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ABSTRACT 

Benthos is the term used to refer to all organisms living on, within or in tight relation with the 

bottom of any water body. In this particular case, it is used to refer to fauna inhabiting the 

shelf of the Weddell Sea. 

The study of benthos in the Southern Ocean has over 100 years of history, with its first 

important milestone being the Challenger expedition. From then onwards, benthic research 

has been marked by “periods” with various focus: the “taxonomical period” with focus on 

species descriptions; the “ecology focused period”  started with technological advances which 

allowed for SCUBA diving, settling of Antarctic research bases, and the development of 

icebreakers; followed by the “ecophysiological and experimental period” with focus on 

animal physiology and in-situ experiments ; and the recent “functional ecology and 

physiology period”  focusing on how benthos might react to ongoing and predicted climate 

change. 

Collective knowledge obtained through the research history of Antarctic benthos has helped 

to understand how seabed living organisms have evolved and adapted to its extreme 

environment. Glaciations in the Oligocene (~35 mya) caused the loss of top predators such as 

large lithodid crabs and sharks. The formation of the circumpolar current, isolation of the 

Antarctic continent (Pliocene 5.3-1.6 mya), and further glacial/interglacial periods 

(Pleistocene 1.6-0.01 mya) resulted in the high endemism of Antarctic benthos and radiation 

of groups such as pycnogonids and peracarid crustaceans. More recently (in a geological 

time-scale), the last glacial maxima is pointed out as key in the evolution of cryptic species, 

the similarity of Antarctic and deep-sea benthos, and the circumpolar distribution of many 

groups and species. 

Benthos has been shaped by its isolation and evolution pressure of glaciations, and the 

additional effect of low but stable temperatures, and highly variable input of primary 

produced organic matter, and iceberg scours. “Present day” benthos is characterized by its 

capacity to live in temperatures well below 0°C, being stenotherm and eurybathic, distribute 

patchily, being dominated by suspension feeders and gigantisms, among others. These 

characteristics allow Antarctic benthos to develop dense and highly diverse communities, 

which can be richer than sub-tropical environments. To date, more than 7,200 benthic species 

have been described. However, based on estimations, the total number should lie well above 

17,000, meaning we are still far from a complete inventory. The infauna fraction of Antarctic 

benthos is mainly composed by burrowing worms, bivalves and small crustaceans, and the 

epifauna fraction varies according to local pelagic environmental regimes. Examples of this 

are the sponge dominated communities of the Ross Sea and Weddell Sea, and the motile 

holothurian deposit feeder community of the West Antarctic Peninsula shelf. This bentho-

pelagic coupling with its local and regional variations resulted in benthic communities and 

assemblages to be also diverse. However, our knowledge on benthic communities, its 

distribution and relation with the abiotic environment, still has many gaps, especially in areas 

with heavy sea-ice conditions which are hard to reach. 
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Recent awareness on climate change prompted Antarctic scientists to focus on how the 

Antarctic climate has changed during the instrumental period, and how it might change under 

different IPCC scenarios. The amounted knowledge shows general trends of increased sea-ice 

cover and decreased temperatures in the eastern Weddell Sea. However, other regions such as 

the Antarctic Peninsula and Bellingshausen Sea evidence an opposite trend (i.e. less sea-ice 

and higher temperatures). Recent studies in the Antarctic Peninsula have shown the decrease 

of sea-ice cover to increase primary productivity, which in turn increased the amount of 

carbon produced and fixed by benthic organisms.  

The present thesis tackles different aspects of the past, present and future of high Antarctic 

benthic communities of the Weddell Sea. Four manuscripts are included:  

- Manuscript 1 tackles methodological approaches used to sample benthos. This 

manuscript shows the complementary nature of sediment cores and seabed images, 

proving data of two compartments of benthos, the infauna and epifauna. This approach 

combining both methods is a practical and efficient method to study benthic fauna. 

- Manuscript 2 reviews knowledge on bentho-pelagic coupling on Antarctic shelves in 

order to put together the puzzle of how the coupling works. It is shown that bentho-

pelagic coupling in the Weddell Sea differs considerably from coupling processes in 

waters of the West Antarctic Peninsula.  

- Manuscript 3 builds up on the methodological knowledge of Manuscript 1 and uses it 

to describe benthic communities in the hard to access Filchner Region (southern 

Weddell Sea). In this area, which is predicted to suffer near-seabed temperature 

increases with serious implications for the global water mass circulation, benthos was 

studied intensively after a first attempt with trawls > 30 years ago. This manuscript 

shows changes in benthic community distribution and describes two “novel” benthic 

communities inhabiting the Filchner Region.  

- Manuscript 4 is a long-term study which considers a unique 26-year time series of 

benthic data obtained on the southeastern Weddell Sea shelf off Austasen. Based on 

these data, the benthos communities appear severely affected by a decrease of 

productivity due to increased sea-ice cover, and increase of scouring potential due to 

higher iceberg frequency and area after 2000. 

The answers provided by the manuscripts of this thesis bring with them a whole new set of 

questions. However, to answer these new questions (and those which are not or partially 

answered), we need to include additional benthos data. In the context of this thesis, such 

benthic metadata include e.g. physiological concepts and experiments, local particle flux and 

productivity regimes, sediment geomorphology and chemistry, water currents and water mass 

characteristics. Additionally to these metadata, modern mathematical and statistical 

approaches should be considered over classical ones, to include qualitative and categorical 

data which are usually not included in e.g. linear algebra. In conclusion, a key concept to 

answer unresolved and new question is “multidisciplinary work”, which would help to 

connect Antarctic benthic fauna with other biotic and abiotic characteristics, and to draw lines 

between benthic and pelagic realms. By doing this we will be able to put together the benthic 

puzzle piece by piece, and understand how benthos has been, and will be, affected by an 

everchanging environment. 
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ZUSAMMENFASSUNG 

Der Begriff “Benthos” umfasst alle Organismen, die auf oder im Sediment oder in enger 

Beziehung mit dem Sediment in Gewässern jeglicher Art leben. In der vorliegenden Arbeit 

bezeichnet dieser Begriff die Makrofauna des Weddell Meer Schelfs. 

Untersuchungen des Benthos im Südpolarmeer haben auf eine über 100-jährige Geschichte, 

die ihren Anfang mit der „Challenger Expedition“ nahm. Nachfolgende Untersuchungen des 

Benthos lassen sich in Zeiträume mit unterschiedlichen Schwerpunkten einteilen. In einer 

„taxonomischen Phase“ stand zunächst die Beschreibung der Arten im Mittelpunkt. Die 

anschließende „ökologisch ausgerichtete Phase“ begann mit zunehmender Technologisierung 

der Forschung; insbesondere das Gerätetauchen, die Errichtung von Forschungsstationen in 

der Antarktis und die Entwicklung leistungsstarker Forschungseisbrecher waren wichtig für 

die Forschung in dieser Phase. Danach folgte eine „ökophysiologische und experimentelle 

Phase“ mit Fokus auf die Tierphysiologie und in situ Experimenten. Im Moment durchlaufen 

wir eine “funktionelle und physiologische Phase“ mit einem Schwerpunkt auf Studien, die 

sich mit der zukünftigen Entwicklung von Benthos vor dem Hintergrund prognostizierter 

Klimaveränderungen befassen. 

Das im Verlauf der bisherigen Untersuchungen des Benthos erlangte Wissen erlaubt uns 

Einblicke, wie Benthosorganismen sich unter den rauen Bedingungen des Südpolarmeeres 

entwickelt und angepasst haben. Die Vereisung im Oligozän (̴ 35 mya) führte zum Aussterben 

von Räubern wie lithodiden Krebsen und Haien in diesen Gewässern. Die Ausbildung des 

Zirkumpolarstroms (Pliozän ̴ 5,3 bis 1,6 mya) isolierte den Antarktischen Kontinent. Weitere 

glaziale-interglaziale Perioden während des Pleistozäns ( ̴  1,6 bis 0,1 mya) resultierten dann 

in einem hohen Endemismus der benthischen Fauna mit Ausbreitung von Gruppen wie z.B. 

Pycnogoniden und peracariden Krebsen. Ein zentrales Ereignis in jüngerer Zeit war die letzte 

glaziale Periode, die dazu führte, dass sich kryptische Arten ausbilden konnten und, zu einer 

Ähnlichkeit von Tiefsee- und antarktischem Benthos führte sowie zu einer zirkumpolaren 

Verbreitung vieler Gruppen und Arten. 

Isolation und Evolutionsdruck durch Vereisung haben das Benthos geprägt sowie, zusätzliche 

Effekte wie z.B. niedrige aber stabile Wassertemperaturen, sehr variable Verfügbarkeit von 

organischem Material und Störung durch gestrandete Eisberge. Heutzutage ist das Benthos 

charakterisiert durch seine Fähigkeit, in Wassertemperaturen < 0°C zu leben, die Tiere sind 

stenotherm und eurybath, unregelmäβig verbreitet, sie sind dominiert von 

Suspensionsfiltrierern, und Gigantismus ist häufig. Aufgrund dieser Eigenschaften ist das 

antarktische Benthos in der Lage, dichte Gemeinschaften mit hoher Diversität zu entwickeln, 

die artenreicher und diverser als sub-tropische Gemein-schaften sein können. Bis heute sind > 

7200 benthische Tierarten beschrieben worden. Allerdings haben Berechnungen ergeben, dass 

die tatsächliche Artenzahl mit > 17000 erheblich höher liegen dürfte, das heiβt wir sind im 

Moment weit davon entfernt, die komplette Artenvielfalt der Antarktis zu kennen. Die 

Endofauna des antarktischen Benthos besteht im Wesentlichen aus bohrenden Würmern, 

Muscheln und kleinen Krebsen, wohingegen die Zusammensetzung der Epifauna variiert und 

stark von lokalen Parametern im Pelagial geprägt wird. Beispiele hierfür sind die Schwamm-

dominierten Gemeinschaften im Ross und Weddell-Meer und die von freibeweglichen 
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Holothurien dominierten Gemeinschaften von Sustratfressern auf dem westlichen Schelf der 

Antarktischen Halbinsel. Dieses bentho-pelagische Zusammenspiel mit seinen lokalen und 

regionalen Charakteristiken fördert die hohe Diversität der benthischen Gemeinschaften. 

Leider haben wir aber immer noch erhebliche Wissenslücken hinsichtlich der Verteilung der 

benthischen Gemeinschaften und ihrer Interaktion mit abiotischen Umweltparametern; dieses 

gilt insbesondere für Gebiete, die wegen permanenter und starker Eisbedeckung auch heute 

nur schwer zugänglich sind. 

Die aktuelle Diskussion über Klimaveränderungen richtet die Aufmerksamkeit der 

Antarktisforscher auf die Fragen aus, wie das antarktische Klima sich im Verlauf des 

instrumentellen Zeitalters verändert hat und wie es sich unter Berücksichtigung verschiedener 

IPCC-Szenarien künftig verändern wird. Unser bisheriges Wissen lässt vermuten, dass die 

Meereisbedeckung im östlichen Weddell Meer zunehmen wird und die Wassertemperaturen 

dort sinken werden. Andere Regionen wie z.B. die Bellingshausen See und die Gewässer an 

der Antarktischen Halbinselzeigen allerdings einen gegenläufigen Trend mit weniger 

Meereisbedeckung und steigenden Wassertemperaturen. Neuere Untersuchungen an der 

Antarktischen Halbinsel zeigen, dass steigende Temperaturen und abnehmende Meer-

eisbedeckung zu einer erhölten Primärproduktion führen und somit auch zu steigender 

Kohlenstoffproduktion und durch Benthosorganismen vermehrt gebundenen Kohlenstoffs.  

Diese Doktorarbeit befasst sich mit verschiedenen Aspekten der Vergangenheit, der 

Gegenwart und der zukünftigen Entwicklung der benthischen Gemeinschaften im 

hochantarktischen Weddell-Meer. Vier Veröffentlichungen sind eingebunden: 

- Manuskript 1 befasst sich mit verschiedenen Methoden, die verwendet werden um 

Benthos zu sammeln und zu beschreiben. Bei den Methoden handelt es sich um 

quantitatives Sammeln mit Bodengreifern insbesondere der Endofauna und um das 

Fotographieren der Bodenfauna mit UW-Kameras, wobei diese Methode besser die 

Epifauna erfasst. Die Ausrüstung eines Bodengreifers mit einer UW-Kamera erlaubt 

eine sehr effiziente Beprobung und Darstellung der Fauna am Meeresboden. 

- Das zweite Manuskript ist ein Review, in dem Prozesse der bentho-pelagischen 

Kopplung auf dem Antarktischen Schelf und deren Funktionsweise, anschaulich 

dargestellt werden. Es wird gezeigt, dass sich die bentho-pelagische Kopplung im 

Weddell-Meer erheblich anders darstellt als in den Gewässern westlich der 

Antarktischen Halbinsel. 

- Das dritte Manuskript beschreibt, aufbauend auf den im ersten Manuskript 

dargestellten Methoden, die Benthosgemeinschaften der schwer zugänglichen 

Filchner-Region im südlichen Weddell Meer. In diesem Gebiet, für das eine Zunahme 

der bodennahen Wassertemperaturen prognostiziert wird, mit drastischen Folgen auch 

für die globale Wassermassenzirkulation, wurde das Benthos erstmals nach > 30 

Jahren intensiv untersucht. In diesem Manuskript werden Veränderungen in der 

Verbreitung der benthischen Gemeinschaften in dieser Region beschrieben und es 

werden zwei für die Filchner-Region neue Gemeinschaften vorgestellt. 

- Manuskript 4 ist eine Langzeitstudie. In ihr wird eine einzigartige 26-jährige 

Beprobung des Benthos auf dem südöstlichen Schelf des Weddell-Meeres vor 

Austasen vorgestellt. Das Benthos in diesem Gebiet scheint erheblich unter einer 



Zusammenfassung 

 

V 
 

Abnahme der Primärproduktion zu leiden, die auf eine Zunahme der 

Meereisbedeckung zurückgeführt wird und auf ein erhöhtes Störpotential aufgrund des 

zunehmenden Auftretens von großen Eisbergen ab dem Jahr 2000. 

Die Antworten auf viele der Fragen, die in dieser Doktorarbeit und den Manuskripten 

gegeben werden, werfen gleichzeitig eine Vielzahl von neuen Fragen auf. Die Antworten auf 

diese Fragen, auch auf Fragen, die im Rahmen dieser Arbeit nur teilweise beantwortet werden 

konnten, erfordern weitere Untersuchungen des Benthos. Im Kontext dieser Arbeit sollten 

diese weiteren Untersuchungen auf physiologische Konzepte und Experimente, auf lokal 

unterschiedliche Partikelflüsse und Produktionsregime ausgedehnt werden, und die Geo-

morphologie und Chemie des Meeresbodens müssten berücksichtigt werden, ebenso wie 

Strömungssysteme und unterschiedliche Wassermassen mit ihren Charakteristiken. 

Erforderlich ist weiterhin die Einbindung moderner mathematischer und statistischer 

Methoden, um auch qualitative und kategorische Daten einarbeiten zu können, die 

normalerweise in z.B. linearer Algebra nicht berücksichtigt werden. Zusammenfassend kann 

man sagen, dass der Schlüssel zu Antworten auf ungelöste und auch neue Fragen ein 

zukünftiger multidisziplinärer Forschungsansatz ist, in dem Fragen zum Benthos eng 

verknüpft werden mit anderen biotischen und abiotischen Fragen und Prozessen, die dann das 

Pelagial und Benthal verbinden. Wenn wir das verwirklichen, werden wir in der Lage sein, 

dass “benthische Puzzle“ Stück für Stück zusammen zu setzen, und werden verstehen, wie das 

Benthos sich entwickelt hat und wie es sich in einer dynamischen Umwelt weiterhin 

entwickeln wird.  
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GLOSSARY 

- Community: Ecological unit composed of populations of different species, co-

occurring in the same environment. 

- Assemblage: Sub-unit of a community. 

- Diachronous: Feature or phenomenon occurring in different geological periods. 

- Cryptic species: One of two or more morphologically indistinguishable species which 

are genetically different. 

- Infaunal benthos: Fraction of seabed biota living burrowed in the sediment. 

- Epifaunal benthos: Fraction of seabed biota living on the sediment. 

- Macrobenthos: Benthic organisms with body size > 0.5 mm. 

- Megabenthos: Benthic organisms with body sizes > 1 cm. Large enough to be 

observed in seabed images and videos. 

- Ice Shelf Water: Water mass generated by the interaction of ice shelves and High 

Salinity Shelf Water, one of the precursors of Weddell Sea Bottom Water and 

Antarctic Bottom Water, drivers of the global thermohaline circulation. 

- Bentho-pelagic coupling: Term used to refer to the interconnectivity between benthic 

and pelagic systems, with a focus on benthic processes affecting and modifying 

pelagic abiotic/biotic factors. 

- Pelago-benthic coupling: Term used to refer to the interconnectivity between benthic 

and pelagic systems, with a focus on benthic processes affecting and modifying 

benthic abiotic/biotic factors. 
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GENERAL INTRODUCTION 

General remarks 

The study of benthos has a long tradition, even in the Southern Ocean (Clarke 2008, Griffiths 

et al. 2018). As stated by Arntz et al. (1999), “already at first glance, the marine benthos 

reveals a number of properties which render its study not only exciting, but also particularly 

rewarding for the solution of ecological questions”, this needs to be even more emphasized in 

view of ecological questions regarding Antarctic cold water systems, which are forming the 

focus of this thesis. Anrtz’ statement is particularly true if we consider that benthic habitats 

are extremely diverse, including soft and hard bottoms, shallow shelf and deep sea regimes, 

reefs, estuaries and hydrothermal vents. Antarctic benthic biota have been proposed as 

“canaries” of global climate change (Barnes and Clarke 2011), since they are profoundly and 

quickly affected by climate-driven ice and temperature regimes. Hence, in the context of the 

uneven impact of climate change in Antarctica with sea-ice gains and sea-surface temperature 

drops in the eastern Weddell Sea, and opposite trends in the western Weddell Sea (e.g. Liu et 

al. 2004, Turner et al. 2014, 2016), studies of the “Antarctic benthos” can provide valuable 

information on how different Antarctic systems might react.  

Research history 

“Antarctic benthos” is the term used in literature to refer to benthos inhabiting the shelves 

slopes and deep waters around the Antarctic continent and adjacent islands (Gutt 2007). The 

history of its scientific exploration is over a century long (Clarke 2008). While Antarctic 

exploratory expeditions started in the late 18
th

 century (Griffiths et al. 2018), the first 

substantial benthic samples were taken during the Challenger expedition in the late 19
th

 

century (Arntz et al. 1994, Griffiths et al. 2009). Until the first half of the 20
th

 century, most 

subsequent benthic studies aimed at species descriptions and faunal inventories (De Broyer et 

al. 2010). 

After this “taxonomical period”, in the second half of the 20
th

 century an “ecology focused 

period” commenced, hand-in-hand with the establishment of research bases and the 

development of SCUBA gear for divers, allowing for the early description of benthos living 

within diving reach, such as the sponge dominated community in the McMurdo Sound in the 

Ross Sea (Dayton et al. 1974). Another technological breakthrough was the use of icebreaking 

research vessels, such as Polarstern, Nathaniel B. Palmer, and James Clarke Ross. In the 

Weddell Sea, the expeditions of RV Polarstern started in the early 1980s. Based on bottom 

and Agassiz trawls deployed during the first Polarstern expeditions, Voß (1988) described for 

the first time benthic community types inhabiting the southern and eastern Weddell Sea 

shelves. This description was further developed by the studies of Gerdes et al. (1992) and Gutt 

and Starmans (1998), which were based on different quantitative approaches.  

During the last decades technological advances led to the onset of an “ecophysiological and 

experimental period” that has been characterized by more complex experimental works, and 

molecular techniques used for taxonomic and physiological studies (see e.g. Pörtner et al. 

2007, De Broyer et al. 2010, Peck et al. 2014). However, field ecological research is also 
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continuing, benefiting from taxonomic and physiological advances, as well as from modern 

research facilities in Antarctic stations (e.g. Rothera and Carlini Stations) which allowed for 

performing in situ studies of benthic physiology. Recently, our awareness of climate change 

resulted in a focus shift to functional ecology and physiological studies in a pursuit of 

understanding how the unique and rich Antarctic benthos is able to cope with its extreme 

environment, and how it will respond to future climate scenarios. 

Despite the technological advances of the past decades, for instance regarding image 

resolution and computational power, many approaches to sample benthos in ecological studies 

remained almost unchanged, thus, the statement made by Arntz et al. (1994) still holds true: 

“Benthologists are comparatively conservative in their methods”. The use of grabs, corers, 

trawls, dredges and seabed imaging gear, while fine-tuned, is relatively the same as when they 

were introduced. Some gears such as the Agassiz trawl, Petersen grab, and Reineck box corer 

were introduced to scientific field research 130, 107 and 55 years ago, respectively (Agassiz 

1888, Petersen and Boysen Jensen 1911, Reineck 1963). This long history has allowed 

comparisons between studies over a long period of time. One example is the BENthic 

Disturbance EXperiment (BENDEX), in the course of which an artificially disturbed seabed 

area in the eastern Weddell Sea was re-sampled with a camera-guided coring device four 

times, in order to follow the recolonization process (Gerdes et al. 2008, Knust and Schröder 

2014).  

In general, the use of different sampling approaches impedes comparative across-study 

analyses. Therefore, large-scale studies on the benthos in different Antarctic regions are 

notoriously difficult (Arntz et al. 1994). This holds particularly true when quantitative data of 

different benthic compartments, such as, e.g. epifauna (based on seabed imagery) are 

compared with quantitative data on infauna (based on box corer samples). A way of 

homogenizing or combining spatial data from different gears, and its transformation for sound 

comparisons is still lacking. The same holds true for dedicated sampling strategies in order to 

study different benthic compartments in parallel and in a quantitative way. 

Evolutionary history of Antarctic benthos 

Antarctic benthic biota has been shaped to current state after millions of years of isolation and 

adaptation, making them a unique example of environment driven evolution (Rogers 2012). 

This process occurred in an environment with low but stable temperatures, low terrestrial 

inputs, a highly variable sea-ice cover, anchor ice, iceberg scours, and long-term/large-scale 

modifications of circulation patterns and ice shelf extensions and collapses (Arntz et al. 1994, 

Convey et al. 2009, Turner et al. 2009, 2014, Constable et al. 2014).  

The long evolutionary history of Antarctic cold-water benthos was markedly impacted in the 

Oligocene ~35 million years ago (mya). Sediment records give evidence of glaciation events 

and decrease of temperatures, which led to a loss of diversity due to physiological constraints, 

especially of top predators such as sharks and crabs (Brandt 2005, Thatje et al. 2005, Rogers 

2012). The further development of the Antarctic ecosystems towards their current state was 

influenced by the formation of the circumpolar current system and the isolation of the 

Antarctic continent during the Pliocene (5.3-1.6 mya). For the benthos the recurrent 
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glaciation/deglaciation events during the Pleistocene (1.6-0.01 mya) played a particularly 

important evolutionary role (Arntz et al. 1994, Thatje et al. 2005, Barnes and Clarke 2011).  

These glaciation events and the biogeographic isolation of the Antarctic continent led to the 

generally high endemism and pronounced radiation of benthic species in Antarctic waters 

(Thatje et al. 2005, Barnes and Kuklinsiki 2010). First estimates of the endemism of Antarctic 

benthos resulted in values as high as ~70% (Arntz et al. 1997). Later estimates, however, 

suggest a lower level of ~50% (Griffiths et al. 2009). The level of radiation of some groups, 

such as pycnogonids and peracarid crustaceans, has been regarded to be similar to the one of 

marsupials in Australia (Brandt 2005), which radiated due to absence of placental mammals 

(Clemens 1968). Likewise, Antarctic pycnogonids and peracarid crustaceans are thought to 

have radiated due to the absence of top predators, such as large lithodid crabs, after the 

cooling of the Southern Ocean.  

Another key event for the Antarctic benthos occurred during the last glaciation maximum. 

During this period, the Antarctic ice shelves reached their maximum extension 15kya, and 

almost completely coved the Southern Ocean shelves. The diachronous extension of the ice 

shelves during Pleistocene glacial periods is hypothesized to explain not only the circumpolar 

distribution of many Antarctic benthic organisms, but also the high amount of Antarctic 

cryptic species (Thatje et al. 2005). On the one side, benthos is thought to have “escaped” 

shelf-ice advances by migrating to the deep sea. After the shelf ice retreated during warmer 

interglacial periods, benthic organisms started to recolonize the Antarctic shelves, leading to 

the current circumpolar distribution (Brey et al. 1996). On the other side, some benthic 

organisms could have migrated from one shelf refuge to the next, before the ice shelf fully 

developed, thus recolonizing adjacent shelves (Thatje et al. 2005, Barnes and Kuklinski 

2010). Surviving by migrating among shelf refugia would have allowed for evolution of 

cryptic species (Thatje et al. 2005). Both strategies are reflected in the eurybathy of present-

day Antarctic benthic organisms (Brey et al. 1996). Some benthic taxa inhabiting Antarctic 

shelves still share similarities with deep-sea organisms (Barnes and Clarke 2011), and the 

different geological, geographical and climatic histories are now reflected in regional faunistic 

differences and in the high amount of cryptic species (Rogers 2012). 

Characteristics of modern Antarctic benthos  

Antarctic benthos has been shaped by its long-lasting biogeographic isolation and the 

evolutionary pressure exerted by recurrent glaciations. Other drivers are low but stable 

temperatures, a highly variable input of primary produced organic matter, and iceberg 

scouring. The combined effect of this environmental setting and the geological history have 

given Antarctic benthos the following general characteristics (Clarke 1988, Gerdes et al. 

1992, Brey and Clarke 1993, Arntz et al. 1994, 1999, Cattaneo-Vietti et al. 1999, Orejas et al. 

2001, Brandt 2005, Thatje et al. 2005, Griffiths et al. 2009, Barnes and Clarke 2011, Rogers 

2012, Peck et al. 2014): 

A. Adaptation to low ambient temperatures 

B. Stenothermia, with loss of resistance to high temperatures (often less than a few degrees 

above 0°C) 
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C. Patchy abundance, biomass and diversity 

D. Eurybathy (wide depth ranges) of many species 

E. Dominance of sessile suspension feeders 

F. Brooding as main reproductive strategy 

G. Long generation time and late maturity age 

H. Gigantism 

I. Paucity of exotherm top predators (e.g. lack of large decapod crustaceans and sharks) 

J. Capacity to maintain metabolic activity during periods with low available food 

In the following, further details will be given on the biodiversity, abundance, biomass, and 

adaptations of benthic organisms, as well as some features of benthic communities and their 

distribution patterns. 

Biodiversity, abundance, and biomass 

Clarke (1996) mentioned that “for many people, reference to the polar regions conjures 

pictures of vast bleak wasteland populated by those few hardy species able to maintain a 

precarious existence in the face of extremely harsh physical conditions”. While this notion is 

partly true for Antarctic land ecosystems, is far away from the reality of Antarctic benthic 

ecosystems. High-Antarctic benthic biodiversity is generally on an intermediate level and can 

be higher than that of some sub-Antarctic ecosystems (Gutt et al. 2004, Griffiths et al. 2009). 

Therefore, the notion of a latitudinal cline described by Thorson (1957) and Stehli et al. 

(1967), with diversity decreasing from low to high latitudes, applies only for the northern 

hemisphere (Clarke 1996, Gray 2001, Clarke and Johnston 2003, Gutt et al. 2004, Griffiths et 

al. 2009). 

More than 7,200 benthic species have been described for Southern Ocean shelves(De Broyer 

et al. 2010), most of which can be found in the taxonomic repository “Register of Antarctic 

Marine Species” (RAMS; DeBroyer et al 2018). Many species have a circum-Antarctic 

distribution (Arntz et al. 1994, Clarke and Johnston 2003, Thatje et al. 2005), which suggests 

the Antarctic shelf to be a single biogeographic unit (Griffiths et al. 2009). While records on 

the inventory of benthic species have been dutifully, albeit slowly, added since the 19
th

 

century, and more with a recently renewed effort after the signature of the Rio Convention in 

1992 (De Broyer et al. 2010), we are still far from a complete inventory of benthic species. 

However, the question “how incomplete is the benthic species inventory?” is still hard to 

answer. Estimates on how many benthic species inhabit Antarctic waters are rare. Gutt et al. 

(2004) estimated a total of ~17,000 benthic species to inhabit the Antarctic shelf, by 

extrapolating trawl catch data from the Weddell Sea. However, due to the common existence 

of cryptic species (Brandt 2005, Rogers 2012) it is quite likely that a new estimation of the 

total number of benthic species will give a higher value.  

Not only is the diversity of Antarctic benthos higher than expected, but also its abundance and 

biomass. While abundance values are in the same order of magnitude as those found in 

temperate and subtropical shelves (Arntz et al. 1997), average biomass values of Antarctic 

benthos can be even higher (Brey and Clarke 1993).  
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Antarctic infaunal benthos is mainly composed of burrowing worms (especially polychaetes), 

bivalves, and small crustaceans (mostly amphipods and tanaids; Gerdes et al. 1992, Sañé et al. 

2012). However, composition and density of epifaunal benthos varies regionally due to 

differences in local food regimes and characteristics of bentho-pelagic processes. Areas with 

high local primary production and input of carbon such as the Ross Sea and Weddell Sea, and 

islands in the vicinity of the Antarctic Peninsula are mainly dominated by suspension feeders, 

such as sponges, ascidians and bryozoans (Dayton et al. 1974, Barnes 1995, Gerdes et al. 

1992, Gutt and Starmans 1998). In contrast, areas where local carbon production is masked by 

inputs from adjacent shelves, such as the West Antarctic Peninsula shelf (Smith et al. 2006) 

are mainly dominated by motile deposit feeders (e.g. Sumida et al. 2008, 2014). 

Adaptations 

Antarctic benthos is well adapted to low temperatures close to the water freezing point (Peck 

2005) and seasonal variability of food input (Clarke 1988). Considering this specialization 

and the physiological importance of these two factors, I will mainly focus on adaptations 

related to seasonality of food input and temperature.  

The markedly seasonal input of food, with pronounced differences between light and dark 

periods, have been proposed to directly regulate benthic processes, such as sexual 

development, reproduction, recruitment of juveniles, growth, and feeding activity (e.g. Clarke 

1988). However, there is evidence that Antarctic benthos is well adapted to this food shortage 

and has developed various strategies to meet biological requirements also during winter 

months (McClintic et al. 2008, Sumida et al. 2008, Souster et al. 2018). Some of these 

strategies include the use of energetic reserves produced during summer periods (e.g. 

Brockington et al. 2001, Peck 2005), change of feeding habits, e.g., polychaetes shift from 

suspension feeding to deposit feeding, cnidarians change their prey between seasons (e.g. 

Cattaneo-Vietti et al. 1999, Orejas et al. 2001), and deposit feeders make use of locally 

formed “food banks” and laterally transported resuspended material (Smith et al. 2006, 

McClintic et al. 2008, Sumida et al. 2008, 2014). Examples of processes performed during 

winter season, outside the high food input season, include feeding activity (Barnes and Clarke 

1995), growth (Peck 2002, Pörtner et al. 2007), recruitment (Bowden 2005, Galley et al. 

2005), larval release (Stanwell-Smith et al. 1999), and sexual development (Brockington et al. 

2001). 

At temperatures close to the water freezing point, organisms, do not only need to deal with 

reduced metabolic rates and their implication on molecular and individual level (e.g. Peck 

2016), but also with the risk of freezing and intra-cellular ice formation, causing lethal 

dehydration and ion concentration, which damage cellular membranes and protein structures 

(Ramlov 2000). To deal with ice formation, organisms either avoid freezing or tolerate it by 

using cryoprotecting substances that regulate ice formation, the growth, recrystallization and 

melting point of ice crystals, and supercooling point of body fluids (Johnston 1990, Ramlov 

2000). Two families of cryoprotecting compounds have been described, small cryoprotective 

substances, and large protein like cryoprotective substances (Ramlov 2000). Most of these 

compounds have been found in Antarctic fish and in few investigated invertebrates, e.g. 

intertidal limpets (Johnston 1990). Other adaptations to prevent freezing are higher 
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unsaturated fatty acids in cellular membranes and increased concentration of solutes (e.g. 

sodium chloride) to lower the freezing point of body fluids (Johnston 1990). 

Temperatures directly affect the speed at which biological processes occur. Due to the 

extremely low water temperatures in the Southern Ocean, growth, development and 

maturation rates, swimming, burrowing, and assimilation of food occur at lower speed in 

Antarctic invertebrates than in invertebrates elsewhere (Peck 2002, 2005, 2016, Pörtner et al. 

2007, Peck et al. 2014). To compensate these temperature effects, organisms show four 

adaptations: no compensation; full compensation; partial compensation; and 

overcompensation. In most cases, Antarctic benthos only partially compensates for the effect 

of low temperature over several biological processes (Peck 2002). There are other processes 

such as swimming (for fish) and burrowing (e.g. in the bivalve Laternula elliptica), which are 

fully compensated. To achieve this compensation, fish have an increased number of 

mitochondria in their red muscle cells to increase metabolic activity (Peck 2005, Pörtner et al. 

2007), whereas in L. elliptica the muscle involved in burrowing is larger than that of 

temperate species (Peck 2016). However, the case of L. elliptica is an exception, since most 

processes requiring muscular activity are not or only poorly compensated in Antarctic 

invertebrates, such as, e.g., the sticking capacity of limpets and burrowing speed of anemones 

(Peck 2002). The fact that processes such as growth and development rates, as well as 

assimilation of food, are not fully compensated has been taken as evidence of Antarctic 

benthos to be only partially adapted to its environment (Pörtner et al. 2007, Peck 2016).  

The cold resistance of Antarctic benthos has been proposed to come with a reduced 

temperature range, i.e., the organisms tend to be stenothermic, to live in a rather narrow 

thermic window of 6-7°C (Peck 2002), and show poor acclimation capacity (Peck et al. 

2009). Peck (2002, 2005) and Pörtner et al. (2007) reviewed experimental results on Antarctic 

invertebrate and fish physiology, and found that temperature increases of only a few degrees 

above 0°C could already result in critical failure of biological functions in Antarctic 

organisms. Peck et al. (2009, 2010b) and Richard et al. (2012) proposed Antarctic benthos to 

have poor acclimation capacities, and that temperature ranges ~3°C above present day 

temperatures could already be harmful (Richard et al. 2012). 

Communities 

Antarctic benthic communities are patchily distributed, mainly due to differences in local food 

input, and/or magnitude and periodicity of physical disturbances (see e.g. Gerdes et al. 1992, 

Arntz et al. 1997, Gutt 2000, 2001, Barnes and Conlan 2007).  

Gutt (2007) defined two community types for shelves unaffected by anchor ice: a suspension-

feeder community and a mobile deposit-feeder and infaunal community. A third community, 

the so-called “physically controlled” community, was defined for shelves heavily affected by 

anchor ice (a misnomer, as all communities are controlled by both biotic and abiotic, 

including physical factors). Furthermore, Gutt (2007) included the divisions: zero abundance 

within trophic guilds; extremely low abundances; and monospecific. While the first two 

divisions apply to the suspension-feeders community and the mobile deposit-feeder and 
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infaunal community, the monospecific division consisted in a mix of the three major 

communities.  

The classification of Gutt (2007) was updated by Turner et al. (2009) by including a fourth 

major unit, “mixed assemblage”, which includes overlaps between suspension-feeder and 

mobile deposit-feeder and infaunal community sensu Gutt (2007). Further groups included 

were “Seep” and “Vent” assemblages. According to the updated classification system of 

Turner et al. (2009), Antarctic benthos can be classified into three major community types and 

5 distinct assemblages: 

A. Communities: 

A. Sessile Suspension Feeders with Associated fauna (SSFA) 

B. MObile deposit feeders, INfauna and grazers (MOIN) 

C. Physically controlled (mainly by anchor ice) 

B. Assemblages: 

A. MIXed (MIX) 

B. Seep  

C. Vent  

D. Monospecific  

E. Very low biomass or absence of trophic guilds  

This classification was used by Gutt et al. (2013b) to describe the spatial distribution of 

benthic communities using samples obtained via different sampling gears and strategies 

around Antarctic shelves. They grouped point data within 3° latitude x 3° longitude cells, to 

describe regional patterns and found an almost equal amount of cells to be dominated by 

SSFA and MOIN communities, and MIX assemblage, a finding that was in contrast to the 

common notion that Antarctic benthic communities are mainly dominated by sponges. 

Furthermore, Gutt et al. (2013b) found cells on the eastern and southern Weddell Sea, eastern 

Ross Sea shelves, as well as off Adélie Land, South Shetland Islands, and South Orkney 

Islands, to have between 5 and 9 community sub-types per cell, strongly indicating the 

pronounced local patchiness of Antarctic benthos. 

The classification of Gutt (2007) and Turner et al. (2009) is general and broad, making it 

applicable for circumpolar studies. However, on a regional level, benthic communities for 

some Antarctic regions are defined based on local characteristics of benthic abundance, 

biomass and diversity. For the Weddell Sea, there are three major community types that have 

been originally described by Voß (1988), and later validated by Gerdes et al. (1992) and Gutt 

and Starmans (1998): a) a Eastern Shelf community, with high diversity, abundance and 

biomass, dominated by sessile suspension feeders, predominantly sponges; b) a Southern 

Shelf community, with intermediate diversity, abundance and biomass, also dominated by 

suspension feeders, but predominantly bryozoans; and c) a Southern Trench community, with 

low diversity, high abundance, intermediate biomass values, and dominated by holothurians.  

Recent studies described benthic communities on the eastern Weddell Sea shelf to resemble 

the Eastern Shelf community sensu Voß (1988) on seabed sections unaffected by iceberg 

scours (Gutt and Starmans 2001, Gerdes et al. 2008, Sañé et al. 2012). The benthos in the 
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adjacent Filchner Region in the southern Weddell Sea has been regarded as particularly 

heterogeneous and diverse (Voß 1988, Gerdes et al. 1992, Gutt and Starmans 1998). This 

high-Antarctic region is characterized by heterogeneous topography, hydrography and sea-ice 

conditions. Furthermore, this part of the Weddell Sea is an important study region to 

understand how the Filchner Ice Shelf, which is key for the generation of Ice Shelf Water 

(ISW), a precursor of deep-water, thus, a driver of the global water mass circulation, will be 

affected by climate change (Hellmer et al. 2012). Considering that the last description of the 

benthos of the Filchner Region had been conducted almost 30 years ago, an update on the 

benthic status-quo is needed to understand how observed sea-ice and temperature variations in 

the last decades (Turner et al. 2016, Comiso et al. 2017), and predicted climate change 

(Hellmer et al. 2012, Timmerman and Hellmer 2013) have affected - and will affect - benthic 

communities.  

Bentho-pelagic coupling 

Antarctic benthos lives in connection with the pelagic realm via biological and environmental 

processes. This interconnectivity is marked by the downward flux of matter, especially 

carbon, from the upper water layer to the seabed (Hargrave 1973). This pelago-benthic 

coupling or bentho-pelagic coupling is regulated by processes that directly modulate the flux 

of carbon, such as water depth, seafloor topography, benthic and pelagic community structure, 

water circulation, wind, as well as ice in any of its forms (e.g. Smith et al. 2006, Raffaelli et 

al. 2003). Therefore, local differences of those processes can result in local differences in 

benthic community characteristics such as abundance, biomass, diversity and composition. 

How benthos affects water column and planktonic biological characteristics is quite an open 

question. To date, the few known examples include regulation of resuspension and deposition 

of particles (Graf and Rosenberg 1997, Mercuri et al. 2008, Tatián et al. 2008), and 

modification of planktonic communities via predation or release of meroplanktonic larvae 

(Bowden 2005, Schnack-Schiel and Isla 2005). Any fraction of the benthos (e.g. macro- or 

megabenthos) directly affects sediment erosion and regulates the sediment-mixing regime 

(Orvain et al. 2012, Queirós et al. 2015). A typical Antarctic example is observed in sponge-

dominated communities where vast spicule mats are found. These biogenic silica mats entrap 

and consolidate sediment, and work as silicate traps. Furthermore, both sponges and spicule 

mats provide substrate and refuge for other invertebrates and fish (Barthel 1992, Barthel and 

Gutt 1992, Gutt et al. 2013a). This enhanced biodiversity in sponge dominated communities 

affects water column particulate matter content, due to how filter feeders feed by collecting 

suspended particles from the water column, thus enhancing downward flux of particles and 

biodeposition (Barthel 1992, Mercuri et al. 2008, Tatián et al. 2008). Similar examples of 

enhanced biodeposition can be found locally in seabed patches with high abundance of tube-

forming polychaetes which generate a local effect similar to that of sediments traps, 

enhancing downward flux of suspended particles (Frithsen and Doering 1989).  

The term bentho-pelagic coupling implies a two-way relationship. Pelagic biotic and abiotic 

processes play a key role for benthos, since the main carbon (food) input comes from local 

pelagic primary production. Due to the seasonality of sea ice with high sea-ice cover during 

winter and low sea-ice cover during summer, primary production is also seasonal, with high 
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productivity during spring/summer and low during autumn/winter seasons (Clarke 1988). 

Pelagic primary productivity is higher close to the sea-ice edge where melting of ice stabilizes 

the water column, and nutrients and entrapped algae, are released, seeding subsequent 

phytoplankton blooms (Scharek et al. 1994, Sedwick and DiTullio 1997, Sedwick et al. 2000, 

Arrigo et al. 2008, Bertolin and Schloss 2009, Isla 2016). Another factor regulating not only 

phytoplankton blooms, but also downward particle flux, is zooplanktonic activity. 

Zooplankton consumes primary-production carbon (Flores et al. 2014), resulting in enhanced 

pellet production which largely contributes and regulates particle flux characteristics 

(Bathmann et al. 1991, Palanques et al. 2002, Schnack-Schiel and Isla 2005, Isla et al. 2009, 

Rossi et al. 2013, Isla 2016). This particle flux can provide the benthos with an amount of 

carbon equal to <1 to 18% of the local annual production (Bathmann et al. 1991, Palanques et 

al. 2002, Isla et al. 2006, 2009), which is sufficient to support benthic communities with high 

biomass (Gutt et al. 1998) and form “food banks” on the sediment surface (Smith et al. 2006).  

Climate change and the Antarctic continent 

Since the onset of industrialization, the natural variability of the composition of the 

atmosphere has been modified by anthropogenic inputs, resulting in an increase of greenhouse 

gases and local depletion of the stratospheric ozone (Constable et al. 2014, Turner et al. 2014, 

Gutt et al. 2015). During the 2000s and 2010s, the Scientific Committee on Antarctic 

Research (SCAR) and its members published a set of reviews which spanned climatic and 

biological changes occurring on geological and instrumental (i.e. since the 20
th

 century) time 

scales, also including predicted changes based on several climate change scenarios published 

by the International Panel on Climate Change (IPCC; e.g. Convey et al. 2009, Turner et al. 

2009, 2011, 2014, Constable et al. 2014, Gutt et al. 2015). The general observations that can 

be drawn from their extensive work are: Antarctica has been affected by climate change at an 

exceedingly fast rate; general trends suggest, Antarctic sea-surface temperatures have 

decreased, while sea-ice cover and duration of sea-ice have increased; on a regional scale, 

however, some sectors of the Southern Ocean have shown an increase of sea-surface 

temperatures and decrease of sea-ice covered (e.g. Antarctic Peninsula and Bellingshausen 

Sea), whereas other sectors exhibited trends in sea-surface temperature and ice cover similar 

to those for the entire Antarctic continent, i.e., decreasing sea-surface temperatures and 

increasing sea-ice cover (e.g., Ross Sea and eastern Weddell Sea).  

Sea-ice and sea-surface temperature variations are influenced by the variation of the westerly 

wind regime, which is regulated by the Southern Ocean Annular Mode (SAM; Liu et al. 2004, 

Convey et al. 2009, Turner et al. 2009, 2014, 2016, Constable et al. 2014, Comiso et al. 2017, 

Kostov et al. 2017). The term SAM refers to an alteration of atmospheric mass between mid-

latitude surface pressure and high latitude surface pressure (Gong and Wang 1999), which has 

positive and negative phases. During negative SAM phases westerly winds are weakened, 

causing the Antarctic Coastal Current to migrate northwards, whereas a strengthening of the 

SAM during positive phases generates a strengthening of westerly winds. This strengthening 

causes a southward migration of the Antarctic Coastal Current, resulting in higher sea 

temperatures in the West Antarctic Peninsula region, and Bellingshausen and Amundsen Seas. 

A positive SAM also implies a deepening of the low-pressure cell located at the Amundsen 
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Sea, which causes sea-ice losses in the Amundsen Sea, but the opposite effect in the Ross Sea 

and eastern Weddell Sea (Liu et al. 2004, Turner et al. 2016).  

The most affected area by increase of temperatures is the West Antarctic Peninsula, its 

adjacent islands and the sub-Antarctic Islands, where in some sectors the temperature of the 

upper 150m of the water column has increased >2.3°C over the last 8 decades (Convey et al. 

2009). This region as well as the Amundsen Sea and Bellingshausen Sea, are the areas where 

the highest sea-ice losses were recorded since the start of satellite measurements in 1979, with 

losses of 51x10
3 

km
2
 decade

-1
 (Turner et al. 2016, Comiso et al. 2017). Furthermore, these 

regions have also shown the biggest ice-shelf losses and glacier retreats of the whole 

Antarctic continent (see e.g. Cook et al. 2005). Opposite trends were recorded, especially, in 

the Ross Sea. This region has experienced the largest increase of sea-ice cover (119 x10
3 

km
2
 

dec
-1

), double than that observed in the Weddell Sea (48 x10
3 

km
2
 dec

-1
), and the Indian (56 

x10
3 

km
2
 dec

-1
) and western Pacific (23 x10

3 
km

2
 dec

-1
) sectors of the Southern Ocean (Turner 

et al. 2016). Comiso et al. (2017) related sea-ice cover trends to sea-surface temperature 

trends, and considering data from the period 1981-2015, estimated decreases of up to 0.5 °C 

decade
-1

 for all areas where sea-ice cover has increased.  

As the East Antarctic Peninsula is part of the Weddell Sea, the situation is more complex than 

mentioned above. The average trends for the whole Weddell Sea sector show an increase of 

sea-ice cover and a decrease of sea-surface temperature (Turner et al. 2016, Comiso et al. 

2017). However, this situation only applies to the eastern Weddell Sea shelf, whereas on the 

western Weddell Sea, especially for waters surrounding the Antarctic Peninsula, sea-ice cover 

has decreased, and sea-surface temperatures increased in the last decades (Liu et al. 2004, 

Gutt et al. 2015, Turner et al. 2016). While the instrumental records of the last five decades 

show contrasts between eastern and western Weddell Sea sub-regions, models based on 

different IPCC future scenarios predict sea-ice cover and salinity to decrease, and sea-surface 

and near-seabed temperature to increase (Timmerman and Hellmer 2013, Hellmer et al. 

2017).  

Sea-ice cover and sea-surface temperature directly affect the pelagic primary production. 

While a decrease of sea-ice (enlarging of polynyas) as well as an increase of temperatures 

would enhance pelagic primary production, an increase of sea-ice cover and decrease of 

temperatures would have the opposite effect (Arrigo et al. 2008, 2015). Recently, Peck et al. 

(2010a), Barnes (2015), and Barnes et al. (2016, 2018) have studied how the observed 

increase of open water in the West Antarctic Peninsula, and consequent increased pelagic 

primary production, have affected benthic organisms and the amount of biological carbon 

(“blue carbon”) stored in the local benthic communities. They found the increase of open 

water to enhance benthic “blue carbon” production and carbon fixation, thus functioning as a 

negative feedback to climate change. In a similar study, Fillinger et al. (2013) analyzed the 

situation of the area formerly covered by the Larsen A ice shelf; they found benthic 

abundance and biomass tripled and doubled, respectively, in a four-year period parallel with a 

shift to a system with higher pelagic primary production (Bertolin and Schloss 2009). An 

increase of ice shelf basal melting due to temperature raises, also resulted in an increased 

number of icebergs, which translated into an increased susceptibility of benthos to calving 

events (Barnes 2017, Barnes et al. 2018, Budge and Long 2018). An increase of calving 
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events could eliminate portions of the benthos, thus reducing the amount of fixed “blue 

carbon” (Gutt 2000, Barnes and Souster 2011, Barnes 2017).  

Research questions 

This section includes short rationales of open questions found throughout the “General 

Introduction” (and the open questions themselves). The manuscripts of this thesis aim to 

address these questions, in order to shed new light on the past, present and future of benthic 

communities inhabiting the Weddell Sea shelf. 

Manuscript 1 

Benthologists are creatures of habit and tend to use a single methodology, which have not 

changed except for some minor technical updates. This approach facilitates performing 

temporal comparisons, but may be problematic with regard to spatial comparisons with other 

regions, or studies where a different methodology was used. By doing this, we end up with 

different “truths”, one for each benthic compartment studied. The use of imaging approaches 

is ideal to investigate the epifaunal benthos, whereas the use of coring devices is most 

appropriate for infaunal benthos, which burrows in the sediment. While complementary, both 

techniques are seldom used together, although both can be combined in a time-constrained 

sampling campaign by using camera-equipped corers. This brings the question: is there an 

advantage in using both methods and what would this advantage be? 

Manuscript 2 

Benthos is not independent from the pelagos, neither spatially nor temporally. The coupling 

between realms is known as bentho-pelagic coupling, a concept critical to understand how 

benthos is shaped by its surrounding abiotic and biotic environment. While extensive data 

exist on bentho-pelagic processes, just few attempts tried to combine them in a 

comprehensive and “easy-to-read” way.  Recent focus on the bentho-pelagic coupling on 

West Antarctic Peninsula (WAP) shelves provided a description on how the coupling in this 

region works (e.g. Smith et al. 2006, McClintic et al, 2008, Sumida et al. 2008). However, 

despite having all the “dots” for the Weddell Sea, few attempts exist to link them as Smith et 

al. (2006) showed for the WAP. I investigate whether the bentho-pelagic coupling works in 

the same way in both regions or not, and how local characteristics of both regions make this 

coupling different.  

Manuscript 3 

The last benthic sampling in the high-Antarctic Filchner region before RV Polarstern cruise 

PS82 (Knust and Schröder 2014) was conducted almost 30 years ago. Even the study of Voß 

(1988), one of the spatially broadest benthic studies, failed to sample the central and northern 

parts of the shelf west of the Filchner Trough due to heavy sea-ice conditions. Consequently, 

this area is still under-studied.  

Recently, the Filchner Region, key for the formation of deep-water (the latter being an 

important driver of the global water mass circulation), has been predicted to suffer drastic 

changes which could have global implications (Hellmer et al. 2012). These predictions have 
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made the region a focal point for oceanographic studies aiming to understand how the 

complex hydrography of the Filchner Region works. Additionally, since the last benthic 

samplings, the region suffered changes in its hydrography due to the calving and grounding of 

iceberg A23-A (Grosfeld et al. 2001). Furtheron, sea-ice trends in the region provide evidence 

for an increase of sea-ice cover during the 1979-2013 period (Turner et al. 2016), which could 

potentially cause a decrease of locally produced food input to the benthos.  

We know from previous studies in the region that the benthos has a heterogeneous 

distribution and is composed of (at least) three different communities (Voß 1988, Gerdes et al. 

1992, Gutt and Starmans 1998, Gutt et al. 2013b). Furthermore, considering observed 

environmental changes in the region, e.g. the sea-ice cover increments with likely primary 

productivity losses, we need to query whether the benthic communities previously described 

in the Filchner Region changed or not, and if so, how. Another point to consider is the role of 

the present spatial environmental heterogeneity in the region, and if the benthic spatial 

distribution in the Filchner Region is affected by it and how. Answers to these questions can 

give hints on how benthos might change under the predictions made by Hellmer et al. (2012). 

Manuscript 4 

The situation in the western Weddell Sea appears favourable for benthic growth due to 

enhanced pelagic primary production (Peck et al. 2010a, Fillinger et al. 2013, Barnes 2015, 

2017, Barnes et al. 2016, 2018). In comparison, the situation of the benthos in the eastern 

Weddell Sea is far from being clear. Barnes (2015) described an increase of benthic blue 

carbon in the eastern Weddell Sea. However, this was done considering only one sampling 

campaign in 2012. Another fact which might prove wrong the observation of Barnes (2015) is 

the observed trend of increased sea-ice cover (Turner et al. 2016), which implies a reduction 

of pelagic primary production. This contradiction raises, at least, three questions: 1) What is 

the actual situation of the benthos in the eastern Weddell Sea? 2) How has the benthic 

community of this high-Antarctic region been affected by the observed increased sea-ice 

cover and iceberg numbers? 3) What would be expected to happen to the eastern Weddell Sea 

benthos under scenarios where the environmental context is predicted to be quite different to 

the present one (i.e. less sea-ice and higher temperatures)? 

Manuscripts within the context of the research questions 

This section describes how the four manuscripts of this thesis will address the questions 

mentioned in the previous section.  

Manuscript 1 

This manuscript addresses methodological approaches used to study benthos in the past, and 

how two classic sampling techniques can be used in combination. The main aim of this 

manuscript is to compare two sampling methodologies, sediment cores and seabed images. In 

order to do this comparison, a set of 16 stations with concomitantly taken corer samples and 

seabed images during RV Polarstern cruise PS82 (ANT XXIX/9) in the austral summer 

2013/14 were used to compare benthic composition and abundance data obtained by both 



General Introduction 

 

13 
 

approaches. These data further allowed insights into benthic community patterns of the 

formerly understudied Filchner Region in the southern Weddell Sea. 

Manuscript 2 

Manuscript 2 reviews the knowledge on the bentho-pelagic coupling. The manuscript 

describes benthic and pelagic processes which regulate transfer of carbon between 

compartments, also considering local differences. “How are benthic communities shaped by 

such processes?” Within this context, examples of environmental and biological factors and 

processes regulating the strength and characteristics of bentho-pelagic coupling are explained 

to give, even non-experts, a clear view of how this coupling works in different Antarctic shelf 

areas. To further explain how shifts in local pelagic characteristics affect and modify the 

benthos, I compare the shelves west of the Antarctic Peninsula as well as the area formerly 

covered by the Larsen Ice Shelf, with the shelf in the eastern Weddell Sea. 

Manuscript 3  

This manuscript addresses questions regarding the little studied benthic communities of the 

Filchner Region in the southern Weddell Sea by combining data from analyses of multibox 

corer samples and seabed images. This comprehensive data set was then used to describe 

benthic communities in the Filchner Region (southern Weddell Sea) including both infaunal- 

and epifaunal benthos. Furthermore, past (Voß 1988, Gerdes et al. 1992, Gutt and Starmans 

1998) and present benthic community spatial patterns in the Filchner Region are compared. 

Additionally, the described benthic fauna is correlated with a set of geological, 

oceanographic, and sea-ice-related variables, to get hints on how the environmental 

heterogeneity of the Filchner Region affects the spatial distribution patterns of benthos.  

Manuscript 4 

Manuscript 4 describes the benthic community living on the shelf off Austasen, eastern 

Weddell Sea, and how this community changed over the last decades. This manuscript relates 

to Manuscript 2 by including concepts and components of the bentho-pelagic coupling, which 

are key to understand the present status of the benthos and how it future could be. Thus, 

Manuscript 4 mainly aims to describe the actual situation of the benthos in the eastern 

Weddell Sea shelf. To achieve this, the manuscript includes data from eight sampling 

campaigns performed in the period 1988-2014, and describes how different benthic taxa, their 

abundance and biomass, have changed during a 26-year time series, and which environmental 

factors drive these changes.  

Addressing these topics might give hints on how the future of a typical Weddell Sea benthic 

community might look like under climate scenarios where the environmental context is 

predicted to be quite different to the present one, i.e. with less sea-ice and higher 

temperatures. 

LITERATURE 

Agassiz, A (1888) Three cruises of the United States Coast and Geodetic Survey Steamer 

“Blake”, Vol. 1. The Riverside Press, Cambridge. 



General Introduction 

 

14 
 

Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 

32:241-304. 

Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia 

B, Valencia J, Walton DWH (eds.) Antarctic communities: species, structure and survival. 

Cambridge University Press, Cambridge, 3-15 pp. 

Arntz WE, Gili JM, Reise K (1999) Unjustifiably ignored: Reflections on the role of benthos 

in marine ecosystems. In: Gray JS, Ambrose W, Szaniawska A (eds) Biogeochemical cycling 

and sediment ecology. Springer, Dordrecht, pp 105-124. 

Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 

1997-2006. J Geophys Res 113:C08004. doi:10.1029/2007JC004551. 

Arrigo KR, van Dijken GL, Strong AL (2015) Environmental controls of marine productivity 

hot spots around Antarctica. J Geophys Res Oceans 120:5545-5565. 

doi:10.0102/2015JC010888. 

Barnes DKA (1995) Sublitoral epifaunal communities at Signy Island, Antarctica, II: Below 

the ice-foot zone. Mar Biol 121:565-572. 

Barnes DKA (2015) Antarctic sea ice losses drive gains in benthic carbon drawdown. Curr 

Biol 25:R775-R792. 

Barnes DKA (2017) Iceberg killing fields limit huge potential for benthic carbon in Antarctic 

shallows. Glob Change Biol 23, 2649-2659. doi:10.1111/gcb.13523. 

Barnes KA, Clarke A (1995) Feeding activity in Antarctic suspension feeders. Polar Biol 

15:335-340. 

Barnes DKA, Conlan KW (2007) Disturbance, colonization and development of Antarctic 

benthic communities. Philos Trans R Soc Lond B 362:11-38. 

Barnes DKA, Kuklinski P (2010) Bryozoans of the Weddell Sea continental shelf, slope and 

abyss: did marine life colonize the Antarctic shelf from deep water, outlying islands or in situ 

refugia following glaciations? J Biogeogr 37:1648-1656. doi:10.1111/j.1365-

2699.2010.02320.x. 

Barnes DKA, Clarke A (2011) Antarctic marine biology. Curr Biol 21(12):R451-R457. 

doi:10.1016/j.cub.2011.04.012. 

Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-

induced iceberg scouring. Nat Clim Change 1:365-368. doi:10.1038/NCLIMATE1232. 

Barnes DKA, Ireland L, Hogg OT, Morley S, Enderlein P, Sands CJ (2016) Why is the South 

Orkney Island shelf (the world’s first high seas marine protected area) a carbon 

immobilization hotspot? Glob Change Biol 22:1110-1120. doi:10.1111/gcb.13157. 

Barnes DKA, Fleming A, Sands CJ, Quartino ML, Deregibus D (2018) Icebergs, sea ice, blue 

carbon and Antarctic climate feedbacks. Phil Trans R Soc A 376:2017176. 

doi:10.1098/rsta.2017.0176. 



General Introduction 

 

15 
 

Barthel D (1992) Do hexactinellids structure Antarctic sponge associations? Ophelia 36:111-

118. 

Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarct Sci 4:157-

150. 

Bathmann E, Fischer G, Müller PJ, Gerdes D (1991) Short-term variations in particulate 

matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass 

advection, ice cover, plankton biomass and feeding activity. Polar Biol 11:185-195. 

Bertolin ML, Schloss IR (2009) Phytoplankton production after the collapse of the Larsen A 

Ice Shelf, Antarctica. Polar Biol 32:1435-1446. doi:10.1007/s00300-009-638-x. 

Brandt A (2005) Evolution of Antarctic biodiversity in the context of the past: the importance 

of the Southern Ocean deep sea. Antarct Sci 17(4):509-521. 

doi:10.1017/S0954102005002932. 

Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic 

and subantarctic environments: are there unique adaptations?. Antarct Sci. 5:253-266. 

Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic 

invertebrates show an extended level of eurybathy?. Antarct Sci 8(1):3-6. 

Bowden DA (2005) Seasonality of recruitment in Antarctic sessile marine benthos. Mar Ecol 

Prog Ser 297:101-118. 

Brockington S, Clarke A, Chapman ALG (2001) Seasonality of feeding and nutritional status 

during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar Biol 

139:127-138. 

Budge JS, Long DG (2018) A comprehensive database for Antarctic iceberg tracking using 

scatterometer data. IEEE J-Stars 11(2):434-442. doi:10.1109/JSTARS.2017.2784186. 

Cattaneo-Vietti R, Chiantore MC, Misic C, Povero P, Fabiano M (1999) The role of pelagic-

benthic coupling in structuring littoral benthic communities at Terra Nova Bay (Ross Sea) and 

in the Straits of Magellan. Sci Mar 63(1):113-121. 

Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol 

90(3):461-473. 

Clarke A (1996) Marine benthic populations in Antarctica: Patterns and processes. In: Ross 

RM, Hofmann EE, Quentin LB (eds) Foundations for Ecological Research West of the 

Antarctic Peninsula. American Geophysical Union, Washington D.C., pp 373-388. 

Clarke A (2008) Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol 

Ecol 366:48-55. 

Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47-

114. 

Clemens, WA (1968) Origin and early evolution of marsupials. Evolution 22:1-18. 



General Introduction 

 

16 
 

Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K (2017) Positive trend in the 

Antarctic sea ice cover and associated changes in surface temperature. J Climate 30:2251-

2267. doi:10.1175/JCLI-D-16-0408.1. 

Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DKA, 

Bindoff NL, Boyd PW, Brandt A, Costa DP, Davison AT, Ducklow HW, Emmerson L, 

Fukuchi M, Gutt J, Hindell MA, Hofmann EE, Hosie GW, Iida T, Jacob S, Johnston NM, 

Kawaguchi S, Kokubun N, Koubbi P, Lea M-A, Makhado A, Masson RA, Meiners K, 

Meredith MP, Murphy EJ, Nicol S, Reid K, Richerson K, Riddle MJ, Rintoul SR, Smith Jr 

WO, Southwell C, Stark JS, Summer M, Swadling KM, Takahashi KT, Trathan PN, Wlesford 

DC, Weimerskirch H, Westwood KJ, Wienecke BC, Wolf-Gladrow D, Wright SW, Xavier 

JC, Ziegler P (2014). Climate change and Southern Ocean ecosystems I: how changes in 

physical habitats directly affect marine biota. Glob Change Biol 20:3004-3025. 

doi:10.1111/gbc.12623. 

Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, 

Summerhayes CP, Turner J, the ACCE consortium (2009) Antarctic climate change and the 

environment. Antarct Sci 21(6):541-563. 

Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic 

peninsula over the past half-century. Science, 308:541-544. 

Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the 

benthic community at McMurdo Sounds, Antarctica. Ecol Monogr 44:105-128. 

De Broyer C, Danis B, with 64 SCAR-MarBIN Taxonomic editors (2010) How many species 

in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-

Sea Res Pt II 58:5-17. doi:10.1016/j.dsr2.2010.10.007.  

De Broyer C, Clarke A, Koubbi P, Pakhomov E, Scott F, Vanden Berghe E, Danis B (2018) 

Register of Antarctic Marine Species. http://www.marinespecies.org/rams/. Accessed 13 

November 2018. 

Fillinger L, Janussen D, Lundälv T, Richter C (2013) Rapid glass sponge expansion after 

climate-induced Antarctic ice shelf collapse. Curr Biol 23:1330-1334. 

doi:10.1016/j.cub.2013.05.051. 

Flores H, Hunt BPV, Kruse S et al (2014). Seasonal changes in the vertical distribution and 

community structure of Antarctic macrozooplaankton and micronekton. Deep-Sea Res Pt I 

84:127-141. 

Frithsen JB, Doering PH (1986) Active enhancement of particle removal from the water 

column by tentaculate benthic polychaetes. Ophelia 25:169-182. 

Galley EA, Tyler PA, Clarke A, Smith CR (2005) Reproductive biology and biochemical 

composition of the brooding echinoid Amphipneustes lorioli on the Natarctic continental 

shelf. Mar Biol 148:59-71. doi:10.1007/s00227-005-0069-3. 



General Introduction 

 

17 
 

Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S (1992) Quantitative 

investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on 

multibox corer samples. Polar Biol 12:291-301. 

Gerdes D, Isla E, Knust R, Mintenbeck K, Rossi S (2008) Response of Antarctic benthic 

communities to disturbance: first results from the artificial Benthic Disturbance Experiment 

on the eastern Weddell Sea Shelf, Antarctica. Polar Biol 31:1469-1480. doi:10.1007/s00300-

008-0488-y. 

Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 

26(4):459-462. 

Gray JS (2001) Antarctic marine benthic biodiversity in a world-wide latitudinal context. 

Polar Biol 24:633-641. doi:10.1007/s003000100244. 

Graf G, Rosenberg R (1997) Bioresuspension and biodeposition: a review. J Mar Sys 11:269-

278. 

Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the 

Southern Ocean benthos. J Biogeogr 36:162-177. doi:10.1111/j.1365-2699.2008.01979.x. 

Griffiths HJ, Danis B, David B, De Broyer C, d’Udekem d’Acoz C, Grant S, Gutt J, Held C, 

Hosie G, Huettmann F, Koubi P, Post A, Raymond B, Ropert-Coudert Y, Van de Putte AP 

(2018) Antarctic marine biodiversity. Antarctic environmental portal.  

https://www.environments.aq/information-summaries/antarctic-marine-biodiversity/. 

Accessed 13 November 2018. 

Grosfeld K, Schröder M, Fahrbach E, Gerdes R, Mackensen A (2001) How iceberg calving 

and grounding change the circulation and hydrography in the Filchner Ice Shelf – Ocean 

System. J Geophys Res 106:9039-9055. 

Gutt J (2000) Some “driving forces” structuring communities of the sublittoral Antarctic 

macrobenthos. Antarct Sci 12(3):297-313. 

Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 

24:553-564. 

Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological 

classification. Antarc Sci 19(2):165-182. 

Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and 

Lazarev Seas (Atarctica): ecological role of physical parameters and biological interactions. 

Polar Biol 20:229-247. 

Gutt J, Starmans A, Dieckmann G (1998) Phytodetritus deposited on the Antarctic shelf and 

upper slope: its relevance for the benthic system. J Mar Syst 17:435-444. 

Gutt J, Starmans A (2001) Quantification of iceberg impact and benthic recolonization 

patterns in the Weddell Sea (Antarctica). Polar Biol 24:615-619. doi:10.1007/s003000100263. 



General Introduction 

 

18 
 

Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might 

inhabit the Antarctic shelf? Antarct Sci 16:11-16. 

Gutt J, Böhmer A, Dimmler W (2013a) Antarctic sponge spicule mats shape microbenthic 

diversity and act as a silicon trap. Mar Ecol Prog Ser 480:57-71. doi:10.3354/meps10226. 

Gutt J, Griffiths HJ, Jones CD (2013b). Circumpolar overview and spatial heterogeneity of 

Antarctic macrobenthic communities. Mar Biodiv 43:481-487. doi:10.1007/s12526-013-0152-

9. 

Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, 

Smith CR, Tournadre J, Xavier JC (2015) The Southern Ocean ecosystem under multiple 

climate change stresses – an integrated circumpolar assessment. Glob Change Biol 21:1434-

1453. doi:10.1111/geb.12794. 

Hargrave BT (1973) Coupling carbon flow through some pelagic and benthic communities. J 

Fish Res Board Can 30:1317-1326. 

Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century 

warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225-

228. doi:10.1038/nature11064. 

Hellmer HH, Kauker F, Timmermann R, Hattermann T (2017) The fate of the southern 

Weddell Sea continental shelf in a warming climate. J. Climate. 30, 4337-4350. 

doi:10.1175/JCLI-D-16-0420.1. 

Isla E (2016) Environmental controls on sediment composition and particle fluxes over the 

Antarctic continental shelf. In: Beylich A, Dixon J, Zwoliński Z (eds) Source-to-Sink Fluxes 

in Undisturbed Cold Environments. Cambridge University Press, Cambridge, p 199-212. 

doi:10.1017/CBO9781107705791.017. 

Isla E, Gerdes D, Palanques A, Gili J-M, Arntz W (2006) Particle fluxes and tides near the 

continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Res Pt II 53:866-874. 

Isla E, Gerdes D, Palanques A, Gili J-M, Arntz WE, König-Langlo G (2009) Downward 

particle flux, wind and a phytoplankton bloom over a polar continental shelf: A stormy 

impulse for the biological pump. Mar Geol 259:59-72. 

Johnston IA (1990) Cold adaptation in marine organisms. Phil Trans R Soc Lond B 326:655-

667.  

Knust R, Schröder M (2014) The expedition PS82 of the research vessel Polarstern to the 

southern Weddell Sea in 2013/2014. Ber Polarforsch Meeresforsch 680:1-155. 

doi:10.2312/BzPM_680_2014. 

Kostov Yavor, Marshall J, Hausmann U, Armour KC, Ferreira D, Holland MM (2017) Fast 

and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate 

models. Clim Dyn 48:1595-1609. doi:10.1007/s00382-016-3162-z. 

Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. 

Geophys Res Lett 31:L02205. doi:10.1029/2003GL018732. 



General Introduction 

 

19 
 

McClintic MA, DeMaster DJ, Thomas CJ, Smith CR (2008) Testing the FOODBANCS 

hypothesis: Seasonal variations in near-bottom particle flux, bioturbation intensity, and 

deposit feeding based on 
234

Th measurements. Deep-Sea Res Pt II 55:2425-2437. 

doi:10.1016/j.dsr2.2008.06.003. 

Mercuri G, Tatián M, Momo F, Fuentes V, Sahade R (2008) Massive input of terrigenous 

sediment into Potter Cove during austral summer and the effects on the bivalve Laternula 

elliptica: a laboratory experiment. Ber Polar Meeresforsch 571:111-117 

Orejas C, Gile JM, López-Gonzélez J, Arntz WE (2001) Feeding strategies and diet 

composition of four Antarctic cnidarian species. Polar Biol 24:620-627. 

doi:10.1007/s03000100272. 

Orvain F, Le Hir P, Sauriau P-G, Lefebvre S (2012) Modelling the effects of macrofauna on 

sediment transport and bed elevation: Application over a cross-shore mudflat profile and 

model variation. Estuar Coastal Shelf Sci 108:64-75. doi:10.1016/j.ecss.2011.12.036. 

Palanques A, Isla E, Puig P, Sanchez-Cabeza JA, Masqué P (2002) Annual evolution of 

downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA 

project. Deep-Sea Res Pt II 49:903-920. 

Peck L (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol. 25:31-

40. doi:10.1007/s003000100308. 

Peck L (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species 

to temperature change. Antarct Sci 17(4):497-507. doi:10.1017/S0954102005002920. 

Peck LS (2016) A cold limit to adaptation in the sea. Trends Ecol Evol 31(1):13-26. 

doi:10.1016/j.tree.2015.09.014. 

Peck LS, Clark MS, Morley SA, Massey A, Rossette H (2009) Animal temperature limits and 

ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248-256. 

doi:10.1111/j.1365-2435.2008.01537.x. 

Peck LS, Barnes DKA, Cook AJ, Fleming AH, Clarke A (2010a) Negative feedback in the 

cold: ice retreat produces new carbon sinks in Antarctica. Glob Change Biol 16:2614-2623. 

doi:10.1111/j.1365-2486.2009.02071.x. 

Peck LS, Morley SA, Clark MS (2010b) Poor acclimation capacities in Antarctic marine 

ectotherms. Mar Biol 157:2051-2059. doi:10.1007/s00227-010-1473-x. 

Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in 

Antarctic marine ectotherms. J Exp Biol 217:16-22. doi:10.1242/jeb.089946. 

Petersen CGJ, Boysen Jensen P (1911) Valuation of the sea: Animal life of the sea bottom, its 

food and quantity. Report from the Danish Biological Station, Copenhagen. 

Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic 

ectotherms: an integrative view. Phil Trans R Soc B 362:2233-2258. 

doi:10.1098/rstb.2006.1947. 



General Introduction 

 

20 
 

Queirós AN, Stephens N, Cook R, Ravaglioli C, Nunes J, Dashfield S, Harris C, Tilstone GH, 

Fishwick J, Braeckman U, Somerfield PH, Widdicombe S (2015) Can benthic community 

structure be used to predict the process of bioturbation in real ecosystems? Prog Oceanogr 

137:559-569. 

Raffaelli D, Bell E, Weithoff G, Marsumoto A, Cruz-Mota JJ, Kershaw P, Parker R, Parry D, 

Jones M (2003) The ups and downs of benthic ecology: considerations of scale, heterogeneity 

and surveillance for benthic-pelagic coupling. J Exp Mar Biol Ecol 285-286:191-203. 

doi:10.1016/S0022-0981(02)00527-0. 

Ramlov H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 

15(5):26-46. 

Reineck HE (1963) Der Kastengreifer. Natur und Museum 93:102-108. 

Richard J, Morley SA, Thorne MAS, Peck LS (2012) Estimating long-term survival 

temperatures at the assemblage level in the marine environment: towards macrophysiology. 

PLos ONE 7(4):e34655. doi:10.1371/journal.pone.0034655. 

Rogers AD (2012) Evolution and biodiversity of Antarctic organisms: A molecular 

perspective. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds) Antarctic ecosystems: 

An extreme environment in a changing world, 1st edition. Blackwell Publishing Ltd., West 

Sussex, pp 417-467. 

Rossi S, Isla E, Martínez-García A, Moraleda N, Gili J-M, Rosell-Melé A, Arntz WE, Gerdes 

D (2013) Transfer of seston lipids during a flagellate bloom from the surface to the benthic 

community in the Weddell Sea. Sci Mar 77(3):397-407. doi:10.3989/scimar.03835.30A. 

Sañé E, Isla E, Gerdes D, Montiel A, Gili J-M (2012) Benthic macrofauna assemblages and 

biochemical propierties of sediments in two Antarctic regions differently affffected by 

claimate change. Cont Shelf Res 35:53-63. doi:10.1016/j.csr.2011.12.008. 

Scharek R, Smetacek V, Fahrbach E, Gordon LE, Rohardt G, Moore S (1994) The transition 

from winter to early spring in the eastern Weddell Sea, Antarctica: Plankton biomass and 

composition in relation to hydrography and nutrients. Deep-Sea Res Pt I 41(8):1231-1250. 

Schnack-Schiel SB, Isla E (2005) The role of zooplankton in the pelagic-benthic coupling of 

the Southern Ocean. Sci Mar 69(2):39-55. 

Sedwick PN, DiTullio G (1997) Regulation of algal blooms in Antarctic shelf waters by the 

release of iron from melting sea ice. Geophys Res Lett 24(20):2515-2518. 

Sedwick P, DiTullio GR, Mackey DJ (2000) Iron and manganese in the Ross Sea, Antarctica: 

seasonal iron limitation in Antarctic shelf waters. J Geophys Res 105(C5):11321-11336. 

Smith CR, Minks S, DeMaster DJ (2006) A synthesis of bentho-pelagic coupling on the 

Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep-Sea Res Pt II 

53:875-894. doi:10.16/j.dsr2.2006.02.001. 



General Introduction 

 

21 
 

Souster TA, Morley SA, Peck LS (2018) Seasonality of oxygen consumption in five common 

Antarctic benthic marine invertebrates. Polar Biol 41(5):897-908. doi:10.1007/s00300-018-

2251-3. 

Stanwell-Smith D, Peck LS, Clarke A, Murry AWA, Todd CD (1999) The distribution, 

abundance and seasonality of pelagic marine invertebrate larvae in the maritime Antarctic. 

Philos Trans R Soc B 354:471-484. 

Stehli FG, McAlester AL, Helsey CE (1967) Taxonomic diversity of Recent bivalves and 

some implications for geology. Geol Soc Am Bull 78:455-466. 

Sumida PYG, Bernardino AF, Stedall VP, Glover AG, Smith CR (2008) Temporal changes in 

benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: 

Resutls from video surveys. Deep-Sea Res Pt II 55:2465-2477. 

Sumida PYG, Smith CR, Bernardino AF, Polito PS, Vieira DR (2014) Seasonal dynamics of 

megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital 

influx. R Soc Open Sci 1:140294. doi:10.1098/rsos.140294. 

Tatián M, Mercuri G, Fuentes VL, Antacle JC, Stellfeldt A, Sahade R (2008) Role of benthic 

filter feeders in pelagic-benthic coupling: assimilation, biodeposition and particle flux. Ber 

Polar Meeresforsch 571:118-127. 

Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic 

community structure. Trends Ecol Evol 20(10):534-539. doi:10,1016/j.tree.2005.07.010. 

Thorson G (1957) Bottom communities (sublittoral or shallow shelf). In: Hedgpeth (ed) 

Treatise on Marine Ecology and Paleontology. Geological Society of America, New York, pp 

461-534. 

Timmermann R, Hellmer HH (2013) Southern Ocean warming and increased ice shelf basal 

melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-

element modelling. Ocean Dynam 6363:1011-1026. doi:10.1007/s10236-013-0642-0. 

Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky 

P, Summerhayes C (2009) Antarctic climate change and the environment. Scott Polar 

Research Institute, Cambridge. 

Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall 

G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Guglielmin M, Gutt J, Jacobs S, 

Kennicutt II MC, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, 

Sparrow M, Summerhayes C, Speer K, Klepikoc A (2014) Antarctic climate change and the 

environment: an update. Polar Rec 50:237-359. doi:10.1017/S003224741300296. 

Turner J, Hosking JS, Marsahll GJ, Phillips T, Bracegirdle TJ (2016) Antarctic sea ice 

increase consistent with intrinsic variability of the Amundsen Sea Low. Clim Dyn 46:2391-

2402. doi:10.1007/s00382-015-2708-9. 

Voß J (1988) Zoogeography and community analysis of macrozoobenthos of the Weddell Sea 

(Antarctica). Ber Polarforsch 45. doi:10.2312/BzP_0045_1988. 



Manuscript 1: Comparison of quantitative approaches for the analysis of benthic communities 

 

22 
 

MANUSCRIPTS 

MANUSCRIPT 1: Seabed images versus corer sampling: a comparison of two quantitative 

approaches for the analysis of marine benthic communities in the southern Weddell Sea 

(Southern Ocean) 

Authors: Santiago Pineda-Metz and Dieter Gerdes  

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27568, 

Bremerhaven, Germany 

Published in Polar Biology: On-line in October 2017. doi:10.1007/s00300-017-2211-3 

 

  



Manuscript 1: Comparison of quantitative approaches for the analysis of benthic communities 

 

23 
 

Seabed images versus corer sampling: a comparison of two quantitative approaches for 

the analysis of marine benthic communities in the southern Weddell Sea (Southern 

Ocean) 

Santiago Pineda-Metz
*
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Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27568, 

Bremerhaven, Germany 

*Tel.: +49 471 4831 1706. Email: santiago.pineda.metz@awi.de 

ABSTRACT 

Corer sampling and seabed imaging are two quantitative approaches used to investigate 

benthic fauna. Despite the complementary nature of these methods, very few studies have 

been done using both in parallel. Here, we compare benthic composition and abundance data 

derived from the quantitative faunistic analysis of both multibox corer samples (MBC) and 

seabed images (SBI) taken concomitantly at 16 stations in the Filchner-Ronne region of the 

southern Weddell Sea (Southern Ocean) during R/V Polarstern cruise PS82 (ANT-XXIX/9) 

in 2013/14. A total of 43 benthic taxa were found, 34 in MBC and 29 in SBI samples. Mean 

benthic abundance derived from MBC was twenty times higher than the SBI abundance 

(1,708 vs. 71 ind m
-2

) – best explained by SBI being a method focusing on the epifauna alone 

whereas MBC also captures the more abundant infauna.  Differences in taxa caught by both 

gears demonstrated that MBC alone was not sufficient for a comprehensive representation of 

the entire benthic fauna. The among-station similarity patterns derived from both methods 

correlated significantly; a different combination of taxa best explained the specific 

distribution patterns. Overall, our results demonstrate similar and comparable spatial 

distribution patterns in the benthic communities by both methods. We therefore highly 

recommend the use of both, MBC and SBI in combination.  

Keywords: in- and epifauna, Filchner region, zoobenthic distribution patterns, quantitative 

sampling
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INTRODUCTION 

In general, benthic marine macrofauna can be divided into three habitat-related 

compartments: a) infauna living in the sediment; b) epifauna comprising vagile and sessile 

organisms living on the sea floor and c) suprabenthic fauna living above the sea floor but 

remaining connected to the benthic habitat (Dauvin and Vallet 2006).  

Specific collection gear has been designed to adequately sample each of these benthic 

compartments. While trawled gear provide qualitative estimates of species numbers and 

richness (Clark et al. 2016), corers are used to quantitatively determine abundance and 

biomass of the different benthic taxa by providing precise numeric data that allow for 

inferences on the general ecology of Antarctic benthos. However, quantitative abundance data 

for Southern Ocean macroinvertebrates are still comparatively scarce (Clarke 2008). In the 

present study, we compare the performance of two sampling gears by assessing the 

quantitative data obtained by a) multibox corer samples and b) seabed images.  

Corers have been extensively used in marine ecology and are mainly used for sampling soft-

bottom benthic fauna across multiple size ranges. One commonly used corer is the giant box 

corer, which covers a seabed area of 0.25 m
2
 (AWI 2006) and can catch organisms > 20 mm. 

Another example of coring device is the multibox corer (MBC; Gerdes 1990). While single 

corers provide information of large macrobenthos, they are inefficient as many deployments 

are required to build up a statistically robust picture of the nature of macrobenthic distribution 

patterns. In comparison, each box of a MBC is inefficient to sample large macrobenthos (each 

box covers an area of 0.024 m
2
). However, the circular area subsampled per deployment of a 

MBC is ~2.3 m
2
, this allows to “better” represent patchily distributed macrobenthos, while 

being able to treat each of the 9 cores as a replicate (Gerdes 1990). 

Corers often provide relatively undisturbed samples of both infaunal- and epifaunal benthos, 

although they are better suited to study the infaunal compartment (Eleftheriou and McIntyre 

2005; Lozach et al. 2011). The problems of sampling epifaunal benthos with corers are: a) the 

scattered abundance of large epifauna (e.g. hexactinellid sponges); b) patchily distributed 

organisms (e.g. ophiuroids; Syvitski et al. 1989) are underestimated; c) motile organisms tend 

to avoid being caught by corers (e.g. Thurston et al. 1994); and d) the approaching gear may 

generate a bow-wave effect that flushes away smaller organisms. For further discussion about 

corers and other soft-bottom sampling gear, we refer to Blomqvist (1991) or Eleftheriou and 

McIntyre (2005), and further literature cited therein.  

The disadvantages of corers for the investigation of epibenthos have led to the implementation 

of seabed imaging methods to overcome these constraints (Rumohr 1995; Solan et al. 2003). 

Since its first use over a century ago in the 1890s, seabed imaging transformed from a 

qualitative technique to a quantitative one and has been recognized as a valuable complement 

to traditional benthos sampling approaches involving trawls or corers. A wide range of 

information can be obtained from seabed images, as they provide an in-situ view of epibenthic 

habitats and communities. If spatially calibrated with scales (e.g. by laser pointers), and 

corrected for optical distortion, quantitative data on epibenthic abundance and, to some extent, 

biomass estimations can be derived by this approach (Rumohr 1995). However, there are 

some constraints limiting the use of seabed images (Rumohr 1995): a) the light backscattering 
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under turbid conditions can result in poor image quality; b) highly mobile, cryptic, and small-

sized organisms are not well recorded; and c) high costs for acquisition and maintenance of 

seabed imaging equipment may be prohibitive.  

In the Weddell Sea and off the Antarctic Peninsula, benthic communities have been studied 

by means of both corers (e.g. Gerdes et al. 1992, 2003, 2008; Sañé et al. 2012) and seabed 

imaging (e.g. Fillinger et al. 2013; Gutt and Piepenburg 2003; Gutt et al. 2011, 2013). Despite 

the fact that these methods complement each other, studies using both approaches in a 

comparative manner are scarce. This scarcity of information leaves open questions such as: a) 

how different are the infaunal- and epifaunal benthos sampled by both gears in parallel? or b) 

are benthic distribution patterns resulting from quantitative corer sampling and obtained from 

a parallel seabed imaging survey correlated? Piepenburg et al. (2002) conducted such a study 

off King George Island, using a combination of multibox corer (Gerdes 1990) and a still 

camera system (Piepenburg and Juterzenka 1994) to comparatively analyze the spatial 

distribution of infaunal- and epifaunal benthos with a special focus on assemblage description. 

In our study we aim to make a comprehensive comparison between both MBC and SBI to 

illustrate the differences in results obtained by these methodologies. Furthermore we analyzed 

the resemblance of the distribution patterns of infaunal- and epifaunal benthos. 

MATERIAL AND METHODS 

Fieldwork was performed during the R/V Polarstern PS82 (ANT-XXIX/9) expedition in the 

Weddell Sea from December 2013 to March 2014 (Knust and Schröder 2014). A total of 16 

stations were investigated with a MBC (Table 1). The stations were distributed across three 

sub-regions of the Filchner-Ronne Outflow System (FROS): a) the eastern and b) western 

flanks of the Filchner Trough, and c) the trough itself (Fig. 1).  

The MBC used to sample infaunal benthos covers a circular area of ~2.3 m
2
 and provides a 

maximum of 9 cores, each core covering 0.024 m
2
. Prior to core sampling, seabed images 

were taken with an underwater camera (Canon EOS D100) installed in a pressure housing 

attached to the MBC. Images were taken every 15 seconds for 15 minutes resulting in a mean 

of 55 images per deployment. The high-definition photographs were taken from 1-2 m above 

the seabed.   

Sediment cores obtained with the MBC were sieved on deck over a 500-µm mesh size sieve. 

The sieve residues were stored in 5-L containers and fixed in a 5% sea water-formaldehyde 

solution buffered with borax. Overall, 101 corer samples were taken at 16 stations. These 

samples represented an average of 0.15 m
2
 seabed per station. Benthic organisms were sorted 

from these samples, identified to the lowest possible taxon via a stereomicroscope and 

classified into 34 major taxonomic groups (Table 2). Abundance values (ind m
-2

) were 

determined for each taxon and station. For colonial (e.g. bryozoans and hydrozoans) and large 

macrobenthic organisms (e.g. glass sponges) only presence was recorded. 

A total of 279 seabed images (SBI) obtained at the 16 stations were analyzed. At three 

stations (033, 040 and 206), all images obtained were analysed in order to calculate the 

number of images per station sufficient to cover all taxonomic groups differentiated.  The 

taxon accumulation curves at these three stations clearly indicated that the analysis of 15 
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images is sufficient for this purpose. For this reason, at all other stations a randomly selected 

image subset of 15 SBI was used for the description of the epifaunal community. The average 

seabed area analyzed per SBI station was 14.6 m
2
, and an overall seabed area of 233.2 m

2
 was 

investigated at the 16 stations considered in this study.  

The optical axis of the camera attached to the MBC had an inclination of 45º in relation to the 

seabed. To compensate for the distortion of the area pictured, the images were edited prior to 

analysis with the Camera Distortion Correction tool of the software Adobe Elements v5.0. 

The size of the seabed area in each image, determined by means of two laser-pointer dots with 

a distance of 4.5 cm from each other, ranged from 0.38 to 2.86 m
2
, depending on the distance 

of the camera from the seafloor. In the laboratory, all organisms visible in the SBIs were 

counted, identified to the lowest possible taxon, and classified into 29 taxonomic groups 

(Table 2). Organism counts were standardized to abundance figures (ind m
-2

). The abundance 

of colonial organisms was calculated as area (in m
2
) covered by the colonies. To make results 

and units between SBI and MBC data comparable, these abundance values were not used for 

statistical analysis.   

Multivariate statistics were applied to perform benthic community analyses of abundance data 

obtained from both MBC and SBI by means of the software package PRIMERv6 with its 

PERMANOVA+ add-on (Clarke and Gorley 2006; Anderson et al. 2008). A similarity matrix 

was calculated by means of Euclidean distances. This similarity matrix was used in a 

PERMANOVA analysis to test for interactions between sampling method and sampled 

stations. For the design of the PERMANOVA, two factors were considered: a) sampling gear 

(MBC and SBI) as a fixed factor, and b) station (16 levels) as a random factor. The Monte 

Carlo option of the PERMANOVA routine was used to ensure 9999 permutations. In case of 

a significant interaction between the two factors, pairwise tests were performed to examine 

differences between methods and across stations. Abundance values per taxon and core/image 

were 4
th

-root transformed to reduce the effect of high variation among taxa. These 

transformed values were used in a two way SIMPER test (Clarke and Warwick 1994) to 

establish the percent dissimilarity between MBC and SBI across stations, and which taxa were 

the primary contributors to these differences. 

Mean abundance values for each MBC and SBI station were calculated. These data were 

arranged in two matrices featuring the mean abundances per taxon and station (excluding 

colonial organisms). Abundance figures were 4
th

-root transformed to reduce the effect of high 

variation among taxa. Between-station similarities were calculated using the Bray-Curtis 

Index (Bray and Curtis 1957). The resemblance pattern in the similarity matrices was 

visualized using 2-d multidimensional scaling (MDS) plots. The stations were grouped based 

on a cluster and SIMPROF analysis (Clarke and Gorley 2006). To recognize the taxa that 

primarily explain these station groups, principal component analyses (PCA) of the weighted 

variables were performed. MDS and PCA results were compared to evaluate differences 

between distribution patterns of the two benthic community fractions represented in the MBC 

and SBI data (infauna vs. epifauna).  

A RELATE test (Clarke and Warwick 1994) was performed to test for a correlation between 

the two similarity matrices based on MBC and SBI data, to check the resemblances between 
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infaunal and epifaunal distribution patterns. In case a significant correlation was observed 

with the RELATE test, BEST tests (Clarke and Gorley 2008) were performed as well. BEST 

tests, as RELATE and Mantel tests (Mantel 1967), correlate two similarity matrices. One 

matrix is considered as the “explained” or dependent matrix and the other as the 

“explanatory” or independent matrix. As such, the test examines the variables from the 

“explanatory” matrix one at a time, then pairs of variables, triplets, and so on (Clarke et al. 

2008). The BEST procedure then selects the variables that “best explain” the pattern of the 

“explained” matrix.   

RESULTS 

Combining all SBI and MBC data, a total of 43 benthic taxa were found (Table 2). Eight taxa 

were exclusively found in SBI (gorgonians, actinarians, scleractinians, nudibranchs, 

cephalopods, mysids, serolids, and decapods), and 13 taxa were exclusively found in MBC 

samples (sipunculids, flatworms, nemerteans, priapulids, aplacophors, clitellate worms, 

echiurids, cumaceans, harpacticoid copepods, cirripeds, tanaidaceans, and ostracods; Table 2).  

The mean total benthic abundances of the MBC stations varied from 104 to 4,543 ind m
-2

, 

with an overall mean of 1,708 ind m
-2

 and an overall median of 1,325 ind m
-2

. Dominant taxa 

(i.e., those that contributed at least 75% to the mean abundance at the stations) were 

polychaetes, amphipods, clitellate worms, ophiuroids and bivalves (Fig. 2 and 3). The mean 

total epibenthic abundances of the SBI stations ranged from 16 to 170 ind m
-2

, with an overall 

mean of 71 ind m
-2

 and an overall median of 64 ind m
-2

. Following the criteria given above, 

ophiuroids, holothurians, polychaetes, tunicates and unidentified organisms were identified as 

dominant taxa in the SBI (Fig. 2 and 4).  

Two-way PERMANOVA analysis showed significant variability in the structure of the 

benthic assemblages (Table 3) both, between methods (MBC, SBI) and among stations. 

Furthermore, there was also a significant between-factor interaction (Table 3), indicating that 

the effect of the MBC and SBI was not the same across all stations. Pairwise comparisons 

showed, however, significant differences between MBC and SBI at each station, albeit to a 

different degree (p values ranged from <0.01 to 0.03). A complimentary SIMPER test 

established 80.1 % dissimilarity between MBC and SBI abundance values across all stations. 

The taxa that contributed ~50 % to this difference were polychaetes, ophiuroids, bivalves, 

amphipods, holothurians and clitellate worms (Table 4). 

Cluster and SIMPROF analysis distinguished five groups of MBC stations, and three groups 

SBI stations (Fig. 5). A PCA of the weighted variables showed the grouping of MBC stations 

was caused almost exclusively by polychaetes, and the SBI station grouping to be mainly 

affected by the abundances of ophiuroids and holothurians (Table 5; Fig. 6 and 7).  

MBC stations were divided into five groups (Fig. 5). Both MBC groups “a” and “b” were 

comprised by just one single station situated in the Filchner Trough at 684 (st 033) and 1111m 

depth (st 066). MBC group “c” was comprised of two stations located in the shallow area of 

the western flank of the trough (st 242, 436 m depth), and the deep trough (st 116, 1060 m 

depth). MBC group “d” was also comprised by two stations, both located on the western flank 

of the trough between 798 (st 236) and 1140 m water depth (st 206). MBC group “e” was the 
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largest group with 10 stations, distributed across the entire FROS in a wide depth range (254 

to 1217 m depth). In terms of abundance, all MBC groups were dominated by polychaetes. 

However, the second dominant taxon varied across station groups. For groups “a”, “b” and 

“c”, bivalves followed polychaetes, in group “a” they were almost as abundant as polychaetes, 

in groups “b” and “c” clearly less abundant (Fig. 3). The second dominant taxon in group “d” 

were ophiuroids and in group “e”, amphipods (Fig. 3). The highest abundance values were 

found at stations in group “e”, followed in descending order by stations of groups “d”, “c”, 

“b”, and “a”.  

SBI stations were divided into groups “a”, “b” and “c” (Fig. 5). SBI group “a” included 

stations 066 and 116, which are located in the deep Filchner Trough. SBI group “b” included 

4 stations (033, 040, 098 and 242) located in all three FROS sub-regions in water depths of 

436 to 684 m. The remaining stations grouped in group “c”, were distributed across the entire 

FROS region and a wide depth range of 254 to 1217 m. The SBI group “c” stations showed 

the highest mean abundances, group “b” the lowest, and SBI group “a” contained just 2 

stations with a max. abundance at st. 066 and a very low abundance at st. 116 (Fig. 4). SBI 

group “a” was dominated by holothurians, group “b” by ophiuroids and, group “c” was 

dominated by ophiuroids and polychaetes (Fig. 4). 

Despite the differences in MBC and SBI station groupings, a RELATE test showed that the 

among-station resemblance pattern in MBC data was significantly correlated with the pattern 

found in SBI (Spearman rank correlation; ρ = 0.395, p = 0.01). A first BEST test using MBC 

resemblances as “explanatory” matrix suggested that flatworms, priapulids, amphipods, 

cirripeds, and holothurians were the taxa “best explaining” the similarity pattern among SBI 

stations (Spearman rank correlation; ρ = 0.604; p = 0.04). A vice-versa BEST test with SBI 

resemblances as “explanatory” matrix showed brachiopods, pycnogonids, isopods, 

unidentified crustaceans, echinoids, asteroids, and ophiuroids to be the taxa “best explaining” 

the similarity pattern among MBC stations (Spearman rank correlation; ρ = 0.693; p = 0.02). 

DISCUSSION 

The total area covered by SBI during our study was two orders of magnitude larger than that 

covered by MBC samples. Rumohr (1995) described special features of different seabed 

imaging techniques; seabed still images cover a range of square centimeters up to square 

meters. Although seabed images cover larger areas of seafloor, this method is limited by the 

resolution of the images (Rumohr 1995). This lack of high image resolution means that small 

organisms tend to be ignored and their importance for the community thus remains 

underestimated (Sloan et al. 2003). Examples of such taxa are crustaceans, especially 

amphipods, tanaidaceans, small isopods and ostracods, which occur regularly in high 

Antarctic shelf communities (Gerdes et al. 1992). On the other hand, the MBC with its small 

coring areas will underrepresent larger benthic organisms such as e.g. glass sponges. A way to 

overcome this problem is the use of giant box corers, which provide just one corer but of a 

larger area (0.25 m
2
; AWI 2006).  

All data presented and discussed in this paper rely on organism numbers and neglect biomass 

estimates, because at the moment we do not have the proxies to calculate biomass from 

density and organism size measures from SBI. PERMANOVA results showed significant 
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differences of abundance values between sampling methods across stations (Table 3). Mean 

abundance values obtained from MBC stations were orders of magnitude larger than those 

obtained from SBI, although the SBI recordings considered two orders of magnitude more sea 

floor area. The maximum abundance value derived from the images was 170 ind m
-2

, whereas 

comparable low abundance values in quantitative corer samples (237, 104 and 334 ind.m
-2

) 

were found only at three deep stations in the Filchner Trough (st 033, 066 and 116, 

respectively). The mean abundance per station derived from MBC samples (1,708 ind m
-2

) 

was more than 20 times higher than that obtained from SBI (71 ind m
-2

). 

There were distinct differences in the dominant taxa. Polychaetes were the most dominant 

taxon in the MBC samples, but ranked 3
rd

 in SBI. In contrast, ophiuroids were the most 

dominant taxon in SBI, but ranked 4
th

 in the MBC dominant taxa list (Fig. 2). With the 

exception of sedentary polychaetes, the dominant taxa in SBI include groups with medium 

mobility (e.g. ophiuroids and holothurians), organisms that are hard to capture with corers due 

to their size or patchy distribution (e.g. tunicates), and those that could not be identified. 

Unidentified organisms were found in 15 of the SBI stations and only at three MBC stations. 

The higher frequency of unidentified organisms found in SBI stations is not surprising when 

taking into account how organisms were identified. In SBI stations, organisms were identified 

directly from each image, which makes it difficult to distinguish small structures needed to 

properly identify individuals. Furthermore, in cases where images are out of focus or 

suspended particles are present, the task of identifying organisms is even harder. However, for 

MBC stations, organisms are identified in the laboratory by means of a stereomicroscope, 

making the identification task easier. MBC dominant taxa included organisms that either live 

in the substrate or are smaller than 1cm in size. The SIMPER comparison between methods 

across stations showed a mix between SBI and MBC dominant taxa to be main contributors to 

differences between methods (Table 4). 

Piepenburg et al. (2002) documented enormous differences in abundance and composition 

between quantitative data derived from MBC and SBI. These differences can be explained by 

the suitability of a gear for catching specific benthic components. As already mentioned in the 

´Introduction´, corers are effective for collecting infaunal benthos, whereas seabed 

photography is better suited to map epifaunal benthos > 1 cm in size. Solan et al. (2003) 

explained the advantages of seabed images for observing epibenthic patterns pointing out that 

a fundamental problem remains, because a big part of the soft-bottom benthos is living 

burrowed in the sediment and can thus not be detected. In our study area despite the presence 

of drop stones or gravel, the dominant sediment type at all stations was soft-sediment, which 

can be regarded as normal for the high Antarctic Weddell Sea shelf (Diekmann and Kuhn 

1999b).  

Combining both methods, we found a total of 43 taxa. Those taxa found exclusively in MBC 

samples include organisms living burrowed in the sediment or rather small organisms that are 

difficult to identify in images. Taxa exclusively found in SBI were either highly mobile, e.g. 

cephalopods and mysids, or they occurred in low abundances as e.g. nudibranchs (only one 

individual was found). A fact that stands out is the complementarity of the results obtained 

with both methods, i.e. taxa not or poorly represented in corer samples are better represented 

in images, and vice versa. This complementarity of both methods has been pointed out before 
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(e.g. Rumohr 1995; Solan et al. 2003) and it is therefore surprising that both methods in 

combination are not used more often, since they can be treated as “the two sides of the same 

coin”. 

A combination of cluster, SIMPROF and MDS (Fig. 5) showed differences between station 

groups obtained from MBC and SBI data. Furthermore, the PCA results clearly showed that 

the driving factors for grouping were different, mainly polychaetes in the case of MBC, and 

the combination of ophiuroids and holothurians for SBI (Table 5, Fig. 6 and 7). Despite these 

differences, the RELATE test showed that there is a statistically significant similarity between 

the distribution patterns of infaunal and epifaunal communities (Spearman rank correlation; ρ 

= 0.395; p < 0.01). This suggests a coupling between both benthic fractions. Such a match of 

distribution patterns resulting from both methods is a rather surprising result for two reasons: 

a) our study region in the FROS is characterized by a heterogeneous topography inhabited by 

very different benthic community types (Voß 1988; Pineda-Metz et al. in prep). How 

infaunal- and epifaunal benthos is affected by environmental gradients and how they respond 

to these gradients differs; thus, differences between benthic components are to be expected; 

and, b) a similar approach (Piepenburg et al. 2002) of comparing benthic compartments with 

these two methods did not reveal such a match between distribution patterns of infaunal- and 

epifaunal benthos (RELATE test; ρ = 0.286; p = 0.081). Based on these facts and considering 

the methods to better describe either infaunal or epifaunal benthic fractions, a mismatch 

between patterns would have been, a priori, a logical conclusion.  

The match found with the RELATE test generated the question: which taxa might play a key 

role? In our study we tried to answer this by comparing both MBC and SBI data by means of 

a BEST test. When using MBC data as an “explanatory” matrix for the pattern found in the 

SBIs, a combination of five taxa (flatworms, priapulids, amphipods, cirripeds and 

holothurians) “best explains” the epifaunal pattern. Vice versa, when using SBI data as an 

“explanatory” matrix for the pattern found in MBC data, a combination of seven taxa 

(brachiopods, pycnogonids, isopods, unidentified crustaceans, echinoids, asteroids and 

ophiuroids) “best explains” the infaunal benthos distribution pattern. The variables “best 

explaining” the patterns of infaunal- and epifaunal benthic distribution could be used to 

optimize mathematical models (e.g. linear multiple regression, maximum entropy models). 

Our study compares quantitative results from MBC and SBI samples. Although inherently 

different, they complement each other and future sampling strategies with deployment of both 

methods in parallel should be encouraged. Although traditional sampling with corers or towed 

gears resulted in robust descriptions of benthic communities with more focus on quantitative 

aspects (e.g. abundances/biomasses) or taxonomical composition, the combination of 

quantitative work with corers and seabed imaging methods increases the breadth of the 

community elements that can be described at each sampling site. Infaunal and epifaunal 

benthos fractions and thus the benthos as a whole can be described in more detail. Despite 

considering the benthic fractions in different resolution, both methods resulted in similar 

distribution patterns. Finally, it is worth mentioning that the combined use of both methods in 

the same gear, as the multibox corer in our study, is practicable, minimizing required ship 

time, and optimizing station grid and expedition planning.  
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Tables and corresponding legends 

TABLE 1: Benthic stations investigated during RV Polarstern cruise PS82 (ANT-XXIX/9) 

2013/14. Data on fine (clay and silt) and coarse (gravel and sand) sediments from Diekmann 

and Kuhn (1999a). Near-bottom water densities (kg m
-3

) from Schröder and Wisotzki (2014). 

PS82 

St. No. 

Latitude (S) Longitude 

(W) 

Water 

Depth (m) 

Sub-region Coarse 

sediment 

(%) 

Fine 

sediment 

(%) 

Sea water 

density 

(sigma-

theta) 

033 75°56.83' 31°40.57' 684 Filchner 

Trough 

55.95 44.05 27.92 

040 76°03.96' 30°16.83' 472 Eastern 

flank 

77.82 22.18 27.77 

066 77°06.09' 36°34.39' 1111 Filchner 

Trough 

34.34 65.66 27.93 

089 76°59.02' 32°51.05' 254 Eastern 

flank 

66.18 33.82 27.69 

098 77°42.76' 35°55.73' 585 Filchner 

Trough 

58.76 41.24 27.89 

116 77°36.77' 38°56.70' 1060 Filchner 

Trough 

28.69 71.31 27.90 

125 75°29.48' 27°24.60' 286 Eastern 

flank 

86.94 13.06 27.69 

154 74°36.53' 28°28.72' 1217 Eastern 

flank 

20.78 79.22 27.78 

163 74°39.94' 28°40.16' 696 Eastern 

flank 

27.22 72.78 27.76 

164 74°53.67' 26°42.48' 290 Eastern 

flank 

60.63 39.37 27.68 

200 74°34.73' 36°23.70' 426 Western 

flank 

85.43 14.57 27.83 

206 74°26.09' 35°43.48' 1140 Western 

flank 

83.78 16.22 27.88 

226 74°21.12' 37°36.14' 554 Western 

flank 

84.29 15.71 27.82 

236 74°13.23' 37°39.67' 798 Western 

flank 

83.87 16.13 27.84 

242 74°40.84' 39°04.03' 436 Western 

flank 

65.39 34.61 27.82 

325 74°42.28' 29°48.41' 427 Eastern 

flank 

46.04 53.96 27.75 
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TABLE 2: Occurrence of benthic taxa in seabed images (x) and multibox corer samples (o) 

collected at 16 stations during RV Polarstern cruise PS82 (ANT-XXIX/9) 2013/14. 

TAXA / Stations 033 040 066 089 098 116 125 154 163 164 200 206 226 236 242 325 

Porifera x o  xo o o xo xo xo xo o xo xo xo x xo 

Stauromedusae          x       

Hydrozoa  o  ox  o x x xo xo xo xo xo x o xo 

Alcyonacea    x x  x x x x x x x x x x 

Actinaria   x x  x x x x x x  x   x 

Scleractinia      x   x x      x 

Anthozoa1   o  o o  o  o o o o o o o o 

Bryozoa  xo  xo  o xo xo xo xo xo xo xo xo xo xo 

Brachiopoda          o o xo o o   

Sipuncula  o  o o   o o o    o  o 

Platyhelminthes   o o             

Nemertina o o  o o  o o o o o o o o  o 

Priapulida  o              o 

Polyplacophora        o xo        

Solenogastres    o o   o o o o  o   o 

Bivalvia o o o o o o o o o xo o o o o o o 

Nudibranchia            x     

Gastropoda o o  o o  xo xo o o xo o o   xo 

Scaphopoda  o     o  o o       

Cephalopoda           x     x 

Polychaeta xo xo xo xo xo xo xo xo xo xo xo xo xo xo xo xo 

Clitellata o o o o o o o o o o o o o o o o 

Echiurida          o       

Pantopoda  xo  xo x  x xo o xo xo o xo x x xo 

Mysida x    x  x x  x   x x x x 

Amphipoda x xo x o o  o xo o xo xo o o xo xo xo 

Cumacea o o  o  o o o o o  o   o o 

Harpacticoida  o  o o  o  o o o o o    

Cirripedia           o      

Serolidae x x x   x  x   x   x  x 

Isopoda o o  o o x o  o xo o o o o o o 

Tanaidacea  o  o o o o o o o o  o  o o 

Ostracoda o o   o  o o  o  o   o  

Decapoda x x     x x  x x    x x 

Crustacea1 x x   x x  x o x xo  o x x x 

Echinoidea x x x xo x x x x xo x xo x x x x x 

Holothuroidea x x x xo xo x xo xo xo xo x x x x x xo 

Asteroidea    xo x x x x xo x xo x xo x  x 

Ophiuroidea x xo x xo xo xo xo xo xo xo xo xo xo xo xo xo 

Crinoidea o  x xo x  x xo xo xo x  x x x x 

Hemichordata       xo  xo   x     

Tunicata x o x x  xo xo x xo xo o x x xo xo x 

Unidentified xo  xo x x x x xo x x x x x x x x 
1
 = unidentified 
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TABLE 3: Results of two-way PERMANOVA test of significant differences in the structure 

of benthic assemblages investigated at 16 stations during RV Polarstern cruise PS82 (ANT-

XXIX/9) 2013/14, with sampling gear - multibox corer samples (MBC) and seabed images 

(SBI) - as fixed factor and stations as random factor. *Significant at p < 0.01. 

FACTOR PSEUDO-F 

Fixed: Sampling Gear (MBC, 

SBI) 

30.7
*
 

Random: Station (16 levels) 57.8
*
 

Factor interaction 55.6
*
 

 

TABLE 4: Results of SIMPER analysis of the composition of benthic fauna identified in 

multibox corer samples (MBC) and seabed images (SBI) taken at 16 stations during RV 

Polarstern cruise PS82 (ANT-XXIX/9) 2013/14. 

Groups MBC SBI 

Average  

within-group similarity 

Overall: 54.29 % 

Polychaeta: 37.83 % 

Bivalvia: 11.47 % 

Ophiuroidea: 11.05 % 

Overall: 66.17 % 

Ophiuroidea: 35.24 % 

Polychaeta: 14.72 % 

Holothuroidea: 9.96 % 

Average  

between-group dissimilarity 

MBC vs. SBI 

 Overall: 80.14 % 

Polychaeta: 17.52 % 

Ophiuroidea: 8.07 % 

Bivalvia: 7.78 % 

Amphipoda: 6.96 % 

Holothuroidea: 6.67 % 

Clitellata: 5.38 % 
 

TABLE 5: Results of Principal Component Analysis (PCA) of the weighted abundances of 

benthic fauna identified in multibox corer samples (MBC) and seabed images (SBI) collected 

at 16 stations during R/V Polarstern cruise PS82 (ANT-XXIX/9) 2013/14. 

Sampling 

Gear 

Principal 

Component 

% Variation Linear coefficient Taxa 

     

MBC PC1 99.5 -0.999 Polychaeta 

 PC2 0.2 -0.776 Clitellata 

     

SBI PC1 84.3 -0.988 Ophiuroidea 

 PC2 12.4 -0.988 Holothuroidea 
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Figures and corresponding captions 

 
Fig. 1: Locations of benthos stations in the Filchner-Ronne Outflow System (FROS) region in 

the southern Weddell Sea visited during R/V Polarstern cruise PS82 (ANT-XXIX/9) 

2013/14. Bathymetric data from IBCSO (Arndt et al. 2013) 

 
Fig. 2: Relative abundances (%) of dominant benthic taxa identified in a) multibox corer 

samples and b) seabed images collected during R/V Polarstern cruise PS82 (ANT-XXIX/9) 

2013/14. 
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Fig. 3: Mean abundance values (ind m

-2
) of dominant benthic taxa found in multibox corer 

samples collected during R/V Polarstern cruise PS82 (ANT-XXIX/9) 2013/14. Dashed line 

represents the overall mean abundance. 

 
Fig. 4: Mean abundance values (ind m

-2
) of dominant benthic taxa identified in seabed images 

collected during R/V Polarstern cruise PS82 (ANT-XXIX/9) 2013/14. Dashed line represents 

the overall mean abundance. 
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Fig. 5: Two-dimensional MDS (multi-dimensional scaling) plots visualizing the among-

station resemblance pattern of benthic fauna identified in A) multibox corer samples (MBC) 

and B) seabed images (SBI) collected during R/V Polarstern cruise PS82 (ANT-XXIX/9) 

2013/14. The pattern is based on between-station Bray-Curtis similarities calculated from 

abundance (ind m
-2

) data. Grouping obtained from cluster and SIMPROF analysis is shown. 
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Fig. 6: Principal Component Analysis (PCA) of the weighted abundances of benthic taxa 

identified in multibox corer samples collected during R/V Polarstern cruise PS82 (ANT-

XXIX/9) 2013/14. The first two axes (PC1 and PC2) explained 99.5 % and 0.2 %, 

respectively, of the total variance. 

 
Fig. 7: Principal Component Analysis (PCA) of the weighted abundances of benthic taxa 

identified in seabed images collected during R/V Polarstern cruise PS82 (ANT-XXIX/9) 

2013/14. The first two axes (PC1 and PC2) explained 84.3 % and 12.4 %, respectively, of the 

total variance. 
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Benthos-Pelagos Interconnectivity: Antarctic Shelf Examples 
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Bremerhaven, Germany 

2
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Abstract This review focuses on studies dealing with the coupling between the benthic and 

pelagic realms   on Antarctic shelves and on factors that regulate these processes. Such studies 

in Antarctic water are scarce, especially on the shelves, where flux studies via moorings are 

highly endangered by drifting icebergs. Nevertheless such studies are essential to understand 

these processes and functioning of the cold water ecosystem and how energy is transported 

through its different compartments. Different abiotic (currents, sea-ice, water depth, 

topography of the seafloor, seasonality) and biotic (composition and structure of the benthic 

and pelagic flora and fauna, primary production, vertical migrations) factors are presented as 

parameters regulating the coupling between benthos and pelagos, here defined as benthos-

pelagos interconnectivity. Regional variability in these parameters may result in delayed or 

even different coupling and/or decoupling of these realms. This is exemplarily discussed 

comparing the west Antarctic Peninsula (WAP) and Eastern Weddell Sea Shelf (EWSS). 

While in the WAP both compartments appear decoupled, on the EWSS both compartments 

appear tightly connected. The development of the benthos in the Larsen embayments after the 

shelf ice disintegration is described as an example how changes in the pelagic realm affect 

and modify also the benthic realm.   

Keywords: Bentho-pelagic coupling, Pelago-benthic coupling, Carbon flux, Weddell Sea 

shelf, Antarctic Peninsula shelf 
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1 Bentho-pelagic or Pelago-benthic Coupling? A short Introduction 

When thinking of biotic (e.g., diversity, abundance, biomass) and abiotic (e.g., particle 

concentration, sediment grain size) parameters of both, benthic and pelagic realms, we start 

noticing lines or processes connecting them. One of the first studies on this connectivity was 

that of Hargrave (1973). He pointed out that both realms are connected by the flow of matter, 

especially that of carbon. Since that study, this interconnection between benthos and pelagos 

has been referred to as bentho-pelagic or pelago-benthic coupling. While the terms bentho-

pelagic and pelago-benthic appear exchangeable, each one alludes to the predominant or 

driving component and direction in the coupling (Renaud et al. 2008). In bentho-pelagic 

coupling, it is the benthos which modifies or influences the pelagos. Contrastingly, in pelago-

benthic coupling it is the pelagos which influences or modifies the benthos. In some literature 

bentho-pelagic coupling is referred to as “upward” coupling, while pelago-benthic coupling is 

referred to as “downward” coupling (e.g., Smith et al. 2006).  

With this review I aim to exemplify in a concise and simple way how benthos-pelagos 

interconnectivity, i.e., upward and downward coupling, works in the Southern Ocean with 

special focus on Antarctic shelf ecosystems (Fig. 1). My second aim is to enable non-experts 

to get a rough picture of the Antarctic benthos-pelagos interconnectivity. 

1.1 Pelago-benthic Coupling 

The first approaches used to describe the coupling between pelagos and benthos included 

measurements of carbon input from the water column to calculate how much of this carbon 

was assimilated in the sediment (Hargrave 1973). Currently, studies of downward mass flux 

are still the most common type of coupling studies (e.g., Cattaneo-Vietti et al. 1999; Smith et 

al. 2006, 2008; Isla et al. 2006a, b, 2011). Other approaches to study pelago-benthic coupling 

include recruitment of benthic organisms via meroplanktonic larvae (Bowden 2005), change 

of sediment characteristics (Collier et al. 2000; Hauck et al. 2012; Isla 2016b), pelagic 

characteristics and seasonal patterns and how these affect benthic processes such as feeding 

activity (Barnes and Clarke 1995; McClintic et al. 2008; Souster et al. 2018), reproduction 

(Pearse et al. 1991; Stanwell-Smith et al. 1999; Brockington et al. 2001; Galley et al. 2005), 

growth rates and carbon fixed by benthos (Dayton 1989; Brey and Clarke 1993;  Clarke 2003; 

Barnes et al. 2006, 2016, 2018; Barnes 2015), and benthic distribution patterns (Barry 1988; 

Barry and Dayton 1988; Graf 1989; Bathmann et al. 1991; Gutt et al. 1998; Sumida et al. 

2008; Segelken-Voigt et al. 2016; Jansen et al. 2018). 

1.2 Bentho-pelagic Coupling  

Less common than pelago-benthic coupling studies are studies that show an effect from the 

benthos to the pelagos, i.e., a bentho-pelagic coupling. One clear example of this “upward” 

coupling is the regulation of particulate matter flow in the benthic boundary layer by means of 

benthic structures (Graf and Rosenberg 1997; Mercuri et al. 2008; Tatián et al. 2008), another 

example for this processes is the increase of abundance and diversity of plankton by the 

release of meroplanktonic larvae from benthic organisms into the water (Bowden 2005; 

Schnack-Schiel and Isla 2005). Benthic processes also create feeding grounds for birds, seals, 

and zooplankton (Arntz 1994; Ligowski 2000; Schmidt et al. 2011), they enhance primary 
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production through export of micronutrients from remineralization and consumption/excretion 

processes of pelagic communities (Doering 1989; Smith et al. 2006; Schmidt et al. 2011), and 

can regulate the chemical characteristics of the water column (Doering 1989; Sedwick et al. 

2000; Tatián et al. 2008). 

2 Regulating Factors of Benthic and Pelagic Processes 

In general terms, the interconnectivity between benthos and pelagos could be regarded as 

“weak” or “strong”. This alludes to how directly changes in pelagos are reflected in benthos 

and vice-versa. When seen as a correlation, it would be how strong the correlation between 

compartments is. The strength of the coupling between benthos and pelagos depends on 

seasonality in both compartments, the ecology and structure of benthic and pelagic 

communities, water depth, seafloor topography, water circulation (e.g., tides, currents), and 

wind, all affecting the transport of particles and thus carbon flux from one compartment to the 

other. Around the Antarctic continent, another factor playing a major role for the regulation of 

this coupling between benthos and pelagos is the influence of ice in any of its forms (e.g., sea-

ice and disintegrated shelf ice, i.e., icebergs).  

2.1 Sea Ice 

The Southern Ocean is characterized by its large extension of sea-ice, which covers up to 20 x 

10
6 

km
2
 during Austral winter, and 4 x 10

6 
km

2
 during summer (Fig. 2), making sea-ice 

associated ecosystems one of the most dynamic and largest ecosystems on Earth (Arrigo et al. 

1997; Thomas and Dieckmann 2002; Michels et al. 2008). The retreat of sea-ice during 

summer increases the water column stability, seeds summer phytoplankton blooms, and works 

as a source for micronutrients such as iron (as well as other particles), favouring 

phytoplankton blooms and explaining the higher productivity near sea-ice edges as compared 

to open waters (Clarke 1988; Sedwick and DiTullio 1997; Sedwick et al. 2000; Kang et al. 

2001; Donnelly et al. 2006). It has been shown that reduction of the sea-ice duration 

contributes also to an increase of carbon drawdown by benthic organisms (Barnes 2015).  

Sea-ice starts growing during March to its enormous extension in Austral winter. The high 

coverage of sea-ice and snow during winter time diminishes the light entering the water 

column, thus causing a drastic decrease in local productivity and particle flux (Scharek et al. 

1994; Isla et al. 2006a). However, autotrophic plankton entrapped by sea-ice during its 

formation (along with nutrients and consumers) continues primary production in winter time, 

which can be 4 to 5 times higher than water column production (Garrison and Close 1993). 

While lower than summer production, sea-ice primary production has been pointed out to 

serve as a possible food source for meroplanktonic larvae (Bowden 2005) and various krill 

life stages (Nicol 2006; Kohlbach et al. 2017; Schaafsma et al. 2017). These few examples 

show how the sea-ice summer/winter cycle regulates primary and secondary production in the 

water column and the particle flux, thus directly influencing the benthos-pelagos 

interconnectivity. 

2.2 Depth, Topography, Currents, and Wind 

One conspicuous aspect of the Antarctic shelf is its depth. While other shelf ecosystems in the 

world are shallower (down to around 200 m depth), the isostatic pressure generated by the ice 
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cap on the Antarctic continent deepens the surrounding shelf down to 400 – 600 m and even 

down to 800 – 1000 m in some regions (Gallardo 1987; Smith et al. 2006; Sumida et al. 

2008). Smith et al. (2006) pointed out that the increased depth of the Antarctic shelf with its 

complex topography and current systems may reduce the strength of the coupling by 

increasing the time particles spend in the water column, allowing local characteristics of the 

benthic habitat to mask the pelagic signals on the seafloor. However, the effect of depth on 

particle receding time in the water column will depend on the nature of the particles, e.g., on 

their flocculation ability and other environmental factors such as, e.g., wind forcing, which 

regulates deposition or advection of particles (biological factors are treated later). For the 

Eastern Weddell Sea Shelf (EWSS; Fig. 1A) it has been described that particle flux is rather 

fast. Total mass fluxes measured at mid-water and near the seafloor with sediment traps 

appeared to be similar, and it has been noted that particles can reach the seafloor within days 

despite the long 400 – 600 m depth trip from the euphotic zone to the seafloor (Bathmann et 

al. 1991; Isla et al. 2006a, 2009). For the Ross Sea, while Dunbar et al. (1998) recorded mean 

settling velocities of 176 - 245 m d
-1

 for different types of faecal pellets, DiTullio et al. (2000) 

found aggregates of Phaeocystis antarctica to sink at speeds >200 m d
-1

, i.e., it could take one 

to three days for pellets or Phaeocystis aggregates to reach the seafloor.  

The topography of the shelf influences the benthos-pelagos interconnectivity as well. 

Topography affects benthic distribution patterns and the transport and deposition of particles 

suspended in the water column alike. Dorschel et al. (2014) pointed out that topographic 

features such as range hills, mounds, and seamounts modify water current pathways and their 

strength. Their study of the benthos at Nachtigaller Hill (Fig. 1B) at the tip of the Antarctic 

Peninsula described depth as one main factor explaining benthic distribution patterns. They 

related this to food availability for the benthos, which could have been enhanced by the 

topography of Nachtigaller hill. Another topographic feature affecting water currents is the 

width of the shelf. Along wider shelves the currents tend to be weaker, stronger currents are 

more usual when the shelf is narrow. Gutt et al. (1998) found relatively weaker current 

regimes on wider shelves of the EWSS to be beneficial for particle settling, which in turn 

benefits deposit feeding organisms. Conversely, the narrower areas off Austasen and Kapp 

Norvegia (Fig. 1A) on the EWSS generate relatively stronger currents promoting 

resuspension of particles and thus being favourable for suspension feeder dominated 

community types (Gutt et al. 1998). 

Currents, tides, and advection of water parcels on the shelf also play a role in the benthos-

pelagos interconnectivity. In some cases they weaken, in others they mask coupling processes 

between the compartments. An example can be drawn from the study of Isla et al. (2006b) at 

Johnston’s Dock (Fig. 1B), where water current induced transport and advection of particles 

from shallower shelf areas enhance particle flux to deeper parts (Fig. 3). Other studies 

conducted in waters of the West Antarctic Peninsula (WAP) found particle flux on the deeper 

shelf to be enhanced by advected material originating from shallower shelves. This 

allochthonous input weakens the connection between benthic distribution patterns and 

metabolism of benthic organisms with primary production and local input of particles 

(McClintic et al. 2008; Sumida et al. 2008). Another clear example of the role of currents in 

the benthos-pelagos interconnectivity can be found in McMurdo Sound (Fig. 1C). Barry 
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(1988) and Barry and Dayton (1988) found benthic distribution patterns to be coupled with 

primary production regimes and water circulation patterns. Circulation on the eastern side of 

McMurdo has a southward direction towards the Ross Ice Shelf and transports productive 

waters, which fuel rich benthic communities, whereas on the western side of the Sound, where 

less productive waters arrive from the ice shelf, a poorer benthic community is found. 

Wind affects directly the benthos-pelagos interconnectivity by partly regulating sea-ice and 

polynya formation, sea-ice displacement, and mixed layer depth. While during winter periods, 

cold winds absorb heat from the water surface enhancing sea-ice formation, in summer 

periods strong winds push away sea-ice forming coastal polynyas (Isla 2016a). Wind-driven 

dispersal of the sea ice prior to its melting can prevent local release of algae trapped in the ice 

which would normally seed a local bloom (Riebesell et al. 1991). Furthermore, the strength of 

wind can also regulate the depth of the mixing layer in both a beneficial and prejudicial way. 

Where winds are relatively weaker a shallower mix layer is formed (especially close to the ice 

edge). This shallower mix layer can foster larger blooms than deeper mixed layers (Ducklow 

et al. 2006). Conversely, in areas where winds are relatively stronger a deeper mix layer is 

found. Deeper mixed layers can abruptly interrupt phytoplankton blooms, thus inhibiting 

primary production (Gleitz et al. 1994; Dunbar et al. 1998; Ducklow et al. 2006). While the 

deepening of the mix layer by wind action appears prejudicial for the coupling between 

pelagos and benthos by reducing primary production and thus its related particle flux, a 

deepening of the mix layer due to strong stormy winds has been pointed out to increase total 

downward particle flux. By means of sediment traps, Isla et al. (2009) found that strong 

stormy winds enhanced the transport of organic matter to the seabed. In their study, the flux 

resulting from a storm event which lasted a few days represented 53% of the total mass flux 

collected at mid-water during a period of 30 days. 

2.3 Seasonality and Particle Flux  

It is commonly accepted that the Antarctic benthic realm can be considered as a rather stable 

system with little variation in environmental parameters such as temperature, salinity, and 

water currents, whereas the pelagic realm is considered as highly seasonal with distinct 

summer/winter cycles, especially in primary production and sea-ice extension (Gallardo 1987; 

Clarke 1988; Bathmann et al. 1991; Scharek et al. 1994; Arntz et al. 1994; Arrigo et al. 1998; 

Palanques et al. 2002; Smith et al. 2006; Isla et al. 2009, 2011; Rossi et al. 2013; Flores et al. 

2014; Isla 2016b). While the stability of the benthos and instability of the pelagos are 

commonly accepted, the intrinsic biotic and abiotic factors of both are highly dependent on 

local water mass properties and circulation, and wind-, sea ice- and topographic conditions 

(e.g., Barry and Dayton 1988; Barthel and Gutt 1992; Gleitz et al. 1994; Dunbar et al. 1998; 

Ducklow et al. 2006; Isla et al. 2009; Hauck et al. 2010; Barnes 2015). 

2.3.1 Pelagic Realm 

Primary production in the water column is key in regulating the flux of particles. Most of the 

primary production is proposed to be generated within the seasonal sea-ice zone, especially in 

waters close to the retreating sea-ice edge, where water column stability and nutrient 

concentrations are high. Driven by melting of sea-ice these locations also act as seeding 

grounds for primary production in the euphotic zone, enabled by released sea-ice algae and 
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enhanced input of nutrients (Scharek et al. 1994; Sedwick and DiTullio 1997; Sedwick et al. 

2000; Arrigo et al. 2008; Bertolin and Schloss 2009; Isla et al. 2009; Isla 2016b). The primary 

production in the seasonal sea-ice zone was estimated to be 1,300 Tg C y
-1

, of which 420 Tg 

C y
-1 

are generated in the marginal sea-ice zone, and roughly 5% of production of the seasonal 

sea-ice zone is produced by sea-ice algae (Lizotte 2001). The importance of primary 

production regulating particle fluxes matches with zooplankton activities, because 

zooplankton quickly reacts to phytoplankton blooms (Flores et al. 2014). Grazing pressure is 

one of the main regulators of phytoplankton blooms. Faecal pellets resulting from this grazing 

largely contribute and regulate particle fluxes (Bathmann et al. 1991; Palanques et al. 2002; 

Isla et al. 2009; Rossi et al. 2013), change the chemical composition of these fluxes and their 

size structure (Isla 2016b). Summer primary production and zooplanktonic grazing amount 

for >95% of the yearly total mass flux. This particle flux provides carbon to the benthos, 

which equals between <1 up to 18% of the annual primary production of a region (Bathmann 

et al. 1991; Palanques et al. 2002; Isla et at. 2006a, 2009). Although the proportion of carbon 

reaching the seafloor appears negligible to low, it is still enough to support biomass rich 

benthic communities and to form “food banks” (Gutt et al. 1998; Smith et al. 2006; Isla et al. 

2009, 2011), as observed, e.g., on the EWSS, where benthic biomass is high and communities 

are mainly constituted by sessile suspension feeders (Gerdes et al. 1992; Gutt and Starmans 

1998). 

Vertical migration by zooplankton, fish, or diving vertebrates is regarded as a common feature 

of aquatic environments, and on an individual level, these provide a trade-off between 

nutrition and survival (Schmidt et al. 2011). In the context of this review, vertical migration 

refers to any causal vertical movement (e.g., foraging expeditions, avoidance of predators). 

The benthic realm works as feeding ground for various vertebrates, thus promoting vertical 

migrations. Arntz et al. (1994) pointed out that seals and penguins often dive deep to feed on 

benthic invertebrates. Antarctic krill Euphausia superba has also been found to migrate down 

to 3000 m depth to either feed on the seabed, or as a result of being satiated (Ligowski 2000; 

Tarling and Johnson 2006; Schmidt et al. 2011). While migrating, swimming organisms 

release carbon and nutrients in form of faeces. Release of faeces near the benthos could mean 

an extra input of available food for benthic organisms. Conversely, excretion of a mix of 

benthic organic material and lithogenic particles in the upper water column would increase the 

concentration of labile iron which could enhance primary production (Schmidt et al. 2011). 

2.3.2 Deposition and Resuspension  

Specific particle composition and flux rates in a region are not just a question of primary 

production and associated zooplanktonic activity. They also are affected by local deposition 

and resuspension processes. Water currents, especially near the seabed, are one key 

environmental factor regulating deposition and resuspension. Another key environmental 

factor are icebergs. Iceberg scours change the seabed topography, affect the near seabed 

current regime and modify the deposition regime in the area by trapping particles in the scours 

mark (working as a sort of “sediment trap”). Iceberg scour marks can be 10s to 100s meters 

wide, several meters deep and 10s of meters or even kilometres long (Gutt 2001; Gerdes et al. 

2003). On the other hand iceberg scours can also enhance resuspension by generating an 

upward particle flux (Gutt 2001; Barnes et al. 2018). A recent study on the effect of icebergs 
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and sea ice on “blue carbon” (carbon in organisms) pointed out that in March 2017, 47 giant 

icebergs larger than 30 km
2
 occurred in Antarctica, six of which exceeded 1000 km

2
 in area 

(Barnes et al. 2018). Initially, any iceberg scour would resuspend already fixed blue carbon 

and increase the open water area by breaking and displacing sea ice. The combination of 

additional resuspended material and open water area would result in an increase of primary 

production, which in turn would promote benthic growth. As a result, deposition would be 

increased not only by the enhanced primary production, but also by the proportional increase 

of benthic suspension feeder biomass (Barnes et al. 2018). 

The studies of Mercuri et al. (2008), Tatián et al. (2008) and Barnes et al. (2016, 2018) are 

examples of how benthic organisms affect deposition and resuspension. Micro-, macro-, and 

megafauna as well as marine flora directly affect the sediment erodibility and regulate 

sediment mixing, which greatly affects the benthos-pelagos interconnectivity (Orvain et al. 

2012; Queirós et al. 2015). Benthic organisms may decrease sediment roughness by mucus, 

bacterial mats or diatom film production, thus reducing the resuspension ability of sediments 

(de Jonge and van den Bergs 1987; Grant and Bathmann 1987; Patterson 1989; Self et al. 

1989; Delgado et al. 1991; Dade et al 1992; de Jonge and van Beusekom 1991). In Antarctic 

benthos, hexactinellid sponges exemplify how organisms can reduce resuspension and 

enhance deposition. These sponges cement and consolidate sediments, enhance biodiversity 

by promoting the immigration of other sponge species, provide refuges to other taxa, and 

generate spicule mats (Fig. 4), which work as silicon traps (Barthel 1992; Barthel and Gutt 

1992; Gutt et al. 2013a). Sponges and other filter feeders collect particles from the water 

column, thus enhancing the downward flux of particles and their deposition (Barthel 1992; 

Mercuri et al. 2008; Tatián et al. 2008). This biodeposition effect is enhanced by the increase 

of biodiversity provided by sponges. Furthermore, spicule mats reduce resuspension by 

covering the sediment, thus reducing its erodibility. Other structures that enhance deposition 

are tube formations (Fig. 4). High density of polychaete tubes could generate an attracting 

effect equal to that of baffles in sediment traps, albeit in a reduced area (Frithsen and Doering 

1986). Contrastingly, other activities of benthic organisms such as pellet production and 

bioturbation with formation of mounds, pits, tubes, and tracks, can change the sediment 

structure and enhance particle resuspension (Eckman et al. 1981; Eckman and Nowell 1984; 

Luckenbach 1986; Davis 1993). Resuspended material tends to be rich in nutrients and 

contains also micronutrients such as iron, which could, in shallower shelf areas with 

upwelling or those shelf areas where deep mixing occur, enhance summer primary production 

(Doering 1989; Sedwick et al. 2000).  

2.3.3 Benthic Realm 

The marked seasonal differences in the pelagic realm, especially the reduction of carbon flux 

in winter (see Sects. 2.1 and 2.3.1), has been thought to directly regulate benthic processes 

such as reproduction, growth, feeding activity, sexual development, recruitment of juveniles, 

and also benthic distribution patterns. However, studies on bentho-pelagic and pelago-benthic 

coupling in Antarctic waters have shown differences between benthic and pelagic seasonality 

to be less important in regulating benthic processes, and that both compartments could be less 

coupled than thought, partly due to the effect of currents, lateral advection and tides (see Sect. 

2.2). Stanwell-Smith et al. (1999) studied meroplanktonic larvae released by benthic 
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organisms and described these larvae to be present throughout the year. In some cases, the 

larval peak was clearly decoupled from the summer bloom, and the recruitment of benthic 

organisms was described to occur year-round or with a tendency to happen during winter 

months (Bowden 2005; Galley et al. 2005). Similarly, Sumida et al. (2008) found recruitment 

of holothurians to occur during winter, but these deposit feeders were actively feeding 

throughout the whole year. Measurements of metabolic activity via thorium (Th) isotopes 

made by McClintic et al. (2008) confirmed benthos to be metabolically active year-round. 

Results from the studies of Sumida et al. (2008) and McClintic et al. (2008) conducted in the 

WAP agreed with earlier findings made by Barnes and Clarke (1995), who recorded feeding 

activities of bryozoans, holothurians, polychaetes, and hydroids at Signy Island (Fig. 1D). 

However, Barnes and Clarke (1995) did not find any feeding activity during short periods of 

time during winter. Similarly, a study conducted at Rothera Point (Fig. 1E) by Brockington et 

al. (2001) on the feeding activity and nutritional status of the sea urchin Sterechinus 

neumayeri, found this species to completely stop feeding during winter. In a recent study, 

Souster et al. (2018) measured the seasonality of oxygen consumption of five benthic 

invertebrates and found the oxygen consumption of suspension and deposit feeders to be 

independent from the input provided by the local summer flux. It has been proposed that 

benthic organisms can feed or be metabolically active year-round by changing their feeding 

mechanism, as is known for some sponges, polychaetes, bivalves, and cnidarians (Cattaneo-

Vietti et al. 1999; Orejas et al. 2001). 

3 Regional Patterns in Coupling Processes  

The interaction between biotic and abiotic factors regulating the benthos-pelagos 

interconnectivity will have direct implications on how “strong” or “weak” the coupling 

between realms is, and how changes in one of the compartments may affect its counterpart. 

When comparing different Antarctic regions we observe differences in flux regulators and in 

the structure of the respective benthic communities. These differences reflect how variable the 

strength of the coupling between benthos and pelagos is. To exemplify how coupled or 

decoupled systems appear, I compared data obtained in WAP and EWSS waters. Furthermore, 

I include the example of the Larsen area (Fig. 1F) to exemplify how changes in the pelagos 

affect and modify the benthos.  

3.1 West Antarctic Peninsula  

To describe the benthos-pelagos interconnectivity on the WAP shelf, I focused on studies 

from the Bransfield Strait (Palanques et al. 2002; Isla et al. 2006b), Rothera Point (Souster et 

al. 2018), and those conducted within the frame of the “Food for Benthos on the Antarctic 

Continental Shelf” project (FOODBANCS; e.g., Smith et al. 2006; McClintic et al. 2008; 

Sumida et al. 2008). All locations are marked in Fig. 1B, E. According to these studies, the 

coupling between the pelagic primary production and benthic biological processes in these 

areas appears “weak”. As already stated, the study of McClintic et al. (2008) with Th isotopes 

not only showed benthos to be metabolically active the whole year, it also showed that the 

delivery of this isotope to the sediment was not related to local downward flux, suggesting 

more influence from advected material than from local production. Investigation of the shelf 

fauna via video recordings (Sumida et al. 2008, 2014) also shows proof of a “weak” local 
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coupling. They found holothurians to recruit during winter, i.e., independently from local food 

input. Sumida et al. (2008, 2014) also recorded faeces of holothurian year-round, but with 

hints to higher feeding rates during summer, which appears to be the result of better food 

quality in this season (Sumida et al. 2014). The study of Souster et al. (2018) found results 

partly different to those of Sumida et al. (2008, 2014). Souster et al. (2018) described primary 

consumers (suspension and deposit feeders) to maintain a rather stable metabolic activity 

year-round, regardless of food input, while secondary consumers (scavengers and predators) 

showed higher metabolic activity during summer than winter. These authors attributed the 

seasonal metabolic differences of secondary consumers to be related to better quality of food 

items rather than to their quantity. 

Studies conducted in the WAP evidence advection of material to be more important than 

locally produced particle fluxes. Palanques et al. (2002) found a high amount of the sediments 

captured by their traps located in the deeper Bransfield Strait (BS; Fig. 1B) to originate from 

shallower areas of the BS. The sediment fluxes near the bottom accounted for 18% of the 

annual primary production and these fluxes included benthic organisms and particles 

resuspended and laterally transported from shallower adjacent areas. The study of Isla et al. 

(2006b) found that sedimentation generated by the Johnson’s Glacier (Johnson’s Dock, Fig. 

1B) was comprised mostly of fine sediment. These particles were rich in organic matter, and 

near-bottom lateral transport of this resuspended matter was the main source of carbon flux 

into deeper basins (Isla et al. 2006b). These evidences suggest the shallow coastal areas of the 

WAP to be highly nutritive. Via advection from these shallower areas, the adjacent deeper 

basins are provided with organic matter. This material is accumulated and forms green mats 

or “food banks”. These green mats ensure the presence of food for benthos during the low 

production autumn and winter seasons (Smith et al. 2006). The formation of these “food 

banks” via advected material and a dominance of deposit feeders might explain the restricted 

meaning of locally generated particle fluxes between pelagic and benthic realms in the WAP 

(McClintic et al. 2008; Sumida et al. 2008; Souster et al. 2018). 

3.2 Eastern Weddell Sea Shelf 

The “weak” interconnectivity in the WAP appears to be connected to how particle fluxes are 

mainly regulated by advection processes from shallower shelves to deeper basins, where 

“food banks” are formed (Isla et al. 2006b; Smith et al. 2006; McClintic et al. 2008; Sumida 

et al. 2008). On the EWSS, downward particle transport off Austasen and Kapp Norvegia 

(Fig. 1A) has been described to be fast (Bathmann et al. 1991; Isla et al. 2009), despite the 

relatively stronger currents caused by the narrow shelf. This “fast” downward flux is 

evidenced by a) how sediments quickly reflect the local bloom and its associated 

characteristics (Bathmann et al. 1991; Isla et al. 2009), and b) how bottom sediments are 

especially nutritive during summer/autumn (Isla et al. 2011). The efficient transport of carbon 

from the pelagic to the benthic realm in combination with the resuspension of particles could 

explain the benthic community characteristic on the EWSS. Benthic communities in this 

region have been described as rich in sessile suspension feeders, especially glass sponges, 

which not only increase diversity by creating three-dimensional structures with space for 

many other species, but also explain the high biomass of the EWSS benthos, which is higher 

than that of other subregions in the Weddell Sea including the tip of the Antarctic Peninsula 
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(Table 1; Barthel 1992; Barthel and Gutt 1992; Gerdes et al. 1992; Arntz et al. 1994; Gutt and 

Starmans 1998; Sañé et al. 2012; Gerdes 2014a, b; S.E.A. Pineda-Metz unpublished data). 

This high biomass of suspension feeders also influences deposition and sediment chemistry. It 

seems feasible that suspended particles are largely consumed by suspension feeders, thus 

transforming the chemical composition of these particles and reducing the amount of organic 

carbon remaining for incorporation into the sediment. The efficient local flux patterns in 

combination with particle resuspension and high biomass of suspension feeders which benefit 

from these conditions, might explain the “stronger” coupling between benthic and pelagic 

realms on the EWSS contrarily to what was found in the WAP region. 

3.3 The Changing Situation of Larsen  

The Larsen embayments on the eastern coast of the Antarctic Peninsula (Fig. 1F) may serve 

as an example of how changes in the pelagic system influence benthos. Studies in the 

embayments formerly covered by the Larsen A and B ice shelves reflected a shift from an 

oligotrophic system to one with enhanced production and flux rates (Sañé et al. 2011). Before 

the disintegration of the shelf ice in 1995 and 2002, respectively, the shelf benthos appeared 

impoverished and in an early developmental stage as compared to the EWSS. Sessile 

suspension feeders showed low biomasses and several deep-sea species on the shelf reflected 

the oligotrophic conditions resembling the deep-sea (Gutt et al. 2011; Sañé et al. 2012; Gerdes 

2014a, b). The disintegration of shelf-ice created new space offshore for enhanced local 

primary production, shifting towards a more eutrophic and productive pelagic realm (Bertolin 

and Schloss 2009). Within a relatively short time, this enhanced pelagic production led to a 

shift also in the composition of the benthos (Fillinger et al. 2013; Gutt et al. 2013b). Benthos 

shifted from an ascidian dominated to a sponge and ophiuroid dominated fauna. Suspension 

feeding ophiuroids were replaced by a more abundant deposit feeding ophiuroid fauna, and 

sponges increased two- to three-fold in terms of abundance and biomass (Fillinger et al 2013; 

Gutt et al. 2013b). 

4 Outlook 

Studies on the coupling between the benthic and pelagic realms are difficult approaches with 

complex sampling programs, which require similar temporal and spatial scales for drawing 

accurate conclusions about coupling processes and their meaning for both compartments 

(Raffaelli et al. 2003; Renaud et al. 2008). This review on benthos-pelagos interconnectivity 

includes attempts to describe regulating factors that connect the benthic and pelagic both 

realms.  

Based on “real data” I draw assumptions to distinguish between specific coupling processes in 

different Antarctic regions. These assumptions are made on only very few studies, which were 

not all intended to study the benthos-pelagos interconnectivity per se but aimed to study 

processes individually. This implies that my hypothetical assumptions need further testing. 

This shows also that many gaps remain and filling them will be of paramount importance to 

better understand how both realms are connected and how carbon cycling works on Antarctic 

shelves.  
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There have been a series of attempts to connect the Antarctic benthic and pelagic realms, 

reflected (but not restricted) to the works of Barry (1988) Barry and Dayton (1988), Dayton 

(1989), Ligowski (2000), Schnack-Schiel and Isla (2005), Barnes et al. (2006, 2016, 2018), 

Isla (2006a, b), Smith et al. (2006, 2008), McClintic et al. (2008), Mercuri et al. (2008), 

Tatián et al. (2008), Schimdt et al. (2011), Sañé et al. (2011, 2012), Barnes (2015), Jansen et 

al. (2018), and Souster et al. (2018). Promising attempts to fill regional gaps have also been 

made. The FOODBANCS project (Smith et al. 2006, 2008) gives a clear hint of how the 

coupling (or decoupling) between benthos and pelagos works in shelves of the WAP. In this 

modern age, modelling has gained great importance. Models on how pelagic particles are 

distributed and are related to benthic distribution patterns are starting to be developed (e.g., 

Jansen et al. 2018). While promising, attempts on modelling and correlating benthic and 

pelagic processes are still in early stages. Other Antarctic areas with a long history of studies 

such as the Weddell Sea need the available data to be reviewed, sorted, and used to start 

drawing lines between benthic and pelagic realms, as attempted in this review. This first step 

will help to set the course of future studies and point out a red line on how benthos-pelagos 

interactions could be investigated in different Antarctic regions, which in turn will provide an 

excellent tool to understand how the ongoing and predicted climate change will affect the 

Antarctic shelves. 
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Tables and corresponding legends 

Table 1 Depth ranges and wet weight biomass data (gww m
-2)

 from multi-box corer samples 

collected in four sub-regions of the Weddell Sea: Tip of the Antarctic Peninsula (TAP), 

Larsen embayments (LA), Filchner Region (FR), and Eastern Weddell Sea Shelf (EWSS) 

(S.E.A. Pineda-Metz, unpublished data) 

Sub-Region Depth Range (m) Biomass (gww m
-2

) 

  Range Mean Median 

TAP 187 – 934 30 – 3485 423 223 

LA 202 – 850 2 – 786 78 16 

FR 254 – 1217 1 – 335 51 24 

EWSS 248 – 1486 1 – 103235 4811 134 
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Figures and corresponding captions 

 

Fig. 1 Map of the Antarctic continent including locations mentioned in the review. A) 

Austasen and Kapp Norvegia, EWSS; B) Bransfield Strait and tip of the Antarctic Peninsula; 

C) McMurdo Sound, Ross Sea; D) Signey and Orcadas Islands; E) Rothera point and area 

studied within the frame of the Food for Benthos on the Antarctic Continental Shelf 

(FOODBANCS) project in the WAP, and; F) Larsen embayments, east coast of the Antarctic 

Peninsula. Modified after Arndt et al. (2013). 
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Fig. 2 Examples of sea-ice extension during A) summer (February 2018), and B) winter 

(August 2018). Modified after Fetterer et al. (2018). 

 

Fig. 3 Main particle fluxes at mooring sites around Johnston’s Glacier (Johnston’s Dock) 

studied by Isla et al. (2006b). Approximate annual total mass (g m
-2

), organic carbon (g C m
-2

) 

and biogenic silica (g BSi m
-2

). The sketch shows that most particles produced off-shore over 

the deep shelf (polygons) do not reach mid water; the material settling in the shallower shelf 

feeds the deeper shelf via advection. Glacier and floating icebergs deliver coarse and fine 

sediments (dense clusters and circles, respectively) onto shallow areas but mostly the latter 

reaches the deeper shelf. Near the seabed, resuspension of sediments is represented by curved 

arrows. Modified after Isla et al. (2006b) with permission from Springer. 
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Fig. 4 Examples of benthic structures which modify particle resuspension and deposition: A) 

a three-dimensional structure provided by sponges and associated organisms; B) a spicule mat 

covering part of the seabed, and; C) a cluster of polychaete tubes. Images A) and C) were 

modified after Piepenburg (2016). Image B) was kindly provided by D. Gerdes and modified. 
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ABSTRACT 

Due to extreme pack-ice the Filchner Region in southern Weddell Sea is one of the least 

studied regions on the planet. Here, we report the results on benthic communities of this high-

Antarctic ecosystem and assess the relationship between environmental factors and benthic 

distribution patterns. We used a combination of multibox corer (MBC) and seabed images 

(SBI) data, from which we differenced six station groups. While one of these groups was 

comprised of a single station, the other five groups represented distinct benthic communities. 

Three of these correspond to the previously described Eastern Shelf, Southern Shelf, and 

Southern Trench communities. However, we found distribution shifts and MBC abundance 

and biomass reductions, when comparing our results to early studies. The other two groups 

with novel characteristics are presented here as an Ice/Ice Shelf Water (ISW) related 

community, and a Continental slope community (Group “E”). Water depth in combination 

with two or three other environmental variables (out of 7 available) explained <30 % of the 

benthic distribution and composition. We found a tighter relation between water mass 

circulation and spatial distribution of the communities, water-mass related characteristics (e.g. 

productivity regime, water currents) to better explain benthic spatial distribution patterns. 

Keywords: Southern Ocean, infaunal benthos, epifaunal benthos, mega- and macrofauna, 

zoobenthic distribution patterns, sediment cores, seabed images, environment-benthic 

relationships 
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1. INTRODUCTION 

Antarctic benthos has been studied for over a century (Clarke 2008). In the Weddell Sea, 

quantitative studies have focused more on the northwestern and eastern shelf areas (e.g. 

Gerdes et al. 2003, Sañé et al. 2012, Gutt et al. 2013). In contrast, the hardly accessible pack-

ice covered southern Weddell Sea remains poorly studied (e.g. Voß 1988, Gerdes et al. 1992, 

Gutt & Starmans 1998). The present study attempts to reduce this gap by providing benthic 

community data from an area of ~ 476,000 km
2
, covering the Filchner Trough and the 

adjacent continental shelf at the southern margin of the Weddell Sea (Fig.1). 

The study area hereafter referred as the Filchner Region is characterized by heterogeneous 

topography, hydrography and sea-ice conditions. The continental shelf in front of the Filchner 

Ice Shelf is incised by the Filchner Trough with water depths >1000 m (Arndt et al. 2013). 

The Filchner Trough is considered the main conduit for Ice Shelf Water (ISW) from 

underneath the Filchner-Rønne Ice Shelf towards the continental slope where it mixes with 

open ocean waters forming the deep and bottom waters of the Weddell Sea (Schröder 2016), 

making the Filchner Region key for the formation of Antarctic bottom water and the 

regulation of the global water mass circulation (Gammelsrod et al. 1994, Foldvik et al. 2004, 

Ryan et al. 2017). Another conspicuous characteristic of the Filchner Region is the presence 

of the grounded iceberg A23-A.  Iceberg A23-A is located on the Berkner Bank on the 

western shelf of the Filchner Region. The iceberg separated from the Filchner Ice Shelf in 

April 1986 and changed the circulation of High Salinity Shelf Water (HSSW) in the Filchner 

Region (Grosfeld et al. 2001). Previous to the calving of A23-A, HSSW flowed directly from 

the Berkner Bank into the Filchner Trough; after this event, the HSSW started to flow 

southwards to the Rønne Ice Shelf before entering the Filchner Trough as ISW (Grosfeld et al. 

2001, Ryan et al. 2017). 

The Filchner Region is characterized by two main sea-ice regimes (Fig.2). On the shelf east of 

the Filchner Trough and in of front the Rønne Ice Shelf sea-ice cover is seasonal, i.e., while 

during summer open water conditions prevail, during winter the sea surface is sea-ice 

covered. Contrastingly, over the Filchner Trough and continental shelf west of it, heavy year-

round sea-ice cover dominates, as reported from previous campaigns to the Filchner Region 

(Knust & Schröder 2014, Schröder 2016). Sea ice not only directly regulates primary 

production (Arrigo et al. 2015) but also the particle flux from the euphotic zone to the benthic 

realm (Isla 2016), especially in the marginal sea-ice zones, where primary and secondary 

planktonic production are enhanced and higher than in open water areas (e.g. Bathmann et al. 

1991, Isla et al. 2009, Isla 2016). Due to the opening of a polynya during summer, 

productivity on the eastern shelf of the Filchner region should be considerably higher than 

productivity at the heavy year-round sea-ice covered Filchner Trough and the continental 

shelf west of it. Based on these productivity differences, benthic abundance and biomass 

should be higher in high productive regions as compared those with lower productivity. The 

composition of infaunal- and epifaunal communities should also reflect such local 

productivity regimes. However, advection of primary produced carbon to areas adjacent to 

polynyas here could support benthic communities similar to those within the polynyas with 

even high benthic abundance and biomass (e.g. Grebmeier & Cooper 1995, Smith et al. 2006, 

Jansen et al. 2018). 
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Changes in sea-ice cover and volume directly affect water mass characteristics and planktonic 

productivity, thus affecting benthos. During the last decades, sea-ice cover in the eastern 

Weddell Sea, including a large part of our study are in the Filchner Region, has increased 

(Fig.2; Turner et al. 2016), in response to a decrease of surface water temperatures and a 

stronger positive Southern Annual Mode (Liu et al. 2004, Turner et al. 2016, Comiso et al. 

2017). Thus, distinct differences in spatial and time scales of sea-ice and productivity regimes 

should be expected on the eastern shelf of the Filchner region, in the Filchner Trough and on 

the shelf west of the trough. 

The first description of the benthic fauna in this region was published in the late 1980s (Voß 

1988). It differentiated among three community types: a) a highly abundant and diverse 

Eastern Shelf community dominated by suspension feeders, especially sponges; b) a Southern 

Shelf community less diverse and abundant than the Eastern Shelf community, dominated by 

bryozoans; and c) a Southern Trench community with low diversity, high abundances, and a 

clear dominance of holothurians. This description was, however, exclusively based on trawl 

catches. Later campaigns on the eastern shelf collected quantitative data on benthic 

assemblages by means of a multibox corer (MBC; Gerdes et al. 1992) and seabed images 

(SBI; Gutt & Starmans 1998). Based on benthic abundance and biomass data, these studies 

reported assemblages that resembled the Eastern Shelf and Southern Trench communities 

sensu Voß (1988). These descriptions encompassed either only infaunal (based on MBC data) 

or only epifaunal benthos (based on SBI data), while an approach combining both benthic 

faunal compartments and even more, integrating the whole study area, is still missing.  

Recent studies in the Filchner Trough and its adjacent shelves, based on MBC and SBI 

samples, concluded that both methods should be used in combination whenever possible to 

allow a more comprehensive representation of the benthic fauna, including both infaunal- and 

epifaunal benthos (Pineda-Metz & Gerdes 2018). Due to a focus on the methodological 

approach this recent description of the benthic fauna lacked the detail of previous studies. 

Here, we attempt to provide a detailed description of the benthic communities in the Filchner 

Region and their distribution by using a comprehensive methodological approach which 

considers both, infaunal- and epifaunal benthos. In a further step, we relate the observed 

benthic distribution with environmental factors which have already been affected by climate 

change and which are predicted to further vary. To these belong e.g. near seabed water 

temperature and salinity, and sea-ice cover (Timmerman & Hellmer 2013, Turner et al. 2016, 

Hellmer et al. 2017), but also other factors which are considered to be important for the 

benthos as e.g. sediment organic carbon content as food source and e.g. water depth and 

sediment grain size (Cummings et al. 2010) as regulators for benthic distribution. Based on 

this approach, we aim to observe how the different environmental parameters drive the 

structure, composition and distribution of the benthic communities of the Filchner Region. 

2. MATERIAL & METHODS 

Fieldwork was performed in the austral summers of 2013/14 and 2015/16 during the R/V 

Polarstern cruises PS82 (ANT-XXIX/9; Knust & Schröder 2014) and PS96 (ANT-XXXI/2; 

Schröder 2016). At 37 stations with water depths ranging from 243 to 1,217 m, the benthos 
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fauna was investigated by means of a multibox corer (Gerdes 1990) and seabed images (Table 

S1; Fig. 1).  

A 10 cm diameter multicorer (MUC) was deployed at 22 stations (Table S1) to obtain data on 

sediment grain size, organic carbon (OC) and biogenic silica (bSi). The upper 9 cm of the 

sediment cores were subsampled on board and frozen at -20 ºC in darkness until further 

treatment in the laboratory. Sediment grain size was measured with laser diffraction in a 

Horiba Partica LA950V2 laser scattering particle size distribution analyzer after removal of 

organic matter in a 20 % hydrogen peroxide solution. The fine sediment fraction, expressed in 

weight %, is equal to the combined proportion of silt- and clay-sized material, whereas the 

coarse fraction represents the combination of the sand and gravel fractions. OC was measured 

in a LECO Truspec CN analyzer and expressed as weight %. bSi was calculated following 

sequential alkaline extractions with Na2CO3 (DeMaster 1981, Mortlock & Froelich 1989, 

DeMaster 1991) to distinguish the biogenic and lithogenic silica fractions, both also expressed 

as weight %. The OC and bSi inventories for the upper 9 cm sediment column were calculated 

as the product of their concentrations, dry bulk density (mg cm
-3

) and the height of the sub-

sample sediment layer and expressed as mg cm
-2

. Additional to MUC grain size data, areal 

cover (%) of fine sediments, gravel, and rocks/stones were estimated at each SBI station 

(Table S2). 

To assess the effect of sea-ice on the benthic distribution and composition, we first collected 

monthly sea-ice cover data from the “Sea ice Index” provided by the National Snow and Ice 

Data Center (NSIDC) for the period 1979 – 2017 (Fetterer et al. 2018). Monthly data were 

used to calculate summer and year sea-ice cover averages, and the temporal trends of sea-ice 

cover per year and per summer. These temporal trends were calculated as the slope of the 

linear function of sea-ice cover over time for the period 1979 – 2017.  

Additional to MUC samples and sea-ice cover, a CTD (Seabird SBE-911 plus) was deployed 

at 201 stations to obtain oceanographic data on water column parameters (Schröder & 

Wisotzki 2014, Schröder et al. 2016). From these data, we extracted near seabed water 

temperature, salinity, density, and dissolved oxygen to use in the correlation analyses. 

While sea-ice data were already in raster format, CTD and sediment data were first imported 

to the GIS environment and interpolated for the study area with the Kriging method of the 

ArcMap 10 (ESRI). The “extract multi values to points” toolbox of ArcMap was used to 

extract environmental data from each raster derived from CTD, MUC, and sea-ice cover at all 

stations where both, SBI and MBC benthic data were obtained (Table S1 & S2). The extracted 

environmental data were used to assemble an environmental data matrix consisting of 20 

environmental variables. To avoid co-correlation when conducting a BEST test (see below), 

the environmental variables were correlated with each other. We then selected against 

environmental variables with significant correlations. The final environmental matrix 

consisted of six of the 20 environmental variables (Table S3). 

Sediment cores for benthic analyses were sieved on deck over a 500-µm mesh. Material 

retained on the sieves was fixed in a 5 % sea water-formaldehyde solution buffered with 

borax. In the laboratory, benthic organisms were sorted, identified to the lowest identifiable 

taxon via a stereomicroscope and classified into taxonomic units (TUs) similar to those used 
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in previous MBC studies, in order to enable a comparison with previous data obtained in the 

Filchner Region (Gerdes et al. 1992) other areas of the Weddell Sea (Gerdes 2014a-h). 

Although the use of larger TUs such as e.g. class or order is not common, other studies have 

shown little loss of statistical resolution regardless of the low taxonomic resolution (e.g. 

Warwick 1988). Abundance (ind m
-2

) and wet-weight biomass (g ww m
-2

) values were 

calculated for each TU and sample. Abundance of colonial (e.g. bryozoans and hydrozoans) 

and large benthic organisms (e.g. sponges) was counted as presence only.  

MBC abundance and biomass data were fourth root transformed and used to calculate 

between-station Bray-Curtis (Bray & Curtis 1957) similarity matrices. These MBC matrices 

were used in a PERMANOVA (Anderson 2001) to test for differences with older comparable 

MBC benthic abundance and biomass data from the Filchner Region (Gerdes et al. 1992) and 

other regions of the Weddell Sea (Gerdes 2014a-h). These multivariate statistics were 

performed by means of the software package PRIMERv6 with its PERMANOVA+ add on 

(Clarke & Gorley 2006, Anderson et al. 2008). 

A RELATE test between MBC abundance and biomass data showed benthic distribution 

patterns derived from abundance and biomass to be significantly correlated (Spearman rank 

correlation Rho = 0.893; p < 0.001). Based on this result, we only used MBC biomass values 

in combination with SBI abundance values for the subsequent statistical analysis. All TUs 

from this benthic matrix were classified into four feeding guilds (deposit feeders, suspension 

feeders, scavengers, and predators) according to specialized literature (Table S4). 

During PS82, SBI were taken every 15 seconds during a 15-min drift phase with a camera 

(Canon EOS D100) installed in an underwater housing attached to the MBC, resulting on an 

average of 55 images per station. Before treating SBI for analyses, all images out of focus or 

blurred by suspended particles were discarded, resulting in an average of 35 usable images per 

station (for more details on SBI sampling and treatment previous to the analyses see Pineda-

Metz & Gerdes, 2018). At four stations (033, 040, 052 and 206), all SBI were analysed to 

calculate the number of images per station sufficient to identify at least 75 % of all TUs 

differentiated. These curves were extrapolated to 35 images whenever necessary to reach the 

mean number of SBI per station. All taxon accumulation curves were calculated using the 

EstimateS software (Colwell 2013). The taxon accumulation curves at these four stations 

clearly indicated that the analysis of 15 images was sufficient for this purpose (Fig.S1). For 

this reason, at all other stations a subset of 15 randomly selected SBI was used to describe 

epifaunal benthos. During PS96, SBI were obtained by means of the Ocean Floor Observation 

System (OFOS; for details of the gear see Piepenburg et al. 2017). From each OFOS transect, 

50 SBI taken on the closest position to the corresponding MBC station were selected, and a 

subset of 15 randomly selected SBI was analysed and used to calculate the taxon cumulative 

curve, as it was described above for the SBI obtained with the underwater camera attached to 

the MBC. All images obtained by means of the OFOS can be found in the PANGAEA virtual 

data base (Piepenburg 2016). 

In the laboratory all organisms visible in the images were counted, identified to the lowest 

identifiable taxonomic level, and classified into TUs similar to those defined for MBC 

samples. Whenever possible TUs lower than those defined for the MBC were used. Organism 
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counts were standardized to abundance figures (ind m
-2

). The abundance of colonial 

organisms (e.g. bryozoans, gorgonians, and hydrozoans) was calculated as the area covered 

by the colonies (m
2
).  

Previous to multivariate analysis and to eliminate the influence of different units in the 

benthic data matrix (i.e. ind m
-2

, m
2
, and g ww m

-2
) all data were first pre-treated to conform a 

benthic data matrix of the SBI abundance ratios and MBC biomass ratios of each TU at every 

station. Ratios were calculated by dividing TU abundance/biomass values at each station by 

the corresponding total abundance/biomass value of the station (Text S1). 

Multivariate statistics were applied by means of the software package PRIMERv6 with 

PERMANOVA+ (Clarke & Gorley 2006, Anderson et al. 2008). Prior to analysis, benthic 

data were log (x+1) transformed. Between-station similarities were calculated using the Bray-

Curtis Index (Bray & Curtis 1957). The benthic data matrix was used in a Cluster and 

SIMPROF analysis (Clarke & Gorley 2006) to differentiate and define station groups, and the 

resemblance pattern was visualized using 2-d multidimensional scaling (MDS) plots. 

Additionally, one-way PERMANOVA (Anderson 2001) and SIMPER analyses (Clarke & 

Warwick 1994) were performed to test for significant differences among and between station 

groups, to establish the mean dissimilarity between groups, and to determine which TUs 

mainly contributed to these between group differences.  

Additional to these tests, the similarity matrix derived from the benthic data matrix was used 

in a BEST analysis (Clarke & Gorley 2006) to test for correlations with the environmental 

data matrix and thus the influence of environmental variables over benthic distribution 

patterns. This exploratory test was followed by a BEST analysis with 999 permutations to test 

for significant correlations. 

3. RESULTS 

Fine (clay and silt) and coarse (sand and gravel) sediments were unevenly distributed among 

stations in the Filchner Region. Shelf and trough stations were characterized by high 

proportions of fine sediments, whereas coarse sediments prevailed at slope stations (Fig.3). In 

SBI, >50 % of the seabed was covered by fine sediments. OC inventories varied from 8.0 to 

70.4 mg cm
-2

, with higher OC concentrations along the northern slope of the Filchner Region 

and lower concentrations on some parts of the eastern and western shelves of the region (Fig. 

4). bSi inventories ranged from 50.7 to 560.6 mg cm
-2

; lower bSi concentrations were found 

at the western shelf stations, while higher values were observed in the deep trough and along 

the eastern shelf of the Filchner Region (Fig. 4).  

Near-seabed water temperatures in the Filchner Region varied between -1.97 and -0.63 °C 

(Fig.5). Lower temperatures were recorded at the southernmost stations in the southern 

Filchner Trough on the eastern and western shelves, while higher temperatures were recorded 

on the northern slope of the Filchner Region (Fig.5). Stations within the Filchner Trough were 

characterized by highest salinity values (Fig.5). 

The highest average summer and year sea-ice cover occurred over the Filchner Trough 

(Fig.2a, b). The sea-ice cover temporal trend over the years 1979 to 2017 showed similar 

patterns for summer and year averages with gain of sea-ice cover especially in the trough area 
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and loss of cover west of the A23-A Iceberg and on the eastern shelf close to the shelf ice 

edge (Fig.2a, b). Average loss of sea-ice cover on the eastern shelf was greater in summer (-

0.19 % y
-1

) than over the year (slightly <0 % y
-1

; Fig.2c,d), whereas west of the A23-A 

iceberg, average loss in summer (-0.19 % y
-1

) was smaller than over the year (-0.4 % y
-1

; 

Fig.2c,d). 

Thirty-five TUs were distinguished in MBC samples at the Filchner Region stations (Table 

S5). The number of TUs at MBC stations ranged from 3 (St-066) to 26 (St-163 and 164); only 

at six MBC stations <10 TUs were found. In the SBI analysis, a total of 31 TUs were 

distinguished. The number of TUs per SBI station ranged from 6 (St-144) to 23 (St-164, 179 

and 190), in all but one station >10 TUs were identified. Combining MBC and SBI data, a 

total of 46 benthic TUs were distinguished (Table S3). Fifteen TUs were exclusively found in 

MBC samples (unidentified anthozoans, sipunculids, flatworms, nemerteans, priapulids, 

aplacophorans, scaphopods, clitellate worms, echiurids, acari, cumaceans, harpacticoid 

copepods, cirripeds, tanaids, and ostracods), and 11 TUs were exclusively found in SBI 

(unidentified medusae, stauromedusae, gorgonians, pennatulaceans, actinarians, 

scleractinians, nudibranchs, cephalopods, mysids, serolids, and decapods).  

The mean total benthic abundances at the 31 MBC stations ranged from 104 to 4,627 ind m
-2

, 

with an overall mean of 1,526 ind m
-2

 and an overall median of 1,270 ind m
-2

. Dominant TUs, 

which together contributed >75 % to overall mean abundance, were polychaetes, clitellate 

worms, amphipods, ophiuroids and bivalves (Table 1). Deposit feeders were the most 

abundant feeding guild, with an overall mean of 672 ind m
-2 

(range: 44 – 2,229 ind m
-2

), 

followed by predators (mean: 460 ind m
-2

; range: 20 – 1,532 ind m
-2

), suspension feeders 

(mean: 360 ind m
-2

; range: 20 – 1,172 ind m
-2

), and scavengers (mean: 34 ind m
-2

; range: 1 – 

117 ind m
-2

). 

The mean benthic biomass expressed as wet-weight (ww) ranged from 1.31 to 335.47 g ww 

m
-2

, with an overall mean of 51.08 g ww m
-2

 and an overall median of 23.85 g ww m
-2

. 

Following the criteria given for MBC abundance data, bryozoans, sponges, polychaetes, 

ophiuroids, and tunicates were identified as dominant TUs (Table 1). Suspension feeders 

contributed most to biomass, with an overall mean of 33.04 g ww m
-2 

(range: 0.38 – 321.49 g 

ww m
-2

), followed by deposit feeders (10.81 g ww m
-2

; range: 0.47 – 56.06 g ww m
-2

), 

predators (6.89 g ww m
-2

; range: 0.23 – 37.07 g ww m
-2

), and scavengers (0.34 g ww m
-2

; 

range: 0.01 – 2.20 g ww m
-2

).  

The quantitative benthic data obtained from MBC samples in the Filchner Region study allow 

unbiased comparison with MBC data obtained at the Tip of the Antarctic Peninsula (TAP), 

the Larsen embayments (LA), and the South-Eastern Weddell Sea Shelf (SEWSS, cf. Gerdes 

2014 a-h). Benthic abundance and biomass as well as faunal community composition differed 

significantly among regions (PERMANOVA pseudo-F = 5.549; p < 0.001) and between 

regions (Pairwise PERMANOVA p values < 0.05; Table S6). In terms of abundance, 

dominant taxa were polychaetes, bivalves, amphipods and ophiuroids. Polychaetes 

contributed most to abundance in all four regions, but their dominance declined from west to 

east (Table 2). Composition based on biomass data clearly showed that sponges dominated in 

TAP and especially the SEWSS, where they contributed 57.5 and 80.5 % to total benthic 



Manuscript 3: Benthic communities of the Filchner Region 

 

72 
 

biomass, respectively; in the Filchner Region sponges contributed 22.2 % of the biomass. In 

LA echiurids dominated (71 % of the total biomass) and sponges represented only < 2 % of 

the total benthic biomass (Table 2). Further comparison of our MBC data set with previous 

data from the Filchner Region (Gerdes et al. 1992) also showed significant differences 

(PERMANOVA pseudo-F = 6.289; p < 0.001). The mean abundance (1,539 ind m-2) and 

biomass (52.76 g ww m-2) resulting from the 2013/14 and 2015/16 Filchner Region cruises 

were almost half the values (2,758 ind m-2 and 108.13 g ww m-2) recorded in the late 1980s 

(Gerdes et al. 1992). In terms of abundance, polychaetes, bivalves, amphipods, tanaids, and 

isopods were most abundant in the late 1980s, while sponges contributed most to biomass, 

followed by holothurians, polychaetes, priapulids and ascidians. 

For the Filchner Region mean total benthic abundance at the 35 SBI stations ranged from 2 to 

170 ind m
-2

, with an overall mean of 61 ind m
-2

 and an overall median of 55 ind m
-2

. 

Dominant TUs were ophiuroids, polychaetes, holothurians, tunicates and unidentified 

organisms, constituting > 75% of the overall abundance (Table 1). Suspension feeders were 

the most abundant feeding guild, with an overall mean of 28 ind m
-2 

(range: <1 – 124 ind m
-2

) 

followed by deposit feeders (22 ind m
-2

; range: 1 – 106 ind m
-2

), predators (10 ind m
-2

; range: 

<1 – 31 ind m
-2

), and scavengers (1 ind m
-2

; range: <1 – 5 ind m
-2

). 

Colonial organisms were not recorded at six SBI stations, and at the other SBI stations their 

coverage ranged from 0 to 0.585 m
2
, with an overall mean of 0.051 m

2
 and an overall median 

of 0.012 m
2
. Bryozoans were the most abundant colonial TU, with an overall mean coverage 

of 0.045 m
2
 (range: 0 – 0.569 m

-2
), followed by hydrozoans (0.003 m

2
; range: 0 – 0.045 ind 

m
-2

), and gorgonians (0.003 m
2
; range: 0 – 0.045 ind m

-2
).  

MBC and SBI data obtained parallel at 29 stations were combined in a single matrix. The 

cluster and SIMPROF analyses based on these benthic data differentiated six station groups 

named with the letters “A” to “F” in the Cluster and SIMPROF analyses (Fig.S2). A 

summarized description of these groups and their composition is given in Table 3 and one 

representative UW picture of each station group is shown in Fig.6. The composition in these 

six station groups differed significantly among them (PERMANOVA pseudo-F = 4.69; p < 

0.001). A pairwise PERMANOVA showed almost all groups to be significantly different 

between each other. Group “C” as a “one station group” was significantly different only from 

group “F” (Table 4). SIMPER test “within group similarities” ranged from 50 to 71%, while 

between group dissimilarities ranged from 56 to 85%. SBI abundance of holothurians, 

ophiuroids, bryozoans, and polychaete MBC biomass contributed most to the between group 

dissimilarities (Table 4).  

Based on the PERMANOVA among and between group comparisons we differentiated 

between the one-station group “C” and all other groups. We considered the later groups to 

represent distinct benthic communities in the Filchner Region. Group “A” consisted of two 

stations (St. 066 and 116) located close to each other in the deep southern Filchner Trough 

(Fig.1). This group represents a deposit-feeding epifauna dominated community, 

characterized by a relatively low number of taxa, high epifaunal abundance (not as high as 

group “D”), and low infaunal abundance and biomass. Holothurians contributed most to 

epifauna abundance, whereas the infauna was dominated by polychaetes. Group “B” consisted 
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of four stations (Fig.1), one located on the western shelf near the iceberg A23-A (St. 037), 

two at the eastern slope of the Filchner Trough (St. 033 and 072), and one off the Brunt Ice 

Shelf (St. 144). This group represents a mixed community, with suspension- and deposit-

feeding epifauna and a predator/deposit feeding dominated infauna (Table 3). Abundance, 

biomass, and colonial organism cover showed low values. The number of taxa was 

intermediate (Table 3) and ophiuroids and polychaetes were the main TUs in terms of 

abundance and biomass, respectively. Group “C” was comprised of only one station (St-098) 

located at the eastern slope of the trough (Fig.1), dominated by ophiuroids and anthozoans 

(Table 3), and characterized by intermediate number of TUs; MBC abundance and biomass 

were higher as compared to groups “A” and “B”. Group “D” consisted of two stations (St. 

079 and 089) located close to each other (Fig.1) on the eastern shelf. A sessile suspension-

feeder community dominated in terms of biomass and total organism cover by bryozoans. The 

number of TUs was intermediate, and biomass, colonial organism coverage and epifaunal 

abundance values were high (Table 3). Group “E” was formed by three stations (St. 163, 226, 

270) on the shelf break of the Filchner Region (Fig.1). This group represents a sessile 

suspension-feeder community with a high number of TUs, high abundance and biomass, and 

intermediate colonial organism cover mainly by hydrozoans. Ophiuroids showed the highest 

abundance and biomass values (Table 3), followed by a combination of suspension-feeding 

tunicates, bryozoans and sponges.  Group “F” as the biggest group spread with 17 stations 

especially over the northern parts of the Filchner Region. This group is dominated by a 

mixture of suspension- and deposit-feeders, which accounted for up to 80 % of abundance and 

57 % of biomass (Table 3). This community was characterized by the highest number of TUs 

and by intermediate abundance, biomass and colonial organism coverage. Ophiuroids 

dominated in terms of SBI abundance, while sponges contributed most to MBC biomass. 

The exploratory BEST analysis indicated only rather weak correlations between the 

environmental data and the benthic data matrix conformed by MBC biomass and SBI 

abundances. The combination of the seven selected environmental parameters explained 

<30 % of the overall benthic variation (Spearman Rank correlation Rho = 0.275; p = 0.006). 

When testing each environmental variable individually, water depth was found to be the “best 

explanatory variable” (Spearman Rank correlation Rho = 0.264; p = 0.014). Combinations of 

two or three environmental parameters with water depth were found to be the “best 

explanatory” variable combinations, but even these combinations explained <30 % of the 

benthic variation (Spearman Rank correlation = 0.284; p = 0.023; Table 5).  

4. DISCUSSION 

4.1. BENTHIC COMMUNITIES IN THE FILCHNER REGION 

Our approach to describe benthic communities by combining corer samples and seabed 

imagery into a single data matrix, also including stations in the difficult-to-access sea-ice 

covered western shelf of the Filchner Region, considerably extended and updated the current 

knowledge of the benthic fauna in this high-Antarctic region. Furthermore, our correlation 

analyses between benthic distribution and environmental parameters could help us to 

understand how benthos in the Filchner Region might be affected by the ongoing climate 

change. Such analysis could help us to recognize environmental variables affecting benthic 
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spatial distribution such as near-seabed temperature and sea-ice cover, which are predicted to 

change by the end of the century due to climate change (Timmermann & Hellmer 2013, 

Hellmer et al. 2017). 

We differentiated six station groups, five of which represented distinct communities (see 

Results). We consider group “C” as a one station group separately. In terms of epifaunal 

benthos, this station appears similar to group “B”, whereas its infauna was different from 

other groups (Table 3). Whether the infaunal composition at this station is driven more by 

local environmental characteristics or by the efficiency of the MBC to catch e.g. few but large 

anthozoans, which characterize the infauna at this station remains unclear. Assessing why 

group “C” is so peculiar will require further sampling in the southeast end of the Filchner 

Region. 

From the remaining groups, we assume groups “A”, “D” and “F” to correspond to benthic 

communities previously described for the Filchner Region (Voβ 1988, Gerdes et al. 1992, 

Gutt & Starmans 1998). However, our results point to distribution shifts and expansion of 

previous distribution ranges. Group “A” corresponds to the Southern Trench community 

sensu Voß (1988). In contrast to the original description of the Southern Trench community 

(Voß 1988), we found this group only in the southern deepest part of the Filchner Trough and 

not along the whole trough, making it a “Deep Trough community” rather than a Southern 

Trench Community (Fig.S3). Group “F” corresponds to the Eastern Shelf community sensu 

Voβ (1988). This group was distributed not only on the eastern shelf of the Filchner Region, 

but also on the western shelf, the continental slope and the slope of the inner trough, hence 

extending the distribution borders of this community considerably. This agrees with previous 

descriptions of the Eastern Shelf community, which pointed out also an extended distribution 

range for this community (Gerdes et al. 1992, Gutt & Starmans 1998). The extended 

distribution of the Eastern Shelf community to the deeper continental slope and also to the 

northern part of the western shelf of the Filchner Region suggests a connection between these 

shelves. Group “D” corresponds to the Southern shelf community sensu Voß (1988). The 

Southern Shelf community was originally described to be mainly distributed along the ice 

shelf edge southwest of the Filchner Trough and in one small area on the continental shelf off 

Halley Bay (Fig.S3; Voß 1988). According to our results group “D” seems to have shifted 

southwards on the southeastern shelf.  However, heavy sea-ice conditions in the entire 

southern Filchner Region, especially off the Rønne Ice Shelf, did not allow extensive station 

work in this area, thus making the confirmation of the original distribution range of this 

community impossible. 

The two other communities we differentiated are described for the first time in the Filchner 

Region. One of these corresponds to group “B”, defined as a poor and mixed community with 

low abundance, biomass and number of taxa. This community was found in 700 m water 

depth at the inner slope of the continental shelf northeast of Halley Bay, at the inner slope of 

the central part of the Filchner Trough, and in the proximity of the large iceberg A23-A on the 

western shelf in 380 m water depth. We defined the heterogeneous group “B” as an “Ice/ISW 

related community”. Although located in different areas of the Filchner Region (St-033, 072, 

and 037), they share hydrographic characteristics which might explain benthic similarities 

among them (Fig.S4). The second newly defined benthic community was represented by 
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group “E” and occurred along the continental slope at water depths between 600 to 800 m. 

This community living on sediments highly covered by gravel was dominated by ophiuroids 

and defined as the “Continental Slope community”.  

4.2. FILCHNER REGION COMPARED TO OTHER WEDDELL SEA REGIONS 

The MBC quantitative benthic data we presented for the Filchner Region allowed for 

comparing our results with other Weddell Sea regions. PERMANOVA analyses of benthic 

abundance and biomass as well as faunal community composition showed significant 

differences among these Weddell Sea regions (Table 2). As a general pattern, high benthic 

abundance and biomass prevailed in regions with low sea-ice cover, such as TAP and the 

SEWSS with a yearly average sea-ice cover of 12 and 58 % and summer averages of 2 and 29 

%, respectively (Fetterer et al. 2018). Contrastingly, lower abundance and biomass values 

were observed in regions with higher sea-ice cover, e.g. in the Filchner Region and LA, where 

yearly average sea-ice cover reached 76 and 69 % and summer sea-ice cover 50 and 75 %, 

respectively (Fetterer et al. 2018). Sea-ice cover, its extension and persistence, are key factors 

regulating primary production (Arrigo et al. 2015). Thus, the between region sea-ice regime 

differences would imply differences in the primary production regime, which in turn would 

cause different particle fluxes and food input for benthos (Gutt 2001, Isla 2016). We therefore 

attribute the regional differences of benthic abundance, biomass and composition to 

differences in local production and particle flux regimes, regulated by sea ice (e.g. cover, ice 

free days).  

4.3. FILCHNER REGION PAST VS PRESENT 

The comparison of the present MBC data set with previously reported data from the Filchner 

Region (Gerdes et al. 1992) showed significant differences with reduced abundance and 

biomass as well as changes in the faunal composition. The MBC abundance and biomass 

values we found were half of those previously recorded in the Filchner Region during the late 

1980s. In terms of abundance-based composition, we found groups such as tanaids and 

isopods to lose importance, being “replaced” by clitellate worms and ophiuroids. In terms of 

biomass-based composition, bryozoans gained importance, contributing more to overall 

average biomass than sponges, which were formerly found to dominate the fauna (Gerdes et 

al. 1992). These observations might already evidence climate (sea-ice cover increase; Fig.2 & 

S5) induced changes in community parameters, including also modifications in composition 

patterns of benthic communities. We hypothesize this to be related to an increase of sea-ice 

cover (Fig.S5; Turner et al. 2016, Fetterer et al. 2018), which reduces size and duration of the 

summer polynya, thus reducing also the primary productivity in the area (Arrigo et al. 2015).  

Comparing our epifauna results with older data, too, reveals differences. Previous studies 

based on SBI data defined six clusters in the Filchner Region. These assemblages, however, 

were also found on the SEWSS and on the Lazarev Sea shelf (Gutt & Starmans 1998). The 

holothurian “deposit-feeder dominated” cluster sensu Gutt & Starmans (1998) in the deep 

southern Filchner Trough corresponds to our group “A. The “suspension-feeder-rich” and 

“suspension-feeder-poor” clusters (sensu Gutt & Starmans 1998) in the northern part of the 

eastern shelf of the Filchner Region partially overlapped with our station groups “E” and “F”. 

However, while both suspension feeder clusters were bryozoan-dominated (Gutt & Starmans 
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1998), these were less abundant in our groups “E” and “F”. This holds especially true for 

group “E” along the outer slope of the Filchner Region, where hydrozoans were the dominant 

TU. Bryozoan dominance appears to have shifted towards the south of the eastern shelf of the 

Filchner Region, a shift which could be driven by the increased sea-ice cover over the outer 

slope, and decreased sea-ice cover over the eastern shelf. 

4.4. ENVIRONMENTAL DRIVERS FOR BENTHIC DISTRIBUTION 

Our analyses did not indicate any strong correlation between the assessed set of 

environmental parameters and benthic distribution patterns (all correlation coefficient values 

of the BEST analyses were <0.3). This agrees with studies conducted in the Bellingshausen, 

Weddell and Lazarev Seas, which found rank correlation coefficients <0.550 by means of an 

analysis similar to the BEST test (Gutt & Starmans 1998, Saiz et al. 2008).  

Water depth as a single variable showed the highest correlation value to explain benthic 

variability, although the correlation was weak (Table 5). Water depth is proposed to regulate 

benthic food input, its quantity and quality, by modifying particle residence time in the water 

column (Smith et al. 2006), thus also regulating benthic distribution. This could explain why 

some TUs such as polychaetes, isopods, amphipods and bryozoans have been described as 

water depth dependent groups on Antarctic shelves (Ellingsen et al. 2007, Saiz et al. 2008, 

Jazdzewska & Sicinski 2017). Contrastingly, e.g. sponges, ascidians, and bivalves, have been 

proposed to rely on water circulation and re-suspended particle supply instead (McClintock et 

al. 2005, Ellingsen et al. 2007, Segelken-Voigt et al. 2016), hence being more water depth 

“independent”. The mix of water depth “dependent” and “independent” TUs could partially 

explain the low correlation between water depth and benthic spatial distribution patterns. This 

coincides with benthic distribution patterns described for the Ross Sea (Cummings et al. 

2010) and Bellingshausen Sea (Saiz et al. 2008) and would support the proposed capacity of 

Antarctic benthos to distribute over large depth ranges (Brey et al. 1996). 

The content of organic matter in or on the seabed is commonly regarded as an important food 

source for benthos (Sañé et al. 2011, Zhang & Wirtz 2017). In our study, OC inventories in 

the sediment were just defined as quantities and quality was not regarded. The OC inventories 

did not show any correlation with benthic distribution patterns. This lack of correlation 

between OC as a single variable with benthic distribution would comply with a recent study, 

where OC quality was said to be more important than its quantity for explaining the structure 

of benthic communities (Zhang & Wirtz 2017). Thus, our observations reaffirm the idea that 

benthos distributes independently of the amount of OC found in the sediment column.  

Sea ice affects the benthos in an indirect way by regulating primary production (Arrigo et al. 

2015) and thus the food supply for benthic organisms. Despite these effects, sea-ice cover or 

its temporal trend were not listed as variables in our correlation analyses (Table 5). However, 

we found hints pointing to a combination of polynya location and water mass circulation to be 

related to the benthic spatial distribution, as proposed by bentho-pelagic coupling and benthic 

distribution studies in other Antarctic regions (Grebmeier & Cooper 1995, Isla et al. 2006, 

Jansen et al. 2018). The main polynya in the Filchner Region is formed on the eastern shelf 

(Fetterer et al. 2018), where water from the Weddell Sea Gyre enters and flows southwards 

towards the Filchner Ice Shelf (Ryan et al. 2017). While the polynya enhances primary 
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production, the water mass circulation distributes this matter towards the south, supporting the 

presence of suspension feeders even in areas with relatively high sea-ice cover (e.g. southern 

end of the eastern shelf, where the Southern Shelf community was found). Conversely, water 

masses in the Filchner Trough originating from underneath the Filchner Ice Shelf flow 

northwards towards the continental break (Ryan et al. 2017). Due to its sub-ice shelf origin 

and to heavy ice conditions in the trough, these water masses should be less productive and 

transport less suspended organic matter, which might explain the high dominance of deposit 

feeders such as elasipodid holothurians and the concomitant absence of suspension feeders. A 

similar situation was described for McMurdo Sound in the Ross Sea. Benthos production was 

higher in the eastern Sound, where water masses flow towards the Ross Ice Shelf and lower in 

the western Sound, where water masses come from underneath the Ross Ice Shelf (Barry 

1988, Barry & Dayton 1988). 

Water mass circulation patterns in the Filchner Region appear to explain the general benthic 

distribution pattern (Fig.S4). The “Deep Trough community” occurs in the deep Filchner 

Trough where dense water originating at the Rønne Trough circulates (Fig.S4; Ryan et al. 

2017). The “Ice/ISW related community” was found outside of the Filchner Trough, either 

close to the iceberg A-23A on the Berkner Bank, off the Brunt Ice Shelf, or in the ISW flow 

path (Fig.S4). The influence of water masses on benthic community distribution also becomes 

evident in the Southern Shelf community, represented in our study by two closely located 

stations in the south of the eastern shelf of the Filchner Region, likely related to the southern 

limit of modified Warm Deep Water (WDW; Fig.S4) coming from the north. Furthermore, 

the Continental Slope and Eastern Shelf communities (groups “E” and “F”) appear to live in 

warmer waters, most likely WDW and modified WDW from the Weddell Gyre. The 

circulation of WDW along the continental slope of the Filchner Region could also explain the 

connectivity between eastern and western shelves of the Filchner Region, which we assume 

from the distribution of the Eastern Shelf community also on the western shelf.  

5. CONCLUSION 

Our approach using a combination of SBI and MBC data allowed for a comprehensive 

benthic community description by including data from both infaunal- and epifaunal benthos. 

With this approach we found the benthos of the Filchner Region to be highly heterogeneous 

and composed of five distinct communities. Comparison of our data with previous benthic 

studies in the Filchner Region and other areas of the Weddell Sea show distinct differences 

among the benthic communities from the Filchner Region, the Tip of the Antarctic Peninsula, 

the Southeastern Weddell Sea Shelf, and the Larsen Embayments. We attribute these 

differences to specific sea-ice and production regimes in these regions. Our results also 

provide partial evidence that benthos in the Filchner Region underwent changes in terms of 

abundance, biomass and composition between the late 1980s and mid-2010s. Shifts in the 

distribution ranges of the benthic communities, too, became obvious. These changes are most 

likely related to water mass circulation patterns and increased sea-ice cover in the area. Our 

correlation analysis showed that the environmental parameters considered explained <30 % of 

the benthic spatial distribution. These results suggest further drivers for benthic community 

structure and composition such as water mass circulation patterns, planktonic productivity, 

particle flux and lateral transport, and planktonic community abundance and composition. 
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Due to lack of data we unfortunately could not include these parameters into our analyses. 

Nevertheless, the results of our correlation analyses can prove useful to further define 

environmental parameters to be considered for predicting future climate change effects on the 

Antarctic benthic fauna. Thus, we strongly recommend future studies to take a coordinated 

multidisciplinary approach. Such approach should include also comprehensive bentho-pelagic 

coupling studies, which will provide a better tool to understand how benthos is (and could be) 

shaped by its environment. 
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Tables and corresponding legends 

Table. 1: Abundances derived from all seabed images (SBI; n = 35), abundances and biomass 

derived from all multibox corer (MBC) samples (n = 31) and their respective dominance and 

frequency of occurrence for dominant taxonomic unit (TUs). Minimum and maximum 

abundances/biomass are in brackets, dominance is calculated from mean abundance/biomass 

values. 

TUs SBI MBC 

 Mean 

abundance 

(ind m-2) 

Dom.a 

(%) 

Frec.b 

(%) 

Mean 

abundance 

(ind m-2) 

Mean biomass 

(g ww m-2) 

Dominance (%) Frec.b 

(%) 
Abundance Biomass 

Porifera 3 

(0 – 38) 

4.5 80 1d 

 

11.4 

(0 – 87.7) 

0.1 22.2 71 

Bryozoad 0.045 

(0 – 0.569) 

48.5 83 1d 13.6 

(0 – 315.4) 

0.1 26.7 55 

Bivalvia <1 

(0 – 5) 

0.2 17 101 

(0 – 542) 

0.5 

(0 – 1.9) 

6.6 0.9 97 

Polychaeta 11 

(<1 – 95) 

17.3 100 763 

(57 – 2181) 

11.3 

(0.4 – 101.9) 

50.0 22.0 100 

Clitellata - - - 143 

(0 – 1292) 

0.2 

(0 – 2.1) 

9.4 0.4 74 

Amphipoda <1 

(0 – 3) 

0.5 74 108 

(0 – 750) 

0.4 

(0 – 1.9) 

7.1 0.7 84 

Holothuroidea 8 

(0 – 166) 

13. 97 9 

(0 – 73) 

1.3 

(0 – 15.3) 

0.6 2.6 48 

Ophiuroidea 24 

(<1 – 95) 

39.7 100 100 

(0 – 573) 

4.8 

(0 – 39.3) 

6.6 9.2 81 

Tunicata 7 

(0 – 76) 

11.8 89 8 

(0 – 73) 

2.4 

(0 – 38.0) 

0.6 4.7 45 

Unidentified 3 

(0 – 16) 

5.0 97 2 

(0 – 28) 

<0.1 

(0 – 0.4) 

0.1 <0.1 16 

-: No data available 

a: Dominance 

b: Frequency of occurrence. 

c: Abundance given in m2; Relative abundances based on organism coverage in SBI. 

d: Abundance recorded as presence/absence (see Methods section). 
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Table. 5: Single and combination of variables “best explaining” distribution patterns of 

benthic communities.  

Single variable  

(Spearman Rank 

correlation Rho) 

Combination of variables  

(Spearman Rank correlation Rho) 

Water depth (0.264)** Water depth, near-seabed temperature, gravel cover in SBI 

(0.278)** 

Gravel cover in SBI 

(0.203)* 

Water depth, gravel cover in SBI (0.278)** 

Near-seabed Temperature 

(0.098) 

Water depth, gravel cover in SBI, OC inventory (0.277)** 

Coarse sediment (%) in 

sediment column (0.068) 

Water depth, near-seabed temperature, gravel cover in SBI, 

OC inventory (0.277)** 

OC inventory (-0.061) Water depth, summer sea-ice cover, gravel cover in SBI, OC 

inventory (0.275)** 
*= Correlation p < 0.05. 

**= Correlation p < 0.01.
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Figures and corresponding captions 

 

Fig. 1: Locations of stations where multibox corer (MBC) and seabed images (SBI) data 

were collected in the Filchner Region (Southern Weddell Sea) during R/V Polarstern 

cruises PS82 (circles) and PS96 (squares). Bathymetric data from IBCSO (Arndt et al. 

2013). Two-dimensional MDS plot visualizing the among-station resemblance pattern of 

the benthic fauna identified in MBC and SBI samples collected during R/V Polarstern 

cruises PS82 and PS96. The pattern is based on between-station Bray-Curtis similarities 

calculated from MBC biomass and SBI abundance data. Grouping obtained from Cluster 

and SIMPROF analyses and its distribution in the Filchner Region is shown (colors). 
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Fig. 2: Year (A) and summer (B) average sea-ice cover, and average year (C) and summer (D) sea-

ice cover gain/loss (in % y
-1

) for the period 1979 to 2017 in the study area in the Filchner Region 

(Weddell Sea, Antarctica). Year and summer average sea-ice cover was calculated considering 

values for the period 1979-2017. Note that each plot has its own scale. Modified after Fetterer et al. 

(2018).  
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Fig. 3: Dominant sediment in the sediment column calculated from MUC stations (left) and 

dominant sediment at the seabed surface (derived from SBI) for all stations where mulibox corer 

and seabed images data were collected (right) in the Filchner Region (Southern Weddell Sea) 

during R/V Polarstern cruise PS82 and PS96.  

 

Fig. 4: Biogenic silica (bSi) inventory (A) and Organic carbon (OC) inventory (B) for all stations 

where mulibox corer and seabed images data were collected in the Filchner Region (Southern 

Weddell Sea) during R/V Polarstern cruise PS82 and PS96. Value breaks are based on the “Natural 

Breaks (Jenks)” criterion. 
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Fig. 5: Near seabed temperature (A) and salinity (B) in the Filchner Region (Southern Weddell 

Sea) during R/V Polarstern cruise PS82 and PS96. Modified from Schröder and & Wisotzki (2014) 

and Schröder et al (2016). White circles represent CTD cast locations.  

 

Fig. 6: Seabed images representing the typical appearance of the benthic fauna for all 

station groups defined by the Cluster and SIMPORF analyses.
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ABSTRACT 

The Antarctic seafloor harbours a rich and unique fauna, which has been shown to react 

locally to benthic disturbance, glacier retreat, and increases in primary productivity due to 

ice shelf disintegration and iceberg-induced changes in currents. However, the community-

scale response of high Antarctic macrobenthos to long-term changes of the environment is 

so far unknown. Here, we report 26 years of quantitative macrobenthos data from 

Austasen, a high Antarctic shelf region in the eastern Weddell Sea characterized by long-

term increases in sea-ice cover and iceberg frequency. Macrofauna abundances dropped to 

less than half of the late 1980s values, and macrofauna biomass by more than one order of 

magnitude, respectively, suggesting that less pelagic food reaches a seafloor community 

that is more heavily scoured by icebergs. Our findings underscore the importance of long-

term observations to monitor the ecological changes in an area particularly vulnerable to 

future warming and ice-shelf collapse. 

KEYWORDS: long-term observations, Antarctica, macrobenthos, climate change, iceberg 

scour, sea-ice cover, data bases 
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SHAPED by millions of years of isolation in a freezing environment, Antarctic benthic 

communities boast unusually high levels of biodiversity and endemism, abundance and 

biomass (Arntz et al. 1994, Gerdes et al. 1992, Gutt and Starmans 1998, Gutt et al. 2004, 

2013). The high latitude entails a highly seasonal primary production and long periods of 

starvation in response to a spatio-temporally variable sea-ice cover. Although ice-algae are 

important in sea-ice covered areas, primary production is often eclipsed by snow cover, 

and most of the carbon flux reaching the seabed is in ice-free areas (Arrigo et al. 2008).  

Calving events along the numerous glaciers and ice shelves rimming the glaciated 

continent provide a notorious source of icebergs. With drafts of up to more than 500 m at 

calving front (Robin et al. 1983) these behemoths wreak havoc on the seafloor (Clarke 

1988), as they circle the glaciated continent down to the lower reaches of the deep 

continental shelf. One of the gates of entry of the highway of icebergs into the Weddell Sea 

is the Austasen area (Fig. 1; Ranckow 2017), which also happens to be in a region of 

increasing sea-ice cover (Liu et al. 2004, Turner et al. 2016, Comiso et al. 2017). Located 

~81 sm SE of Germany’s Neumayer overwintering station, this area has been re-visited 

over a series of eight expeditions with the ice-breaking research vessel Polarstern over a 

period of 26 years. Multiple box core samples, collected, sorted and processed by the same 

staff provide a unique quantitative data base to explore the long-term effects of changing 

sea-ice cover and iceberg scouring on high Antarctic macrobenthos communities.  

LOSS OF BENTHIC ABUNDANCE AND BIOMASS 

Total benthic abundance and biomass, as well as abundance and biomass of major benthic 

groups decreased during the period 1988-2014 (Fig. 2). These abundance and biomass 

losses occurred after 1998, a fact we used to differentiate two periods in our time series, a 

pre-2000 and a post-2000 period.  

Total benthic abundances registered almost 2-fold decrease during the post-2000 period, 

whereas total benthic biomass suffered almost a 4-fold decrease (Fig. 3), making total 

benthic abundance and biomass, significantly lower for the post-2000 period as compared 

to the pre-2000 period (p values < 0.05). Major components of the benthos showed similar 

trends, as well as minor components of the benthic community, represented by “others”. 

Groups such as isopods and ophiuroids which show abundance ratios close to 1, but almost 

2-fold biomass decrease (Fig. 3) would evidence some benthic groups to be able to cope 

with environmental variability at the cost of biomass. Interestingly, while abundance and 

biomass values decreased, composition remained almost un-altered for all sampling 

campaigns, especially in terms of abundance (Fig.S1). 

INCREASED SEA-ICE COVER AND ICEBERG SCOURING, DECREASED 

PRODUCTIVITY 

Sea-ice cover and scouring (see Methods) significantly increased during the post-2000 

period (p < 0.05), whereas productivity (see Methods) significantly decreased after 2000 (p 

< 0.05; Fig. 2). This evidences a loss of food input for the benthic realm, related to a 

decrease of polynya area and duration. An increased scouring implies benthos to be more 

susceptible to disturbance by icebergs, especially after the year 2000 (Fig. 2). 
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Increases of sea-ice cover for the eastern Weddell Sea correspond with studies on sea-ice 

trends in the Southern Ocean. These studies relate the increased sea-ice cover to a 

strengthening of the Southern Annular Mode (SAM; Liu et al. 2004, Turner et al. 2016, 

Comiso et al. 2017). The term SAM refers to an alteration of atmospheric mass between 

mid-latitude surface pressure and high latitudes surface pressure (Gong & Wang 1999). 

SAM phase shifts regulate sea ice by modifying mean surface heat flux and ice advection 

(Liu et al. 2004); where positive phases of the SAM resulted in sea-ice increase in the 

eastern Weddell Sea (Turner et al. 2016). When considering the relation of polynya 

primary production and sea-ice cover, we could attribute our observed decrease of 

productivity to observed stronger positive phases of the SAM (Marshall et al. 2019). 

Pelagic productivity in Antarctica is directly influenced by mean daily photo-synthetically 

usable radiation, number of ice-free days, ice-free area, sea surface temperature, 

continental shelf width, and basal melt rate (Arrigo et al. 2015). From these factors, just 

ice-free days and ice-free area are directly related to sea-ice cover changes, which in turn 

are regulated by the phases of the SAM. 

ENVIRONMENTAL INFLUENCE OVER BENTHIC ABUNDANCE AND BIOMASS 

LOSSES 

We found losses of total benthic abundance to be driven by the increased scouring, 

whereas losses of total benthic biomass were related to a decrease in productivity (Fig. 4).  

The increased scouring observed in the post-2000 period was related to abundance loses of 

all benthic groups (Fig. 4). This further evidences the negative impact of increased 

susceptibility of benthos to scouring, and its known devastating effect over benthic 

biomass (Gutt 2001, Barnes & Souster 2011, Barnes 2017). On the other side, productivity 

was mainly related to biomass losses, which would further support the hypothesis of 

Antarctic benthos being food limited (Brey & Clarke 1993). However, exceptions such as 

amphipods for which the decreased productivity in the post-2000 period should have 

contributed to abundance and biomass gains, could imply that some benthic groups are 

better adapted to unfavourable conditions and benefit from ecological space left by other 

taxa, which are limited by local primary production. 

EASTERN WEDDELL SEA VERSUS ANTARCTIC PENINSULA BENTHOS 

Studies conducted around the Antarctic Peninsula have linked lower sea-ice cover and 

collapse of ice-shelves to an increased productivity (Bertolin and Schloss 2009, Barnes 

2017). This enhanced productivity has, in turn, been linked to increments in bryozoan and 

sponge abundance and biomass (Peck et al. 2010, Fillinger et al. 2013, Barnes 2015, 

Barnes et al. 2018), although this increase still is controlled by giant icebergs (Barnes 

2017). The results from our long-term study in the Austasen region also showed a direct 

link between productivity and benthic abundance and biomass. We assume a clear 

productivity loss after the year 2000, which we link to benthic abundance and biomass 

loss. This also holds true for bryozoan biomass, which has been proposed to have increased 

in recent years in the Weddell Sea (Barnes 2015). Furthermore, we also relate benthic 

abundance loss to an increased scouring in Austasen after the year 2000, thus, to a possible 

increased susceptibility of benthos to iceberg scour. Our 26-year study shows benthos in 
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the Austasen region to be negatively affected by ongoing climate change, contrasting the 

situation described for the Antarctic Peninsula (Peck et al. 2010, Fillinger et al. 2013, 

Barnes 2015, Barnes et al. 2018). 

AUSTASEN BENTHOS: PRESENT AND FUTURE 

We found benthos to be negatively affected by climatic variations during our 26-year study 

period with abundance and biomass losses at community and taxonomic unit level. These 

losses were mainly due to decreased productivity, increased sea-ice cover, and scouring. 

Based on our statistical results and findings in the Antarctic Peninsula (Peck et al. 2010, 

Fillinger et al. 2013, Barnes 2015, Barnes et al. 2018), we could assume benthos in the 

eastern Weddell Sea to benefit from the predicted decrease of sea-ice cover (Timmermann 

and Hellmer 2013). Such a decrease would imply an increased productivity. We therefore 

could expect abundance and biomass increments by the end of the century, thus supporting 

the idea of Antarctic shelves as carbon sinks and negative feedbacks to climate change 

(e.g. Peck et al. 2010, Barnes 2015, Barnes et al. 2018). However, before drawing further 

conclusions we need to consider physiological constrains in Antarctic benthos affected by 

increasing temperature. Most Antarctic benthic species appear stenothermal with narrow 

thermal windows of just few degrees (Peck 2002, 2005, 2014, Pörtner et al. 2007). 

Predictions suggest near-seabed temperature to rise up to 0°C (Hellmer et al. 2017), a 

temperature proposed to greatly decrease or fully stop biological functions of some taxa, 

e.g. bivalves and asteroids (Peck 2002, 2005, Brandt 2005, Peck et al. 2014). Finally, 

although our simple approach lacks the complexity of modern modelling tools, it provides 

baseline data and indices to be considered in future sampling strategies and modelling 

approaches. 
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ON-LINE ONLY METHODS 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Except for the benthic data (see below), all other data used for our analyses were obtained 

from the National Sea Ice Data Center data repository (sea-ice cover; Fetterer et al. 2018), 

the OceanColor web data repository (Chl a and particulate organic carbon; NASA 2018a-

d), Solar Geometry Calculator of the National Oceanic and Atmospheric Administration 

(NOAA 2018), ALTIBERG Iceberg data base (Tournadre et al. 2016), and the Antarctic 

Iceberg Tracking Database (Budge and Long 2018).  

The area corresponding to the Austasen region, which was used as boundary for sample 

selection and extrapolation of environmental data (Fig.1), was drawn as a polygon 

shapefile using the ArcGIS 10.4 software. We based the boundaries of the Austasen 

polygon on previous studies conducted there (e.g. Gerdes et al. 2003, Isla et al. 2009), and 

used the International Bathymetric Chart of the Southern Ocean (IBCSO; Arndt et al. 

2013) as reference to only include the shelf area down to 1000m depth. The approximate 

area of this polygon was 9180 km
2
. 

All statistical tests mentioned below were done using the StatView and SigmaPlot 12 

softwares. Figures were done using the OriginPro 8, RStudio, and ArcGIS 10.4.  

BENTHIC ABUNDANCE AND BIOMASS DATA  

Benthic total abundance and biomass, and abundance and biomass data of 35 benthic taxa 

corresponds to stations of the R/V Polarstern cruises ANT-VI/3, VII/4, XIII/3, XV/3, 

XVII/3, XXI/2, XXVII and PS82 (Fütterer 1988, Arntz et al. 1990, Arntz and Gutt 1997, 

1999, Arntz and Brey 2001, 2005, Knust et al. 2012, Knust and Schröder 2014), which 

represent years 1988, 1989, 1996, 1998, 2000, 2004, 2011, and 2014, respectively. Only 

shelf stations were selected, i.e. all those stations located within 100-700 m depth, based on 

the definition of Antarctic shelf given by Gallardo (1987), Arntz et al. (1994), and Smith et 

al. (2006). Furthermore, we also excluded stations located in the long-term “BEnthic 

Disturbance Experiment” (BENDEX) study area (Gerdes et al. 2008). Under these criteria, 

a total of 71 stations sampled by a multibox corer (Gerdes 1990) were considered (Table 

S2). From these, whenever possible, we extracted data of each box recovered. In total, our 

database consisted of 337 cores from 63 stations. Only for the year 2000 no data for each 

box recovered were available, we instead used the average station values at 8 sampled 

stations (Table S2). 

The locations of each station were imported as a single multipoint shapefile to the GIS 

environment using ArcGIS 10.4. This shapefile was used to extract environmental data 

from all environmental raster for each station. Extraction of environmental data was done 

with the “Extract multi value to point” tool of ArcGIS 10.4. 

ENVIRONMENTAL DATA AND TREATMENT 

Daily sea-ice cover (SIC) from the “Sea ice Index” provided by the National Snow and Ice 

Data Center (NSIDC) was extracted for the summer months of the period 1987-2014 

(Fetterer et al. 2018). We considered as summer months the period November to March, 
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which represent the months when the local polynya is open (Arrigo et al. 2015). The daily 

SIC data were used to calculate summer ice-free days and percentage of ice-free area in 

summer for the Austasen polygon. Additionally, data from the Solar Geometry Calculator 

of the National Oceanic and Atmospheric Administration (NOAA 2018) were used to 

calculate percentage of the day with sun light during summer for the period 1987-2014. 

Sea-ice and solar data were used to calculate a summer productivity index, referred in the 

main text as “productivity”. Arrigo et al. (2015) found polynya productivity to be directly 

related to mean daily photo-synthetically usable radiation, number of ice-free days, ice-free 

area, sea surface temperature, continental shelf width, and basal melt rate. Based on this, 

we calculated the productivity for the 1987-2014 period as the product of ice-free days, 

percentage of the day with sun light, and percentage ice-free area.  

To test if the calculated productivity works as a proxy for Chl a and particulate organic 

carbon concentration, we correlated productivity with summer Chl a and particulate 

organic carbon data obtained from the NASA Ocean Color web (NASA 2018a-d) and 

Arrigo et al. (2008). The correlations had coefficients > 0.7, thus we assumed our 

calculated productivity to correctly represent Chl a and particulate organic carbon 

variations. Productivity values were then extracted for each multibox corer station. 

Data on the area covered by giant icebergs passing within the Austasen polygon and 

average area covered by small icebergs were used to calculate a scouring index, referred as 

“scouring” in the main text. Scouring consists in the sum of the fourth root transformed 

area of giant and small icebergs. Both areas were fourth root transformed to reduce the 

magnitude of differences between areas, which were 4 to 6 orders of magnitude, and to 

amplify the effect of small icebergs, which are more numerous than the giants (Tournadre 

et al. 2016). Scouring represents the seabed area in km
2
 which can be potentially affected 

by icebergs, hence, a proxy for benthic susceptibility to be disturbed by an iceberg scour. 

STATISTICAL ANALYSIS 

Values for each box considered as well as year and station averages were plotted (Fig.2). 

Based on these plots we grouped all sampling years into a pre-2000 and a post-2000 

period. This grouping was also applied for environmental data. To test for significant 

differences between periods, a Mann-Whitney U test including all benthic data was 

conducted for total benthic abundance and biomass. Further Mann-Whitney U tests were 

calculated to test for between period differences in terms of sea-ice cover, productivity and 

scouring. 

Benthic data from all boxes was used to calculate total abundance and biomass ratios, as 

well as abundance and biomass ratios for all taxonomic units. For colonial (e.g. bryozoans 

and hydrozoans) and large macrobenthic organisms (e.g. glass sponges) abundance data 

were available only as presence/absence data. Before calculating all ratios, benthic taxa 

with low occurrence (i.e. many values = 0) were grouped in the category “Others”. This 

category of minor benthic groups included: hydrozoans, anthozoans, brachiopods, 

sipuncunculids, nemerteans, priapulids, flat worms, gastropods, polyplacophors, 

aplacophors, scaphopods, clitellate worms, echiurids, acari, cumaceans, harpacticoid 
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copepods, barnacles, tanaids, ostracods, unidentified crustaceans, echinoids, holothurians, 

asteroids, crinoids, hemichordates, ascidians, and unidentified organisms.  

Abundance and biomass ratios were calculated considering all cores and every possible 

post-2000 / pre-2000 combination (i.e. 2000/1988; 2000/1989; 2000/1996; 2000/1998; 

2004/1988; 2004/1989; 2004/1996; 2004/1998; 2011/1988; 2011/1989; 2011/1996; 

2011/1998; 2014/1988; 2014/1989; 2014/1996; 2014/1998). These ratios were log 

transformed and used in a one-sample t-test to look for siginifcant differences between the 

mean of ratios and 0. Means significantly < 0 would imply abundance or biomass losses in 

the post-2000 period, whereas means significantly > 0 would imply the opposite. Means 

were then back transformed to calculate abundance and biomass gains/losses.  

To estimate the influence of each environmental variable on benthic abundance and 

biomass, data of all cores were first fourth root transformed to reduce the influence of 

outliers. Once transformed, Pearson correlation coefficients were calculated to test 

significant influence of depth, sea-ice cover, productivity, and scouring on benthic total 

abundance and biomass, and of that of the taxonomic units. Negative coefficients named 

“reduced” would imply a reduction of benthic abundance and biomass, e.g. higher sea-ice 

cover, lower abundance. Positive coefficients were named “increased” and imply an 

increase of benthic abundance and biomass, e.g. higher productivity, higher biomass. 

Results of the correlation analyses were introduced in Fig. 4. 
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Figures and corresponding captions 

 

Fig. 1 Multibox-corer stations sampled in the Weddell Sea (above) and on the shelf off 

Austasen (below) between 1988 and 2014. Bathymetric chart modified after Arndt et al. 

(2013). Black arrow and point mark the location of Germany’s Neumayer III overwintering 

station. 
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Fig. 2 Sea-ice cover (A), productivity (B), scouring (C), and benthic abundance (D) and 

biomass (E, in semilog scale) for the time period 1988-2014. Benthic abundance and 

biomass are represented as annual means (stars), stations means (circles) and for each core 

(dots). Dotted horizontal lines represent the mean over the 26-year study period. 
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Fig. 3 Post-2000 / Pre-2000 ratios for total benthic abundance and biomass, and abundance 

and biomass of major components of the benthic community on the shelf off Austasen, 

eastern Weddell Sea. Lines represent 95% confidence intervals. Filled circles correspond 

to ratios significantly different from 1 (p < 0.05). “Others” includes minor benthic groups 

(see Method section). 
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Fig. 4 Influence of depth, scouring, sea-ice cover, and productivity on total benthic 

abundance and biomass, and abundance and biomass of major benthic taxa. “Others” 

includes minor benthic groups (see Method section). 
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GENERAL DISCUSSION 

This thesis is based on the most comprehensive data set of benthos living on the high-

Antarctic Weddell Sea shelf. Continuous research on benthos has been carried out in the 

Weddell Sea since the 1980s. The regional focus of the macrobenthos surveys was the 

shelf of the eastern Weddell Sea in the vicinity of the German research station Neumayer 

III but also the heavily sea-ice covered south was sampled at an early stage (e.g. Voß 

1988). Recently, the areas of disintegrating Larsen A and Larsen B ice shelves off the tip 

of the Antarctic Peninsula in the western Weddell Sea were included into the research 

program (e.g. Gutt et al. 2011, 2013b, Sañé et al. 2011, 2012, Fillinger et al. 2013). Benthic 

studies in the Weddell Sea also included long-term studies such as the BENthic 

Disturbance EXperiment (BENDEX; Gerdes et al. 2008), which was initiated off Austasen 

in order to simulate the impact of grounding icebergs on the seabed and follow the stages 

and time scales of recovery of disturbed benthos and demersal fish communities. Benthic 

data included in this thesis were collected on 12 research cruises of RV Polarstern between 

1988 and 2016. All campaigns were accompanied by intensive oceanographic studies via 

CTD measurements and numerous moorings. The manuscripts within this thesis include 

data of > 200 biological stations (Gerdes 2014a-n, Knust and Schröder 2014, Schröder 

2016): 35 seabed imagery stations in the Filchner Region, and 175 multibox corer stations 

from the Filchner Region (66), tip of the Antarctic Peninsula (15), the shelf formerly cover 

by the Larsen A and B ice-shelves (21), and the eastern Weddell Sea (73).  

Based on this benthic data base and descriptions on the Antarctic environment (e.g. 

Constable et al. 2014, Gutt et al. 2015, Turner et al. 2016, Comiso et al. 2017) I divided the 

Weddell Sea into three sub-regions: a) the western Weddell Sea, also including the tip of 

the Antarctic Peninsula influenced by water masses of the Weddell Sea, b) the southern 

Weddell Sea, and c) the eastern Weddell Sea (Fig.1). The shelves of these sub-regions 

represent an area of approximately ~849,000 km
2
. They are comparatively deep, with a 

mean depth of 500 m (Haid 2013) and a shelf break two to four times deeper than 

elsewhere in the oceans (Knox 2007), as a result of the isostatic pressure generated by the 

continental ice cap covering Antarctica (Smith et al 2006).  

The four manuscripts this thesis is based on consider complementing approaches to 

investigate the seabed fauna of the eastern and southern Weddell Sea sub-regions under 

different aspects. Manuscript 1 focuses on comparing two benthic sampling methods, corer 

sampling and seabed imaging (SBI), and demonstrated the huge advantages of using them 

in parallel. This approach was shown to be a time-efficient way to study benthic 

communities by adequately targeting both the infauna and the epifauna, respectively. 

Manuscript 2 combines publicly available benthic and pelagic data on biotic and abiotic 

components of both realms, to comparatively investigate bentho-pelagic coupling looks 

like in the eastern Weddell Sea and off the northern Antarctic Peninsula. Based on these 

studies, Weddell Sea benthic communities were researched on spatial (Manuscript 3) and 

temporal scales (Manuscript 4). 

Manuscript 3 deals with the diverse and heterogeneous infaunal- and epifaunal benthos of 

the Filchner Region in the southern Weddell Sea. It reports changes since this area was last 
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investigated in the late 1980s and early 1990s, as well as investigates how similar the 

benthos of this region is to that of other sub-regions of the Weddell Sea. This comparison 

aimed to understand between-region differences in terms of benthic characteristics, for 

which data from the shelf formerly covered by the Larsen Ice Shelf, the east of the 

Antarctic Peninsula in the western Weddell Sea, and the southeastern Weddell Sea shelf 

were included. Finally, Manuscript 4 describes the past and present of benthos off 

Austasen in the eastern Weddell Sea, and includes bentho-pelagic coupling concepts to 

link benthic changes to environmental variation, to estimate how the future of benthos in 

this high-Antarctic region may look like. 

  
Fig.1. Schematic map of the Weddell Sea showing the locations of all multibox samples obtained on 

during RV Polarstern cruises between 1988 and 2016. Red polygons represent the western (A), 

southern (B) and eastern (C) Weddell Sea sub-regions. 

In the Weddell Sea, extensive benthic studies started in the 1980s with the first icebreaker-

based expeditions (e.g. Voß 1988, Gerdes et al. 1992, Gutt and Starmans 1998). The 

benthic research conducted during these expeditions (and even in the course of most recent 

ones) proved right the statement made by Arntz et al. (1994): “Benthologists are 

comparatively conservative in their methods”. This is clearly demonstrated in various RV 

Polarstern cruise reports (e.g. Fütterer 1988, Arntz et al. 1990, Arntz and Gutt 1997, 1999, 

Arntz and Brey 2001, 2005, Knust et al. 2012, Knust and Schröder 2014), since in all these 

cruises, Antarctic benthos was studied quantitatively by means of coring and SBI. 

However, data from these two methods were rarely combined in order to achieve a more 

comprehensive benthic analysis, the studies were focused on either infaunal- (corer data) 

or epifaunal benthos (SBI data).  

The recurrent use of the same methodological approach allows for benthic comparisons in 

space and time, such as the BENDEX studies (Gerdes et al. 2008) that followed the 
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recolonization of benthos in an area artificially disturbed, long-term studies on bryozoan 

populations in waters of the Antarctic Peninsula and around sub-Antarctic Islands (Barnes 

2015), studies of the sponge-dominated community in McMurdo Sound, Ross Sea (Dayton 

et al. 1989), and the benthic study reported in Manuscript 4.  

It is commonly acknowledged that infaunal- and epifaunal benthos should both be 

considered to comprehensively study the entire benthic community, since these two 

community fractions represent “two sides of the same coin”, with both sides having their 

own “truth” and together forming the “coin” as a whole. Corers and SBI are two “typical” 

methods used to study Antarctic benthos (e.g. Gerdes et al. 1992, 2008, Gutt and Starmans 

1998, Gutt et al. 2011, Sañé et al. 2012, Fillinger et al. 2013, Segelken-Voigt et al. 2016). 

However, both are seldom studied together by parallel SBI and corer deployments, as done 

e.g. by Piepenburg et al. (2002). The concomitant use of corers and SBI in Manuscript 1 

showed infaunal- and epifaunal benthic abundances to be orders of magnitude different, 

and to be dominated by different taxonomic units. This suggests the need of further studies 

including both approaches, in order to better understand how infauna and epifauna 

contribute to a benthic community. The complementary nature of corer samples and seabed 

images for benthic studies is a widely accepted concept but hardly applied on board 

research vessels, due to deployment time constrains. The combined use of corer and 

camera on one gear was shown to be a meaningful and practical method to study benthic 

fauna with all its compartments (Manuscript 1).  Combining both data sets into one file for 

further statistical analyses of benthic distribution patterns, allowed for a more 

comprehensive description of benthic community distribution (Manuscript 3).  

To understand benthic spatial patterns and temporal dynamics we need also to take water-

column processes into account. This is especially true, when considering that the benthic 

habitats are inherently coupled to the pelagic realm. Pelagic productivity is directly 

reflected in benthic characteristics (e.g. Barnes et al. 2016, Manuscript 4). Manuscript 2 

explores this relationship by including and combining available benthic and pelagic data 

from the Weddell Sea and other Southern Ocean regions.  

The benthos of the eastern Weddell Sea has been described as being dominated by sponges 

(e.g. Barthel 1992, Barthel and Gutt 1992, Gerdes et al. 1992, Arntz et al. 1994, Gutt and 

Starmans 1998, Sañé et al. 2012). Sponge aggregations and their spicule mats provide a 

three-dimensional habitat which facilitates higher levels of diversity, biomass and 

abundance than on other Southern Ocean shelves (Barthel 1992, Barthel and Gutt 1992, 

Gerdes et al. 1992, Arntz et al. 1997, Gutt et al. 2013a). The sponge-dominated benthic 

communities are most likely supported by a relatively fast downward flux of highly 

nutritive particles (Bathmann et al. 1991, Isla et al. 2009, 2011). The situation in the 

eastern Weddell Sea is the situation for benthic organisms living on the shelf formerly 

covered by the Larsen A and Larsen B ice shelves in the western Weddell Sea. After the 

collapse of the ice shelves in 1995 (Larsen A) and 2002 (Larsen B), the region was 

abruptly subjected to a seasonal sea-ice regime and increased local primary productivity 

(Bertolin and Schloss 2009), which resulted in an increase of benthic abundance and 

biomass within a relatively short 3-year period (Gutt et al. 2013b, Fillinger et al. 2013). 
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The above-mentioned examples (included in Manuscript 2) provide ample evidence for the 

need to incorporate benthic abiotic parameters, as well as pelagic abiotic and biotic 

variables, in benthic ecological studies. By considering pelagic parameters such as Chl a, 

particulate organic carbon, sea-ice cover, persistence, and duration, presence of icebergs, 

temperature, and water currents, we can relate these to benthic characteristics in both space 

and time. On a spatial scale, these environmental factors are to be considered to understand 

why benthic communities are different among locations/regions (as done in Manuscript 3). 

On a temporal scale, coupling environmental and benthic dynamics could help shed light 

on how the benthic communities have been shaped, and how their future could look like 

(see Manuscript 4). However, understanding benthic changes in long-term studies requires 

understanding how “quickly” or “slowly” benthos responds to environmental variations. 

This fact has recently raised some discussion. Temperature, for instance, is an abiotic key 

factor for the development of organisms. It has a strong influence on metabolic rates, larval 

development and oxygen availability, among other factors, which control the organism 

performance and success and limit their distribution (e.g. Gillooly et al. 2001, O’Connor et 

al. 2007, Pörtner et al. 2007, Peck 2018).  Low temperatures are proposed to induce slow 

reactions of Antarctic benthos (Peck 2002, 2005, 2014, Pörtner et al. 2007), but 

recolonization studies in the eastern Weddell Sea and benthic studies in the Larsen area 

have proven that some benthic taxa (e.g. sponges) developed quicker than formerly thought 

(Gerdes et al. 2008, Gutt et al. 2013b, Fillinger et al. 2013). Thus, understanding benthic 

reaction times could prove a challenge, which could allow a better understanding of the 

fate of Antarctic benthos.  

Understanding pelagic processes and their influence on seabed systems is key to 

understand benthic dynamics. However, sampling and methodological constraints limit the 

quality and quantity of data that can be obtained during time-limited expeditions or via 

remote-sensing tools. Thus, the development of environmental indices, whenever data is 

unavailable, is essential. To cope with lack of data obtained in-situ or via satellite, I 

developed two indices (see Manuscript 4) which work as proxies for factors which directly 

influence benthic abundance and biomass (i.e. food input and disturbance), and can be 

easily calculated by using publicly available satellite data (see Tournadre et al. 2016, 

Fetterer et al. 2018, Budge and Long 2018). One is a “productivity index” calculated from 

ice-free days and ice-free area, as well as days with sun light, considered as a proxy for 

primary production, and the other, a “scouring index” calculated from the area of giant and 

small icebergs, considered as a proxy for the potential seabed area impacted by iceberg 

scouring.  

These methodological considerations and bentho-pelagic concepts are included in each 

manuscript to tackle specific questions (see General Introduction). Most questions regard 

benthic spatial distribution and temporal variation, as well as to point out environmental 

parameters which drive benthic variability. If we were to condense the answers found by 

the four manuscripts, we would end up with two main aspects: the spatial and the temporal. 

When considering the spatial scales in the Weddell Sea, a general question would be: how 

dis/similar are the benthic communities inhabiting the three sub-regions of the Weddell 

Sea? This question can be tackled after having updated our knowledge on benthic spatial 
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distribution in the Filchner Region in the southern Weddell Sea. On the other side, when 

considering the temporal scales, the general question would be: how has benthos reacted to 

the observed environmental variation? To answer this, we can consider benthic studies in 

all three sub-regions of the Weddell Sea, and include the benthic studies performed by e.g. 

Fillinger et al. (2013) and Barnes (2015) in the western Weddell Sea. However, to answer 

these questions we also need to include diverse environmental variables which affect 

benthos directly (e.g. icebergs, temperature) and indirectly (e.g. sea-ice cover), and modify 

its distribution as well as abundance, biomass, and composition. By answering these two 

general questions and transition from the past to the present, we can start making 

predictions on what could happen to benthos in the future. 

SPATIAL SCALES OF WEDDELL SEA BENTHIC COMMUNITIES 

Benthic studies in the eastern and southern Weddell Sea defined three community types 

(Voß 1988, Gerdes et al. 1992, Gutt and Starmans 1998): a) an Eastern Shelf community, 

b) a Southern Shelf community, c) a Southern Trench community. Recently, Gutt (2007; 

updated by Turner et al. 2009) modified this concept and defined three large biological 

associations for the entire Southern Ocean shelves based on dominating feeding guilds: a) 

a sessile suspension feeder community with associated fauna, b) a mobile deposit feeders, 

infauna and grazers dominated fauna community, and c) a “mixed assemblage”, composed 

of a combination of the two larger communities. 

All three benthic communities sensu Voß (1988) were also found in the Filchner Region. 

However, the spatial distribution range of the Eastern Shelf and Southern Trench 

communities was slightly different. The distribution of the Eastern Shelf community 

expanded from its original position and now also includes parts of the western shelf of the 

Filchner Region, whereas the distribution of the Southern Trench community now appears 

restricted to the deeper parts of the Filchner Trough (Annex 1 Fig.S3). The Southern Shelf 

community seems to have shifted its distribution towards the southern end of the shelf east 

of the Filchner Trough (Annex 1 Fig.S3). Despite these shifts, the communities described 

by Voß (1988), as well as the clusters found by Gerdes et al. (1992) and Gutt and Starmans 

(1988), maintain their original composition characteristics. The observed abundance and 

biomass decrease, likely related to observed sea-ice cover increments in the last decades, 

will be discussed in more detail in the next section. 

Additionally to the previously described “old” communities, two new were found: 1) the 

Ice/Ice Shelf Water (ISW) related community situated in proximities of the Brunt Ice Shelf 

and the giant iceberg A23-A. This community was also found in the Filchner Trough, 

where ISW, originated on the Berkner Bank, flows (Annex Fig.S4). 2) Another new 

community, defined as the Continental Slope Community, distributed along the northern 

slope of the Filchner Region, where Warm Deep Water (WDW) from the Weddell Gyre 

flows. While the Ice/ISW related community was found in areas previously “occupied” by 

the Southern Trench community, the Continental Slope community overlaps with the 

Eastern Shelf community. 

The spatial distribution found in the Filchner Region was poorly explained by 

environmental parameters typically considered in benthic studies (e.g. Gutt and Starmans 
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1998, Ellingsen et al. 2007, Saiz et al. 2008, Cummings et al. 2010, Segelken-Voigt et al. 

2016). However, each benthic community in the Filchner Region appeared tightly related 

to water mass circulation patterns: 

- The “Eastern Shelf community” distributed along the eastern shelf under the 

influence of modified WDW, and also on the shelf west of the trough;  

- The “Southern Shelf community” was found at the southern end of the shelf east of 

the Filchner Trough, close to where modified WDW enters a heavy sea-ice covered 

area before flowing into the trough;  

- The “Southern Trench community” distributed in the deepest parts of the Filchner 

Trough, where the densest ISW leaves the Filchner-Rønne shelf cavity; 

- The “Ice/ISW related community” was found, where less dense ISW flows, and in 

proximities of ice bodies large enough to influence water mass characteristics (e.g. 

Giant iceberg A23-A and the Brunt Ice shelf);  

- The “Continental Slope community” was distributed along the continental slope 

under the influence of Warm Deep Water (WDW) from the Weddell Gyre.  

Based on the conceptual background given in Manuscript 2, we can hypothesize water-

mass-related characteristics to better explain benthic spatial distribution in the Filchner 

Region. Such characteristics include e.g., productivity regimes, local particle flux and input 

from adjacent regions, and planktonic community composition (e.g. Barry 1988, Barry and 

Dayton 1988, Bathmann et al. 1991, Scharek et al. 1994, Kang et al. 2001, Palanques et al. 

2002, Isla et al. 2009, Hauck et al. 2010; 2012, Isla et al. 2011, Flores et al. 2014). These 

characteristics seem to play a major role in defining benthic spatial distribution patterns, 

thus, it will be key to better understand these processes in order to assess their importance 

for specific patterns in the benthic realm. Including them in future studies will require 

better campaign planning with a multidisciplinary approach, and less constrained statistical 

approaches. 

When considering benthic data from the Filchner Region in a sub-region comparison, we 

find the southern Weddell Sea benthos to be dominated by suspension feeders (mainly 

bryozoans). This already demonstrates differences between this region and the eastern and 

western Weddell Sea sub-regions, described as sponge dominated (e.g. Barthel 1992, 

Barthel and Gutt 1992, Gerdes et al. 1992, Arntz et al. 1994, Gutt and Starmans 1998, Sañé 

et al. 2012, Fillinger et al. 2013, Gutt et al. 2016). In terms of abundance and biomass, 

higher values correspond to regions where sea-ice cover is less persistent (e.g., with 

marked seasonality), as is the case at the tip of the Peninsula in the western and in the 

eastern Weddell Sea (Fetterer et al 2018). Contrastingly lower abundance and biomass 

values were observed in regions where sea ice persists for more than one season, as is the 

case in the southern Weddell Sea (Fetterer et al. 2018).  

The Weddell Sea is covered by thick ice in winter but returns to ice-free conditions in large 

areas during summer. Areas with this seasonal sea-ice regime are defined as sea-ice 

marginal zones and regarded as areas where planktonic production is enhanced and higher 

than in open ocean waters (e.g. Clarke 1988, Donnelly et al. 2006, Isla et al. 2009, Flores et 

al. 2014). The eastern Weddell Sea benthos is under such regime with enhanced 
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production, which provides higher particle fluxes to the benthos, thus sustaining a sponge-

dominated suspension-feeder rich fauna. In the southern Weddell Sea, only the shelf east 

of the Filchner Trough can be regarded as a sea-ice marginal zone being comparatively 

smaller than in the eastern Weddell Sea shelf. Additionally, sea-ice cover, its extension and 

persistence play a major roles in regulating primary production in the Southern Ocean 

(Arrigo et al. 2015), and, in turn, the particle flux to the benthos (Gutt 2000, Isla 2016). 

Thus, we can attribute regional differences in benthic abundance and biomass to 

differences in local production and particle flux regimes, driven mainly by different sea-ice 

regimes.  

Other factors which could “conspire” with regional sea-ice and productivity differences are 

shelf topography and water masses and their respective circulation pattern. Shelf 

topography modifies water current pathways and their strength (e.g. Gutt et al. 1998, 

Dorschel et al. 2014), thus regulating transport and deposition of suspended particles (Isla 

2016). In this context, shelf width has been found to influence current speed. Narrower 

shelves are associated with relatively faster current regimes, where settled particles are 

easily resuspended, thus favouring suspension-feeder-dominated communities with high 

abundance, biomass, and diversity (Gutt et al. 1998), such as the Eastern Shelf community. 

On the other hand, wider shelves are associated with slower water current regimes that 

favor particle deposition (Gutt et al. 1998). The western and southern Weddell Sea shelves 

are wider as compared to the eastern Weddell Sea, reflected in total shelf area differences 

(approximately 340,000, 477,000 and 32,000 km
2
 respectively). This would imply faster 

current regimes in the eastern Weddell, which in turn would support the higher abundance 

and biomass found in this sub-region, especially that of sponges. 

While topography affects current velocities and thus deposition/resuspension of particles, 

water masses and their respective circulation patterns are related to different local 

productivity regimes and quantity/quality of particulate organic carbon. An example for 

this is the McMurdo Sound in the Ross Sea, where two contrasting regimes and benthic 

communities are found related to water mass circulation (Barry 1988, Barry and Dayton 

1988). On the eastern shelf of the sound the water mass flows from the sea-ice marginal 

zone towards the Ross Ice Shelf, whereas the water mass on the western shelf comes from 

underneath the Ross Ice Shelf. As a result, the water mass on the eastern shelf is more 

productive and the benthic community more abundant than on the western shelf of the 

sound (Barry 1988, Barry and Dayton 1988). The predominant water mass found at the 

sampling stations in the eastern and western Weddell Sea sub-regions mainly flows 

through sea-ice marginal zones (Muench and Gordon 1995, Beckmann et al. 1999, 

Schröder and Fahrbach 1999), thus being more productive and supporting the higher 

benthic abundance and biomass in the eastern and western Weddell Sea sub-regions. In the 

southern Weddell Sea, water masses on the shelf in front of the Rønne Ice Self and in the 

Filchner Trough originate from underneath the Filchner Ice Shelf or from areas heavily 

covered by sea-ice (Gammelsrod et al. 1994, Grosfeld et al. 2001, Foldvik et al. 2001, 

2004, Ryan et al. 2017). This would suggest these water masses to be less productive, thus 

explaining why benthic abundance and biomass are lower in the southern Weddell Sea. 

The different water masses with their complex current patterns and the environmental 
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heterogeneity in the southern Weddell Sea might help to explain the existence of a larger 

number of community types in this sub-region of the Weddell Sea. 

WEDDELL SEA BENTHIC COMMUNITIES AND TIME SCALES  

Comparison of the results of Manuscript 3 with previous studies in the southern Weddell 

Sea demonstrated changes of benthic distribution ranges, abundance and biomass. In a 

period of almost 25 years, benthic infauna abundance and biomass values were half of 

those previously recorded by Gerdes et al. (1992). Furthermore, sponges, a major 

component of the biomass were replaced by bryozoans, evidencing a composition shift. A 

similar shift also became obvious in the epifauna. Previous descriptions of southern 

Weddell Sea benthos described bryozoan dominated communities in the north of the 

Filchner Region (Voß 1988, Gutt and Starmans 1998). These bryozoan dominated 

communities appear to have shifted towards the southeast of the Filchner Region. These 

differences between stations sampled in the 1980s and the mid-2010s appear related to sea-

ice variations. 

Similar to the situation in the southern Weddell Sea is that of the benthos in the eastern 

Weddell Sea. On the eastern Weddell Sea shelf, total benthic abundance and biomass and 

that of most benthic community major and minor components showed a clear decrease 

during the 1988 to 2014 period. This demonstrates the present situation on the eastern 

Weddell Sea shelf to be unfavorable for the benthic community as a whole. However, it is 

still unclear how productivity and sea-ice cover variations interact with different 

taxonomic units. 

These results suggest a clear effect of ongoing climatic variation on the benthic 

communities in this part of the Weddell Sea. Sea-ice cover affects benthic community 

indirectly by modifying the primary production regime. In polynyas, primary production is 

directly related to polynya extension and duration (Arrigo et al. 2015), both regulated by 

sea-ice cover and sea-ice persistence. The latter have increased in the eastern and southern 

Weddell Sea during the last decades (Turner et al. 2016), especially after the year 2000 

(Fetterer et al. 2016). We could relate the observed abundance and biomass losses in these 

sub-regions of the Weddell Sea, as well as the observed community distribution shifts in 

the southern Weddell Sea, to the observed climatic variation. Sea-ice cover in the southern 

and eastern Weddell Sea increased between 1979 and 2017, which could explain the 

observed benthic abundance and biomass losses. On a finer spatial scale, however, some 

sectors in the eastern Filchner Region showed losses of sea-ice cover during the same time 

period (Annex 1 Fig.S5). This could explain the shift of the bryozoan-dominated 

community from the shelf edge off Halley Bay from its original position towards southern 

areas with increased primary production and less sea-ice cover. 

Another important factor shaping benthos is iceberg scouring (Arntz et al. 1994, Gutt 2000, 

2001, Gerdes et al. 2003, Barnes and Souster 2011). Scours are a catastrophe-like 

disturbance, which completely eliminates benthos in affected locations (Dayton et al. 1989, 

Gutt 2001, Gerdes et al. 2003). The susceptibility of benthos to iceberg scours is directly 

related to the number and size of icebergs. The higher “scouring index” found after 2000 

points to a larger seabed area potentially affected by iceberg scours. Thus, we could relate 
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observed abundance and biomass losses to the increasing number of giant (Budge and 

Long 2018) and smaller icebergs (Tournade et al. 2016), both the product of higher basal 

melting rates. 

Contrasting to the situation in the eastern and southern Weddell Sea is that in the western 

Weddell Sea and in waters west of the Antarctic Peninsula. Sea-ice cover has decreased, 

and sea-surface temperature has increased (Liu et al. 2004, Turner et al. 2016, Comiso et 

al. 2017). Consequently, the situation of benthos is also contrasting with pronounced gains 

in abundance and biomass gains (e.g. Fillinger et al. 2013, Barnes 2015). In waters west of 

the West Antarctic Peninsula, South Georgia and South Orkney Islands, biomass and 

productivity of major benthic components have been estimated to increase related to an 

increase in the number of ice-free days per year (Barnes 2015). Similarly, on the shelf 

previously covered by the Larsen ice shelves, benthos appears to have steadily developed 

following a shift from an oligotrophic system with low pelagic primary productivity (Sañé 

et al. 2011) to a system with higher pelagic primary productivity (Bertolin and Schloss 

2009). Striking is the speed at which the abundance and biomass of the sponge assemblage 

increased (Fillinger et al. 2013). In general, Antarctic benthos is hypothesized to live in the 

“slow lane”, developing at slower rates than in warmer regions (Arntz et al. 1994, Peck 

2002, 2005, 2016, Pörtner et al. 2007), and to recover from disturbances at a rather slow 

pace (Gerdes et al. 2008). The development recorded by Fillinger et al. (2013) represented 

a 2- and 3-fold increase of sponge abundance and biomass, respectively, in a four year 

period. This comparatively “fast” development shows how different benthic reaction times 

can be and prove the need of better understanding the speed at which benthos reacts to 

environmental variation. Improving our knowledge on this topic will allow better 

predictions on how benthos will react to predicted climatic scenarios. 

SYNTHESIS 

While different in benthic characteristics, the eastern and southern Weddell Sea show 

similar changes in sea-ice cover and sea-surface temperature: Based on satellite data 

collected since 1979, sea-ice cover in these Weddell Sea sub-regions has increased (Turner 

et al. 2016), whereas sea-surface temperature has decreased (Comiso et al. 2017). For the 

eastern Weddell Sea, the study of Barnes (2015) indicate increased bryozoan biomass and 

production despite the sea-ice increase, while the analysis of the large benthic data set 

collected on board RV Polarstern between 1988 and 2014 (Gerdes 2014a-n) suggests that 

bryozoan biomass has decreased. The same trend has been reported for total benthic 

community abundance and biomass in both the eastern and southern Weddell Sea, where 

abundance and biomass in the mid-2010s were half of those recorded in the late 1980s 

(Gerdes et al. 1992, Manuscript 3). In the western Weddell Sea, sea-ice cover and sea-

surface temperature trends appear to go in opposite directions, i.e. sea-ice cover decreased, 

and sea-surface temperatures increased. Studies including data sets of several sampling 

campaigns have shown the environmental trends in the western Weddell Sea to favour 

benthos, resulting in increased biomass and carbon production (e.g. Fillinger et al. 2013, 

Barnes 2015, Barnes et al. 2018). 
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Temporal changes in benthic communities signal sea-ice cover as a main “culprit” for this 

variation. Sea-ice cover satellite data can be used to calculate ice-free area and ice-free 

days, two parameters regarded as direct regulators of primary productivity in the Southern 

Ocean (Arrigo et al. 2015). Thus, sea-ice cover gains/losses during recent decades work as 

indicators for primary productivity gains/losses. For the 1979-2013 period, sea-ice cover in 

the Bellingshausen Sea and Amundsen Sea has significantly decreased at rates of 2 to 10 

%-cover dec
-1

, whereas opposite trends with increases of 2-10 %-cover dec
-1

 have been 

found for other Antarctic sectors as e.g. the eastern Weddell Sea (Schwegmann 2012, 

Turner et al. 2016). Based on our current knowledge concerning the role of sea-ice for 

primary productivity and its effect on benthos, we could assume benthic abundance and 

biomass gains for the Bellingshausen Sea and Amundsen Sea for the 1979-2013 period, 

and the opposite for the Ross Sea, west Pacific Ocean and Indian Ocean sectors of the 

Southern Ocean.  

One has to consider, however, the restricted area in which the study in the eastern Weddell 

Sea was conducted. Furthermore, there is a clear lack of long-term studies dealing with 

community-level responses to observed climatic trends. Drawing further conclusions will 

also require the inclusion of further environmental parameters. The so-far published results 

are entirely based on relations between benthos and sea-ice/productivity/iceberg variations 

(e.g. Barnes 2015, 2017, Barnes et al. 2018), and disregard other possible stressors, e.g. 

acidification, warm water intrusions, change of water mass circulation patterns, or 

increased terrigenous inputs due to glacier retreat. Currently ~14% of the Southern Ocean 

is estimated to be affected by multiple stressors, but under future climate scenarios, this 

percentage is estimated to be almost 86% (Gutt et al. 2015). This demonstrates the need of 

including further environmental parameters into sampling campaigns and future studies, as 

suggested by Gutt et al. (2015) and literature cited therein. 

Despite clear gaps, our knowledge can be used to tentatively predict the future of the 

benthic communities of the three sub-regions of the Weddell Sea, as well as that of other 

high-Antarctic regions. Based on different IPCC scenarios, sea-ice cover in the Southern 

Ocean is predicted to decrease at rates of 1.1 to 3.1 % per decade until 2099 (Timmermann 

and Hellmer 2013). Under this context, we could assume a “brighter” future to most 

benthic communities, with increased food input. There are, however, some considerations 

to take before drawing further conclusions. Near-seabed temperature is another variable 

predicted to increase, reaching up to 2°C on some Antarctic shelves (Timmermann and 

Hellmer 2013). Physiological studies have shown warming of 1°C as a threshold at which 

benthic organisms respond significantly (Barnes and Peck 2008, Peck 2011, Peck et al. 

2014), with loss of biological activity at temperatures close to 0°C, e.g. reducing 

burrowing or swimming activity as is the case in mollusks (Peck et al. 2009). The studies 

of Peck et al. (2009, 2010) and Richard et al. (2012) on adaptation capabilities of Antarctic 

benthos propose temperature ranges ~3°C above present day temperatures to be already 

harmful. The predicted temperature rises imply a ~2°C increase above present day 

temperatures, which could prove lethal to some components of the Antarctic benthic 

communities.  
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This temperature rise would also imply an increase of basal melt rates of ice shelves, which 

would in turn imply an increased number of icebergs. A larger number of icebergs could 

potentially inflict devastating short-term consequences, but positive long-term 

consequences (Barnes et al. 2018). On short term, more icebergs imply a higher 

susceptibility of benthos to scours, which are known disturbances regarded as destructive 

as fire in forests (Gutt 2001). The higher susceptibility of benthos to scours would result in 

abundance and biomass to be drastically reduced. However, once icebergs disintegrate or 

move onto the open ocean, the seabed areas they once covered are recolonized by benthic 

organisms, leading to a local diversity increase (Gutt and Piepenburg 2003). In addition, in 

the water column new productive areas would become available, leading to higher primary 

productivity (Schwarz and Schodlok 2009, Vernet et al. 2011, Barnes et al. 2018). There is, 

however, an important question on the post-scour recovery of benthos in areas were 

observed climate change resulted in decreased abundance and biomass: If benthos is 

already close to a tipping point due to climate-change-related decrease in, e.g., abundance 

and biomass, would it be able to recover from a catastrophic disturbance event, such as 

iceberg scouring? 

Observed and predicted temperature raises could affect distribution ranges of species. On 

the one hand, it could reduce the range of those organisms which are less adapted. On the 

other it could allow invasive species to migrate into the shelves of the Southern Ocean. The 

expected temperature increase for the upcoming three decades would raise temperatures 

enough to be suitable for, e.g., king crabs to invade the Southern Ocean (Smith et al. 2012, 

Griffiths et al. 2013). Re-introduction of these benthic high predators would imply an 

increased predation pressure to organisms which, since millennia, have lived without them 

(Thatje et al. 2005). This could prove a worse-case scenario under projections which 

predict 98% of the Southern Ocean to be undersaturated with respect to aragonite by 2100 

(Orr et al. 2005). This would result in organisms such as bryozoans, echinoids and 

mollusks dealing not only with increased temperatures, but with difficulties generate their 

skeletons (Watson et al. 2012). Difficulties regarding calcification of skeletons, resulting in 

their thinning, would lower their resistance to predation (Gazeau et al. 2013). The pelagic 

system would be also negatively impacted, because under an aragonite undersaturated 

environment the efficiency of photosynthesis and that of the biological carbon pump could 

be reduced (Riebesell et al. 2007, Hofmann and Schellnhuber 2009, Tortell et al. 2010). 

This could, in turn, imply a lower quality and quantity of food input for benthos. 

The effects of single/multiple stressors on the benthos will depend on the survival capacity 

of benthic organisms. Animals have three main mechanisms for surviving environmental 

changes: a) to cope with the altered conditions using their phenotypic plasticity, b) to adapt 

via genetic changes on population level, and c) to migrate to environments with conditions 

that allow survival (Peck 2005, 2018). When considering temperature alone, it appears that 

the phenotypic plasticity of some benthic organisms would allow them to acclimate to the 

predicted temperatures of 2°C higher than present-day values (Timmermann and Hellmer 

2013). As mentioned before, Peck et al. (2009, 2010) and Richard et al. (2012) propose 

benthos can even survive under temperatures 3°C higher than present-day values. 

However, how this survival window can shift for calcifying benthos under an aragonite-
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undersaturated environment in response to ocean acidification is still unknown. Assuming 

the benthic phenotypic plasticity is unable to cope with environmental changes, adaptation 

via genetic changes could compensate. Genetic changes involving gene frequency, genetic 

drift, and gene selection can take months to decades to be evident (Peck 2011, 2018). 

These changes can take even longer for Antarctic benthos, considering their slower 

metabolic rates, and long development rates (Peck 2005, 2018). This would suggest 

Antarctic benthos might be “too slow” to be able to develop the adaptations needed to cope 

with its changing environment. However, when considering that predicted changes are 

expected to be met in 50 to 100 years, will benthos be truly “too slow”? or will benthos be 

able to “go with the flow” of change? The third mechanism, migration, depends on the 

dispersal capability of the organisms (Peck 2005), but under a prognosis were most of the 

Southern Ocean will be affected by at least one stressor (e.g. temperature increments, and 

aragonite undersaturation), “running” away appears out of the question. 

In conclusion, predictions based on future sea-ice losses would suggest benthos to benefit. 

However, knowledge on different stressors that might affect benthos (and pelagos) points 

to a highly risky and grim future. Better understanding how benthos interacts with different 

stressors, and how bentho-pelagic processes might be affected, will be paramount to 

improve the validity of our predictions and to get a more comprehensive system-level 

understanding on how the future of benthos might be. Another important aspect to consider 

is how fast benthos reacts and adapts to changes. If our assumptions on the timings and 

speeds of Antarctic benthos process and adaptations are off, it would imply a “brighter” 

future than though, even under an environment with multiple stressors. However, proving 

these assumptions will require filling numerous gaps and setting new redlines for future 

studies on benthic communities.  

OUTLOOK 

This thesis presents new information on benthic communities in the Filchner Region. It 

also provides evidence that water mass-characteristics (i.e., ocean circulation dynamics), 

their associated productivity, particle flux and sea-ice regimes are key drivers of spatial 

benthic distribution patterns. However, the relative importance of these and other 

environmental factors are still unclear. Therefore, future research campaigns should have a 

multidisciplinary approach, featuring the current use of various sampling methods and 

strategies, including the quantitative measurement of further water-mass-related 

environmental factors, such as e.g. water currents, primary production, and particle flux. 

Moreover, there is a need to review, sort, validate and use already available data that can 

be analyzed to explore the relationships between benthic and pelagic processes, as stated in 

Manuscript 2. This could be achieved by using large and comprehensive biological and 

environmental data sets, such as those found in, e.g., the PANGAEA repository, National 

Snow and Ice Data Center portal, NASA Ocean Color data center, the Antarctic Iceberg 

Tracking Database, and ALTIBERG iceberg data base. Manuscript 4 applies such an 

approach by combining field benthic data, satellite data, and knowledge on primary 

production regulators and disturbance by iceberg scours. However, due to the limitations of 

the statistical approach used (correlation analysis) open questions remained unanswered, 
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such as, e.g., “how the future of a typical Weddell Sea shelf benthic community could look 

like in predicted climate scenarios”. Another aspect that constrains the conclusions on the 

future of the benthic communities of the Weddell Sea is the current lack of knowledge on 

the fundamental physiological limits within which different components of Antarctic 

benthos can live, pointing to the need of more multidisciplinary work between ecologists 

and physiologists. 

Manuscripts 3 and 4 provide useful hints to understand spatial and temporal patterns of the 

Weddell Sea benthos, and how these communities have altered (and could alter) under 

ongoing (and predicted) climate change. However, the use of statistical approaches that are 

based on the assumption of linear relationships (such as, e.g., multiple correlations and 

regressions) impedes to match environmental with benthic parameters. Future 

multidisciplinary studies should apply modern approaches to assess the relation between 

environmental parameters and benthic spatial (and temporal) patterns, such as, machine-

learning techniques like Random Forests or MaxEnt. These techniques are less constrained 

than linear statistics and allow, e.g., the inclusion of categorical variables (e.g. water mass 

type, physiological constraints). This flexibility will also allow exploring the significance 

of benthic response times and effects of multiple stressors, thus improving our ability to 

predict benthic dynamics. Moreover, both Random Forests and MaxEnt  that allow the 

construction of spatial distribution models (e.g. Vinvenzi et al. 2011, Wang et al. 2016, 

Ostmann and Arbizu 2018), which could allow for a statistically rigorous test of the 

hypothesis made in Manuscript 3. Finally, when such distribution models are fed with 

environmental data from, they would allow for projecting future benthic dynamics, thus 

improving the results and predictions made in Manuscript 4. 

This thesis exemplifies the great surplus values of “multidisciplinary work” for future 

benthic studies. Manuscript 2 shows that the benthos strongly depends on water-column 

processes, in both spatial and temporal scales. Manuscripts 3 and 4 further corroborate the 

prime ecological significance of the bentho-pelagic coupling and also demonstrate that the 

lack of a multidisciplinary sampling strategy necessarily leads to just partial answers (and 

lots of extra questions). Quantitatively describing and modelling the relationships between 

benthic and pelagic processes by means of such multidisciplinary approaches will be key 

that are required to develop the tools to understand how the ongoing and predicted climate 

change affects Antarctic benthos in the Weddell Sea, but also in other high-Antarctic 

regions  of the Southern Ocean. 
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ANNEX 

ANNEX 1: Supplementary material for Manuscript 3 

Supplementary Tables and legends 

Table S1: Multibox corer (MBC), Seabed images (SBI), and multicorer (MUC) stations 

for benthos and sediment studies conducted during RV Polarstern cruises PS82 and PS96. 

Sediment characteristics correspond to the first 9 cm of the sediment column (Continued in 

next page). 

St. Nr. Latitude 

(°S) 

Longitude 

(°W) 

Sampling 

gear 

Depth (m) Coarse 

Sediment (%) 

Fine Sediment 

(%) 

PS82-033 75° 56.83' 31° 40.57' MBC+SBI 684 34.7 65.3 

034 75° 57.08' 31° 40.60' MUC 691 48.3 51.7 

040 76° 03.96' 30° 16.83' MBC+SBI 472 34.8 65.2 

041 76° 04.03' 30° 18.40' MUC 470 8.1 91.9 

052 76° 19.06' 29° 02.21' SBI 243 - - 

064 77° 06.11' 36° 25.51' MUC 1115 5.9 94.1 

066 77° 06.09' 36° 34.39' MBC+SBI 1111 22.3 77.7 

074 76° 59.89' 34° 07.71' MBC+SBI 571 27.7 72.3 

079 77° 01.92' 33° 35.19' MBC+SBI 390 28.4 71.6 

089 76° 59.02' 32° 51.05' MBC+SBI 254 30.1 69.9 

098 77° 42.76' 35° 55.73' MBC+SBI 585 22.3 77.7 

108 77° 54.17' 38° 09.99' MUC 1215 15.1 84.9 

109 77° 53.92' 38° 08.49' SBI 1216 21.9 78.1 

116 77° 36.77' 38° 56.70' MBC+SBI 1060 22.4 77.6 

125 75° 29.48' 27° 24.60' MBC+SBI 286 40.5 59.5 

130 75° 20.28' 27° 38.48' MBC+SBI 361 41.3 58.7 

132 75° 20.27' 27° 38.44' MUC 361 70.0 30.0 

144 74° 49.80' 25° 07.44' MBC+SBI 702 33.7 66.3 

145 74° 49.80' 25° 07.44' MUC 702 9.7 90.3 

152 74° 37.01' 28° 31.83' MUC 1152 47.6 52.4 

153 74° 37.01' 28° 30.57' MUC 1176 - - 

154 74° 36.53' 28° 28.72' MBC+SBI 1217 41.4 58.6 

163 74° 39.94' 28° 40.16' MBC+SBI 696 41.1 58.9 

164 74° 53.67' 26° 42.48' MBC+SBI 290 39.6 60.4 

165 74° 53.69' 26° 41.75' MUC 296 54.3 45.7 

178 74° 29.96' 30° 59.75' MUC 530 54.6 45.4 

179 74° 29.86' 30° 59.01' MBC+SBI 530 39.3 60.7 

190 74° 40.21' 33° 40.27' MBC+SBI 591 29.9 70.1 

198 74° 36.21' 36° 21.31' MUC 422 49.4 50.6 

200 74° 34.73' 36° 23.70' MBC+SBI 426 28.7 71.3 

206 74° 26.09' 35° 43.48' MBC+SBI 1140 30.0 70.0 

226 74° 21.12' 37° 36.14' MBC+SBI 554 29.2 70.8 

235 74° 11.62' 37° 44.00' MUC 806 61.2 38.8 

236 74° 13.23' 37° 39.67' MBC+SBI 798 29.5 70.5 

242 74° 40.84' 39° 04.43' MBC+SBI 436 24.8 75.2 

243 74° 41.31' 39° 04.53' MUC 435 9.5 90.5 

269 74° 18.05' 32° 47.56' MUC 748 1.2 98.8 

270 74° 17.05' 32° 47.81' MBC+SBI 830 31.2 68.8 

277 74° 54.42' 29° 39.80' SBI 406 39.4 60.6 

269 74° 18.05' 32° 47.56' MUC 748 1.2 98.8 

292 75° 30.60' 29° 00.44' MUC 454 14.6 85.4 

297 75° 32.61' 28° 49.88' SBI 412 38.8 61.2 

305 75° 06.53' 28° 45.83' SBI 413 40.2 59.8 

313 74° 40.06' 28° 39.77' MUC 672 53.2 46.8 

324 74° 41.61' 38° 48.29' MUC 426 59.6 40.4 

325 74° 42.28' 29° 48.41' MBC+SBI 427 39.5 60.5 

PS96-008 74° 53.70' 29° 22.77' MBC+SBI 405 39.7 60.3 

010 74° 56.75' 26° 02.87' MBC+SBI 283 37.1 62.9 
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017-3 75° 00.87’ 32° 52.51' MUC 608 - - 

026 75° 16.17' 37° 55.09' MBC+SBI 402 25.9 74.1 

026-7 75° 16.19' 37° 52.96' MUC 416 19.5 80.5 

027 76° 43.12' 52° 09.30' SBI 302 24.6 75.4 

032 76° 19.36' 45° 47.17' MBC 330 11.1 88.9 

037 75° 43.27' 42° 27.49' MBC+SBI 380 22.1 77.9 

037-8 75° 43.30' 42° 27.71' MUC 391 11.1 88.9 

048 74° 45.53' 35° 20.61' MBC+SBI 470 28.6 71.4 

048-7 74° 45.52' 35° 20.91' MUC 482 22.2 77.8 

056 75° 31.02' 28° 57.18' MBC 454 38.1 61.9 

072 75° 51.47' 32° 20.01' MBC+SBI 725 33.5 66.5 

072-7 75° 51.61' 32° 17.58' MUC 755 - - 

-: No data available 

Table S2: Near seabed hydrographic variables (modified after Schröder and Wisotzki 

2014; Schröder et al. 2016), and surface sediment (derived from seabed images) for each 

benthic station sampled during R/V Polarstern cruises PS82 and PS96. 

St. Nr. Sediment cover (%) Hydrography 

 Fine  Gravel  Stone/Rock  Dissolved O2 

(µmol L-1) 

Density  

(sigma-theta kg m-3) 

Temperature 

(°C) 

Salinity 

PS82-033 92 7 0 317.6 27.91 -1.95 34.66 

040 100 0 0 317.8 27.79 -1.84 34.52 

052 0 0 100 321.5 27.68 -1.78 34.40 

066 99 0 1 321.2 27.91 -1.94 34.65 

074 92 5 3 324.6 27.85 -1.91 34.58 

079 49 37 14 323.6 27.75 -1.92 34.48 

089 5 94 1 323.1 27.72 -1.92 34.46 

098 81 19 1 322.9 27.88 -1.97 34.63 

109 82 16 2 320.8 27.90 -1.94 34.65 

116 68 29 3 316.9 27.90 -1.86 34.64 

125 97 1 1 313.7 27.69 -1.65 34.40 

130 96 1 3 306.2 27.71 -1.50 34.43 

144 99 1 0 292.7 27.70 -1.33 34.43 

154 63 31 6 266.9 27.79 -0.69 34.57 

163 7 78 15 264.2 27.78 -0.63 34.56 

164 80 19 1 304.2 27.70 -1.45 34.42 

179 51 48 1 298.1 27.81 -1.42 34.57 

190 79 18 3 314.0 27.90 -1.88 34.65 

200 54 44 2 308.7 27.85 -1.73 34.60 

206 6 92 2 283.7 27.87 -1.18 34.63 

226 88 12 0 285.3 27.83 -1.13 34.61 

236 82 16 2 283.1 27.82 -1.08 34.60 

242 100 0 0 286.9 27.83 -1.16 34.58 

270 17 69 14 310.0 27.86 -1.77 34.63 

277 93 6 1 296.9 27.74 -1.35 34.48 

297 96 3 1 304.1 27.74 -1.53 34.47 

305 100 0 0 295.9 27.74 -1.35 34.48 

325 58 41 2 294.0 27.75 -1.26 34.49 

PS96-008 92 5 3 296.9 27.73 -1.35 34.47 

010 87 12 1 305.3 27.69 -1.47 34.40 

026 95 5 0 283.1 27.87 -1.07 34.61 

027 95 5 0 320.3 27.88 -1.90 34.63 

032 - - - 320.2 27.92 -1.91 34.67 

037 95 5 0 315.7 27.91 -1.82 34.66 

048 94 5 0 296.5 27.90 -1.47 34.65 

056 - - - 307.4 27.75 -1.61 34.47 

072 95 5 0 317.3 27.90 -1.93 34.66 

-: No data available 
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Table S3: List of 20 environmental variables (and corresponding units) included in the 

environmental data matrix used for the BEST analyses. Marked in bold are the 

environmental variables considered for the BEST test. 

Environmental variable Unit Obtained or calculated 

from 

Water Depth Meters CTD
a,b

  

Dissolved O2 concentration µmol L
-1

 CTD
a,b

 

Near seabed density (Sigma-theta) kg m
-3

 CTD
a,b

 

Near seabed temperature °C CTD
a,b

 

Near seabed salinity None CTD
a,b

 

Gravel content in sediment column Percentage in sediment 

column 

Multicorer (MUC) cores 

Sand content in sediment column Percentage in sediment column MUC cores 

Silt content in sediment column Percentage in sediment column MUC cores 

Clay content in sediment column Percentage in sediment column MUC cores 

Fine sediment content in sediment column Percentage in sediment column MUC cores 

Coarse content in sediment column Percentage in sediment column MUC cores 

Fine sediment cover Percentage seabed covered Seabed images (SBI) 

Gravel cover Percentage seabed covered SBI 

Stone/rock cover Percentage seabed covered SBI 

Biogenic Silica (Opal) inventory mg cm
-2

 MUC cores 

Organic Carbon (OC) inventory mg cm
-2

 MUC cores 

Year average sea-ice cover Percentage surface covered Sea ice index
c
 

Year sea-ice cover gain/loss Percentage sea-ice cover 

gain/loss per year 

Sea ice index
c
 

Summer average sea-ice cover Percentage surface covered Sea ice index
c
 

Summer sea-ice cover gain/loss Percentage sea-ice cover 

gain/loss per year 

Sea ice index
c
 

a: Schröder & Wisotzki 2014 

b: Schröder et al. 2016 
c: Fetterer et al. 2018 
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Table S4: Feeding guild assignment for all considered taxonomic units. Assignment 

considering on specialized literature (Yonge 1928, Hansen 1978, Fauchald & Jumars 1979, 

Montiel et al. 2005, Macdonald et al. 2010). 

  DF SF SV PD 

Porifera 0 1 0 0 

Medusae 0 0 0 1 

Hydrozoa 0 1 0 0 

Alyonacea 0.1 0.9 0 0 

Pennatulacea 0 0.1 0.9 0 

Anthozoa 0 0.13 0.0 0.87 

Bryozoa 0 1 0 0 

Brachiopoda 0 1 0 0 

Sipuncula 1 0 0 0 

Platyhelminthes 0 0 0.1 0.9 

Nemertina 0 0 0 1 

Priapulida 0 0 0.5 0.5 

Polyplacophora 0 0 0.8 0.2 

Solenogastres 1 0 0 0 

Bivalvia 0.28 0.70 0 0.02 

Nudibranchia 0 0 0 1 

Gastropoda 0,5 0.1 0.1 0.4 

Scaphopoda 0 0 0 1 

Cephalopoda 0 0 0 1 

Polychaeta 0.52 0.16 0.02 0.3 

Clitellata 0.6 0 0 0.4 

Echiurida 1 0 0 0 

Acari 0 0 0 1 

Pantopoda 0 0 0 1 

Mysida 0.7 0 0 0.3 

Amphipoda 0.2 0.3 0.1 0.4 

Cumacea 0.78 0.04 0 0.18 

Harpacticoidea 0 0.7 0 0.3 

Cirripedia 0 1 0 0 

Isopoda 0.7 0 0 0.3 

Tanaidacea 0 1 0 0 

Ostracoda 0.3 0.2 0.4 0.2 

Decapoda 0.25 0.25 0.25 0.25 

Crustacea 0.3 0.4 0.1 0.2 

Echinoidea 0.9 0.1 0 0 

Holothuroidea 0.6 0.4 0 0 

Asteroidea 0.2 0 0 0.8 

Ophiuroidea 0.4 0.5 0 0.2 

Crinoidea 0 1 0 0 

Hemichordata 0.6 0.4 0 0 

Tunicata 0 1 0 0 

Unidentified 0.25 0.25 0.25 0.25 
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Table S5: Abundances derived from seabed images (SBI), abundances and biomass 

derived from multibox corer (MBC) samples and their respective dominance and 

frequency of occurrence for each taxonomic unit (TUs). Ranges are given in brackets. 

TUs SBIa MBCb 

 Mean 

abundance 

(ind m-2) 

Dom.c 

(%) 

Frec.d 

(%) 

Mean 

abundance 

(ind m-2) 

Mean 

biomass 

(g ww m-2) 

Dominance (%) Frec.d 

(%) 
Abundance Biomass 

Porifera 3 4.5 80 1 11.4 0.1 22.2 71 

Stauromedusae <1 <0.1 3 - - - - - 

Medusaee <1 <0.1 3 - - - - - 

Hydrozoaf 0.003 3.6 66 15 0.1 1.0 0.2 55 

Alcyonaceaf 0.003 3.4 80 - - - - - 

Pennatulacea <1 <0.1 20 - - - - - 

Actinaria <1 1.2 74 - - - - - 

Scleractinia <1 0.1 37 - - - - - 

Anthozoae - - - 16 2.1 1.1 4.2 77 

Bryozoaf 0.045 48.5 83 1 13.6 0.1 26.7 55 

Brachiopoda <1 <0.1 17 5 0.2 0.6 0.3 32 

Sipuncula - - - 16 0.5 1.1 0.9 65 

Platyhelminthes - - - <1 <0.1 <0.1 <0.1 6 

Nemertina - - - 32 0.2 2.1 0.5 81 

Priapulida - - - 1 0.1 0.1 0.2 10 

Polyplacophora <1 <0.1 6 1 <0.1 0.1 <0.1 13 

Solenogastres - - - 5 <0.1 0.3 <0.1 45 

Bivalvia <1 0.2 17 101 0.5 6.6 0.9 97 

Nudibranchia <1 <0.1 3 - - - - - 

Gastropoda <1 1.2 34 20 0.2 1.3 0.4 74 

Scaphopoda - - - 2 0.1 0.2 0.1 26 

Cephalopoda <1 <0.1 9 - - - - - 

Polychaeta 11 17.3 100 763 11.3 50.0 22.0 100 

Clitellata - - - 143 0.2 9.4 0.4 74 

Echiurida - - - 1 1.0 <0.1 1.9 10 

Acari - - - 3 <0.1 0.2 <0.1 16 

Pantopoda <1 0.7 77 18 <0.1 1.2 0.1 55 

Mysida <1 0.6 71 - - - - - 

Amphipoda <1 0.5 74 108 0.4 7.1 0.7 84 

Cumacea - - - 21 0.1 1.4 0.1 68 

Harpacticoida - - - 7 <0.1 0.4 <0.1 32 

Cirripedia - - - <1 <0.1 <0.1 <0.1 6 

Serolidae <1 0.2 51 - - - - - 

Isopoda <1 <0.1 14 60 0.3 4.0 0.5 84 

Tanaidacea - - - 35 <0.1 2.3 <0.1 77 

Ostracoda - - - 14 <0.1 0.9 <0.1 58 

Decapoda <1 0.3 63 - - - - - 

Crustaceae <1 0.7 71 1 <0.1 <0.1 0.1 6 

Echinoidea <1 0.5 97 2 0.1 0.1 0.2 26 

Holothuroidea 8 13. 97 9 1.3 0.6 2.6 48 

Asteroidea <1 0.4 77 4 0.1 0.2 0.1 23 

Ophiuroidea 24 39.7 100 100 4.8 6.6 9.2 81 

Crinoidea <1 1.3 80 8 0.2 0.5 0.3 26 

Hemichordata <1 0.6 40 1 <0.1 0.1 0.1 10 

Tunicata 7 11.8 89 8 2.4 0.6 4.7 45 

Unidentified 3 5.0 97 2 <0.1 0.1 <0.1 16 

-: No data available 

a: n = 35 

b: n = 31 

c: Dominance 

d: Frequency of occurrence. 

e: Unidentified. 

f: Abundance given in m2; Relative abundances based on organism coverage in SBI. 
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Table S6: Results of the pairwise PERMANOVA between Multibox corer (MBC) 

abundance and MBC-biomass data from different sub-regions of the Weddell Sea; Tip of 

the Antarctic Peninsula (TAP), Larsen embayments (LA), Filchner Region (FR), and South 

Eastern Weddell Sea Shelf (SEWSS). MBC data of TAP, LA and SEWSS modified after 

Gerdes (2014 a-h).  
 

Sub-

Region  

Abundance-based Pseudo-F Biomass-based Pseudo-F 

 TAP LA FR SEWSS TAP LA FR SEWSS 

TAP -    -    

LA 2.3218** -   2.0817** -   

FR 1.5607* 1.9012** -  2.4879** 1.6964** -  

SEWSS 2.0808** 3.3323** 2.2476** - 2.2217** 3.5487** 3.0764** - 
* Significantly different at p < 0.05 

** Significantly different at p < 0.005 
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Supplementary Text and legends 

Text S3: Formula used to calculate abundance and biomass ratios of each Taxonomic Unit 

(TU) per station, where “ij” is the i-th TU of the j-th Station. For colonial organisms, this is 

calculated using abundance (m
2
) and the total area (in m

2
) covered by organisms. 

𝑅𝑎𝑡𝑖𝑜 𝑇𝑈𝑖𝑗 =
𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑟 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑇𝑈𝑖𝑗

𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑟 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑗
 

Supplementary Figures and captions 

 
Fig.S1. Taxonomic unit (TU) cumulative curves calculated for SBI stations St-033, 040, 052, 

and 206 from PS82 (A) and St-008, 010, 026, 027, 037, 048, and 072 from PS96 (B). At least 

75% of the TUs are represented after analysing 15 seabed images (dashed lines). 
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Fig.S2. Dendrogram from the Cluster and SIMPROF analyses used to differentiate station 

groups. Colour bars (and dashed red lines) show station groups A (pink), B (orange), C (dark 

red), D (dark blue), E (purple), and F (green). Stations are clustered based on group average. 

SIMPROF differentiated groups with a = 0.05, considering a mean number of permutations = 

1000, and 999 simulations.    

 

Fig.S3. Comparison of benthic communities showing only partial agreement between 

previously described benthic communities (Voß 1988; coloured areas) and station groups 

defined in this work via Cluster and SIMPROF analyses. 
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Fig.S4. Benthic faunal communities/station groups differentiated with the Cluster and 

SIMPER analysis. Arrows represent water mass circulation in the Filchner Trough, shelves 

and outer slope of the Filchner Region; modified after Ryan et al (2017). 
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Fig.S5. Year (A) and summer (B) average sea-ice cover, and average year (C) and summer 

(D) sea-ice cover gain/loss (in % y
-1

) for the period 1979 to 2017 in the study area in the 

Filchner Region (Weddell Sea, Antarctica). Year and summer average sea-ice cover was 

calculated considering values for the period 1979-2017. Note that each plot has its own scale. 

Modified after Fetterer et al. (2018). Black circles represent MBC stations sampled in the late 

1980s (Gerdes et al. 1992), grey circles represent MBC stations sampled during the mid-

2010s (this study). 
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ANNEX 2: Supplementary material for Manuscript 4 

Supplementary Tables and legends 

Table S1. List of stations per expedition and year considered in our study. Water depth and 

number of cores per station is also provided (Continued in next page). 

Station 

Number 

Campaign Year °Latitude 

(+N; -S) 

°Longitude 

(+E; -W) 

Water 

depth (m) 

Number 

of cores 

266 ANT-VI/3 1988 -71.15 -12.1167 332 5 

298 ANT-VI/3 1988 -70.8333 -10.85 464 8 

305 ANT-VI/3 1988 -71.13 -13 525 8 

308 ANT-VI/3 1988 -71.2333 -12.9833 190 6 

387 ANT-VI/3 1988 -71.3833 -13.95 308 7 

396 ANT-VI/3 1988 -71.3 -13.7667 412 3 

418 ANT-VI/3 1988 -71.3167 -12.4167 181 8 

437 ANT-VI/3 1988 -70.9667 -11.2 350 8 

503 ANT-VI/3 1988 -70.1333 -12.2 438 7 

512 ANT-VI/3 1988 -70.7833 -10.55 266 4 

274 ANT-VII/4 1989 -71.6183 -12.1817 211 7 

277 ANT-VII/4 1989 -71.6633 -12.5817 405 7 

292 ANT-VII/4 1989 -71.0633 -12.7017 561 5 

1 ANT-XIII/3 1996 -71.3033 -12.2667 246 8 

4 ANT-XIII/3 1996 -71.3033 -12.27 174 1 

5 ANT-XIII/3 1996 -71.3033 -12.2717 172 2 

6 ANT-XIII/3 1996 -71.575 -12.4333 169 1 

8 ANT-XIII/3 1996 -71.5317 -13.515 574 6 

9 ANT-XIII/3 1996 -71.5333 -13.5183 234 6 

10 ANT-XIII/3 1996 -71.5367 -13.52 235 6 

11 ANT-XIII/3 1996 -71.51 -13.47 239 3 

12 ANT-XIII/3 1996 -71.6867 -12.5133 225 6 

20 ANT-XIII/3 1996 -71.6783 -12.76 438 5 

22 ANT-XIII/3 1996 -71.6683 -12.7867 224 1 

23 ANT-XIII/3 1996 -71.66 -12.7583 216 6 

24 ANT-XIII/3 1996 -71.135 -11.535 223 4 

25 ANT-XIII/3 1996 -71.135 -11.5317 119 1 

26 ANT-XIII/3 1996 -71.3283 -12.4133 118 5 

27 ANT-XIII/3 1996 -71.3183 -12.38 182 6 

28 ANT-XIII/3 1996 -71.31 -12.4233 159 5 

29 ANT-XIII/3 1996 -71.32 -12.45 181 5 

30 ANT-XIII/3 1996 -71.385 -14.3283 253 4 

31 ANT-XIII/3 1996 -71.4867 -14.2817 628 3 

33 ANT-XIII/3 1996 -71.5283 -13.6367 218 3 

35 ANT-XIII/3 1996 -71.5317 -13.52 279 6 

36 ANT-XIII/3 1996 -71.5317 -13.52 241 6 

37 ANT-XIII/3 1996 -71.5317 -13.5167 238 4 

38 ANT-XIII/3 1996 -71.53 -13.52 234 3 

47 ANT-XV/3 1998 -70.8683 -10.49 234 7 
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48 ANT-XV/3 1998 -70.8683 -10.4883 245 5 

63 ANT-XV/3 1998 -70.8683 -10.54 234 5 

67 ANT-XV/3 1998 -70.8317 -10.6083 305 2 

68 ANT-XV/3 1998 -70.8367 -10.62 269 7 

225 ANT-XV/3 1998 -70.085 -10.5867 276 5 

227 ANT-XV/3 1998 -70.8233 -10.645 360 2 

228 ANT-XV/3 1998 -70.83 -10.6333 293 4 

230 ANT-XV/3 1998 -70.8467 -10.5367 229 7 

90 ANT-XVII/3 2000 -71.2093 -12.6627 365 -* 

98 ANT-XVII/3 2000 -71.1817 -12.4683 314 -* 

108 ANT-XVII/3 2000 -71.144 -12.2458 441 -* 

112 ANT-XVII/3 2000 -71.1017 -12.7183 567 -* 

114 ANT-XVII/3 2000 -70.7698 -10.7203 753 -* 

120 ANT-XVII/3 2000 -70.8383 -10.5833 271 -* 

136-6 ANT-XVII/3 2000 -70.8367 -10.575 256 -* 

137 ANT-XVII/3 2000 -70.8367 -10.5783 272 -* 

105 ANT-XXI/2 2004 -70.9417 -10.5335 295 6 

106 ANT-XXI/2 2004 -70.944 -10.5338 304 8 

116 ANT-XXI/2 2004 -70.9468 -10.5478 321 6 

124 ANT-XXI/2 2004 -70.94 -10.529 290 6 

125 ANT-XXI/2 2004 -70.94 -10.526 282 6 

185 ANT-XXI/2 2004 -70.9435 -10.5275 294 6 

197 ANT-XXI/2 2004 -70.9382 -10.5053 253 6 

201 ANT-XXI/2 2004 -70.9375 -10.5502 322 4 

274 ANT-XXVII/3 2011 -70.9428 -10.5712 333 7 

275 ANT-XXVII/3 2011 -70.9403 -10.527 283 8 

279 ANT-XXVII/3 2011 -70.937 -10.5055 250 7 

283 ANT-XXVII/3 2011 -70.966 -10.5055 284 7 

295 ANT-XXVII/3 2011 -70.9438 -10.5335 303 5 

297 ANT-XXVII/3 2011 -70.9433 -10.527 276 7 

359 PS82 2014 -70.9445 -10.5372 322 8 

360 PS82 2014 -70.9418 -10.5295 283 7 

*No core data available. 
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Supplementary Figures and captions 

 

Fig.S1. Composition of the benthos in the shelf off Austasen for each sampling year. Relative 

abundance and biomass (%) calculated from median values per year. 
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