) showed the latitudinal pattern,
but with more longitudinal variability. The correlations in surface waters were almost identical for the two
models when both were correlated to the NEW in situ data set, 0.649 for the empirical and 0.654 for the
mechanistic. Mechanistic predictions showed a slightly larger bias (Table 5). Regardless of the latitudinal
pattern, it was remarkable that in areas where the latitudinal pattern was not followed strictly, such as
the upwellings of Morocco, Benguela, Peru, and Arabian sea, the mechanistic model matched the observa-
tions better than the empirical model, which suggested not‐linear effects of nutrients, T and E on
PPC/TChla ratios.

Observed and predicted PPC/TChla were compared for surface waters along a latitudinal gradient for the
three major ocean basins (Figure 6). The reduced longitudinal variability of the empirical model was
observed in the range of PPC/TChla values (orange areas in Figure 6) that did not cover the variability of
field data at a given latitude. On the other hand, mechanistic predictions (blue areas in Figure 6) showed

Figure 4. Variability of ᾱ (lines) and ᾱNP (dots) as a function of light (E) and
nutrient limitation (Nlimit) in the EXP‐C experiment. The orange and blue
solid lines indicate α of undamaged PSII of diatoms and nondiatoms,
respectively, and the black line indicates the community‐aggregated value
(ᾱ) that changes due to the relative contribution of diatoms and nondiatoms
under different environmental conditions. Dotted lines indicate αNP and
ᾱNP for the same groups.
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more variability and, hence, were able to predict PPC/TChla that did not simply follow a clear latitudinal
gradient, as shown in the previous surface plots (Figure 5).

Zonal annual mean depth profiles of observed and predicted PPC/TChla showed that both types of predic-
tions reproduced the in situ depth profiles (Figure 7). The field data showed a decrease of photoprotective
pigments with depth in the entire tropical and subtropical ocean. In these areas, significant amounts of
photoprotective pigments were observed close to the surface, but even at depths greater than 100 m, we
found PPC/TChla ratios larger than 0.4. As expected due to the ambient light north and south of 40°, PPC
presence was scarce, below 20% of TChla, but the gradient of decrease with depth was still visible
(Figure 7a). The empirical model predicted this gradient quite precisely, although the values in surface
tended to be smaller than the observations (Figure 7b). The gradient predicted by the mechanistic model
was more abrupt, and values were much lower than observations at depths greater than 75 m. The values
at the surface, as shown by previous figures, matched the observations well (Figure 7c). The occasional very
high values at depths greater than 100 m in field samples at latitudes <40° were not reflected well in the pre-
dictions. While the empirical model predicted a low presence of pigments below 100 m (0.3 > PPC/TChla >
0.1), the mechanistic approach predicted a near absence down to this depth (PPC/TChla < 0.1). By observing

Figure 5. Photoprotective pigments in surface waters (averaged over the upper 15 m and scaled to 2° resolution): (a) PPC/
TChla from HPLC data set ALL (also in c) and predicted (b) empirically and (c) mechanistically in the EXP‐C experiment.
Number of collocated observations (n), Person's correlation factor (R), and bias (AE) are shown for modeling predictions
compared against NEW data set and against ALL data set within parenthesis in (c).
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the distribution of predicted TChla (white lines in Figure 7c), it was noticeable that high PPC/TChla values
were predicted mainly for the phytoplankton living above the subsurface Chla maximum.

Averaged annual cycles of PPC/TChla predictions using the mechanistic approach (gray areas in Figure 8)
showed a clear seasonality in temperate and high latitudes of both hemispheres (Figures 8a and 8c). In both
cases, maximum values for the whole range of PPC/TChla occurred during summer and minimum values in

Figure 6. Latitudinal gradients of in situ (black dots) and predicted PPC/TChla values from the empirical andmechanistic
approaches in the EXP‐C experiment across surface waters of the (a) Pacific, (b) Atlantic, and (c) Indian Ocean.

Figure 7. Zonal annual mean depth profiles of PPC/TChla as a function of latitude from (a) in situ HPLCALL data set and
predictions from (b) empirical and (c) mechanistic approaches in the EXP‐C experiment. In panel (c) solid isolines show
the predicted level of 0.5 μg Chla L‐1 that enclose the subsurface Chla maximum and the dotted line shows the level of 0.1
μg Chla L‐1.
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winter. In tropical and subtropical areas, the seasonality was only
reflected in the range of the lowest values but constant for the maximum
ones (Figure 8b). The empirical model predictions showed less seasonality
in all regions, as they followed the observations where no seasonality for
PPC/TChla was seen. The empirical predictions showed less variability
than observations, which were better matched by the range of the
mechanistic model predictions. Monthly mean values of in situ
PPC/TChla (bars in Figure 8) were divided into the contribution of Allo,
Viola, Lut, Zea, and Caro and the contribution of DD and DT. In high lati-
tudes, where the contribution of diatoms was larger, the sum of DD+DT
comprised an important proportion of PPC (Figure 8c).

4.3. Change in PPC/TChla: Effect of Community Composition and
Physiological Acclimation

On an annual perspective, predicted PPC/TChla matched observations
(Figures 5 and 6) or were lower (Figure 7), which indicated that the
observed pool of PPCwould be enough to cover the needs for photoprotec-
tion. Variations in community PPC content, however, can be driven by
physiological acclimation as well as shifts in community composition.
To explore which mechanism contributed more to the change in commu-
nity PPC/TChla, both group‐specific pigment content and a description of
community composition were needed. This was challenging for observa-
tions because we did not have an independent estimate of community
composition but the pigments themselves. The estimate of the contribu-
tion of diatoms to total chlorophyll relied on the use of DPs (Uitz et al.,
2006; Figure 9a). Although the contribution of diatoms to total PPC pool
can be illustrated with the sum DD+DT (Strain et al., 1944; Figure 9b),
other groups can share the same pigments. This uncertainty could trans-

late to the empirical model since it required a group‐specific fit to observations to provide predictions for
each individual group.

The advantage of the mechanistic approach in this context was that, in addition to predicting group specific
pigment content, it provided a full description of community composition. Phytoplankton diversity repre-
sented by just two groups allowed us to build a description of the entire community composition by a single
index of dominance that reflected the contribution of one of the groups to the total biomass. On an annual
basis, the contribution of diatoms Chla to TChla (Figure 9c) and the contribution of diatom PPC to the total
pool of PPC (Figure 9d) showed dominance of diatoms at the equator, high latitudes and near the eastern
coasts of continents at midlatitudes.

In the absence of physiological acclimation that changes group‐specific PPC/TChla ratios, dominance
indexes (% of diatoms) in terms of TChla and in terms of PPC would vary in parallel. The variation over
the year of the % of diatoms in terms of Chla, PPC, and also C were explored for nine areas of the world ocean
(Figure 9). A noticeable difference between the time derivatives of the PPC‐ and Chla‐based dominances
(gray bars in Figure 9) indicated that the ratio PPC/TChla was variable within one or both phytoplankton
groups. In the central areas of the Pacific, Atlantic, and Indian Oceans, dominance indexes varied in parallel,
which indicated that changes in community PPC content were driven by changes in community composi-
tion. At higher latitudes, prior to the polar winter, PPC‐based dominance changed faster than Chla‐based
dominance while prior to polar summer, PPC dominance changed slower than Chla‐based dominance.
Both phenomena implied intragroup acclimative changes in the PPC/TChla ratios.

5. Discussion

As in higher plants, most phytoplankton cells possess specialized carotenoid pigments that contribute to the
rapid and harmless thermal dissipation of excess absorbed light energy in response to a sudden increase in
irradiance (Demmig‐Adams & Adams, 1992). This function reduces the excitation pressure on the reaction
center of PSII and limit photoinhibition. Marshall et al. (2000) proposed a mechanistic model to describe

Figure 8. Averaged seasonal distribution of in situ (colored bars reflect the
regional monthly average value of the specific PPC pigments and dots reflect
the sum of all PPC pigments for each single data point in the respective
region) and predicted (the range of values is given) PPC/TChla values in the
EXP‐C experiment for latitudes (a) north of 30°N, (b) between 30°N and
44°S, and (c) south of 44°S.
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photoinhibition as a consequence of the decrease in the proportion of active PSII and the effect on the initial
slope of the PE curve (α). Photoinhibition is expected to be small for natural phytoplankton communities
acclimated to ambient light (Cullen et al., 1992), so we can assume that phytoplankton cells possess the
mechanisms to keep α at a maximum value. Among these mechanisms, the presence of xanthophyll
pigments is certainly expected to play a role since the thermal dissipation process is assisted by the nearly
universal function of xanthophylls (Demmig‐Adams & Adams, 1996). We therefore used the Marshall
et al. (2000) model to estimate the extent of photoinhibition that phytoplankton communities would have
to deal with. We explored whether the photoprotective role was performed by a variable pool of
xanthophylls and whether the variability in the community xanthophyll pool was driven by shifts in
community composition or implied intraspecific adjustments of pigment content.

5.1. Relevance of Photoprotective Pigments

Both this mechanistic and an empirical approach based on parallel in situ observations of PPC/TChla were
able to predict the long‐term photoprotective response and simulate the cellular accumulation of xantho-
phylls. The mechanistically determined need for photoprotection was in agreement with field observations
of PPC/TChla in most of the surface ocean, at depth and even across seasons. This suggested a predominant

Figure 9. Observed contribution of diatoms (%) to total community in terms of (a) Chla derived from diagnostic pigments (from fdChla; Uitz et al., 2006) and (b)
sumDD+DT to total PPC. Predicted contribution of diatoms (%) to total community in terms of (c) Chla and (d) PPC. Small panels show the variation along the year
of C‐, Chla‐, and PPC‐based dominance (% diatoms) in the nine ocean regions indicated in (d) left axis (note that the scale range is different for each panel). Gray
bars show the difference between the time derivatives of the PPC‐based and the Chla‐based dominance (right axis, all using the same scale).
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role of PPC in photoprotective activities in the global ocean with implications for the fast regulation of photo-
synthetic productivity and carbon fluxes in the ocean.

The approach presented allowed us to predict PPC content via modeling and hence provided a comprehen-
sive description of pigment content of the phytoplankton community at the global scale provided by models.
The content in photosynthetic pigments (Chla) and nonphotosynthetic pigments (PPC) relative to biomass
(C) relates to the contribution of photochemical and nonphotochemical pathways, respectively, to the fate of
absorbed light (Lin et al., 2016). Knowledge of full pigment signatures is crucial for understanding the cou-
pling of light absorption to carbon fixation in the ocean.

5.2. Relevance of Other Physiological Mechanisms

Discrepancies between the mechanistically determined need for photoprotection and observations of
PPC/TChla highlighted scenarios where PPC content was apparently insufficient to protect the community
and thus other mechanisms of NPQ became relevant for heat dissipation. Particularly during summer season
at high latitudes (Figure 8), the amount of PPC fell below the needs for photoprotection, suggesting that in
these areas alternative mechanisms may be relevant for photoprotection.

The difference between predictions and observations can be explained by simplifications of themodel frame-
work. A functional classification of carotenoids into two groups of pigments, photosynthetic and photopro-
tective, is commonly used in the literature (e.g., Bidigare et al., 1990). However, in some groups, the
photosynthetic pigment fucoxanthin may be converted to DD relatively quickly (Harris et al., 2009;
Polimene et al., 2012), thus giving fucoxanthin a role in long‐term photoprotection. Also, the effectiveness
of the XC varies across taxa (Goss & Jakob, 2010; Lavaud, 2007; Six et al., 2009), which can lead to smaller
PPC content in communities dominated by groups containing more efficient XC. In addition to pigments,
energy dissipation can be covered by other protective mechanisms not explicitly considered here, such as
fluorescence or constitutive heat dissipation (Porcar‐Castell et al., 2006). Autotrophic cells also possess some
plasticity to reorganize their photochemical pathways when the photochemical capacity is exceeded, per-
forming cyclic electron flow around PSII (Goss & Lepetit, 2015) or alternative electron transport (Wagner
et al., 2006).

5.3. Change in PPC Content: Intragroup Acclimation or Shifts in Community Composition

Given that results showed that variable PPC/TChla ratios covered most of phytoplankton photoprotective
needs, the question that arose next was whether this variability in pigment content was driven by shifts in
community composition or implied physiological acclimation within a given group. The mechanistic
approach proposed provided the two elements, which are necessary to tackle this question: group‐specific
PPC predictions and a complete description of community composition.

Group‐specific photoprotective needs were generated by assigning smaller damage coefficients to diatoms
than to other phytoplankton, larger photochemical efficiency to diatoms, and equal absorption cross‐
sections and repair rates to both groups. Although the variability in the predictions was high for both groups,
the predicted needs for photoprotection tended to be higher in other phytoplankton than in diatoms. This
corresponds to the observation that smaller phytoplankton can grow in a high but relatively constant light
environment where they do not need to invest as heavily in photosynthetic machinery but require mechan-
isms to reduce the harmful effect of extensive periods of excess irradiance (Kropuenske et al., 2009). Smaller
phytoplankton like prasinophytes cope with prolonged stress and subsequent recovery through a large
induction and relaxation of XC‐induced NPQ (Liefer et al., 2018). Diatoms on the other hand show lower
susceptibility to photoinactivation of PSII (Key et al., 2010) and rely on constitutive dissipation of excitation
energy more than on XC NPQ (Liefer et al., 2018).

Identification of microalgae species through diagnostic pigments implies the assumption that changes in
community accessory pigments are solely driven by changes in community composition. This is reasonable
when the pigment ratios are constant in time for a particular species. However, variations in diagnostic pig-
ments to Chla ratios also arise due to factors such as nutrient status and light (Mackey et al., 1996). Our
results showed that, for most of the tropical and subtropical ocean, photoprotective pigments dominated
photoprotection and changes in total photoprotective pigments were caused mainly by taxonomic changes
within the phytoplankton community. Our results also highlighted scenarios at high latitudes where
changes in PPC content can also result both from shifts in community composition and from
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photoacclimation within the same community. During polar winter, in absence of nutrient limitation, phy-
siological acclimation took place and contributed to changes in PPC/TChla ratios (Figure 9) that met photo-
protective needs (Figures 8a and 8c).

5.4. The Role of Nutrients and Temperature on High‐Latitude Photoprotection

During polar summer, the high requirement of photoprotection predicted by our mechanistic approach was
not observed in field measured PPC/TChla (Figures 8a and 8c). At the same time, there was no sign of phy-
siological acclimation (Figure 9). This suggested not only that other mechanisms of photoprotection may be
more relevant than PPC‐mediated mechanisms in these areas but also that PPC synthesis itself was limited.
The observed physiological acclimation during winter when nutrients were replenished and temperatures
were low suggested that nutrients and not temperature limited the use of PPC‐based NPQ in those polar
areas during the summer season. Under incomplete photoprotection provided by other mechanisms, net
photodamage could eventually occur since the repair of damaged photosystems was both nutrient and tem-
perature limited. In a previous application of the REcoM2model, we showed that given the nutrient require-
ments of repair mechanisms, severe nutrient stress translates into photoinhibition of the light harvesting
apparatus in the absence of complete photoprotection (Álvarez et al., 2018). Since it has been observed that
photodamage can shape the phytoplankton community in the Southern Ocean (Alderkamp et al., 2010), our
results show that nutrient limitation of PSII repair and/or PPC de novo synthesis may be the cause of these
photoinhibitory responses at high latitudes.

6. Conclusions

This study suggests that a variable pool of xanthophyll pigments mediates the long‐term photoprotective
responses of phytoplankton throughout most of the ocean. Hence, the photoprotective pigments accumu-
lated by phytoplankton can be accurately predictable by models. This potentially provides a comprehensive
view of the phytoplankton community pigment signature in terms of photosynthetic and nonphotosynthetic
pigments, which is crucial for modeling the coupling of light absorption to carbon fixation in the ocean. The
variability in the pool of xanthophyll pigments seems to be driven mainly by changes in community compo-
sition in the tropical and subtropical ocean, and in these areas pigment composition may reflect taxonomic
composition strongly. At higher latitudes, during the nutrient‐limited summer season, photoprotection
needs do not seem to be met by changes in xanthophyll pigments and must be met by other energy‐
dissipating mechanisms. When nutrients are resupplied and the nutrient limitation of pigment synthesis
relaxes, both taxonomic shifts and intraspecific photoacclimation appear to shape community pigment sig-
nature. These insights about howmuch of the variability in community nonphotosynthetic pigments is attri-
butable to changes in community composition or changes in physiological state may allow an improvement
of the match between remotely sensed optical data and the underlying phytoplankton community.
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