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Abstract

Acoustic metrics (AM) assist our interpretation of acoustic environments by

aggregating a complex signal into a unique number. Numerous AM have been

developed for terrestrial ecosystems, with applications ranging from rapid bio-

diversity assessments to characterizing habitat quality. However, there has been

comparatively little research aimed at understanding how these metrics perform

to characterize the acoustic features of marine habitats and their relation with

ecosystem biodiversity. Our objectives were to 1) assess whether AM are able to

capture the spectral and temporal differences between two distinct Antarctic

marine acoustic environment types (i.e., pelagic vs. on-shelf), 2) evaluate the

performance of a combination of AM compared to the signal full frequency

spectrum to characterize marine mammals acoustic assemblages (i.e., species

richness–SR–and species identity) and 3) estimate the contribution of SR to the

local marine acoustic heterogeneity measured by single AM. We used 23 differ-

ent AM to develop a supervised machine learning approach to discriminate

between acoustic environments. AM performance was similar to the full spec-

trum, achieving correct classifications for SR levels of 58% and 92% for pelagic

and on-shelf sites respectively and > 88% for species identities. Our analyses

show that a combination of AM is a promising approach to characterize marine

acoustic communities. It allows an intuitive ecological interpretation of passive

acoustic data, which in the light of ongoing environmental changes, supports

the holistic approach needed to detect and understand trends in species diver-

sity, acoustic communities and underwater habitat quality.

Introduction

Contrary to what was thought during much of the 20th

century, underwater marine environments are filled with

sounds. Many aquatic organisms produce and rely on

acoustic cues as primary source of information about

their environment (e.g. Montgomery et al. 2006; Simpson

et al. 2011; Fais et al. 2016). In the oceans in general and

in polar regions in particular, access to visual species dis-

tribution and abundance is often limited, making biodi-

versity monitoring challenging or even impossible in

particular seasons. Passive acoustics has emerged as an

attractive alternative to conventional sampling techniques

to collect data, monitor acoustic biodiversity and evaluate

the effects of the acoustic structure of the landscape on

the abundance and distribution of terrestrial and aquatic

organisms (Van Parijs et al. 2009; Pijanowski et al. 2011).

In marine and polar habitats, the versatility of passive

acoustic recordings to remotely assess acoustic behaviour

and biodiversity was realized over 50 years ago (Watkins

1963; Watkins and Schevill 1968). Consequently, passive

acoustic datasets from particular regions currently consti-

tute extensive and ecologically valuable databases (e.g.

Nishimura and Conlon 1994; Boebel et al. 2006 and Van

Parijs et al. 2009 for a review). Nevertheless, the analysis

of these large passive acoustic datasets continues to be a

hurdle. Visual and aural processing of long-term, large

scale passive acoustic recordings by analysts is often
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infeasible in real-time. Automated call detectors provide

faster routines, yet they need to be calibrated for every

species and acoustic context and revised for missed calls

and false detections, which is also time consuming (e.g.

Baumgartner and Mussoline 2011; Leroy et al. 2018).

Over the last decade, several metrics have been pro-

posed to describe the variety of acoustic structures pro-

duced by both biotic and abiotic sound sources (e.g.

Sueur et al. 2014). Acoustic metrics (AM) assist our inter-

pretation of acoustic environments by aggregating the

acoustic information of a complex signal into a unique

number. They provide a rapid and intuitive solution to

analyse large passive acoustic data and can be generalized

to be applied to very different datasets. So far, AM have

been successfully used for different purposes in terrestrial

ecosystems and tested in some aquatic ones, including: as

proxies to perform rapid biodiversity assessments (e.g.

Sueur et al. 2008b; Pieretti et al. 2011; Depraetere et al.

2012), to model community assemblage patterns (Roca

and Proulx 2016), to describe spatial heterogeneity and

habitat type (e.g. Tonolla et al. 2011; Bormpoudakis et al.

2013; McWilliam and Hawkins 2013; Lillis et al. 2014), to

quantify anthropogenic noise pollution (Buxton et al.

2017), to evaluate the effect of human-induced noise on

animal behaviour (e.g. Joo et al. 2011; Kasten et al. 2012)

and to assess habitat quality or ecological condition (e.g.

Gordon et al. 2018). However, to date, there has been

comparatively little research aimed at using AM to under-

stand the variations in acoustic features of marine habi-

tats and their relation with the ecosystem biodiversity

structure and dynamics.

According to the acoustic niche hypothesis, the acoustic

environment can be represented as a resource that is

shared by vocalizing animals (Krause 1987). Co-occurrent

species produce species-specific spectral and temporal

communication patterns (L€uddecke et al. 2000; Sueur

2002) that may have evolved to minimize acoustic inter-

ference among one another. A consequence of this spe-

cialization is that the acoustic heterogeneity of a

community is predicted to increase with the number of

vocalizing species within it. Several studies have found

evidence of such acoustic partitioning to occur in differ-

ent terrestrial and aquatic acoustic communities (e.g.

Planque and Slabbekoorn 2008; Schmidt et al. 2013;

Rupp�e et al. 2015) and some of them have successfully

used specific AM to quantify the acoustic heterogeneity-

species diversity relationship (e.g. Sueur et al. 2008b; Pier-

etti et al. 2011; Villanueva-Rivera et al. 2011; Depraetere

et al. 2012). However, these positive relationships and the

possibility to use AM as a standard and rapid tool (e.g. as

proxies) to perform rapid biodiversity assessments have

so far yielded mixed results in marine ecosystems. Some

studies showed that particular metrics did adequately

mimic biotic acoustic activity and species diversity (Parks

et al. 2014; Bertucci et al. 2016; Harris et al. 2016; Pieretti

et al. 2017), while others considered indices suboptimal

to track marine acoustic diversity (Bohnenstiehl et al.

2018; Buxton et al. 2018; Lyon et al. 2019). Most of these

earlier studies evaluated the potential to use single AM in

shallow fish and shrimp-dominated underwater environ-

ments to estimate diversity which was characterized by

biodiversity proxies (recognizable acoustic units) or visual

biodiversity records. The only study assessing the poten-

tial of AM to estimate marine mammal diversity in deep

oceanic waters evaluated the performance of one single

acoustic index, i.e., the acoustic entropy index H (Parks

et al. 2014), to predict biotic acoustic activity. Parks et al.

(2014) found a positive relationship between a noise-

compensated H index (HN) and the number of whale

calls per hour.

Here we apply a suite of AM, including some acoustic

heterogeneity metrics, to characterize the marine mammal

community composition using a large passive acoustic

dataset from an area with relatively low anthropogenic

noise. We intentionally used the raw passive acoustic

recordings (i.e., without previous signal filtering) span-

ning 10 years and five sites to evaluate the general and

practical applicability of such rapid acoustic diversity

assessments. Our objectives were: (1) to assess whether

AM are able to capture the spectral and temporal differ-

ences between two distinct acoustic environment types

(i.e., pelagic vs. on-shelf) in our database, (2) to evaluate

the performance of a combination of AM compared

to the signal full frequency spectrum to discriminate

between the acoustic species richness levels and the iden-

tities of the species comprising the marine mammal com-

munities, and (3) to estimate the contribution of species

richness to the local marine acoustic heterogeneity mea-

sured by single AM.

Material and Methods

Study sites and acoustic recordings

Data were obtained from five recording sites situated in

the Atlantic section of the Southern Ocean (Weddell Sea

basin; Fig. 1) over 10 years (2008–2017). The Southern

Ocean represents one of the last relatively pristine mar-

ine acoustic environments on Earth (Halpern et al. 2015;

Jones et al. 2018), mainly composed of biotic sounds

coming from marine mammals and abiotic sounds from

storms, sea-ice and glacier calving (Menze et al. 2017).

Recordings were part of the big database collected since

2006 by the acoustic recording network in the Weddell Sea

(Boebel et al. 2006; Rettig et al. 2013). We used AURAL-

M2 recordings (Autonomous Underwater Recorder for
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Acoustic Listening-Model 2, Multi-�Electronique Inc 2016)

from four pelagic sites (AWI_61, AWI_66, AWI_67 and

AWI_69; Table 1). We define pelagic here as > 30 km

from the Antarctic ice shelf and > 300 m of seafloor

depth. We selected recording sites based on their geo-

graphic location covering potentially different oceanic

acoustic environments and marine mammal communi-

ties across the Weddell Sea area. Recorders were

attached to oceanographic deep-sea moorings of the

Hybrid Antarctic Float Observation System (HAFOS,

Rettig et al. 2013). The acoustic recorders were moored

at ~ 200 m depth and set to different duty cycles (see

Table 1) due to constraints of battery life and data stor-

age capacities. All AURAL recorders were equipped with

HTI-68-MIN hydrophones (High Tech Inc., Long Beach,

USA; please refer to Menze et al. (2017) and Table 1 for

further technical details on the recordings). The fifth

recording site (AWI_70; Table 1) was situated on the

edge of the Eckstr€om Ice shelf (also known as PALAOA,

see Boebel et al. 2006, but hereinafter referred to as the

on-shelf site). Recordings were made using a Sono.Vault

recorder (Develogic GmbH, Hamburg, Germany) con-

nected to an active RESON TC4032 hydrophone sus-

pended in the water column 70 m beneath the ice shelf

(~160 m thick) and at 90 m above the seafloor (see

Boebel et al. 2006 and Table 1 for further details on the

recordings).

Acoustic analysis

We performed a stratified random sampling over the

available temporal acoustic data per site (see 1) to select

acoustic recordings to include in the analysis. For each

site, we searched for an even repartition into species rich-

ness levels (SR) and a balanced representation of naturally

occurring species in the different community composi-

tions. A dataset comprising 921 acoustic environments

over the five sites and 10 years was selected for analysis.

All acoustic recordings used for further analysis were

clipped to 5 min length and decimated to 5000 Hz sam-

pling frequency to obtain a better resolution for the calls

of the most frequent marine mammal species detected in

the Weddell Sea (Boebel et al. 2009). Clipping and deci-

mating of data was performed in MATLAB R2017b. We

manually assessed acoustic presence/absence of the differ-

ent marine mammal species for every 5 min recording

through a visual and aural inspection of the data using

spectrograms in Raven Pro 1.5 (Cornell Lab of Ornithol-

ogy, Ithaca, NY, USA). Spectrogram settings for this task

were adapted to optimize the display of the different spe-

cies call patterns to facilitate identification. The SR level

of each recording was determined by the number of spe-

cies that co-occurred in the 5 min sound file.

We used the function meanspec from the seewave pack-

age (Sueur et al. 2008a) in R (version 3.5.2; R Core Team

Figure 1. Map of the five mooring locations in the Southern Ocean.
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2018) to extract the full frequency spectrum (hereinafter

referred to as full spectrum) of every 5 min acoustic file

(short-term Fourier transform with a 50% window over-

lap and 512 window length) yielding 256 amplitude val-

ues for the 0-2500 Hz frequency range per acoustic file.

In addition, we computed 23 different AM (see detailed

list in Table S1) for every acoustic file. Among these 23

AM we included those that have been shown to exhibit

good performance in different contexts when undertaking

rapid biodiversity surveys in terrestrial environments,

some of which have also been used to assess acoustic bio-

diversity for aquatic ecosystems. The metrics we used can

be classified in three categories: (1) indices based on dif-

ferent algorithms to compute acoustic complexity,

entropy or heterogeneity (a indices); (2) metrics measur-

ing amplitude or background patterns; and (3) metrics

computing ratios between acoustic activity in different

frequency bands. To compute the selected AM, we used

several functions from tuneR (Ligges et al. 2016), seewave

and soundecology (Villanueva-Rivera and Pijanowski 2018)

packages in R.

Statistical analysis

To evaluate the potential of AM to capture the difference

in spectral and temporal patterns between on-shelf and

pelagic sites, we used the K-means clustering algorithm.

K-means (MacQueen 1967) is an unsupervised machine

learning algorithm that iteratively partitions a given data-

set into a set of k clusters (i.e., k groups; where k repre-

sents the number of clusters) aiming to minimize the

total intra-cluster variation (i.e., high intra-class similarity

and low inter-class similarity). Intra-cluster variation is

computed as the sum of squared Euclidean distances

between points and the corresponding centroid. In this

study we applied the cascadeKM function within the ve-

gan package (Oksanen et al. 2018) in R to compute sev-

eral k-mean partitions forming a cascade from small to

large k values. We tested from 2 to 5 clusters (since we

only had five different sites) and used the ‘Simple Struc-

ture Index’ (ssi; Dolnicar et al. 1999) to determine the

correct number of groups. Ssi varies between 0 and 1,

where maximum values indicate the best number of clus-

ters. It is computed by normalizing the product of three

elements: the maximum difference of each variable (i.e.

AM) between the clusters, the sizes of the most contrast-

ing clusters and the deviation of a variable in the cluster

centres compared to its overall mean. We used a principal

component analysis biplot (PCA biplot) to visualize the

variation in the acoustic patterns (characterized by the

linear combination of 23 AM) among the 921 acoustic

environments and the cluster analysis results.

We used the Boruta algorithm (Kursa and Rudnicki

2010) to select relevant variables (for AM and full spec-

trum respectively) to include in random forest classifica-

tion models. The Boruta algorithm iteratively removes the

variables that are statistically less relevant than random

probes. A random probe is a ‘shadow’ variable, whose

values are obtained by shuffling values of the original

variable across objects. The algorithm then, performs a

classification using all attributes (original variables and

random probes) and computes their importance. The

importance of a shadow attribute can be nonzero only

due to random fluctuations. The set of importance of

shadow attributes is used as a reference to decide which

original variables are truly important. We used the Boruta

function from the Boruta package (Kursa and Rudnicki

2010) in R.

To test the ability of AM and the full spectrum to dis-

criminate between SR levels we developed separate ran-

dom forest models (Breiman 2001). We developed two

models for each site type (i.e., pelagic and on-shelf), one

model included AM whereas the other included full spec-

trum as input variables, resulting in a total of 4 models.

To assess AM accuracy to discriminate between species

identities we developed a random forest model per spe-

cies. We used the randomForest function in R ran-

domForest package (Liaw and Wiener 2002) and for each

model we grew 1001 trees and tested sqrt(p) predictor

variables at each split (where p is either the number of

AM or frequency bands). For each tree constructed in a

random forest, 2/3 of the data are subsampled to train

the classification model and 1/3 of the data are left out to

test the model (i.e., Out-of-bag or OOB cases). The

Table 1. Technical information on recorders per site. Recorders used coordinated universal time

Site Latitude Longitude Recording Period

Sampling

rate (Hz)

Bit depth

(bit)

Sampling

scheme

Frequency

range (Hz)

Sensitivity

(dB re1VlPa�1)

Gain

(dB)

AWI_61 61 00.88 S 055 58.53 W 2013–2015 32768 16 5 min/1 h 10–16 384 �162 22

AWI_66 66 01.13 S 000 04.77 E 2008–2010 32768 16 5 min/4 h 10–16 384 �162 22

AWI_67 66 36.70 S 027 07.31 W 2011–2012 32768 16 5 min/3 h 10–16 384 �162 22

AWI_69 68 59.74 S 000 00.17 E 2008–2010 32768 16 5 min/4 h 10–16 384 �162 22

AWI_70 70 31 S 008 13 W 2015–2017 96000 24 10 min cont. 10–48 000 �193 48
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general misclassification rate of the model (general OOB

estimate) is computed as the average across all OOB cases

and trees. We used the Gini index as a measure of the

reduction in misclassification error (i.e., variable impor-

tance) when including an additional predictor variable

(either AM or a frequency band) in the model. We addi-

tionally developed a random forest model using the 23

AM to determine the most important variables discrimi-

nating between the obtained clusters.

To test the effect of the community composition on

the local acoustic heterogeneity of both on-shelf and pela-

gic sites, we fitted a regression model for each of three

single acoustic heterogeneity metrics [acoustic entropy

index (H), acoustic evenness index (AEI) and acoustic

complexity index (ACI)], for pelagic and on-shelf sites

separately. We fitted beta regression models (Ferrari and

Cribari-Neto 2004) for H and AEI to account for the fact

that both indices are mathematically bounded between 0

and 1. We used the betareg function from the betareg

package in R (Cribari-Neto and Zeileis 2010) and

included SR and year as fixed predictor variables. For

ACI we fitted linear mixed-effects models using the lmer

function from the lme4 package in R. We included SR as

fixed effect and year as random effect variable. Year was

included to account for the unbalanced temporal variabil-

ity of the acoustic heterogeneity at pelagic and on-shelf

sites. To evaluate the goodness-of-fit of the models we

used pseudo R2 for the beta regressions and marginal and

conditional coefficient of determination for the linear

mixed-effect models.

Results

Acoustic assemblages in our study area were mainly com-

prised by 0 to 5 co-occurring species from an observed

regional pool of 10 different marine mammal species

(Fig. 2). We registered the acoustic presence of four

Balaenopteridae species, one Physeteridae, one Del-

phinidae and four Phocidae species (Tables 4 and S2). No

other biophonic sounds (e.g. fish or invertebrates) were

detected. Very few recordings (0.3%) showed more than

five species vocalizations co-occurring in the same 5 min

files and they occurred only in one of the five sites

(AWI_61).

Cluster analysis results showed that the best partition

achieved by the AM for the acoustic environments in our

study area and according to the ssi criteria was two

(k = 2; Fig. 3). The first cluster, hereafter referred as

‘pelagic cluster’, comprised 70%, 80% and 78% of

AWI_66, AWI_67 and AWI_69 acoustic environments

respectively. The second cluster, henceforth called ‘on-

shelf cluster’, comprised 90% of AWI_70 acoustic envi-

ronments and 60% of AWI_61. Random forest

classification showed that AM achieved a highly accurate

discrimination between pelagic and on-shelf clusters

(OOB = 2.28%). Variable importance showed that the

pelagic cluster was characterized by high background to

biotic signal ratios and low acoustic heterogeneity. Acous-

tic environments included in the on-shelf cluster had

higher sound pressure levels, lower background to biotic

ratios and higher acoustic heterogeneity (Fig. 3).

Random forest results showed that full spectrum and

AM achieved very similar accuracy in the classification of

SR and species identity. For pelagic sites, full spectrum

signatures, after Boruta variable selection, performed

slightly better than the AM (OOBspec = 38% vs. OOBac.-

metrics = 42%; 2). For the on-shelf site, classification per-

formances were similar between full spectrum signatures

and AM (OOBspec = 9.7% vs. OOBac.metrics = 9.8%;

Table 3). For both the on-shelf and pelagic models, the

AM that better discriminated between SR levels were

background level, mean spectral power level and ACI, yet,

the Boruta algorithm considered all 23 metrics relevant

for the classification. The performance of the AM differed

slightly from that of the full spectrum to classify species

identities, being it higher or lower according to the spe-

cies (Tables 4 and S3). In general, the misclassification

error of the model using AM was lower than 15%.

The acoustic heterogeneity variation represented by H,

AEI and ACI metrics was better explained by SR levels in

on-shelf than in pelagic sites. Pseudo and marginal R2

values were > 40% for on-shelf and < 40% for pelagic

sites (see Fig. 4). AEI and ACI showed a positive relation-

ship with SR while H showed a negative one. Both SR

and year had significant effects on acoustic heterogeneity

variation (Table S4).

Discussion

This study provides the first positive results in applying a

combination of AM to discriminate between acoustic

assemblage composition in marine acoustic environments.

We obtained highly accurate classification models for SR

in on-shelf sites (Table 3) and for species identity in gen-

eral (Table 4). The model using AM to discriminate

between SR levels in pelagic sites performed with an accu-

racy higher than 50% and was comparable to the model

using the full spectrum. However, the high prevalence of

background noise over the biotic signals in these acoustic

environments prevented higher classification accuracy. We

additionally show that in general, variation in acoustic

heterogeneity was better explained by SR in on-shelf sites

compared to pelagic ones, suggesting a potential to use

single acoustic heterogeneity metrics for rapid biodiversity

surveys in marine environments similar to the ones

recorded in on-shelf sites.
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Figure 2. Spectrograms showing two examples of low A. and high B. diverse acoustic environments from the Weddell Sea. Spectrograms were

computed using a Fourier window size of 1024 samples and an overlap of 50%.

Figure 3. Cluster analysis results based on k-means algorithm. Cluster analysis was applied to the matrix containing 23 AM computed for each

of the 921 acoustic environments. PCA biplot shows the variation in the acoustic patterns (characterized by the linear combination of 23 AM)

among these 921 acoustic environments along the first two principal components. Point colour illustrates the cluster to which each acoustic

environment belongs according to the k-means algorithm and the ssi criteria (on-shelf or pelagic). Ellipses represent the 95% quantile ellipse of

the two identified clusters. We additionally draw the AM that better discriminated between acoustic environments to classify them into the two

observed clusters (OOB = 2.28%). BP, SPL, BL, H and ACI represent background noise level percentile, mean sound pressure level, background

noise level, Acoustic entropy index and Acoustic complexity index respectively (see Table S1 in Supp. Mat. for further description).
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Acoustic environments in the Weddell Sea

We hypothesized that the variation in acoustic spectral

and temporal patterns between on-shelf and pelagic

acoustic environments was higher than within pelagic

sites. Recordings at the pelagic sites (AWI_61, 66, 67, 69)

were made with moored devices at water depths between

300 and 5000 m depth with strong seasonal fluctuations

in local ice cover. The on-shelf site (AWI-71) hydrophone

was suspended in the water column less than 300 m deep

and was permanently shielded by the overhanging ice

shelf. The specific conditions of the location of this on-

shelf site provide a very particular acoustic environment

characterized by the intensity and clarity of particular

marine mammals calls, such as the four most abundant

Antarctic seal species (Table S2). Furthermore, pelagic

sites may be more likely to have transiting animals,

whereas shelf areas may be zones where animals are more

prone to stay longer, either because of the coastal polynya

granting them access to open water when needed, or the

local upwelling providing them foraging opportunities.

This is congruent with our result, showing that on-shelf

acoustic environments are characterized by higher sound

pressure levels, lower background to biotic signal ratios

and higher acoustic heterogeneity. The cluster analysis

revealed two distinct clusters that mainly represented the

acoustic environments from on-shelf and pelagic sites

respectively. The association of most sites to one or other

cluster was clear and could be explained by their physical

position in the Weddell Sea basin and their acoustic envi-

ronment patterns. However, this was not the case for site

AWI_61, which was considered a pelagic site, but showed

a 60% association to the on-shelf cluster. This could be

partially explained by the acoustic properties of the 0 and

1 SR level acoustic environments from AWI_61 site,

which were similar to the AWI_71 ones, in that the sum

of energy from 200 to 2500 Hz frequency band was

higher than in other acoustic environments. While in

AWI_71 this pattern was due to the occasional presence

of vessel noise, it is impossible to know the source in

AWI_61 case because it is integrated in the background

noise and visually or aurally unidentifiable.

AM to characterize marine acoustic
community composition

The advantage of using the full spectrum in a classifica-

tion model lies in that it conserves the complete acoustic

information present in the audio files. However, classifica-

tion models fitted on so many variables (e.g. 256 fre-

quency bands) may be difficult to interpret and require

very long computation times, especially when using

acoustic recordings with higher sampling rates than the

Table 2. Pelagic sites (n = 646)

SR N Class error

0 57 0.37

1 100 0.33

2 174 0.28

3 169 0.48

4 104 0.54

5 42 0.74

All AM were relevant for the classification of SR levels according to

the Boruta test. Most important metrics determined by the mean

decrease in Gini index were: m, M(SPL), ACI. Model OOB = 42%.

Table 3. On-shelf site (n = 275)

SR N Class error

0 27 0.04

1 26 0.04

2 42 0.05

3 35 0.46

4 55 0.09

5 90 0.02

All AM were relevant for the classification of SR levels according to

the Boruta test. Most important metrics determined by the mean

decrease in Gini index were: M(SPL), ACI, m. Model OOB = 9.8%

Table 4. Random forest classification models (one per species) to dis-

criminate between species identities (n = 921)

Species N

OOB

(%)

Class

1 error

Class

0 error

Balaenoptera musculus

intermedia

(Antarctic blue whale)

759 9 0.03 0.35

Balaenoptera physalus

(Fin whale)

268 11 0.24 0.06

Balaenoptera bonaerensis

(Antarctic minke whale)

420 9 0.09 0.08

Megaptera novaeangliae

(Humpback whale)

81 6 0.65 0.00

Physeter macrocephalus

(Sperm whale)

16 2 1.00 0.00

Orcinus orca (Killer whale) 44 5 1.00 0.00

Leptonychotes weddellii

(Weddell seal)

182 3 0.09 0.01

Lobodon carcinophaga

(Crabeater seal)

303 9 0.15 0.06

Ommatophoca rossii

(Ross seal)

93 3 0.31 0.00

Hydrurga leptonyx

(Leopard seal)

300 12 0.27 0.05

All AM were relevant for the classification of species according to the

Boruta analysis. Class 1 and 0 error refers to the misclassification esti-

mate for missed detections and false detections respectively.
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ones used here. Conversely, AM have a predetermined

structure, such that their interpretation is more intuitive

and relates to ecological processes allowing a more direct

comparison between acoustic environments. Moreover,

different AM capture very different characteristics of the

acoustic environment since they are based on different

mathematical principles (Sueur et al. 2014) and therefore,

the full spectrum’s advantage may even disappear when

using a combination of several AM in classification mod-

els. In this study we show that classification models using

the full spectrum achieve very similar results to those

using AM and therefore these last ones are good candi-

dates to be used in rapid biodiversity assessments in

Southern marine ecosystems.

Classification models using AM were able to discrimi-

nate between SR levels of acoustic communities over vari-

ous years and sites. However, model predictions were

more accurate for acoustic assemblages in on-shelf sites

than in the pelagic ones. In both cases, all 23 AM were

relevant in classification process, yet mean sound pressure

level, background level and ACI were the metrics that bet-

ter performed to discriminate between SR levels.

Although the classification model for SR in the on-shelf

site revealed to be very accurate in general (OOB < 10%)

not all SR levels were predicted with such accuracy.

Model performance decreased drastically for SR level 3

(54% accuracy; Table 3). This lower accuracy is due to

the high similarity in the acoustic patterns of the acoustic

environments comprising 3 and 4 species (Table S2). AM

were not able to discriminate between them at the on-

shelf location.

While AM have already shown their relevance to

describe acoustic diversity at the community level in dif-

ferent acoustic contexts, we show for the first time that a

combination of AM can be very efficient in discriminating

species identities from natural-5 min marine acoustic

recordings. We detected the acoustic signal of 10 different

marine mammal species in the 921 acoustic recordings

spanning five sites and 10 years (Tables 4 and S2). This

pool of marine mammal species agrees with previous

observations in the Weddell Sea (see Van Opzeeland et al.

2010; Menze et al. 2017). The accuracy of the classification

models to identify the presence of seven of the 10 detected

marine mammal species, was very high, with global classi-

fication performance ranging from 88 to 97% accuracy,

missed detections range of 5-31% and false detections

range of 1–35% (Table 4). The performance of the models

fits in the range achieved by other tools developed for

example, to identify distinct elements (i.e., sound types)

composing natural terrestrial acoustic communities (e.g.

Stowell and Plumbley 2014; Ulloa et al. 2018) or designed

to automatically trace specific call patterns in spectro-

grams and report detection and abundance estimations for

marine mammal species (e.g. Baumgartner and Mussoline

2011; Helble et al. 2012). Ulloa et al. (2018) reported a

global classification performance measured by the

Adjusted Rand Index (ARI) of 0.85; where ARI measures

the concordance between manual and automatic partitions

and has value 1 when both partitions are identical. Baum-

gartner and Mussoline (2011) compared their system per-

formance to that of an expert analyst and reported missed

detections of 46% and 52%, and false detections of 35%

and 48% for two whale species respectively. Nevertheless,

any performance comparison should be carefully evalu-

ated, especially when there are substantial differences in

the fundamental methodology employed (e.g. unsuper-

vised vs supervised machine learning techniques) to

develop the identification tools.

The predictive power of classification models was low

for humpback whale, killer whale and sperm whale

(Table 4). This result could be partly explained by the

low relative presence of these species in our dataset

(n < 90; Table S2) preventing a successful training of

their respective classification models. Besides, in this

Figure 4. Species richness-acoustic heterogeneity relationship. Acoustic heterogeneity is represented by three different AM, i.e., H, AEI and ACI.

Beta regression models included SR and Year as fixed effects and linear mixed-effect model SR as fixed and Year as random effect.
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study we used decimated recordings with a Nyquist fre-

quency of 2.5 kHz and these marine mammal species

produce broadband calls with main energy allocated in

high frequency bands (>2.5 kHz). Even though we are

able to visualize and identify the lower components of

their acoustic signals in a 2.5 kHz spectrogram, these

components were highly variable within species and com-

prised acoustic patterns of low intensity and extremely

scattered in frequency and time. Apparently, neither AM

nor the full frequency spectrum was able to capture a

concrete acoustic pattern for each species to yield accurate

predictions (Tables 4 and S3). Follow-up studies aiming

to develop accurate classification models for marine

mammals, should adjust sampling rates of recordings to

match the vocalization range of the species of interest.

The relatively low SR levels found in the acoustic

assemblages in our system (~ 5 co-occurring species) may

have contributed to the high accuracy rates of both classi-

fication models (SR levels and species identity). As the

number of calling species increases, the acoustic environ-

ment gets filled more consistently over time and more

evenly across audio frequencies, yielding less variation in

AM at higher SR levels. This particularly holds true for

those AM that estimate acoustic complexity or hetero-

geneity (Sueur et al. 2008b; Roca and Proulx 2016).

While anthropogenic noise was not frequent in our

recordings, we had recurrent ice-related acoustic events

which were evenly distributed among 0 to 5 SR level

recordings. These events were characterized by single and

short broadband intense acoustic pulses or complex nar-

row band modulated signals. In both cases, the AM

approach to classify SR levels and species identities

seemed robust to these ice-related events.

Acoustic heterogeneity and Species Richness

The acoustic heterogeneity of marine acoustic environ-

ments varied with species richness in on-shelf and pelagic

sites (Fig. 4). In on-shelf sites, SR showed a positive rela-

tionship with AEI and ACI metrics explaining a large part

of the acoustic heterogeneity variation (>50%). In pelagic

sites, SR explained less of the acoustic heterogeneity varia-

tion in general (<40%) and SR only showed a strong but

negative relationship with H. While there are different

technical reasons that could explain these weak and nega-

tive relationships (see also Gasc et al. 2015), we conclude

that the use of single (individual) acoustic heterogeneity

metrics for rapid biodiversity surveys in marine acoustic

environments similar to the ones found in our pelagic

sites, may not be adequate. However, these metrics have

the potential to be used in preliminary biodiversity or

acoustic richness surveys for large datasets in marine

acoustic environments similar to our on-shelf ones.

Optimization of the AM approach

The selection and optimal combination of AM to use in

the predictive models to characterize acoustic diversity in

marine environments will probably affect the model’s effi-

ciency and vary according to the acoustic context. In their

study, Buxton et al. (2018) addressed the low reliability of

AM to predict bio-acoustic activity in shallow marine

environments due to the high overlap between anthropic

noise and biotic signals and the presence of impulsive

snapping shrimp sounds. They recommend the develop-

ment of particular AM more relevant to those acoustic

environments. To improve the characterization of our

marine acoustic environments and communities, the pela-

gic sites in particular, the use of metrics that characterize

the spectral and temporal patterns of the background

noise, as well as, its relative contribution to the acoustic

environment in relation to the acoustic signals, are likely

highly relevant. The objective of the study, whether it is

to describe and predict acoustic environment type (terres-

trial, marine, forest, marshes, shallow, deep, etc.), com-

prising elements abundance or presence (anthropogenic,

abiotic, biotic, etc.), acoustic activity, acoustic species

richness or species identity, or to compare spatio-tempo-

ral variations between two or more acoustic environ-

ments, will also determine the optimal combination of

AM to choose. As an example, beta diversity indices

(Sueur et al. 2014) may be relevant and very suitable to

apply in deep marine environments to assess temporal

changes in a focus community or spatial variations at a

particular time.

The aim of this study was to test the robustness of a

simple method using AM on raw marine passive acoustic

recordings to describe the acoustic community structure.

Our results show that for pelagic sites the use of raw

recordings which are characterized by high background to

signal ratios, may affect the accuracy of model predic-

tions. For follow-up studies, a possible approach to this

problem may involve applying procedures for overall

noise reduction (e.g. Helble et al. 2012). An alternative

would be to restrict the distance range over which specific

acoustic signals are considered to be ‘active contributors’

to the acoustic assemblage of a particular site. In this lat-

ter case, such a pre-selection of acoustic recordings could

e.g., only include recordings that exceed or fell behind, a

pre-defined amplitude threshold in species-specific fre-

quency bands.

Conclusion

In the light of ongoing changes in marine acoustic envi-

ronments as a consequence of different external drivers as

climate-induced changes (e.g. reduced ice cover, alteration
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of ocean currents, species distribution and migration pat-

terns; Poloczanska et al. 2016) and increasing economic

development (e.g. offshore energy, increasing ship ton-

nage; Halpern et al. 2008, 2015), passive acoustics and in

particular AM, provide the opportunity to develop pow-

erful and holistic approaches of sound analysis to swiftly

assess the degree of change, gauge the scale over which

such changes impact the underwater acoustic environ-

ment and ultimately inform monitoring and conservation

plans. Here we show the potential of a method, success-

fully applied to a large marine acoustic dataset from the

Southern Ocean, to detect trends in marine mammal spe-

cies diversity and comprehend how natural intact under-

water acoustic environments are composed and function.

Indeed, it may also provide reliable measures over longer

time frames to monitor trends in species and underwater

noise diversity in less pristine waters than the Southern

Ocean. Understanding the structure and functioning of

acoustic communities from pristine areas can provide

unique baseline information that can serve as a reference

to learn about underwater acoustic habitat quality and

the effects of anthropogenic pressures on marine commu-

nities.
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