

Snow depth on Arctic sea ice derived from airborne radar measurements

Arttu Jutila¹, Robert Ricker¹, Stefan Hendricks¹, John Paden², Joshua King³, Chris Polashenski^{4,5}, Benjamin A. Lange⁶, Christine Michel⁶, and Christian Haas^{1,7}

¹Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
²Center for Remote Sensing of Ice Sheets, University of Kansas
³Environment and Climate Change Canada
⁴US Army Corps of Engineers – Cold Regions Research and Engineering Laboratory
⁵Thayer School of Engineering at Dartmouth College
⁶Fisheries and Oceans Canada, Freshwater Institute
⁷University of Bremen, Institute for Environmental Physics

Photo credit: Stefan Hendricks

© AVI

Key results

SnowRadar

2-18 GHz frequency-modulated continuous-wave ultra-wideband microwave radar developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas

	AWI IceBird missions		NASA OIB
Nominal survey altitude [ft]	200	1600	1600
Nominal survey velocity [kn]	110	160	250
Cross-track footprint ¹ [m]	2.1	6.0	6.0
Along-track footprint ² [m]	2.0	10.8	13.8
Range resolution ³ [cm]	0.94 - 1.14		0.94 - 1.14
Transmit power [mW]	100	1000	1000

¹ Cross-track footprint is calculated using a pulse limited footprint over a flat surface.

² Along-track footprint is calculated using the length of the unfocussed SAR aperture.

³ Range resolution is calculated considering free space and snow density of 300 kg m⁻³, respectively.

A

HELMHOLTZ

Processing - I

cresis-toolbox (MATLAB)

Quicklook

• In the field

Processing - I

cresis-toolbox (MATLAB) 200 Quicklook Away from aircraft 400 Fast time bin • In the field 600 **Coherent noise removal** 800

HELMHOLTZ

Processing - I

HELMHOLTZ ASSOCIATION

Processing - II

Interface detection using modified Wavelet algorithm *(Newman et al., 2014)*

- Handles each radar trace independently and finds abrupt changes in signal
 - Haar & Ricker wavelets, continuous wavelet transform
- Does not depend on thresholds, transmitted power, or receiver noise
- Precision due to radar system parameters ~1.5 cm
- pySnowRadar Python package will be made public soon

Fig. 3 from Newman et al. (2014), Assessment of radar-derived snow depth over Arctic sea ice, *J. Geophys. Res. Oceans*

HELMHOLTZ

Processing - II

Away from aircraft

deconv_Data_img_01_20170402_01_056

HELMHOLTZ

Processing - II

Away from aircraft

deconv_Data_img_01_20170402_01_056

HELMHOLTZ

Processing - II

Away from aircraft

deconv_Data_img_01_20170402_01_056

Deployments **O** AVI IceBird Winter

Poster 82A3292, Hendricks et al. *IceBird: a pan-Arctic airborne sea ice observation system*

OM

 $N \rightarrow S, n=95$

1025

п

30

40

50

50

HELMHOLTZ ASSOCIATION

40

- 9

10

thin

std

S

20

20

30

🗕 Radar TLS

1050 1075

First results - validation

Terrestrial laserscanner (TLS) data courtesy of C. Polashenski

© AVI

First results - distributions

Ice type from the daily 10-km EUMETSAT OSI SAF Global Sea Ice Type product

In situ data courtesy of B. Lange & C. Michel

Application example

open water first-year ice multi-year ice ambiguous 40 RIOPS, n=111 mean=19.24 cm RIOPS 35 SnowRadar, n=85 mean=21.80 cm 30 25 Snow depth [cm] 50 Snow depth Probability density 10 5 0∔ 70 72 73 60 80 71 74 0 20 40 Latitude [°], 0.5° bins Snow depth [cm]

East Beaufort Sea | 10 April 2019 | 1600 ft

Regional Ice Ocean Prediction System (RIOPS) data courtesy of Environment and Climate Change Canada Ice type from the daily 10-km EUMETSAT OSI SAF Global Sea Ice Type product

Limitations & challenges

- Radar and wavelet algorithm sensitivity to snowpack properties
- Low survey altitude
 - Prone to turbulence
- Radar footprint size

Outlook

- Sub-banding radar data
- Combining with ALS and other products for QA/QC
- Further validation
 - Trail Valley Creek
- MOSAiC

Applications

 With concurrent measurements of snow freeboard and total sea ice thickness: freeboard to thickness conversion on regional scales

Acknowledgments

- Kenn Borek Air Ltd., AWI logistics and technicians, and other airborne campaign partners
- We acknowledge the use of software from CReSIS generated with support from the State of Kansas, NASA Operation IceBridge grant NNX16AH54G, and NSF grant ACI-1443054.
- pySnowRadar builds upon the wavelet algorithm, original work of Thomas Newman et al. at NOAA
- Helmholtz Graduate School for Polar and Marine Research (POLMAR): short-term research grant for a two-month stay at Environment and Climate Change Canada, Climate Research Division
- Travel Award from the 2019 IGS Sea Ice Symposium Student/ECR Travel Award Program

