Microbial and viral communities of the deep seafloor sediment and manganese nodules from the CCZ, Pacific

J. M. OTTE1,2,3, M. MOLARI1,3, B. C. YAPAN1,3, J. B. VOLZ2, Y. BODURI1,3, F. JANSEN1,2,3, F. WENZHÖFER1,2,3

1HGF MPG Group on Deep Sea Ecology and Technology, 2 Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Germany; 3 Max-Planck-Institute for Marine Microbiology, Germany

Background & Summary

- Manganese (Mn) nodules contain Ni, Co, Cu, Mn, Fe, and rare earth elements.
- The environmental impacts of large-scale deep-sea node mining are currently unknown.
- In Feb.-May 2019 (RV SONNE cruise SO268, Mining Impact II) the Belgian & German licence area in the Clarion-Clipperton Zone (CCZ; Eastern Pacific) were studied to obtain baseline characteristics of the >4000 m deep habitat.
- Research aspects: i) characterization of the distinct present & active microbial and viral communities of bottom water (>4000 m deep), (<5 m deep) seafloor sediment, and Mn nodules, ii) diversity and distribution of potential deep-sea cable bacteria and metal-cycling microorganisms, iii) enrichment of Mn-Fe-cycling bacteria, iv) investigation of deep-sea microbial metabolisms by metagenomic/transcriptomic, v) quantification of microbial extracellular enzyme activity & cell number, and vi) analysis of Bio-/geochemistry.
- In summary, the potential consequences associated with removal of Mn nodules and resuspension of sediments during mining could help to evaluate the environmental risks.

Main Goals

- To quantify microbial & viral community composition by Illumina 16S RNA sequencing (RNA & DNA based) from ≤100 Mn nodules and eight 5 m long gravity cores from the CCZ.
- To follow the distribution, quantify the abundance, detect the diversity and activity of relevant metal-cycling microorganisms, and as well of potential deep seafloor cable bacteria.
- To enrich potential Mn- and Fe-cycling microorganisms from “live” sediment & “live” Mn nodules under (an)oxic conditions.
- To evaluate microbial activity by extracellular enzyme activity.
- To investigate microbial metabolism of potential Mn- and Fe-cycling microbes by metagenomics/metatranscriptomics.
- To compare metal-cycler of different locations (a) Mn nodule areas (CCZ/DISCOL), (b) massive sulfide deposit (Indian Ocean).

Field Sites – Clarion-Clipperton Fracture Zone (Eastern Pacific Ocean)

Sampling locations of cruises SO239 & SO268

Manganese (Mn) Nodules

- ≤100 Mn nodules from BGR & GSR and different depth (≤0.5 cm)
- Differences in volume (17 - 640 cm³), weight (30 - 960 g), shape (round or elliptical), porosity, attached fauna
- Subsamples from on top of the nodule surface (a), bottom side (b), inside of the nodule core (c), 3 samples per nodule for DNA & RNA extraction; enzyme activity tests; cell counts

Gravity Core Sediment

- 5 m long gravity cores (GC) from eight different locations of the CCZ
- Differences in O₂ penetration depth (around 2-3.5 m;oxic and suboxic layers)
- 8 to 27 samples per GC core, taken at 0.5 m depth; stored at -20°C and -80°C
- Preliminary enzyme activity results of an oxic GC (GSR) from a carc region: Aminopeptidase activity until 40 ± 5 cm depth – detectable active C₄₀ degradation

Preliminary Results – Microbial Activity of Manganese Nodules

- e.g. β-Glucosidase and Chitobiase

Working on board during SO268

Thanks to HGF Group Bremen and Bremerhaven: Crew and Scientists of SO268; Special thanks to Jakob Barz (help in the lab) and Dr. Katja Lauper, Geomar (ideas & discussions)