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Abstract: Falling between seasonal cycle variability and the impact of local drivers, the sea level in
the Red Sea and Gulf of Aden has been given less consideration, especially with large-scale modes.
With multiple decades of satellite altimetry observations combined with good spatial resolution, the
time has come for diagnosis of the impact of large-scale modes on the sea level in those important
semi-enclosed basins. While the annual cycle of sea level appeared as a dominant cycle using spectral
analysis, the semi-annual one was also found, although much weaker. The first empirical orthogonal
function mode explained, on average, about 65% of the total variance throughout the seasons, while
their principal components clearly captured the strong La Niña event (1999–2001) in all seasons.
The sea level showed a strong positive relation with positive phase El Niño Southern Oscillation in all
seasons and a strong negative relation with East Atlantic/West Russia during winter and spring over
the study period (1993–2017). We show that the unusually stronger easterly winds that are displaced
north of the equator generate an upwelling area near the Sumatra coast and they drive both warm
surface and deep-water masses toward the West Indian Ocean and Arabian Sea, rising sea level over
the Red Sea and Gulf of Aden. This process could explain the increase of sea level in the basin during
the positive phase of El Niño Southern Oscillation events.

Keywords: sea level anomaly; large-scale mode; El Niño Southern Oscillation; East Atlantic/West
Russia; Empirical Orthogonal Function; Red Sea and Gulf of Aden

1. Introduction

Oceanic and atmospheric teleconnection through large-scale modes is the most striking
phenomenon that is associated with recent global warming. From the second part of the 20th
century, there has been strong observational evidence that global warming causes the global mean sea
level to rise, with concern that the rise rate will accelerate with time through the end of the 21st century,
threatening coastal populations [1,2]. Thermal expansion of the water and melting of land-locked ice
are the major contributors of this rise [3,4]. However, the regional sea level can differ in the trend
and pattern of variability from those of global means, due to, for example, local surface winds, ocean
currents and spatial variations in salinity, ocean heat uptake, and the Earth’s gravity field [3,5]. Thus,
investigating the sea-level variability in some regions, as well as the prediction of the future scenario of
sea level rise, requires understanding the different driving factors for those regions [6,7].
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In general, the main reasons for sea level variations are the geological (i.e., changes of seafloor
shape by tectonic plates movements), regional drivers (i.e., inverse barometric effect, wind and wave
set-up, steric effect, and etc.) and the large-scale drivers (i.e., large-scale oceanic and atmospheric
circulations) [8]. Globally, sea level climatology is prominently modulated by the large-scale modes in the
global oceans [9–15]. At the same time, in semi-enclosed basins, sea level variability has strong links with
the global climate that governs the long-term spatial pattern and temporal variability in trends [16–20].

In the Red Sea (RS), a number of studies have been carried out on the controlling factors of the sea
level, but mainly from the local view and looking for seasonal variability while using short-term data.
These results agree that the local surface wind and the combined effect of evaporations and water
exchange with the Gulf of Aden (GA) govern sea level variability [21–25]. However, the sea level
increases in winter and decreases in summer. While this is true, there are no long-term studies on this
topic that are associated with physical mechanisms so far, primarily because of the non-availability
of long-term in situ data combined with a poor coverage. For that reason, few studies have used
reanalysis data to investigate this relation [26,27]; nevertheless, the responsible physical mechanisms
are still unclear and not yet explored. In addition, other studies used proxy data that were constructed
from paleoclimate sources [28–31]. Felis et al. (2000) [32] used 245 years data of coral oxygen isotopes
from the Ras Umm Sidd Northern RS and investigated the signal of El Niño Southern Oscillation
(ENSO), North Atlantic oscillation (NAO), and North Pacific teleconnection. They speculate that these
modes consistently contribute to climate variability, where the cold NAO period increases the aridity
conditions in the Northern RS, while the warm period decreases it. Another study found good positive
correlation between Arctic oscillation (AO) and atmospheric pressure in the Northern RS concurrent
with sea surface temperature (SST) decreasing in the entire RS as well as Eastern Mediterranean and the
Black Sea during the positive phase [33]. That is due to the advection of cold and dry air masses from
the North Pole. Furthermore, Monica et al. (2014) [34] used coral oxygen isotopes from the Southern
RS during the winter season. They indicated that the temperature and salinity variations from 1930 to
1960 are mainly affected by ENSO, while there is evidence of change that the variability from 1960 to
1990 is related to the ENSO-independent part of the East Asian Winter Monsoon (EAWM).

On other hand, Papadopoulos et al. (2013) [35] and Abualnaja et al. (2015) [36] linked the extreme
air–sea heat exchange with climate modes. They found that, during the winter season, the NAO was
active in the northern part, the East Atlantic/West Russia (EAWR) pattern more in the central, and the
Indian Monsoon Index (IMI) in the southern, while the multivariate El Niño index (MEI) is more active
in the south during the summer season.

It is clear that only a few studies link the RS and GA with large-scale modes. Motivated by
the above findings [26–36], we speculate that climate variability has significant impact on sea level
variability in the RS and GA, with seasonal and interannual fluctuations that can be correlated with
large-scale climate modes. Taking this in consideration, the purpose of this effort was to fill this gap
while using archiving, validation, and interpretation of satellite oceanographic (AVISO) sea level
anomaly (SLA) data. In this study, we show (1) which signals of the SLA are dominant, (2) the dominant
modes and pattern of variability, and (3) the possible physical mechanism with ENSO and EAWR.

The paper is structured, as follows: Section 2 describes the features of the study area with the used
data sets. Section 3 presents the results that include three steps: (i) the dominant patterns of SLA are
identified through the Empirical Orthogonal Function (EOF) analysis; (ii) the linkage with large-scale
modes; and, (iii) the possible physical mechanism is inferred through regression and correlation maps.
These results are discussed in Section 4, and Section 5 summarizes the main conclusions.

2. Data and Methods

2.1. Study Area

The RS and GA (Figure 1) are the extensions of the Indian Ocean (IO) in the northwestern part
that connects through the Arabian Sea (AS). The RS water is very saline and dense due to a high
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evaporation rate, lack of precipitations, and fresh water input. The wind pattern follows the high
land plateau on both sides. During the winter season, the wind converges in the center near 18◦N;
the northwesterly winds govern north of the convergence zone, while the southeasterly wind in the
south [21,37]. During the summer season, the northwesterly wind is prominent in the entire area.

When compared to the RS, the GA water is fresh due to open exchange with the AS, with salinity
fluctuates around 36 psu. The surface wind in the GA is strong westerly during the summer season,
while it is weak northeasterly during the winter season [38]. The eastern geographic limits of GA
extend to Cape Guardafui-Somalia (51.2◦E).
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2.2. Data

In this study, we used gridded satellite altimetry SLA data that were obtained through archiving,
validation, and interpretation of satellite oceanographic data (AVISO)–center localization satellite
(CLS), Toulouse, France. The data are in a monthly time scale with 0.25◦ × 0.25◦ spatial resolution and
cover January 1993–December 2017.

We used ERA-interim 2 m air temperature and 10 m zonal and meridional wind from the European
Centre for Medium-Range Weather Forecasts (ECMWF) in order to understand how the SLA links with
large-scale circulations. This data set is widely used. It is a gridded reanalysis assimilated while using
all of the available observations, including satellite, ships, drifting buoys, and land stations [39]. This
dataset is available on a global scale with a temporal coverage from 1979 to the present on different
spatial resolutions, but the data that were used here are from January 1993 to December 2017 on
0.5◦ × 0.5◦ grids. For the thermocline depth (20 ◦C isotherm), we used the profile temperature data
from the National Centers for Environmental Prediction (NCEP)-Global Ocean Data Assimilation
System (GODAS). This dataset covers the same period and in 0.5◦ × 0.5◦ grids.

We also used the time series of the monthly climate modes indices from both tropical (ENSO and
Indian Ocean Dipole (IOD)) and polar EAWR regions corresponding to the same study period, which
Table 1 describes.

2.3. Methods

The spatial variability of the dominant SLA patterns is investigated while using the EOF technique,
which used for the first time in the climate fields by Lorenz (1956) [40]. It is considered to be a very effective
tool, since the climate system composed of long-term statistical properties of the atmospheric/oceanic state
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that lead to high dimensionality. Thus, the challenge is to look at much smaller numbers by reducing the
dimensionality to a few modes, which reflects most of the observed variance. A further most challenge is
to link these modes to, for example, dynamic of large-scale climate circulations.

Simply, the EOF decomposes both the space and time field into orthogonal spatial patterns, called
empirical eigenvectors (here is EOF1,2), which associated with eigenvalues to describe the fraction of
explained variance and principal components (here is PC1,2) that tells how the amplitude of each EOF
varies with time [41].

Table 1. Names and the sources of climate models used in this study.

Name Abbreviation Sources

MEI Multivariate El Niño Index https://www.esrl.noaa.gov/psd/enso/mei/table.html

IOD Indian Ocean Dipole https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data

EAWR East Atlantic-West Russian ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/eawr_index.tim

All the data were linearly detrended, normalized, and the seasonal cycle was removed, while
the time series of climate indices were linearly detrended and normalized by standard deviation in
order to have clear signals. From the entire monthly data set, we averaged the months, starting from
December–January–February (winter), moving on to March–April–May (spring), June–July–August
(summer), and ending with September–October–November (autumn).

3. Results

3.1. The SLA Trend and the Dominant Modes

Figure 2 shows the mean SLA over 25 years (1993–2017) during the winter, spring, summer, and
autumn seasons. It is seen that the study area is characterized by inverse circulation, and the SLA rises
in the winter and falls in the summer, which agrees with previous studies [21–26]. The maximum SLA
range is about 0.4 m in the basin between winter and summer due to the inflow of fresh water from the
AS and the combined effect of evaporation and outflow water to the AS, respectively.
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Figure 2. The mean sea level anomaly (SLA) pattern for the RS and GA during the winter, spring,
summer, and autumn seasons (a–d) from 1993–2017. The time series of SLA with trend in red line for
all area (e) and the spectral analysis of the time series (f).

The time series of the SLA reveals an increasing trend about 0.0028 my-1 during the study period
(Figure 2e), as compared to 0.0032 my-1 as the global mean sea level trend from 1993 to 2010 [4]. Before
fitting the trend, the significance of the time series has been tested while using the Mann-Kendall
method and the result was statistically significant at 95%. The spectral analyses (Figure 2f) of the SLA
time series shows a significant spectrum peak on 12 months, which suggests that the annual cycle is
dominant with the existence of a semi-annual cycle, although much weaker. Alawad et al. (2017) [27]
used reanalysis data of sea level (53 years) and speculated that both cycles are associated to ENSO that
was obtained from wavelet analysis.

The analysis of the dominant modes of the SLA patterns that reflects the spatiotemporal variability
is presented while using EOF analysis (Figure 3). In the beginning, we included the study area that
extends eastward to reach 58◦E in the analysis; this area is outside the GA and characterized by strong
eddies activity that has a bigger size and seems to be more intense and have a longer lifetime when
compared to GA eddies. We found that the EOF results differed, and the explained variances were
less than half of the current results, meaning that this area has a different circulation pattern that may
possibly be connected to the Somali current, and finally we excluded it to 51.2◦E.

During winter, the first leading mode described 59% of the total variance, and the highest loading
was observed over the Northern and Central RS, while the lowest loading over the GA (Figure 3a).
The second leading mode shows 9% of the total variance (Figure 3e).

During spring, the first leading mode explained 69% of the total variance, the positive loading
over the RS, while the GA loadings were close to zero (Figure 3b). When compared to first leading, the
second spring leading mode reflects less variability, with only 6% of the total variance being explained
(Figure 3f).

During summer, the first EOF mode that was characterized by homogeneous loading distribution
explained 57% of the total variance, while the second EOF mode explained 9% of the total variance
(Figure 3c,g).

During autumn, the EOF1 showed a higher explained variance (71%) as compared to other seasons
(Figure 3d). The GA loading was close to zero and it increased toward North RS. Same as that of the
other seasons, autumn EOF2 was very small, and 6% was observed as explained variance (Figure 3h).

In general, all of the first leading modes reflected strong eddies activity in the RS and GA, which
is a well-known property in the basins.

Figure 4 shows the times series of PC1 and PC2 corresponding to the EOF modes that reflect
the variation over the study period. PC1 presents pronounced interannual variability, which can be
inferred from evolution in time. The interesting result is that PC1 captures the strong La Niña event
(1999–2001) during all seasons (Figure 4a–d). The PC2 time series seems to be smooth and it shows less
variability that might refer to its low explained variances.
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From the EOF analysis (Figures 3 and 4), it is clear that the first leading modes throughout the
seasons explained, on average, about 65% of the total variance, while the second mode was less
than 10%. That means that the second mode can be ignored, and we used the first leading mode for
further analysis.
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3.2. Link between the SLA and Large-Scale Modes

We evaluated the correlation of the PC1 time series of the SLA with the climate modes indices
(Table 2) to investigate whether the SLA has a remote response or not. PC1 is positively correlated
with ENSO through the MEI index during the spring, summer, and autumn seasons (0.66, 0.46, and
0.57, respectively) and negatively correlated with the winter and spring EAWR index (–0.40 and –0.46,
respectively). All of the results here are above the 95% significance level. Surprisingly, during the
winter season, which is the peak of ENSO, PC1 shows a nonsignificant positive relation with MEI (0.38,
94% significance level). In addition to that, the correlation with the IOD, which principally influences
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the circulation in the AS, reflects a similar result during winter, and there is no relationship during
other seasons. In support of our findings, Currie et al. (2013) [42] reported that ENSO (and not IOD)
variability is predominantly related to chlorophyll in the Western AS.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 17 
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Figure 4. The times series of the principal components corresponding to the Empirical Orthogonal
Function (EOF) modes. (a–d) are the revolution of PC1 during winter, spring, summer, and autumn,
respectively; and, (e–h) is the same, but for PC2. The green circle the La Niña event. The IOD is
multiplied by 2.5.

Table 2. The correlation between the PC1, 2 and time series of different climate modes. Bold indicates
significance at 95%.

EOF PCs IOD MEI EAWR

PC1 winter 0.36 (0.076) 0.39 (0.056) –0.40

PC1 spring 0.66 –0.47

PC1 summer 0.46

PC1 autumn 0.57

PC2 winter

PC2 spring

PC2 summer

PC2 autumn

We assessed the same test with other climate indices, such as North Atlantic oscillation (NAO),
Arctic oscillation (AO), and East Atlantic (EA), which influence the European climate, including North
Africa, but we did not find a relationship.
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The spatial correlation between the raw SLA data and climate modes has been exhibited in order to
reveal the different spatial responses as the study area was elongated meridionally (Figure 5). The MEI
widely modulates the SLA through strong positive correlation throughout the year, especially during
autumn and spring (>0.5). By contrast, the EAWR significantly modulates winter and spring SLA,
mainly on the Northern RS (>–0.5).

There were no significant relations found during the other seasons for EAWR or for the IOD,
NAO, and AO at all. Both, taken together, the analysis emphasizes a link between the MEI and EAWR
and the SLA in the RS and GA with significant correlations throughout the year.
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3.3. The Physical Mechanisms

3.3.1. The Relation with SLA, Wind and 20 ◦C isotherm in the IO

The physical mechanisms that connect the SLA with large-scale modes were investigated through
linear regression analysis of PC1 onto the SLA, surface wind, and thermocline depth in the IO (Figures 6
and 7).

The regression maps of the SLA reveal a dipole-like pattern, a strong positive relationship (values
up to 0.7) on the western side of the IO, and a relatively weak negative relationship (values up to –0.4) in
the eastern side (Figure 6) in all seasons, except summer, where the positive relationship covers a wide
area in the IO. In addition, there is a notable weak positive relation during winter that is associated with
weak and distorted shape of wind compared to other seasons (Figure 6a) that may infer a weakening
of the physical mechanism that drives the SLA during this season. Furthermore, the regression with
zonal wind yields northeasterly/southeasterly flow, which directed opposite to the mean low-level
circulation of IO. Meaning that, an increase of the sea level over the West IO (west of 80◦E) associated
with northeasterly/southeasterly wind can be seen as a possible cause for the increasing SLA in the GA
and RS, as they only exchange their water masses with IO. It is well known that both sea level [43] and
wind [44–46] over IO are closely related to ENSO via the atmospheric bridge [44,47]. Since the IO has
such a basinwide response to ENSO, it is not surprising to notice the chlorophyll concentration over
GA and RS has been controlled by ENSO through the northeasterly/southeasterly wind [48].
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The wind-inducing sea level also extended to inside the RS. It was found that the wind blowing
to the mean circulation in the Southern and Central RS during the spring and autumn season could
drive the sea level to the northern basin (Figure 6b,c).

Figure 7 shows the regression of PC1 onto a thermocline depth, denoted by a 20 ◦C isotherm
depth. The map again reveals the dipole-like pattern, with a positive relationship over the West IO
and negative relationship over the East IO. The positive implies a deepening thermocline, while the
negative implies a shoaling thermocline. The dipole shape of the thermocline depth shows the expected
responses of the IO arising from wind-forced Rossby waves during El Niño events [49]. The slow
westward propagation of Rossby waves over IO (that may takes few months) due to El Niño-induced
wind stress can be prolonged after El Niño demise [50]. Here, the significant equatorial upwelling
Rossby wave (negative relation) in the Eastern IO reaches its peak by splitting into two waves during
winter, while it intensified during the summer and autumn seasons (Figure 7a,c,d respectively).

In brief, Figures 6 and 7 provide a significant linkage between the SLA in the GA and RS and
IO throughout the SLA, wind circulation, and thermocline depth, with the contribution of the local
surface wind inside the basins.

The studies that noticed that the IO circulations that are closely related to Pacific Ocean
variability [43–46,49–51] encourage us to the show the direct tight coupling ENSO and wind in
IO, including GA and RS. In Figure 8, we show the correlation between the zonal wind in the IO and
MEI. The results demonstrate a clear negative relationship over the AS and GA during autumn and
spring (Figure 8b,d), meaning that during positive (negative) MEI phases, the easterlies that control the
horizontal water mass inflow from the Arabian Sea to GA and RS are intensified (reduced). The relation
is weak during summer (Figure 8c), and almost no relation was found during winter (Figure 8a). The
winter result is quite the opposite to that achieved by Raitsos et al. (2015) [48], where a strong negative
correlation was observed from 1950 to 2010. To confirm the above finding, we used the same data that
they used (NCEP/National Center for Atmospheric Research (NCAR) monthly reanalysis zonal wind),
but from 1993 to 2015, and it supported our result.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 17 
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Overall, Figure 8 provides evidence of El Niño-induced wind stress that affects the IO circulations
(increase sea level and thermocline depth) also extending to IO marginal basins. Moreover, the
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weakening and/or shift in the relation between the ENSO and IO circulations (1993–2017) during the
winter season affected the relation between the GA and RS and IO in the same season.

3.3.2. The Relationship with Global Temperature

In this analysis, we constructed the correlation map between PC1 of the SLA and global 2 m air
temperature to investigate whether there is a relation between SLA and any far field phenomena. Here,
the air temperature was considered to be an indicator for their position and for a much wider view,
either the phenomena in the sea or land.

The analysis accompanied spatial displacements of clear walker circulation (Figure 9). The positive
correlations were in an elongated band over the eastern and central part of the Pacific Ocean. This band
was flanked by negative correlation in the north and south of the equatorial Pacific, which may enhance
the Hadley cell during ENSO events. Moreover, the polar climate mode, including NAO, EAWR, and
AO, tended to decrease the SLA, which is clear from the insignificant weak negative correlation, which
can be ignored in this work. Through this analysis, we demonstrated that the Pacific Ocean plays a
significant role in SLA variability in the basins, mainly through remote drivers through the walker
and Hadley cells. These results confirmed our finding in Figures 6–8 that ENSO influences the sea
level variations over the GA and RS, where the signal transferred to the IO and further to the RS and
GA. The easterly wind over IO that drive the SLA (Figure 6) and trigger Rossby waves (Figure 7) can
be observed in advance of the appearance of positive SST anomalies in the equatorial Pacific Ocean
during positive phase of ENSO [44,52,53].
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4. Discussion

Using SLA data, we present a clear perspective on the impact of a large-scale mode on the RS
and GA. The time series of PC1 of SLA reflects the strong La Niña 2000–2001 event through clear SLA
decreasing during all seasons.

The correlation analysis reveals that ENSO and EAWR are the major contributors to SLA variability.
The positive phase of the SLA was associated with the positive phase of ENSO and negative phase of
EAWR. Seasonally, ENSO modulated the SLA during all seasons, while EAWR modulation during
winter and spring. Recently, similar results came out: Shanas et al. (2017) [54] identified that MEI is
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one of the major modes to influence the significant wave heights in the Southern RS, while the NAO
and EAWR are major modes in the Northern RS, which are locally generating strong wind speed by the
advection of cold air masses from Europe. From the global view, the nonseasonal variations of global
mean sea level are significantly correlated with ENSO [14]. Furthermore, there is consistency between
ENSO and EAWR in modulating the SLA during the spring season in the Northern RS. The linkage
between ENSO and EAWR is through the East Asian winter monsoon, which is composed of two
parts, one that is related to ENSO and the other related to the Siberian High and East Asian trough [34].
In addition, the correlation exhibited a weak relation with NAO which is different from those found
by Karnauskas and Jones (2018) [55], who mentioned that the NAO impact on the SST in the RS
concentrated on the small area north of 25◦N. The high sensitivity of SST to the atmospheric circulation
as compared to SLA and area limitation might the possible reason for the insignificant NAO impact in
this work.

We found that the sea level, surface wind, and thermal expansion in the IO seems to have a
significant role in modulating the SLA in the RS and GA. The physical mechanism by which ENSO
influences the SLA is identifiable by the regression correlation. Usually, in the normal case over the
Pacific Ocean, the sea level pressure in the east is higher than that in the west, for that, and it forces the
trade wind to follow the equator by the pressure difference from east to west (easterly). By the same
idea, the wind in the IO blows from west to east (westerly). However, during positive events, the sea
level pressure over the West Pacific, including South Asian countries in the East IO, becomes higher
than in the Eastern Pacific and Western IO. This situation forces the normal surface wind in the IO either
to be weak westerly or to completely change direction to easterly. Previous studies reported vividly
that the dominant mode of surface wind and SST in the IO is closely related to ENSO [49,51,56–58].

It is well known that such a strong easterly wind in the IO can trigger the Rossby wave in the
West Sumatra Coast that deepens the thermocline and advects the warm water to increase the SLA in
the West IO during ENSO [56]. Similar results were observed in this work through regression analysis;
the SLA increased in the West IO through the combined effect of wind and thermal expansion and
then extended to include the RS and GA. Furthermore, these results are consistent with the findings of
Chambers et al. (1999) [59] that PC1 of SLA in the IO coevolves with average zonal wind stress anomaly
and PC1 of SST. On other hand, our results show the importance of the thermal expansion of the IO
that supports the SLA in the RS and GA. The results are in accordance with those that were observed
in the IO by Salim et al. (2012) [60], who demonstrated strong coherence between the dominant modes
of steric sea level and the SLA. Their study suggested that the steric sea level variability has strong
control on the variability of SLA in the IO and thereafter to the GA and RS.

Along that line, a new mechanism reported the synergy of the winter monsoon in the AS
to regulate RS fertility [48]. In this effort, the chlorophyll concentration and the duration of the
phytoplankton-growing season were found to be controlled by monsoon wind through the horizontal
advection of fertile waters from the IO, which corresponds to our finding. In addition, the phytoplankton
biomass during winter increased by 75% during the prolonged positive phases of ENSO events from
1998 to 2010. Recent support came from Karnauskas and Jones (2018) [55], who found that the positive
phase of PC1 that resulted from the entire RS SST during winter is associated with broad warm surface
air temperatures that cover a wide adjacent area. This warming is linked to ENSO and coincides with
the local surface wind opposite the mean wind system (northwesterly ward, including the Central and
Northern RS). In general, they suggested that the SST of the RS is a manifestation of ENSO, EAWR, and
NAO and footprint [55], where later two considered as the major teleconnection patterns in Europe
that influences precipitation and air temperature [61].

Our results increase the possibilities that, with warmer climate conditions, the GA and RS sea
level will continue increasing, since El Niño frequency events are predicted to increase due to global
warming [62]. Furthermore, the RS ecosystem could be more productive, since the nutrient abundance
depends on the horizontal advection of easterly wind from the IO, which intensified during El Niño
events [48].
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The key aspect of a weak relation between PC1 of the SLA and the SLA and surface wind over the
IO during the winter season (Figure 6a) is the notable weak relation between the zonal wind over the
IO and ENSO that drive the SLA to the GA and RS (Figure 8a). The inverse relationship between the
zonal wind over IO and ENSO has been well documented, especially before the mid-1970s [63]. Weak
(strong) wind typically occurs during El Niño (La Niña) [64,65]. However, after the early 1980s, there
was a weakening and shift that were included behind the surface wind to the SST [58,66], which means
that this shift took place over 30 years ago and still continues, which is consistent with our results.
Nakamura et al. (2009) [67] suggested that a warming of the Western IO has driven the observed shift
by acting as a barrier for ENSO influencing the IO circulation, including the GA and RS.

In spite of the importance of large-scale circulations, the local drivers cannot be ignored.
Comparable findings speculate the local positive feedback in the RS that is initially triggered by
the large-scale mode and then locally amplified to modulate different variables, including SST and
general circulation [55]. Prior studies have noted the importance of local phenomena in influencing
the circulation in the RS, such as the evaporation rate, which triggers the thermocline to influence the
circulation [68] and the local wind system, which is responsible for the SLA and SST on a seasonal time
scale [21,24].

It remains an open question to which extent the variation of surface wind, SLA, SST, and thermal
expansion in the IO can contribute to the SLA in the RS and GA throughout the time scale. Hence, a
sensitivity experiment using a regional coupled ocean–atmosphere model might be able to resolve
such a separation mechanism.

5. Conclusions

Several studies discussed the controlling factors of SLA variability in the RS and GA from local
views and believed that the surface wind, evaporation, and water exchange with the AS and IO
are the main factors [21–25]. Furthermore, few studies linked the annual and semi-annual SLA
signals with large-scale circulation while using reanalysis data without explanation of the physical
mechanisms [26,27]. The new perspective in this study is the connection between the SLA and
large-scales modes, with explanation of the physical mechanisms using satellite altimetry data (AVISO).

The main findings of this study can be summarized, as follows:

• the SLA reflects the annual and semi-annual cycle, which agrees with previous studies;
• the first leading mode throughout the seasons explained, on average, about 65% of the total variance,

while their PCs clearly capture the strong La Niña event (1999–2001) during all seasons; and,
• the SLA showed a strong positive relation with ENSO during all seasons and a strong negative

relation with EAWR during winter and spring.

Our results explain the mechanisms of SLA variability over the RS and GA. The unusual strong
easterly wind that was displaced north of the equator generated an upwelling area of cold water near
the coast of Sumatra and drove both warm surface and deep water westward. As a result of that, the
SST and thermal expansion increase toward the West IO and AS, raising the SLA over the RS and GA.
This process could explain the increase of the SLA in the basin during the positive phase of ENSO.
These mechanisms were proposed earlier in the IO; the new progress in this study is that we confirmed
it over the RS and GA.

Based on the above findings, the Pacific Ocean and IO both enhanced the SLA in the RS and
GA. As the Pacific Ocean is more energetic, we suggest that it holds the signals sources, and then
transfers them to the IO. These considerations might lead to inference that ENSO influences not only
the IO, but can also be extended to adjacent marginal basins, like the RS and GA. Moreover, the
signal of the extratropical climate mode is also presented by the EAWR pattern due to meridional
extension of the study area. Thus, we argue that the GA and RS are suitable areas for studying the
interaction of large-scale climate models in interannual and interdecadal time scales. Our results
support the possibilities of increasing sea level and productivity in the two basins due to above normal
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advection of fertile water from IO, which highlights the importance of horizontal nutrient transfer in
the tropics under a warmer climate scenario. Finally, a sensitivity experiment using a regional coupled
ocean–atmosphere model is needed to separate between the contribution of surface wind, SST, and
thermal expansion on the RS and GA SLA.
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