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A B S T R A C T

Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in porewater of marine
sediments at seafloor temperatures show very large variation covering a δ13C range from −100‰ to +35‰.
These extreme values are the result of isotope fractionation during microbial carbon metabolism, but the
combined effect of all factors controlling the isotope distributions is still not completely understood. We used a
model approach to evaluate the effects of reaction and transport on carbon isotope distributions in modern
sediment porewater under steady state. Simulated δ13CDIC profiles typically show negative values in the sulphate
reduction zone and more positive values in the methanogenic zone. With increasing depth in the methanogenic
zone, δ13C values approach a distribution where the offset of δ13CDIC from δ13C of total organic carbon (TOC) to
more positive values is similar to the offset of δ13CCH4 to more negative values (δ13CDIC and δ13CCH4 approach a
symmetric distribution relative to δ13CTOC). The model never exceeds this symmetry of the DIC-CH4 couple
towards more positive values under steady-state conditions in a purely diffusive system.

Our model shows that to reach an offset in δ13C between DIC and CH4 in the order of 70‰, as frequently
observed in methanogenic zones, a larger fractionation than reported from culture experiments with acetoclastic
or autotrophic methanogens would be required. In fact, the observed isotope offset in natural systems would be
consistent with the known inorganic equilibrium fractionation factor at in-situ temperature, which may suggest
isotope exchange via a microbial pathway, during methanogenesis.

Furthermore, the model reproduces strongly negative δ13CCH4 values at the sulphate methane transition
(SMT) as result of a reverse flux of carbon from DIC to CH4 during AOM. Such a reverse AOM has no influence on
the δ13CDIC at the SMT as methane is almost completely consumed. Only at high sedimentation rate combined
with low porosity, δ13CDIC values significantly more negative than δ13CTOC occur at the SMT.

1. Introduction

Some of the largest differences in stable carbon isotope composition
in nature occur between dissolved inorganic carbon (DIC) and biogenic
methane (CH4) (Hoefs, 2018) as found in marine sediment porewater.
Extremely 13C-depleted methane is observed with δ13C values more
negative than −100‰ (e.g., Claypool and Kaplan, 1974; Galimov,

2006; Heuer et al., 2009). In turn, extremely positive values of +35‰
have been observed in DIC (e.g., Heuer et al., 2009). The variation of
carbon fluxes into and out of the seafloor is thought to have contributed
to some of the largest perturbations of the carbon cycle in Earth history.
For example, the release of the greenhouse gas methane from the de-
composition of gas hydrates has been suggested to have caused global
warming events, such as the Palaeocene-Eocene thermal maximum,
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accompanied by major negative excursions in δ13C of atmospheric CO2

(Dickens, 1997, 1999). In contrast, positive excursions in δ13C in the
Proterozoic carbonate record have been suggested to represent an in-
creased burial rate of isotopically light organic carbon (e.g. Schidlowski
et al., 1984; Knoll et al., 1986; cf. also Payne et al., 2004), although
calculations by Hayes and Waldbauer Jr. (2006) suggest that burial
rates would have to be unrealistically high to explain such large ex-
cursions. Instead, they suggested an early diagenetic origin of 13C-en-
riched carbonates related to methanogenesis (cf. Birgel et al., 2015).

Furthermore, a part of the buried organic carbon is remineralized
and may be precipitated as carbonate in the deep subsurface, thereby
becoming preserved in the geological record (Schrag et al., 2013). It
remains unclear how both positive and negative carbon isotope com-
positions are incorporated into diagenetic carbonates, commonly
showing a large range of values (Murata et al., 1967; Pisciotto and
Mahoney, 1981; Kelts and McKenzie, 1984; Rodriguez et al., 2000;
Moore et al., 2004). Temporal and spatial Variations in the C-isotope
composition preserved in the diagenetic carbonate record were sug-
gested to indicate changes in microbial activity in a dynamic sub-sea-
floor biosphere (Malone et al., 2002; Meister et al., 2007, 2008, 2019;
Contreras et al., 2013; Meister, 2015; Wehrmann et al., 2016). How-
ever, further studies using reaction-transport models will be necessary
to precisely interpret these carbon isotope signatures with respect to
past dynamics of the deep biosphre.

While the global perturbations of carbon isotopes in ocean and at-
mosphere are a matter of ongoing debate, they are largely driven by the
dynamics of carbon isotopes in the subsurface, but also these processes
are incompletely understood. During the early phase of the Deep Sea
Drilling Project (DSDP; e.g., Presley and Kaplan, 1971, 1972; Claypool
et al., 1973; Goldhaber, 1974) C isotopes of CH4 and DIC were sys-
tematically measured in deep sub-seafloor porewater. While Bottinga
(1969) suggested an equilibrium fractionation between the two species,
it is generally assumed that the strong isotope fractionation is a result of
enzymatic processes of microorganisms, as spontaneous reactions be-
tween DIC and CH4 would not occur at near-surface seabed tempera-
tures. Fractionation occurs during fixation of CO2 by phytoplankton,
resulting in the deposition of isotopically light organic carbon on the
seafloor (δ13C usually between −20 and −30‰). This negative isotope
signature is transferred into DIC produced by microbial organic carbon
oxidation. Thus, δ13CDIC values in marine porewater are typically ne-
gative in the zone of dissimilatory sulphate reduction (Claypool and
Kaplan, 1974). In contrast, higher δ13CDIC values result from metha-
nogenesis due to strong kinetic fractionation, as CH4 is depleted in 13C
and the remaining DIC is enriched in 13C.

In several studies, fractionation factors during these processes have
been calculated based on the isotopic composition of C species in
marine porewater (e.g., Alperin et al., 1992; Whiticar, 1999) or in
culture experiments (Krzycki et al., 1987; Londry et al., 2008). The
experiments showed that fractionation also occurs during methano-
genesis from disproportionating acetate into CO2 and CH4 (Londry
et al., 2008). The isotopically lightest DIC is produced when CH4 is
transported to the sulphate-methane transition zone (SMT) and is
anaerobically oxidized to DIC (anaerobic oxidation of methane; AOM).
This process is subject to smaller fractionation (Alperin et al., 1992).
Holler et al. (2009) observed a reverse flux of 14C label from DIC to
methane during AOM, and this flux increases if the free energy differ-
ence of the forward reaction decreases at low sulphate concentration
(Yoshinaga et al., 2014). This finding suggests a partial isotopic equi-
libration of methane and DIC through the enzymatic pathway. This
raises the question whether (as suggested by Bottinga, 1969) also other
pathways allow for equilibrium fractionation, including acetoclastic
and autotrophic methanogenesis.

Besides the fractionation factor and mechanism, it also remains
poorly understood how transport processes affect carbon isotope pro-
files of CH4 and DIC in a dynamic sedimentary porewater system.
Nissenbaum and Presley (1972) suggested a closed-system Rayleigh

fractionation model, which was further developed by Claypool and
Kaplan (1974), Whiticar and Faber (1986), and Paull et al. (2000).
Alperin et al. (1988) included the conversion of CO2 to CH4 during
AOM in an open-system model, but they did not take into account the
full stoichiometry of the overall processes of CH4 generation and con-
sumption. Several open-system transient reaction-transport models
have been developed since then, e.g. by Zeebe (2007), Chatterjee et al.
(2011), Wu et al. (2018), and Chuang et al. (2019). While these studies
addressed particular problems of diffusive transport, they only con-
sidered sub-sets of reactions affecting carbon isotope distribution in the
sediment. Hence a better understanding of the carbon isotope dis-
tributions in sedimentary porewater awaits a more integrated model
approach of the overall reactions and transport processes. An integrated
reaction-transport model would also be fundamental to correctly in-
terpret measurd carbon isotope profiles and ultimately to assess the
global fluxes of carbon burial, rates of organic carbon remineralization
and gas escape causing global perturbations in the carbon cycle.

In this study we developed a reaction-transport model to calculate
δ13C values of CH4 and DIC in sulphate reduction and methanogenic
zones of marine sediments. The model calculates the diffusive transport
of sulphate, DIC, and CH4 and their carbon isotope compositions.
Production and consumption of these solutes are linked via dissim-
ilatory sulphate reduction and methanogenesis to the degradation rates
of organic matter and via anaerobic methane oxidation to known ki-
netic rate laws. Carbon isotope fractionation is also linked to these re-
actions, using fractionation factors from the literature. Despite the great
complexity of the carbon isotope system, this model setup provides a
basic concept to calculate carbon isotope distributions in a diagenetic
system. We demonstrate how a relatively small number of parameters,
including the reactivity and the rate of deposition of organic matter on
the seafloor, essentially control the patterns observed in measured
profiles. The goal of the present study was to establish a general steady-
state model for sediment carbon isotopes and test the sensitivity with
respect to the magnitude of major controlling factors, in particular the
isotope fractionation factors. This model allows us to understand cause
and consequence relationships that are not intuitively understandable
from sediment carbon isotope data. In comparison with measured iso-
tope profiles, our model provides an instrument to understand how the
distribution of stable carbon isotopes is controlled in natural environ-
ments.

2. Modelling approach

2.1. Reaction-transport model

Sulphate, methane, and DIC concentration profiles were computed
as a function of sedimentation rate, diffusion rate, organic matter de-
gradation rate, and anaerobic methane oxidation rate using the tran-
sient reaction transport model described in Meister et al. (2013). The
following equations were used for sulphate (Eq. (1)), methane (Eq. (2))
and DIC (Eq. (3)):
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where [SO4
2−], [CH4] and [DIC] are the concentrations of sulphate,

methane, and DIC, respectively, t is time, ω is the sedimentation rate, z
is the depth below seafloor, and DSO4

2−, DCH4
, and DHCO3

− are the
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molecular diffusion constants for sulphate, methane and bicarbonate
(which is the most abundant species of DIC under circum-neutral pH).
Diffusion constants for seawater at porewater temperature are from
Schulz and Zabel (2006). A constant porosity (ϕ) of 0.7 was assumed
and the tortuosity (τ) in Eqs. (1)–(3) was calculated according to
Boudreau (1997) as τ2= 1 - ln (ϕ2). In addition, the effect of a changing
porosity with depth was tested, using the decay function, ϕ =0.4+0.3
· e-z/150, in the general reaction-transport equations (Suppl. C) used
previously (Arndt et al., 2009). Furthermore, sTOC and sAOM are source/
sink terms linked to metabolic turnover, whereby the Monod term m
expresses the electron acceptor limitation during sulphate reduction
(see below). The rise of supersaturated methane as gas phase was si-
mulated by an upward advection term in Eq. (2), where vCH4 is the rise
velocity of methane gas bubbles and the criterion A=1 if
[CH4] > [CH4]sat and A=0 if [CH4]≤ [CH4]sat limits methane ad-
vection to the supersaturated depth interval (Meister et al., 2013). The
saturation concentration of methane [CH4]sat was calculated from the
polynomial equation (Dale et al., 2008a; Duan et al., 1992):

where T is the temperature, S is the salinity, and P is the hydrostatic
pressure. For the modelled cases a water depth of 200m was assumed.
Ocean water salinity was assumed for S. All parameters with values and
units are listed in Table 1.

2.2. Sources and sinks

Sources and sinks of methane, sulphate, and DIC are stoichiome-
trically coupled to rates of organic carbon decay via the following
simplified reactions for sulphate reduction (Eq. (5)) and methanogen-
esis (Eq. (6)):

+ + + +SO 2 [CH O] HS 2 HCO H4
2

2 3 (5)

+2 [CH O] CH CO2 4 2 (6)

The sink of sulphate and source of methane, respectively, are cal-
culated according to the stoichiometries in Eqs. (5) and (6) from the
organic matter decay rate sTOC in Eqs. (1)–(3). Thereby sTOC is calcu-
lated from the derivative of organic matter decay with time (Eq. (7)):

=s
TOC (1 )

100 M
/ tTOC

s

C (7)

where ρs is the dry density of the sediment and MC is the molecular
weight of carbon. ∂t is linked with ∂z through the sedimentation rate.

For organic matter decay, the reactive continuum (RC) model of
Boudreau and Ruddick (1991) (Eq. (8)) was applied:

=
+

TOC(t) TOC a
(a t)0

RC

RC (8)

where TOC(t) is the TOC remaining at sediment age t, TOC0 is the initial

Table 1
List of all parameters, their values and units.

Parameter Symbol Value Unit Comments

Domain and physical constraints:
Waterdepth zW 200 m mbsl
Domain size zD 200 m mbsf
Sedimentation rate ω 0.08 (0.02–0.32a) m/ka typical value for ocean margin sediments
Temperature T 283 K average temperature in marine sediment
Pressure at the sediment/water interface P 20 bar based on water depth
Salinity S 35 assumed normal seawater salinity

Diffusion parameters:
Diffusion constant for sulphate DSO42- 0.0214 m2/a at 10 °C (Schulz and Zabel (2006))
Diffusion constant for methane DCH4 0.0334 m2/a at 10 °C (Schulz and Zabel (2006))
Diffusion constant for DIC DHCO3- 0.0232 m2/a at 10 °C (Schulz and Zabel (2006))
Porosity ϕ 0.7 (0.5–0.8a) – based on data in Einsele (2000)
Concentration of SO4

2− in seawater [SO4
2−] 28 mM modern seawater

Concentration of CH4 in seawater [CH4] 0 mM modern seawater

TOC degradation:
Initial TOC (during sedimentation) TOC0 1–8 wt% variable
Dry density of sediment ρs 2.6*103 kg/l from measured data
Initial age of organic matter aRC 4735–8,100,000 a Boudreau and Ruddick (1991)
RC-parameter ν 0.7 (0.2–2a) – Boudreau and Ruddick (1991)

Kinetics of metabolic reactions:
Monod constant of sulphate reduction KS 1 mM Arndt et al. (2006)
Monod constant of AOM KS, AOM 1 mM Nauhaus et al. (2002)
First order rate constant for CH4 during AOM kAOM 4*10−2 a−1 based on thickness of AOM zone

Isotope fractionation:
VPDB standard RStd 0.0111802 ‰ VPDB Zhang et al. (1990)
Isotopic composition of TOC δ13CTOC −25 ‰ VPDB typical value for marine TOC
Isotopic composition of DIC in seawater δ13CDIC,SW 0 ‰ VPDB modern seawater
Fractionation factor acetoclastic methanogen. αac 0.95–1 – Whiticar et al. (1986); Londry et al. (2008)
Fractionation factor autotrophic methanogen. αaut 0.95–1 – Whiticar et al. (1986); Londry et al. (2008)
Kinetic fractionation factor for AOM αAOM 0.98–1 – variable
Equilibrium fr. factor CH4 - CO2 αeq 0.93 – Richet et al. (1977), Horita (2001) at 10 °C
Rel. contribution of autotrophy r 0–1 – variable
Maximal AOM back flux rel. to net forw. flux sAOMmax 60, 75, 90 % based on Yoshinaga et al. (2004)
Fitting parameter for the back flux b 1 mM based on Yoshinaga et al. (2004)

a in the suppl. material.

= + + +[CH ] 1.4388 10 STP 4.412 10 TP 406842 10 SP 4.129 10 ST 1.43465 10 P 1.6027 10 T 1.2676 10 S 4.9581 104 sat
7 5 5 9 2 6 6 4 (4)
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TOC upon sedimentation, and aRC and ν are fitting parameters in the
reactive continuum model. TOC at any depth z is estimated from TOC at
time t using the sedimentation rate, ω. The parameter aRC describes the
average lifetime of the more reactive compounds. The parameter ν is a
“nondimensional parameter solely related to the shape of the dis-
tribution near k = 0”, where k is the reactivity (Boudreau and Ruddick,
1991). As described in Arndt et al. (2006), electron acceptor limitation
of organoclastic sulphate reduction was considered by a Monod-term
m= [SO4

2−] / ([SO4
2−]+KS) with a KS of 1mM (1.6mM was used by

Boudreau and Westrich, 1984). As it has been recently found that a
high-affinity sulphate-reduction may be induced at low sulphate con-
centrations (KS= 2.6 μM; Tarpgaard et al., 2011, 2017), the sensitivity
of the model results for different half saturation constants was tested.

An additional sink of methane and sulphate and source of DIC in
Eqs. (1), (2) and (3) is due to AOM:

+ + +SO CH HS HCO H O4
2

4 3 2 (9)

During AOM, sulphate and methane are consumed (and DIC is pro-
duced) in a 1:1 ratio. As this reaction is catalysed by living microbial
communities, we describe the rates of AOM by a Monod type kinetic
function (Treude et al., 2003; Arndt et al., 2006).

=
+

s k [CH ] [SO ]
K [SO ]AOM AOM 4

4
2

S,AOM 4
2 (10)

with a Monod constant KS,AOM of 1mM (Arndt et al., 2006). The first
order rate constant kAOM strongly affects the thickness of the overlap
zone between methane and sulphate and we found a value of 4*10−2

a−1 to fit with the overlap zone commonly observed at SMTs. Ac-
cording to Knab et al. (2008), AOM is controlled by the kinetic drive
while the thermodynamic drive only limits the feasibility of the AOM-
SRR process.

2.3. Isotope fractionation

Isotopic compositions were calculated from the modelled ratio
R= [13C]/[12C] relative to the ratio RVPDB of the Vienna Peedee
Belemnite standard (VPDB) according to:

=C R R
R

100013 VPDB

VPDB (11)

The δ13C value is reported in permil VPDB, which is equivalent to milli-
Urey ('mU'; Brand and Coplen, 2012). Absolute concentrations of
[13CH4], [12CH4], [13DIC], and [12DIC] were computed by separate
reaction-transport equations (Eq. (2) for methane and Eq. (3) for DIC)
for each isotope, and isotope fractionation was applied to the different
source and sink terms, such that always:

= +s s s13 12 (12)

2.3.1. Sulphate reduction
Negligible carbon isotope fractionation was observed during orga-

noclastic sulphate reduction (Claypool and Kaplan, 1974), and also
fractionation factors determined in culture experiments (Londry and
Des Marais, 2003) were near to one. Therefore, we assumed that this
source of inorganic carbon has the same isotopic composition as the
organic source pool.

2.3.2. Methanogenesis
Methanogenesis may occur via two major pathways: the autotrophic

pathway using CO2 and H2 and the acetoclastic pathway using acetate.
Although the overall stoichiometry from TOC to CH4 and DIC is the
same for both pathways, they may show different isotope fractionation.
Autotrophic methanogenesis yields a larger isotope fractionation than
acetoclastic methanogenesis (with an apparent fractionation factor of
0.92–0.95; Whiticar et al., 1986). Whiticar et al. (1986) calculated a

fractionation factor2 from measured porewater profiles, i.e. for the
overall reaction. However, during autotrophic methanogenesis also a
fermentation step has to be taken into account, which produces H2 as a
driving force for autotrophic methanogenesis, but this fermentation
also produces CO2. The overall reaction is thus:

+ +
+

2 [CH O] 2 CO 4 H CO CH2
2H O

2 2
2H O

2 4
2 2 (13)

The source term for autotrophic methane production shows the
isotopic ratio R'CH4

(the isotopic ratio of the instantaneously produced
CH4):

= =R
s
s

RCH
13 CH aut

12 CH aut
aut DIC4

4

4 (14)

R'CH4
is equivalent to the ratio of the production rates of each iso-

topologue, if both the denominator and the numerator is divided by
time. For DIC production the situation is more complex as two moles of
CO2 are produced by fermentation with little or no fractionation, and
one mole of CO2 is consumed by the autotrophic reaction with the
fractionation factor αaut. Hence:

=s
s

R13 DICferm

12 DICferm
TOC (15)

=s
s

R13 DICaut

12 DICaut
aut DIC (16)

and

=+s s s (for each isotope)DIC(ferm aut) DICferm DICaut (17)

However, the fractionation factors derived from the isotopic dif-
ference between δ13CCH4

and δ13CDIC also include the fermentation step
according to Eq. (13), and hence the α-values given in Whiticar et al.
(1986) cannot be used for αaut. However, values for αaut can be mea-
sured directly in culture experiments where the electron donor H2 was
added (cf. references in Table 2). Most separation factors are in the
order of 45‰ (isotope separation factor ε =1000 ln α) for autotrophic
and 20‰ for acetoclastic methanogenesis.

During acetoclastic methanogenesis, one mole of each CO2 and CH4

is produced by the disproportionation of acetate:

+ ++CH COO H CO CH3 2 4 (18)

Thereby, the carboxyl carbon is turned into CO2 and the methyl carbon
to CH4, and the isotopic composition of each would be pre-set by the
13C distribution in the acetate molecule. This intramolecular isotope
distribution would not produce large fractionation effects between CO2

and CH4 (Blair and Carter Jr., 1992; Sugimoto and Wada, 1993) but as
the exact metabolic reaction pathway is unclear, exchange reactions
between DIC and CH4 remain optional.

Independent of the pathway, the sources of methane and DIC are in
isotopic proportion with the original organic matter multiplied by the
fractionation factor αac and 2-αac, respectively (Eqs. (19) and (20)).

=
s
s

R13 CH ac

12 CH ac
ac TOC

4

4 (19)

=s
s

(2 ) R13 DICac

12 DICac
ac TOC (20)

The term 2-α is due to mass balance. While the abundant isotope,
12C, can be assumed to be approximately invariant:
s s12 CH4ac 12 DICac (21)

the fractionation factors can be expressed as a ratio of the product over
the reactant:

2 The original values provided by Whiticar et al. (1986) (α′ = 1.05–1.09)
have been converted to α = 1/α′ = RProduct/RReactant. Even though traditionally
α′ is reported, this notation allows for simplification of the formulas provided
below.
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For DIC:
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C / Cac(DIC)
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12
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13
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where 13CTOC and 12CTOC stand for the concentrations of carbon iso-
topes in TOC, and x is the amount by which 13C is increased or de-
creased in the product relative to 13CTOC. If Eq. 22 is solved for x, and x
is substituted in Eq. 23, it results that:

= 2ac(CH ) ac(DIC)4 (24)

The value of αac is generally smaller than αaut. A compilation of
experimentally determined fractionation factors from pure cultures
given in the literature is shown in Table 2.

The overall sources of methane and DIC from methanogenesis are
then (for each isotope):

= +s s sCH meth CH aut CH ac4 4 4 (25)

= ++s s sDICmeth DIC(ferm aut) DICac (26)

sDICmeth and sCH4meth for the entire species are equivalent to ½ sTOC
in Eqs. (2) and (3). The relative contribution of each pathway is

determined by the degree of autotrophy, r:

=
+
+

+
r

s
s s

DIC(ferm aut)

DIC(ferm aut) DIC ac (27)

2.3.3. Anaerobic methane oxidation
Kinetic fractionation during AOM is considered smaller than for

methanogenesis (Alperin et al., 1988; Whiticar, 1999). Holler et al.
(2009) found fractionation factors between 0.962 and 0.988
(α'= 1.012–1.039; which corresponds to an ε-value of 12–38‰) from
enrichment culture experiments with consortia of anaerobic methane-
oxidizing archaea and sulfate-reducing bacteria. The pure kinetic frac-
tionation of the AOM reaction can be obtained from:

=s
s

R13 AOM

12 AOM
AOM CH4 (28)

However, in experiments with radiolabelled DIC, Holler et al.
(2011) demonstrated a reverse flux through the enzymatic pathway of
AOM, i.e. some of the reaction product is channelled backwards to the
substrate pool, which was interpreted to cause a partial isotopic equi-
libration between the coexisting CH4 and DIC pools. The true kinetic
fractionation factor of the reverse reaction is not known, but it was

Table 2
Compilation of kinetic carbon isotope fractionation factors by autotrophic and acetoclastic methanogenesis in pure cultures of methanogenic archaea. The δ13C
values for acetate are the mean of the two carbon atoms in the acetate molecule; α is the fractionation factor; ε =1000 ln α (‰); “initial” indicates that the
measurements were made at the beginning of the incubation time; “lim.” indicates substrate limitation.

δ13C-Substrate δ13C(CH4) ε α Conditions Growth phase Organism Reference

‰ VPDB ‰ VPDB ‰ VPDB

Autotrophic methanogenesis
−10.2 −56.2 −46 0.955 Methanosarcina barkeri Krzycki et al. (1987)
−19.9 −64.5 −44.6 0.956 Methanosarcina barkeri Krzycki et al. (1987)
−31.2 −71.5 −40.3 0.961 Methanosarcina barkeri Londry et al. (2008)
−31.2 −76.6 −45.4 0.956 initial Methanosarcina barkeri Londry et al. (2008)
−28.5 −79.6 −51.1 0.950 H2-lim. Methanosarcina barkeri Londry et al. (2008)
−28.5 −108 −79.5 0.924 H2-lim., initial Methanosarcina barkeri Londry et al. (2008)
−46.7 −50.6 −3.9 0.996 Glass fermentor, 35 °C Initial Methanococcus vannielii Botz et al. (1996)
−42.8 −99.3 −56.5 0.945 Glass fermentor, 35 °C End exp. phase Methanococcus vannielii Botz et al. (1996)
−45.9 −104.7 −58.8 0.943 Glass fermentor, 35 °C End stat. phase Methanococcus vannielii Botz et al. (1996)
−45.7 −92.3 −46.6 0.954 Ti fermentor, 35 °C Initial Methanococcus vannielii Botz et al. (1996)
−45 −111.7 −66.7 0.935 Ti fermentor, 35 °C End exp. phase Methanococcus vannielii Botz et al. (1996)
−45.8 −113.4 −67.6 0.935 Ti fermentor, 35 °C End stat. phase Methanococcus vannielii Botz et al. (1996)
−23.6 −39.7 −16.1 0.984 Glass fermentor, 45 °C Initial Methanococcus thermolithotrophicus Botz et al. (1996)
−11.8 −72 −60.2 0.942 Glass fermentor, 45 °C End exp. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−12.3 −70.2 −57.9 0.944 Glass fermentor, 45 °C End stat. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−24.4 −42.6 −18.2 0.982 Glass fermentor, 55 °C Initial Methanococcus thermolithotrophicus Botz et al. (1996)
−15.4 −71.6 −56.2 0.945 Glass fermentor, 55 °C End exp. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−19.9 −80.5 −60.6 0.941 Glass fermentor, 55 °C End stat. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−47.7 −106.2 −58.5 0.943 Ti fermentor, 55 °C Initial Methanococcus thermolithotrophicus Botz et al. (1996)
−46.8 −106.8 −60 0.942 Ti fermentor, 55 °C End exp. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−47.5 −106 −58.5 0.943 Ti fermentor, 55 °C End stat. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−23.8 −79.7 −55.9 0.946 Glass fermentor, 65 °C End exp. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−45.4 −98.5 −53.1 0.948 Glass fermentor, 65 °C End stat. phase Methanococcus thermolithotrophicus Botz et al. (1996)
−41.9 −96.2 −54.3 0.947 Glass fermentor, 85 °C Initial Methanococcus igneus Botz et al. (1996)
−38.1 −89.2 −51.1 0.950 Glass fermentor, 85 °C End exp. phase Methanococcus igneus Botz et al. (1996)
−39.2 −83 −43.8 0.957 Glass fermentor, 85 °C End stat. phase Methanococcus igneus Botz et al. (1996)
−43.1 −101.7 −58.6 0.943 Ti fermentor, 85 °C Initial Methanococcus igneus Botz et al. (1996)
−43.6 −100.2 −56.6 0.945 Ti fermentor, 85 °C End exp. phase Methanococcus igneus Botz et al. (1996)
−44.3 −97.2 −52.9 0.948 Ti fermentor, 85 °C End stat. phase Methanococcus igneus Botz et al. (1996)

Acetoclastic methanogenesis
−22.2 −43.6 −21.4 0.979 Methanosarcina barkeri Krzycki et al. (1987)
−22.2 −43.3 −21.1 0.979 Methanosarcina barkeri Krzycki et al. (1987)
−20.42 to −35.76 −51.8 to −57.02 −21.3 0.979 Methanosarcina barkeri Gelwicks et al. (1994)
−20.2 to −21.4 −40.2 to −40.8 −19.2 0.981 Lake water Gelwicks et al. (1994)
−30.9 −53.8 −22.9 0.977 Methanosarcina barkeri Londry et al. (2008)
−30.9 −65.7 −34.8 0.966 initial Methanosarcina barkeri Londry et al. (2008)
−30.9 −25.7 5.2 1.005 substr.-lim. Methanosarcina barkeri Londry et al. (2008)

AOM
0.988 to 0.961 1) Holler et al. (2009)

1) The back fluxes reached between 5% and 13% of the net AOM rate (Holler et al., 2011).
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suggested by Yoshinaga et al. (2014) that the difference in δ13C be-
tween CH4 and DIC approaches the isotope exchange equilibrium
fractionation factor as the change in free energy by the reaction ap-
proaches chemical equilibrium. The theoretical equilibrium fractiona-
tion factor, αeq, at reaction temperature was calculated by Richet et al.
(1977) and Horita (2001).

To calculate the reverse flux we assume a forward reaction with rate
f+ and a backward reaction with rate f−, where rAOM= f−/ f+. In
culture experiments, the back reaction reached 5% of the net AOM rate
under fully marine sulphate concentration (Holler et al., 2011), but up
to 78% under sulphate limitation in incubation experiments with se-
diment from Amon Mud Volcano (Nile Deep-Sea Fan; Yoshinaga et al.,
2014). We used an empirical function fitted to the experimental data in
those two studies to determine the dependence of rAOM on the
SO4

2−concentration:

=
+

r r b
b [SO ]AOM AOMmax

4
2 (29)

where rAOMmax (%) is the maximal reverse flux and b is a fitting para-
meter. If sAOM is the net AOM rate (sAOM= f+− f−), we can find the
rates of production of DIC and CH4 as follows:

= =+s f 1/(1 r )·sDIC AOM AOM (30)

= =s f r /(1 r )·sCH4 AOM AOM AOM (31)

To calculate the equilibrium isotope fractionation it is important to
note that an isotopic equilibrium can only be reached if a chemical
equilibrium of reactant and product is reached in the entire pool (Urey
and Greiff, 1935), i.e. in the pool of CH4 and DIC in the porewater.
However, isotopic equilibration may occur within the enzymatic
pathway, which can be modelled by assuming a hypothetical com-
partment within the pathway (Fig. 1), in which equilibrium can be
reached. Thereby, both the concentrations of species and overall con-
centrations of each isotope are conserved:

+ +CH DIC CH DIC13
4

12 12
4

13 (32)

Although the forward and backward reaction rates sDIC and sCH4 are
different, two assumptions can be made based on the equilibrium re-
action (Eq. 32): (1) The total rate of DIC production before equilibra-
tion, sDIC, and after equilibration, s′DIC, remains the same (this is also
true for CH4):

+ = +s s s s13
DIC

12
DIC

13
DIC

12
DIC (33)

(2) The turnover rate of the sum of each isotope is not changed by
the equilibration (here shown for 13C):

+ = +s s s s13
DIC

13
CH4

13
DIC

13
CH4 (34)

If we define η as the rate of transfer of each isotope from one iso-
topologue to another during equilibration it follows, from the con-
servation of the molecules, CH4 and DIC (Eq. (33)), and the conserva-
tion of isotopes, 13C and 12C (Eq. (34)), that the change in concentration
per time is the same value, η, for all four isotopologues:

= +s s13
DIC

13
DIC (35)

=s s12
DIC

12
DIC (36)

=s s13
CH4

13
CH4 (37)

= +s s12
CH4

12
CH4 (38)

The value of η is determined by the thermodynamic equilibrium frac-
tionation factor αeq, which can be expressed as the ratio of production
rates of each isotopologue after equilibration:

= =
+ +

s / s
s / s

( s )( s )
( s )( s )eq

13
CH4

12
CH4

13
DIC

12
DIC

13
CH4

12
DIC

12
CH4

13
DIC (39)

The value of η, thus, depends on αeq as well as on the initial isotopic
compositions of the CH4 and DIC fluxes into the pathway. Eq. (39) is a
quadratic equation that can be solved for η (Suppl. A). The new pro-
duction and consumption rates of each isotopologue are found by
substituting η in Eqs. 35–38.

2.4. Initial conditions and boundary conditions

The input parameters TOC0, aRC, ν, and ω were systematically
varied within a range representative for marine sediments. For each set
of parameters the model was run until a steady state was reached.
Initial conditions were 0mM sulphate, methane and DIC at all depths.
The boundary conditions were set to 28mM sulphate and 2mM DIC at
the sediment/water interface. Both 12CH4 and 13CH4 were set to a zero
gradient at the upper boundary to prevent large artefacts at low CH4

concentration. The δ13C of DIC in seawater was fixed at 0‰. The lower
boundary conditions were defined as zero gradient for sulphate, me-
thane, and DIC. It is important to notice that the domain size has a
significant influence on the redox zones since more methane is pro-
duced in a thicker sequence of sediment. In nature, the domain size is
given by the thickness of the sedimentary sequence. In the model, only
the organic matter decaying within the domain contributes to meta-
bolism, whereas the organic matter buried below the lower domain
boundary is excluded from the model reactions. Because the rate of
organic matter decay decreases with time and depth according to the

CH4

DIC

Isotope equilibration

13sCH4
12sCH4

13sDIC
12sDIC

f+ = sDIC f- = sCH4

CH4

DIC

13
DIC

12
DIC

13
CH4

12
CH4

f+ = sDICf- = sCH4

13CH4 + 12DIC 12CH4 + 13DIC 

Fig. 1. Schematic drawing of the concept of equilibrium fractionation during reverse reaction of AOM. The frame represents a hypothetical compartment in which
isotope exchange takes place. Please note that despite different forward and reverse fluxes, mass balance is maintained through Eqs. (33) and (34).
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reactive continuum model, which is similar to a power law function, the
decay below the lower domain boundary is negligible if a sufficiently
large domain is considered (cf. Meister et al., 2013). To make sure this
holds true for the modelled carbon isotope profiles we also tested the
sensitivity of sulphate and methane profiles to changes in the domain
size.

2.5. Numerical solution

The sulphate, methane and DIC profiles determined by Eqs. 1–3
were simulated using the Lattice-Boltzmann method (LBM; Wolf-
Gladrow, 2000; Sukop and Thorne Jr., 2007). In the LBM, the evolution
of concentration C is modelled by a single relaxation time scheme
(Bhatnagar-Gross-Krook scheme; BGK; Bhatnagar et al., 1954):

+ + = +f (z e t, t t) f (z, t) 1
t

(f (z, t) f (z, t)) si i i
R

i i
eq

i (40)

where fi(z, t) is the single-particle distribution function with velocity ei
at position z and time t, and ∆t is the time increment. In the 1-di-
mensional lattice with 3 velocities (D1Q3), the velocities are given by
the three non-dimensional vectors: e0= 0, e1= 1, and e2=−1. The
function fieq(z, t) is the equilibrium distribution function:

=f (z, t) w C(1 3e )i
eq

i i (41)

The weight parameter wi (i.e. the proportion in which the con-
centration C is transported along the vectors e0, e1, and e2) is given by
w0=2/3, w1=w2=1/6. A source or sink is expressed as si =wis,
where s is the source/sink term defined in Eqs. (1)–(3). Furthermore, tR
is the non-dimensional relaxation time. It can be shown that the ad-
vection/diffusion reaction equation can be derived from the Lattice-
Boltzmann equation (Eq. (40)) through a Chapman-Enskog expansion
procedure (Wolf-Gladrow, 2000). The quantity tR can then be adjusted
to tune the transport coefficients through relation tR= 3D+1/2 with
the diffusion coefficient D. The macroscopic concentration (i.e. the
concentration measureable in a volume of porewater) is obtained by
C= f0+ f1+ f2.

2.6. Model parameterization

Parameter values or ranges of values used in our model are listed in
Table 1. Concentration profiles of sulphate and methane computed over
a large range of different organic carbon input, organic carbon de-
gradation rates, and sedimentation rates are described and discussed in
Meister et al. (2013). For a better overview, we list all variables used to
calculate the δ13C profiles of DIC and CH4 shown in the figures in
Table 3. These cases are representative for a large range of marine se-
dimentary porewater profiles, i.e. differently condensed or expanded
redox zonations and different reactivities of organic matter as discussed
in detail in Meister et al. (2013). We discuss general features in com-
parison with a few selected measured profiles.

For comparison with the model results, we compiled datasets of
δ13CCH4

and δ13CDIC of several sites from the literature: Blake Ridge
(DSDP Site 533; 3191m water depth; Galimov and Kvenvolden, 1982;
and ODP Sites 994, 995, and 997; 2798, 2779, and 2770m water depth;
Paull et al., 2000), Cascadia Margin (IODP Site U1329; 946m water
depth; Heuer et al., 2009), Bullseye vent (Cascadia Margin, Site C-2;
1311m water depth; Pohlman et al., 2008), and the Peru Trench (ODP
Site 1230; 5086m water depth; Meister et al., 2011).

3. Model results

Typical sulphate, methane, and DIC concentration profiles are dis-
played for case B2 (Table 3) in Fig. 2, showing a decreasing sulphate
concentration and increase of methane below the SMT at 10 mbsf. DIC
concentration increases with depth with a kink at the SMT. The same

case was used to test the sensitivity of the δ13C-profiles towards dif-
ferent fractionation factors (Fig. 3). The simulated δ13CCH4 profiles
show values more negative than −70‰ at a fractionation factor
αac= 0.95 for acetoclastic methanogenesis (Fig. 3a). The values are
constant with depth, and the profiles show a regular spacing with in-
cremental changes of αac. Values are less negative for autotrophic
methanogenesis if the same values are used for the fractionation factor
(ca. -60‰ for αaut= 0.95; Fig. 3b), and the profiles show a curvature
towards more negative values at the SMT. Isotope values in DIC de-
crease with depth in the sulphate zone and show invariably the value of
bulk TOC at the SMT. Below the SMT, δ13CDIC increases asymptotically
to a more positive value in the methanogenic zone. The values are more
positive for acetoclastic methanogenesis than for autotrophic metha-
nogenesis. The effect of the degree of autotrophy is also shown in
Fig. 3c, whereby Fig. 3d demonstrates that at r=0.5 the fractionation
factors of the two pathways are exchangeable.

At constant fractionation factors the effect of the amount and re-
activity of organic matter in the sediment is tested, using
αac=αaut= 0.95 and r= 0.5 for case B3 (Table 3). Fig. 4 shows how
δ13CDIC values increase with increasing TOC0, while the SMT is shal-
lowing. Also δ13CCH4 values slightly increase with increasing TOC0.
However, the δ13CDIC remains near δ13CTOC at the SMT under all con-
ditions.

A significant change in both δ13CCH4
and δ13CDIC is observed with

changing aRC, the initial age of organic matter in the reactive con-
tinuum model. Fig. 5 displays the effect of changing aRC at constant
SMT depth. As shown in Meister et al. (2013), two values for aRC can be
found, for which the SMT is at the same depth. Fig. 5a and b show their
effect for a SMT at 10 mbsf and 20mbsf, respectively. As the two dif-
ferent aRC values differ more in the latter case (Fig. 5b), also the dif-
ference in the isotopic compositions are larger for different aRC. Gen-
erally, the more refractory organic matter (larger aRC) results in a more
symmetrical distribution of δ13CCH4

and δ13CDIC with respect to δ13CTOC.
A similar effect occurs if the parameter ν in the reactive continuum
model is varied (Fig. S1, Suppl. B). This value describes the distribution
of reactivity in the reactive continuum. The isotope profiles are most
sensitive to this parameter if aRC is small, resulting in much more ne-
gative δ13CCH4

and δ13CDIC values at small ν. Also in this case, the
δ13CDIC remains near to δ13CTOC at the SMT.

Sedimentation rate and porosity have a different effect on the iso-
tope profiles than the initial TOC content (Fig. S2; Suppl. C). At high
sedimentation rate and low porosity, respectively, the δ13CDIC values
are more positive in the methanogenic zone, but distinctly more ne-
gative than δ13CTOC at the SMT. These negative values are reached
without the effect of fractionation due to AOM or reverse AOM flux (see
below). δ13CCH4

values are less negative at higher sedimentation rate
and lower porosity. Isotope profiles at decreasing porosity with depth
are not fundamentally different from profiles at a constant porosity. A
rapid decrease of porosity also leads to a very shallow SMT.

So far, no fractionation during AOM is taken into account. Fig. 6
shows the results of different AOM kinetic fractionation factors of the
net forward reaction in combination with equilibrium fractionation as a
result of the reverse flux. In order to determine the dependence of the
reverse flux on the SO4

2− concentration, an empirical function (Eq.
(29)) is fitted to the SO4

2−-dependent rate function (Fig. 6a). Three
different values for rAOMmax (60%, 75%, and 90%) are used for the
isotope model as shown in Fig. 6b. The δ13CCH4

profiles show a pro-
nounced minimum at the SMT and an upward increase in the sulphate-
reduction zone. The minimum is not present if zero reverse flux is
considered. Varying the fractionation factor αAOM has a strong effect on
the δ13CCH4

profile in the sulphate reduction zone, with a steep increase
at αAOM=0.98 and a strong decrease if no kinetic fractionation is taken
into account (αAOM=1; Fig. 6c). Increasing the rate of AOM (kAOM)
results in both more negative δ13CCH4

values at the SMT and more po-
sitive values in the sulphate reduction zone (Fig. 6d). None of the
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fractionation effects of AOM affect the δ13CCH4
profiles below the SMT,

and no changes occur throughout the entire δ13CDIC profiles.
A further effect tested is the diffusive escape of CH4 at the sediment-

water interface. This was achieved assuming case B3 but with a TOC0 of

8 wt%, such that the SMT is at a very shallow depth (Fig. 7). Changing
kAOM from 4 · 10−1 to 4 · 10−5 a−1 results in a lower AOM rate, such
that AOM is no more capable of retaining all CH4 within the sediment.
The resulting profiles show an increase in δ13CDIC in the sulphate re-
duction zone, while no significant effect occurs in the δ13CCH4 profile.
No effect is noticed in the isotope profiles at greater depth in the me-
thanogenic zone.

4. Discussion

4.1. Carbon isotope profiles and their sensitivity to fractionation factors

Each fractionation factor, αaut and αac was systematically varied
between 0.95 and 1, which comprises the span of fractionation factors
provided for pure cultures of methanogenic archaea in the literature
(Table 2). The relative contribution of each pathway is expressed by the
degree of autotrophy, r= autotrophic/total methanogenesis, which
was varied between 0 and 1. According to several studies, autotrophic
methanogenesis is the dominant pathway in marine sediments (e.g.
Beulig et al., 2018). Heuer et al. (2009) found that r may vary with
depth, but results must in all cases lie between the end-members
modelled here.

In the case of pure acetoclastic methanogenesis (Fig. 3a), CH4 shows
a constant δ13C with depth, whereby the offset from δ13CTOC (set to
−25‰) depends linearly on αac. Normalized production rates for each
isotope relative to TOC degradation rates are also constant with depth
and depend linearly on the fractionation factor (not shown). Thus, also
the δ13C of the entire CH4 or DIC pool at steady state depend linearly on
αac. In the case of αac= 1, no fractionation occurs and δ13C of both DIC
and CH4 are identical to δ13CTOC, except near the sediment/water in-
terface where δ13CDIC shows a mixing gradient with DIC from seawater
(with δ13CDIC= 0‰). In cases of αac < 1, δ13CDIC remains unchanged
(i.e. near to δ13CTOC) in the sulphate reduction zone (due to production

Table 3
List of all variables tested in the modelled cases. The cases are shown in Figs. 1 through 6 and Figs. S1 and S2.

Figure Case zSMT TOC0 aRC ν ω kAOM αaut αac r αAOM rAOMmax

(m) (wt%) (a) (m/ka) (%)
B1 10 4 7850 0.7 0.08
B2 10 2 47,500 0.7 0.08
B3 10 2 872,000 0.7 0.08
B4 10 4 3,860,000 0.7 0.08
C1 20 4 4735 0.7 0.08
C2 20 2 17,800 0.7 0.08
C3 20 2 2,600,000 0.7 0.08
C4 20 4 8,100,000 0.7 0.08

1 B2 10 2 47,500 0.7 0.08 0.04
2a B2 10 2 47,500 0.7 0.08 0.04 0.95 0
2b B2 10 2 47,500 0.7 0.08 0.04 0.95 1
2c B2 10 2 47,500 0.7 0.08 0.04 0.95 0.95
2d B2 10 2 47,500 0.7 0.08 0.04 0.5
3 (B3) 1, 2, 4, 8 872,000 0.7 0.08 0.04 0.95 0.95 0.5
4a B2, B3 10 2 0.7 0.08 0.04 0.95 0.95 0 1
4b C2, C3 20 2 0.7 0.08 0.04 0.95 0.95 0 1
5b B3 10 2 872,000 0.7 0.08 0.04 0.95 0.95 0.5 0.99
5c B3 10 2 872,000 0.7 0.08 0.04 0.95 0.95 0.5 75
5d B3 10 2 872,000 0.7 0.08 0.04 0.95 0.95 0.5 0.99 75
6 B3 10 2 872,000 0.7 0.08 0.00004–0.4 0.95 0.95 0.5
S2a 10 4 1850 0.2 0.08 0.04 0.95 0.95 0.5
S2a B1 10 4 7850 0.7 0.08 0.04 0.95 0.95 0.5
S2a 10 4 15,000 1 0.08 0.04 0.95 0.95 0.5
S2a 10 4 42,500 2 0.08 0.04 0.95 0.95 0.5
S2b 10 4 480,000 0.2 0.08 0.04 0.95 0.95 0.5
S2b B4 10 4 3,860,000 0.7 0.08 0.04 0.95 0.95 0.5
S2b 10 4 6,000,000 1 0.08 0.04 0.95 0.95 0.5
S2b 10 4 13,200,000 2 0.08 0.04 0.95 0.95 0.5
S3a 2 872,000 0.7 0.02–0.32 0.04 0.95 0.95 0.5
S3b 2 872,000 0.7 0.08 0.04 0.95 0.95 0.5
S3c 2 872,000 0.7 0.08 0.04 0.95 0.95 0.5
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Fig. 2. Modelled sulphate, methane, and DIC concentration profiles using the
parameters for the exemplary case B2 listed in Table 3. Sulphate is depleted at
10 mbsf. An abrupt change in the slope of the DIC profile at the SMT at 10 mbsf
is due to production of DIC by AOM. Below the SMT, CH4 and DIC increase
almost in parallel.
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of DIC from TOC with no assumed fractionation) and increases in the
methanogenic zone to reach a plateau with linear dependence on αac. In
general, the offset of δ13CDIC to δ13CTOC is always smaller than the offset
of δ13CCH4

to δ13CTOC due to the addition of isotopically light DIC by
AOM at the SMT.

In the case of pure autotrophic methanogenesis (r=1; Fig. 3b), the
δ13CDIC curves show a similar pattern and a regular spacing for constant
differences in αaut, which is due to the linear dependence on αaut. Also,
δ13CCH4shows almost constant values throughout the methanogenic
zone, but somewhat more negative values near the SMT, which par-
tially reflects the minimum values in the DIC from which the methane is
produced. However, the upward convex curvature in the simulated
δ13CCH4

profiles just beneath the SMT is never as strong as commonly
observed in marine sediments (see discussion below). This is valid
under the assumption that no fractionation occurs during AOM, as CH4

is entirely consumed. Compared to acetoclastic methanogenesis (r=0),
autotrophic methanogenesis (r= 1) leads to a smaller offset between
δ13CCH4

and δ13CDIC (Fig. 3c). This can be explained by the stoichio-
metry (Eq. (13)), where only half of the produced DIC (from fermen-
tation) is fractionated.

In the case of r=0.5 (Fig. 3d), where the contribution of acet-
oclastic and autotrophic methanogenesis are equal, the resulting δ13C
profiles are intermediate between the two end-members r= 0 and
r=1. In that case, the fractionation factors αac and αaut are

exchangeable, i.e. exchanging the two fractionation factors leads to
almost identical δ13C profiles. This can be explained by the production
rates of 13CH4 and 13DIC normalized relative to dTOC/dt, which are
only increased or decreased by different fractionation factors but do not
change their downcore trend (not shown). As a result, changing the
fractionation factors shifts the isotopic composition at all depths
equally. Since the resulting δ13C production profile is the average of the
two different pathways at r= 0.5, the fractionation factors are ex-
changeable.

4.2. Importance of fractionation factors in natural systems

Comparison with measured δ13C profiles in CH4 and DIC from dif-
ferent DSDP and ODP drill sites at the Blake Ridge in the western North
Atlantic Ocean (Fig. 8) shows that our model includes and reproduces
the general patterns. CH4 and DIC isotope profiles may approach
symmetry along a line defined by the δ13C of TOC (arrows) but do not
usually exceed this symmetry towards more positive values. Deviations
from this symmetry will be discussed further below. Fig. 8 shows that,
for the Blake Ridge sediments, this symmetry is commonly reached at
around 200 mbsf, which is in the range of the modelled domain size.
More negative values below this depth may be due to changing sedi-
ment composition or gas dynamics, which is not simulated in our
model.
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Based on Fig. 3a, an isotopic difference of up to 70‰ between DIC
and CH4 suggests a fractionation factor αac around 0.95 if methano-
genesis occurs through the acetoclastic pathway. This is a much
stronger fractionation than measured between the two carbon atoms in
acetate (7–14‰; Blair and Carter Jr., 1992; Sugimoto and Wada, 1993)
and stronger than fractionation observed in culture experiments
(αac≈ 0.98; Table 2). This suggests that either the intramolecular iso-
topic difference is larger in situ than in the experiments or other frac-
tionation mechanisms (e.g., partial equilibrium fractionation) may be
operative.

As it is generally found that hydrogenotrophic methanogenesis is
predominant in marine settings (e.g. Parkes et al., 2007; Jørgensen and
Parkes, 2010; Beulig et al., 2018), stronger fractionation (αaut ≈ 0.93)
would be necessary to reach an isotopic difference of 70‰ between DIC
and CH4 (cf. Fig. 3b). Such fractionation would be larger than known
from most culture experiments, even if the additional fractionation of
ca. 9‰ between CO2 and HCO3

– is taken into account. The fractiona-
tion factors available from culture experiments (e.g. Krzycki et al.,
1987; Botz et al., 1996; Londry et al., 2008; Table 2) only consider the
hydrogenotrophic step, not taking into account the excess CO2 from H2

production during fermentation. Since the amount of CO2 produced is
twice as large as the amount of CO2 consumed during hydrogenotrophic
methanogenesis, the isotope difference between DIC and CH4 resulting
from a particular αaut is much smaller than it appears from culture
experiments. For this reason, the experimentally determined fractio-
nation factors underestimate the fractionation in marine porewater.

Possibly, organisms living in deep sediments may use modified
pathways, or fractionation factors are different under conditions of low
energy flux. As for the acetoclastic methanogenesis, isotope equilibra-
tion may play a role. Such a mechanism has been suggested by Bottinga
(1969) and is supported by larger fractionation observed in cultures in
stationary phase (Botz et al., 1996; see discussion in Alperin and
Hoehler, 2009), but has so far only been observed for AOM (Yoshinaga
et al., 2014), as discussed below (Section 4.3).

4.3. Sensitivity towards organic matter burial and degradation rates

As discussed in detail in Meister et al. (2013), the burial and de-
gradation rates of TOC control the concentration profiles of sulphate

and methane in diffusive systems (Berner, 1978; Arndt et al., 2013 and
refs. therein). It is thus to expect that TOC degradation rates also in-
fluence the δ13C distribution. The most fundamental influences on
porewater profiles are the sedimentation rate and the initial TOC
(TOC0), i.e. the content of organic carbon at the sediment surface. As
illustrated in Fig. 4, increasing TOC0 contents from 1 to 8 wt% lead to a
shoaling of the SMT and an increase of the contribution of methano-
genesis to the overall organic matter degradation. Due to the higher
influence of methanogenesis, more isotopically heavy DIC is produced,
shifting the δ13CCH4

-δ13CDIC couple in the methanogenic zone towards
symmetry relative to the δ13CTOC. Under steady-state conditions, this
symmetry is never exceeded towards more positive values.

It is also observed in our model that the δ13CDIC is always near to
δ13CTOC at the SMT. This is explained by the balance between the up-
ward diffusion of isotopically heavy DIC from the methanogenic zone
and the production of isotopically light DIC by AOM. Under steady-state
conditions the amount of methane produced at depth is the same as the
amount consumed by AOM, such that the net isotope effect is zero.
Extremely negative δ13CDIC values, as commonly observed at the SMT
(e.g., Fig. 8), should not occur according to our steady-state model (see
discussion below).

Changes in the sedimentation rate affect dTOC/dz in the same way
as do changes in TOC0, leading to an expansion or compression of the
TOC degradation curve with depth (Eq. (8)). Accordingly, sedimenta-
tion rate affects the depth of the SMT in the same way as TOC0 (Meister
et al., 2013). As sedimentation rates are orders of magnitude lower than
diffusion rates, the contribution of the burial velocity to solute transport
can mostly be neglected. Only at very high sedimentation rates, a sig-
nificant amount of CH4 and DIC is removed by burial. Since DIC con-
centration is higher than CH4 concentration in the methanogenic zone,
more DIC is removed by burial export. This affects the mass balance at
steady state, leading to lower δ13CDIC values at the SMT (Fig. S2a). A
similar effect is observed at lower porosity (Fig. S2b), as also low
porosity supports the burial export due to lower sediment diffusion
coefficients. As mentioned above, a decreasing porosity with depth does
not fundamentally change isotope profiles of CH4 and DIC (Fig. S2c, d).
The depth of the SMT is sensitive in particular to the porosity at shallow
SMT depth, which would be expected, as slower diffusion at lower
porosity leads to steeper gradients. Negative δ13CDIC values at the SMT
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result from low porosity at greater depth in the same way as for dif-
ferent constant porosities. Changing diffusion rate due to increasing
temperature with depth has only a minor effect on the simulated iso-
tope profiles (Fig. S2e).

Besides organic matter content and burial rate, also organic matter
reactivity has an influence on isotopic distributions. The degradation of
organic matter is most likely not limited (and thus not controlled) by
the terminal electron accepting processes (TEAP) but rather by the rate
of hydrolysis and breakdown of macromolecular compounds (cf.
Horsfield et al., 2006; Beulig et al., 2018). Organic matter degradation
rates have been described as a function of depth using different models,
such as the reactive continuum model (Boudreau and Ruddick, 1991)
used in our study. In that model, downcore degradation is essentially
controlled by sedimentation rate and by the two parameters a and ν.
These parameters affect the concentration profiles of sulphate and
methane (Meister et al., 2013) and also influence the δ13C distribution.

Here we first address the parameter a, which stands in the RC model
for the average lifetime of the more reactive compounds. Fig. 5 shows
pairs of curves for two different values of a at the same SMT depth (at
10m in panel A and at 20 in panel B). Both δ13CCH4

and δ13CDIC curves
are shifted towards more positive values by a larger a. The reason for
this lies in the relative contribution of methanogenesis relative to

organoclastic sulphate reduction to the overall degradation of organic
matter. At large a, organic matter is more refractory and decays at
greater burial depth, with a larger fraction of the decay in the metha-
nogenic zone, hence leading to more positive δ13C values of DIC and
CH4. In Fig. 5b, the difference between the two values of a is larger than
in Fig. 5a and, accordingly, larger shifts in δ13C values appear.

Differences due to changes in ν are generally very small (Fig. S1).
However, a larger effect of increasing ν occurs if a is small (Fig. S1a). In
this case, δ13C values of DIC become more similar to values in TOC and
also the value of the CH4 become more negative. This is because the
decay curve of organic matter is such that only small amounts of re-
active organic matter are left once the sediment is buried beneath the
SMT and only small amounts of methane are produced (cf. Fig. 1c in
Meister et al., 2013). Thus, only small amounts of 13C-enriched DIC are
produced throughout the methanogenic zone.

4.4. Effects of carbon burial on measured carbon isotope profiles

Comparison with measured isotope data in Fig. 8 shows that δ13C
values of DIC and CH4 reach nearly symmetry with respect to the δ13C
of TOC. DSDP Site 533 shows δ13C profiles in CH4 and CO2 that are
similar to the other sites, although the curved sulphate profile (see
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insets in Fig. 8) would suggest more organic matter being metabolized
in the sulphate reduction zone and thus producing more negative δ13C.
Perhaps the curved sulphate profile is only transient, while it needs to
be taken into account that these Blake Ridge sites are affected by iso-
topically light methane from underlying gas hydrates (Borowski and
Paull, 1999; Borowski et al., 2000). Nevertheless, the symmetrical
distribution in carbon isotopes is persistent.

In measured profiles, δ13CDIC values are frequently more negative
than δ13CTOC at the SMT (e.g. Figs. 8, 9b, and 10). According to the
simulations discussed so far, this could result from higher burial export
of isotopically heavy carbon (as DIC). High sedimentation rates on the
order of 0.1m/ka, perhaps in combination with decreasing porosity
with depth in compacted sediment, enhance this effect. However, other
effects could play a role, as discussed below.

Overall, it is clear that burial rate and reactivity of organic matter
can significantly influence the isotope compositions, even at similar
dynamic fractionations. The most positive isotope values in both DIC
and CH4 are reached if organic matter contains a large portion of or-
ganic matter with low reactivity and, thus, if methanogenesis con-
tributes more strongly to the total organic matter degradation (cf.
Meister et al., 2013). Thus, calculations with varying a and ν place a
limit for possible isotope values under given conditions. More positive
values measured in sedimentary porewater would thus require addi-
tional explanations (as further discussed below).

4.5. Effects of isotope exchange

Based on the studies of Holler et al. (2011) and Yoshinaga et al.
(2014) we included a partial isotope equilibration between DIC and
CH4 due to a reverse flux during AOM. In Fig. 6A, rAOM is plotted as a
function of the SO4

2− concentration fitted to the experimental data.
The resulting isotope profiles plotted in Fig. 6b (for the same case B3 as

described above, but including fractionation during AOM) show the
effect of the reverse flux for different values of rAOMmax from 60 to 90%.
The isotope profiles typically show a minimum value for δ13CCH4

at the
SMT, which is not observed if no reverse flux occurs (rAOM=0). Up-
ward increasing values in the sulphate reduction zone are due to kinetic
fractionation during the forward reaction. In fact, the isotope profile of
CH4 shows a high sensitivity towards αAOM as shown in Fig. 6c. In other
words, to produce the observed isotope profiles only minor fractiona-
tion is necessary (in the order of αAOM=0.99). This is consistent with
the observations of Alperin et al. (1988) and Whiticar (1999) suggesting
that apparent kinetic fractionation during AOM is relatively small
compared to methanogenesis. The much lower fractionation factor of
0.962, observed by Holler et al. (2009) may be due to particular con-
ditions in the experiment, but it would be too low to produce a realistic
δ13CCH4

profile. Besides the fractionation factor, also the rate at which
AOM occurs affects the shape of the δ13CCH4

curve near and above the
SMT (Fig. 6d). With increasing rate constant (kAOM) both the negative
trend at the SMT and the increasing values above the SMT are more
pronounced.

A strong decrease in δ13CCH4
that is similar to the decrease in δ13CDIC

is commonly observed in measured profiles near the SMT (e.g.,
Claypool and Kaplan, 1974; Heuer et al., 2009; Yoshinaga et al., 2014;
Fig. 9a and b). Also an upward increase in δ13CCH4

in the sulphate re-
duction zone is commonly observed in measured profiles (Pohlman
et al., 2008; Coffin et al., 2014), which is in accordance with a small
kinetic fractionation effect during AOM. Arrows in Figs. 8 and 9 in-
dicate an offset of ca. 75‰ at the SMT and below, which is near to the
offset expected if CH4 and DIC are in isotopic equilibrium.

In the model, such a large offset at the SMT is nearly reached if an
isotopic equilibration due to a reverse AOM flux is taken into account.
The offset is due to strongly negative δ13CCH4

values at the SMT, while
δ13CDIC remains unaffected. DIC is not sensitive to a reverse flux be-
cause its pool size is much larger, and CH4 is usually almost quantita-
tively converted to DIC. Even though pure autotrophic methanogenesis
(r=1) also generates a small curvature of the δ13CCH4 profile towards
more negative values near the SMT (e.g. Fig. 3b), the effect of the re-
verse flux by AOM is much larger and is required in order to explain an
isotopic difference between δ13CCH4

and δ13CDIC near equilibrium frac-
tionation, as observed in the measured profiles.

Also at greater depth below the SMT, observed offsets between
δ13CCH4

and δ13CDIC in measured profiles are suspiciously near to the
calculated thermodynamic equilibrium fractionation at low tempera-
ture based on the equation of Horita (2001). These offsets are reached
despite the fact that experimentally determined fractionation factors of
methanogenesis are significantly smaller. The finding of isotopic ex-
change as part of the AOM pathway (Holler et al., 2011) raises the
question whether partial equilibrium fractionation may also play a role
in the methanogenic pathways. This could occur in natural sub-seafloor
biosphere settings under strong substrate limitation, such that the
pathways become reversible. Such an equilibration does not occur
abiotically under Earth surface conditions. Isotopic equilibration may
occur in gas phase, e.g. in fumarolic systems (Fiebig et al., 2004), but
equilibrium fractionation would be much smaller due to higher tem-
peratures. Such conditions do not normally occur in organic carbon-rich
ocean margin sediments.

While the possibility of equilibrium fractionation is still under dis-
pute, a fractionation mechanism related to the activation of coenzyme-
M was suggested in a preliminary study (Wegener et al., 2017). Even
then, an equilibration step would have to occur somewhere in the
pathway to explain strongly negative δ13CCH4

at the SMT, which
otherwise would require an inverse kinetic fractionation effect. Further
experimental work will be essential to clarify the fractionation me-
chanisms.
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4.6. Methane gas transport

Exsolution and advective transport of CH4 and CO2 gas bubbles may
have a major influence on δ13C distributions. This was already con-
cluded in earlier studies (e.g. Claypool and Kaplan, 1974; Paull et al.,
2000) based on closed-system models. Methane is rather poorly soluble
in seawater and the solubility limit is often reached in methanogenic
sediments. The solubility curve can be calculated, as explained above,
as a function of pressure, temperature, and salinity. Gas bubble rise is
included in the model by an upward advection term. The upward ad-
vection simulated here represents an extreme case, where all CH4 gas
continuously rises upwards. The released CH4 rises upwards by buoy-
ancy until it reaches a zone below the SMT where concentrations are
lower than solubility at the in situ hydrostatic pressure and where the
methane readily dissolves. A sharp kink occurs in the CH4 concentration
profile where saturation is reached (e.g. Fig. 5, left panels). The
transport by rising gas bubbles has no effect on the δ13CCH4

profiles
because the production of gas is slow (coupled to the rate of metha-
nogenesis) and the transported gas has an isotopic composition very
similar to the upward diffusing CH4. The difference in molecular dif-
fusion rate between the two isotopologues is very small, although some
of the isotopically light methane could travel more rapidly due to ad-
sorption/desorption effects in organic carbon rich sediments (Zhang
and Krooss, 2001; Xia and Tang, 2012). Our model thus shows that
under steady-state conditions and assuming rapid dissolution kinetics
for CH4 in water, CH4-gas rise has an insignificant effect on the isotopic
profiles.

Under natural conditions, bubbles are to a large extent trapped in
the sediment by capillary forces, but may escape episodically if buoyant
forces exceed capillary forces and drive CH4 bubbles upwards (e.g.
through fractures or other zones of weakness; e.g. Rosner and Epstein,
1972; Garg et al., 2008; Boudreau et al., 2012), causing non-steady-
state conditions. Moreover, due to the sudden rise and slow dissolution
kinetics (cf. Mogollón et al., 2009), parts of the CH4 may bypass the
sulphate reduction zone. This portion of CH4 would thus not undergo
AOM but escape to the water column. This effect could lead to less
negative δ13CCH4, and perhaps also more positive δ13CDIC. It could for
example explain the positive shift in δ13CCH4

and δ13CDIC at IODP Site
U1329 at the Cascadia Margin (Heuer et al., 2009; Fig. 9a), where CH4-
seepage occurs. Another example, where CH4 escape causes strong δ13C
increase in both organic and inorganic carbon pools, is in Lagoa Sal-
gada, a coastal ephemeral lake in Brazil (Birgel et al., 2014). Due to low
SO4

2− content in the brackish water, AOM does not fully prevent CH4

from escaping.
Also a significant amount of CH4 could be transported into the

modelled domain from greater depth, such as thermogenic methane
from thermal degradation of organic matter (Burdige and Komada,
2011). Thermogenic CH4 is less depleted in 13C, with δ13C values
around −40‰ (Whiticar, 1999), and may result in less negative
δ13CCH4

in the methanogenic zone. Thermogenic CH4 is known to cause
seepage at the Cascadia Margin. However, it remains poorly understood
how such CH4 influx affects the δ13CDIC, since in the methanogenic zone
DIC is not produced from CH4. An increase of δ13CDIC in parallel with
δ13CCH4

as observed in the example of Fig. 9a could be explained if
isotopic equilibration occurs as part of the methanogenesis pathway, as
discussed above.

While carbon isotope fractionation during formation and dissocia-
tion of gas hydrates is probably negligible (Hachikubo et al., 2007;
Lapham et al., 2012) we highlight the role of gas hydrate as a capacitor.
Gas hydrate may form or dissociate episodically (e.g. Kennett et al.,
2000) and, thus, amplify non-steady-state conditions, which could have
a significant effect on carbon isotope distributions by adding or re-
moving CH4 from the pool.

If additional CH4 is dissolved at the SMT it may contribute, via
AOM, to 13C-depleted DIC. This could be a potential mechanism to
produce δ13CDIC more negative than δ13CTOC, as observed at Bullseye

vent (Fig. 9b; Pohlman et al., 2008) or at ODP Site 1230 in the Peru
Trench (in carbonates; Fig. 10; Meister et al., 2011). However, it should
be noted that strongly negative δ13CDIC values as observed at the
Bullseye vent do not always occur at the SMT, as shown by the example
of the present porewater profile at the Peru Trench (Fig. 10). δ13CDIC
values more negative than δ13CTOC may result from an excess of iso-
topically light methane advecting, perhaps episodically, into the AOM
zone. Non-steady state in AOM rates is indicated by differing δ13C-va-
lues in DIC and in the carbonates preserved from earlier times at ODP
Site 1230 (Fig. 10). At the same time, however, sedimentation rates
may also have changed over time, inducing a non-steady state in the
burial flux of DIC (cf. Contreras et al., 2013). This could equally have
led to δ13CDIC more negative than δ13CTOC at the SMT, as shown in the
examples in Fig. S2a.

4.7. CO2 dynamics

Besides CH4 advection, CO2 dynamics may have a significant effect
on carbon isotope profiles. At isotopic equilibrium, HCO3

– would be
enriched in 13C by about 9‰ relative to CO2 (Mook et al., 1974), and
CO2 transport could thus cause a significant increase in δ13CDIC as
discussed by Paull et al. (2000). CO2 can be transported by degassing
into CH4 bubbles. Predicting the exact amount of CO2 degassing is
complex and requires a complete speciation of the carbonate system,
which is beyond the scope of this study. In addition, the diffusion of
CO2 could affect the isotope distributions. While the diffusion constant
only shows a minor dependence on isotopic mass (Zeebe, 2011), the
diffusion constant of CO2 is about 1.7 times larger than for HCO3

– under
the simulated conditions (Schulz and Zabel (2006)). Also simulating
this effect would require a speciation of the carbonate system. In par-
ticular at concentrations of several hundred mmol/l of DIC calculated in
our model, and at low pH prevailing in methanogenic zones (cf.
Jourabchi et al., 2005; Soetaert et al., 2007), a significant fraction of the
DIC could be in the form of CO2. Also, core sampling using pressure
core barrels has shown that a significant part of the CO2 is already lost
under in situ conditions (Paull et al., 1996). Apparently, the residual
CO2 is still largely in isotopic equilibrium with the DIC (Fig. 8; Paull
et al., 2000). Despite these observations, it is unlikely that CO2 escape
has a major effect because the carbonate system is efficiently buffered
by high alkalinity in the porewater. E.g.> 150mM alkalinity was
measured in the midst of the methanogenic zone at ODP Site 1230, such
that about the same amount of DIC is retained as HCO3

−. Loss of CO2

would not change the δ13C of HCO3
−, and even in an extreme case,

where half of the DIC escapes as CO2, δ13CDIC would only be shifted by
4.5‰.

Very often DIC concentrations decrease downwards at greater depth
in the methanogenic zone (e.g. Fig. 8). This effect cannot be explained
by decreasing DIC production at steady state, but would require a sink
of DIC, such as CO2 escape. More likely though, the decrease in DIC is
accompanied by a decrease in total alkalinity (e.g. Meister et al., 2011),
which can then not be explained by CO2 escape alone. One explanation
can be a dilution effect by a deep-seated porewater. At lower total al-
kalinity, the capacity to retain DIC would be lower.

CO2 escaping from the methanogenic zone would re-equilibrate
near the SMT, where the dissolved CO2 concentration is lower due to
higher pH (cf. Jourabchi et al., 2005; Soetaert et al., 2007). However,
this could not explain δ13CDIC more negative than δ13CTOC at the SMT
(Fig. 9b and 10), because CO2 coming from the methanogenic zone is
more positive than δ13CDIC at the SMT. If CO2 rise is episodic this would
at least temporarily produce more positive values at the SMT. On a
long-term, mass balance would result in no effect of gas advection on
δ13CDIC at the SMT.

Exsolution of CO2 may also affect the carbonate equilibrium and
facilitate precipitation of carbonates. At the same time, acidification
through methanogenic CO2 production may cause undersaturation of
carbonates. Even though our study does not include a precise
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calculation of the carbonate equilibrium, sensitivity tests assuming
unrealistically large carbonate precipitation rates confirm the findings
of Chuang et al. (2019) that carbonate precipitation does not sig-
nificantly affect the isotopic compositions of CH4 and DIC.

Gas bubble dynamics are complex to model (see e.g. Mogollón et al.,
2009; Wallmann et al., 2012; Boudreau, 2012) and cannot be accu-
rately reproduced by our model. Nevertheless, our model could address
these problems, provided that carbonate equilibrium, gas dynamics and
non-steady-state models are included.

4.8. Sensitivity to metabolic rate constants

Besides the escape of gas bubbles to the water column, also diffusive
escape of CH4 to the water column may play a role (Dale et al., 2008b).
A diffusive outflux of CH4 may occur if organic matter mineralization
rates in the sediment are very high and the SMT depth accordingly
shallow. Methane may then partly by-pass the sulphate reduction zone
if AOM kinetics are too slow to effectively retain the high diffusion flux
of CH4 (Thang et al., 2013; Andrén et al., 2015). Although CH4 con-
centration profiles from these locations may suggest that methane is
retained in the sediment, episodic gas release may occur. We performed
a sensitivity study using different rate constants to evaluate the effect of
complete vs. incomplete oxidation of CH4 in the sediment.

Our standard kinetic rate constants used for AOM are the half sa-
turation constant KS,AOM=1mM (Arndt et al., 2006) and the first order
rate constant kAOM=4·10−2 a−1. Using a lower value for KS,AOM, cor-
responding to a high sulphate affinity (Tarpgaard et al., 2011), did not
significantly change the CH4 gradients at the SMT, yet a release of CH4

could result from a small kAOM. Fig. 7 displays the concentration pro-
files and δ13C of CH4 and DIC for the case B3, assuming four different
values for kAOM from 4 · 10−1 to 4 · 10−5 a−1. Results show no effect of
kAOM on isotope profiles below the SMT. However, the release of CH4

has a strong effect on the δ13CDIC values at the SMT and above. With
increasing by-pass of CH4 across the sulphate reduction zone, the
δ13CDIC becomes less influenced by isotopically light carbon from AOM.

Consistent with this model outcome, negative δ13CDIC occurs where
large amounts of methane are retained at the SMT, such as in the Peru
Trench at ODP Site 1230 (Fig. 10). At this site, strong AOM in the past
produced DIC with δ13CDIC more negative than −30‰, which became
preserved in diagenetic dolomite. This is commonly observed in me-
thane seep settings (e.g. Jørgensen, 1992). In contrast, modern pore-
water at Site 1230 (Fig. 10) shows values around −12‰, which may be
explained by loss of CH4 since the time when dolomite was precipitated.

5. Conclusions

The model results presented here have new implications for the
interpretation of δ13C distributions observed in marine sediments.
Fractionation in the methanogenic zone drives δ13CDIC and δ13CCH4

towards symmetry with respect to the δ13CTOC. Deviation from this
symmetry to lower values occurs if most reactive organic matter is
consumed in the sulphate reduction zone and only little is buried into
the methanogenic zone. Deviation to higher values must be due to other
factors than the ones simulated in this study, such as extensive ther-
mogenic CH4 inflow from below or significant escape of isotopically
light CH4 to the water column, probably under non-steady-state con-
ditions.

The difference between δ13CDIC and δ13CCH4
largely depends on the

fractionation during methanogenesis. Fractionation factors determined
in culture experiments, which do not take into account the CO2 pro-
duced during fermentation, are generally too low to explain the ob-
served isotope difference between δ13CDIC and δ13CCH4

in natural
porewater profiles. Our study implies that either fractionation effects
are stronger under in situ conditions or fractionation mechanisms are
different than previously thought. Enzymatically catalysed equilibrium
fractionation may occur during methanogenesis in natural sub-seafloor

biosphere settings with strong substrate limitation.
Strongly negative δ13CCH4

values near the SMT cannot be explained
by autotrophic methanogenesis alone, but can be caused by partial
isotopic equilibration due to a reverse flux during AOM under sulphate
limitation, as shown in culture experiments. An upward increasing
δ13CCH4

in the sulphate reduction zone results from kinetic fractionation
during AOM, as the reverse flux is largely suppressed at higher sulphate
concentrations.

Strongly negative δ13CCH4
values at the SMT do not directly affect

δ13CDIC, which shows values of δ13CTOC under steady-state conditions.
However, δ13CDIC more negative than δ13CTOC results from simulations
at high sedimentation rate and in combination with low porosity, due to
a significant burial flux of isotopically heavy DIC, perhaps in combi-
nation with episodic rise of methane from below and non-steady-state
conditions.
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