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Abstract Sea ice data assimilation can greatly improve forecasts of Arctic sea ice evolution. Many
previous sea ice data assimilation studies were conducted without assimilating ocean state variables, even
though the sea ice evolution is closely linked to the oceanic conditions, both dynamically and
thermodynamically. Based on the method of a localized ensemble error subspace transform Kalman filter,
satellite‐retrieved sea ice concentration and sea ice thickness are assimilated into an Arctic sea ice‐ocean
model. As a new addition, sea surface temperature (SST) data are also assimilated. The additional
assimilation of SST improves not only the simulated ocean temperature in the mixed layer of the ocean
substantially but also the accuracy of sea ice edge position, sea ice extent, and sea ice thickness in the
marginal sea ice zone. The improvement in the simulated potential temperature in the upper 1,000 m can be
attributed to the enhanced vertical convection processes in the regions where the assimilated observational
SST is colder than the simulated SST without assimilation. The improvements in the sea ice edge position
and sea ice thickness simulations are primarily caused by the SST data assimilation reducing biases in the
simulated SST and the associated coupled ocean‐sea ice processes. Our investigation suggests that, due to the
complex interaction between the sea ice and ocean, assimilating ocean data should be an indispensable
component of numerical polar sea ice forecasting systems.

1. Introduction

Arctic sea ice has been decreasing significantly over the past three decades (Comiso et al., 2008; Gao et al.,
2015). This change is accompanied by more frequent navigation activities in the Arctic Ocean (Rojas‐
Romagosa et al., 2016). The route distance saved between Northwestern Europe and Northeastern Asia
through the Arctic Ocean can be as high as 50% compared to the traditional low‐latitude shipping lanes.
Along with economic benefits, potential risks still threaten marine safety in the Arctic Ocean all the time,
such as thick floating ice, storms, and heavy fog. Arctic environmental forecasts have played an important
role in guaranteeing the marine safety (Jung et al., 2016). Operational sea ice forecasts are carried out by
many departments all over the world, for example, the U.S. Navy Arctic Cap Nowcast/Forecast System
(Posey et al., 2010) provides 7 days forecasts of sea ice concentration, sea ice thickness, sea ice drift,
ocean temperature, ocean salinity, and ocean current forecasts in the Northern Hemisphere (poleward
of 40°N). The Canadian Global Ice Ocean Prediction System (Smith et al., 2016) provides global 10 days
forecasts of ocean and sea ice states covering the Arctic Ocean including sea ice concentration, sea ice
thickness, and sea ice drift. The Mercator PSY4Q system (Lellouche et al., 2013) provides global 9 days
forecasts of sea ice concentration, sea ice thickness, sea ice velocity, ocean temperature, ocean salinity
and ocean current. The Danish Meteorological Institute HYCOM‐CICE system (Madsen et al., 2015)
provides 6 days forecasts of sea ice and ocean states covering the Atlantic Ocean north of 20°S and the
Arctic Ocean.
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In numerical synoptic‐scale forecasting models, data assimilation is a critical component to reduce the
uncertainties associated with initial fields and systematic model errors. Sea ice and ocean data assimilation
schemes are widely used in state‐of‐the‐art operational Arctic forecasting systems (Posey et al., 2010; Sakov
et al., 2012). Observational data can be assimilated in a variety of methods. For example, the U.S. Navy Arctic
Cap Nowcast/Forecast System uses a Three‐Dimensional VARiational (3D‐VAR) scheme to assimilate both
sea ice and ocean observations. The Norwegian TOPAZ4 system (Sakov et al., 2012) uses an Ensemble
Kalman Filter (EnKF; Evensen, 1994; Anderson, 2001) to assimilate sea ice concentration, sea ice drift,
sea level anomaly, sea surface temperature (SST), and in situ profile observations of temperature and
salinity. The Canadian Global Ice Ocean Prediction System uses a combination of a 3D‐VAR scheme to
assimilate sea ice observations and a reduced order Kalman filter to assimilate ocean observations. In this
study, we employ the ensemble error subspace transform Kalman filter (ESTKF; Nerger et al., 2012) and
focus on the effects of additional ocean data assimilation on a sea ice prediction system.

+The location of the sea ice edge is extremely important for marine safety (Goessling et al., 2016). In the
Arctic Ocean, due to the presence of a sea ice edge, the sea ice‐ocean system is characterized by strong ani-
sotropies and nonstationary features (Lisæter et al., 2003). Sakov et al. (2012) demonstrated that the correla-
tion between sea ice concentration and sea surface salinity at the ice edge is strongly anisotropic and changes
dynamically. Because of the rapidly changing system, data assimilation schemes with stationary background
covariances, such as 3D‐VAR and optimal interpolation, may not be flexible enough to accurately capture
the dynamics of the coupled sea ice‐ocean system. In our study, we chose a data assimilation scheme from
the family of EnKFs, which has the advantage of a nonstationary state error covariance, that we find suitable
for assimilating sea ice and ocean data. Data assimilation almost trivially improves the forecasts of fields for
which observations are assimilated. Furthermore, systems based on EnKF data assimilation schemes can be
multivariate and can hence enhance also the forecast of unobserved variables if clear statistical correlations
exist between them and the observed variables that reflect their physical relationship. For example, the
assimilation of sea ice concentration improved sea ice thickness forecasts in themelting and freezing seasons
due to the positive correlation between the sea ice concentration and the sea ice thickness (Yang et al., 2015;
Yang et al., 2015; Yang et al., 2016). The assimilation of sea ice thickness improved the forecasts of the sea ice
concentration and ocean surface characteristics (Fritzner et al., 2019; Lisæter et al., 2007; Yang et al., 2014;
Zhang et al., 2018). Assimilating SST also improved the sea ice thickness forecasts during the melting season
(Liang et al., 2017).

Mu et al. (2018) introduced an ensemble ESTKF data assimilation scheme into theMassachusetts Institute of
Technology general circulation model (MITgcm; Marshall et al., 1997) and assimilated sea ice concentration
and thickness observations. They found that the sea ice thickness simulation substantially improved by the
thickness assimilation, whereas the improvement in the simulated sea ice concentration was small. To
further address this issue, we will simultaneously assimilate satellite‐retrieved sea ice concentration, sea
ice thickness, and SST observations into the MITgcm based on the ensemble ESTKF scheme with localized
analysis. The remainder of this paper is organized as follows. Section 2 describes the model configuration,
data assimilation scheme, data sets, and the experiment design. Section 3 assesses the Arctic Ocean and
sea ice simulations with and without SST assimilation. Discussion and conclusion are given in section 4.

2. Methods
2.1. Coupled Regional Sea Ice‐Ocean Model

Our Arctic configuration of the MITgcm has an average horizontal resolution of 18 km and covers the whole
Arctic Ocean with open boundaries close to 55°N in both the Atlantic and Pacific sectors (Losch et al., 2010).
The oceanmodel includes 420 × 384 horizontal grid points, 50 vertical model layers with 28 vertical layers in
the top 1,000 m. The thickness of the ocean vertical layers increases from 10m near the surface to 456m near
the bottom.

The sea ice model within the MITgcm uses a viscous‐plastic rheology and zero‐layer thermodynamics with
two thickness categories: open water and sea ice (Losch et al., 2010). The sea ice momentum equations are
solved following Zhang and Hibler (1997). The sea ice model shares the same horizontal grid with the
ocean model.
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The open boundary conditions are derived from a historical run of a global cubed‐sphere configuration of the
MITgcm (Menemenlis et al., 2008). The atmospheric forcing data are the 23 ensemble forecasts of the UK
Met Office Unified Model (UKMO UM; Bowler et al., 2008; obtained from http://tigge.ecmwf.int/).
Further details about the model configuration can be found in Mu, Losch, et al. (2018).

2.2. Data Assimilation Scheme

The data assimilation scheme used in this study is an ensemble‐based ESTKF (Nerger et al., 2012) with loca-
lization. The ESTKF combines the high accuracy and efficiency of the Singular Evolutive Interpolated
Kalman filter (Pham, 2001) that has been used with the MITgcm by, for example, Mu et al. (2018), with
ensemble transformation of the ensemble transform Kalman filter (Bishop et al., 2001). The ESTKF provides
consistent projections between the ensemble space and the error subspace with a minimal ensemble trans-
formation of the ensemble members. To increase the impact of the ESTKF and to avoid that the ensemble
spread is reduced too much by the analysis step, a horizontal localization scheme is applied in the ESTKF
following Nerger et al. (2006). The localized filter changes the model fields at each model grid column sepa-
rately using only observations within a specified influence radius (denoted localization radius) around this
location. Further, each observation is weighted to decrease the influence of each available observation with
increasing distance between the analysis and observation locations. For a complete description of the algo-
rithm see, for example, Androsov et al. (2019).

In this study, the localized ESTKF scheme is used as implemented in the Parallel Data Assimilation
Framework (PDAF; Nerger & Hiller, 2013). A complete ensemble data assimilation cycle starts from an
initial ensemble and normally includes three alternating steps: forecast, analysis, and adjustment. The
ensemble includes many model state realizations that together represent the state estimate and its uncer-
tainty. In the forecast step, all ensemble states, as a set of parallel runs, are driven by external forcing from
a set of new restart files to the next time when new observations become available. In the analysis step, the
model fields of each ensemble state are arranged into a model state vector. Themodel state vectors of all runs
constitute an ensemble matrix. Then a loop over all surface grid points is performed for the local analysis.
For each surface grid point to be updated, observations within the influence radius around the updating grid
point are collected into an observation vector and a localization weighting algorithm is applied to the obser-
vation error covariance matrix. The data assimilation algorithm uses the ensemble matrix, observation
vector and observation error covariance matrix. The analysis transforms the ensemble matrix holding the
forecast state vectors into a matrix of analysis state vectors by incorporating the observational information
into the model states. Note that most data assimilation schemes are purely mathematical methods without
physical constraints. In the adjustment step, a postassimilation algorithm is carried out that examines and
modifies the analysis state vectors according to physical constraints and relationships among variables.
Finally, a new set of ensemble states is initialized with the states from the physically constrained analysis
matrix, and a new forecast step is started.

2.3. Data Sets

The sea ice concentration and thickness data for the assimilation are the same and processed in the same
way as in Mu, Losch, et al. (2018). Daily sea ice concentration observations are derived from the Special
Sensor Microwave Imager Sounder (SSMIS) sea ice concentration data (Cavalieri et al., 2012; Cavalieri &
Parkinson, 2012; Kaleschke et al., 2001), which are provided by the University of Hamburg (obtained from
http://icdc.cen.uni‐hamburg.de/1/daten/cryosphere/seaiceconcentration‐asi‐ssmi.html). Daily sea ice
thickness observations in thin ice area (<1 m) are derived from the Soil Moisture Ocean Salinity (SMOS)
sea ice thickness data (Tian‐Kunze et al., 2014). The SMOS sea ice thickness data are retrieved from satellite
brightness temperature combined with a sea ice thermodynamic model and a three‐layer radiative transfer
model (Kaleschke et al., 2010, 2012; obtained from http://icdc.cen.uni‐hamburg.de/1/daten/cryosphere/l3c‐
smos‐sit.html). The weekly sea ice thickness observations are derived from the European Space Agency
satellite mission CryoSat‐2 sea ice thickness data (Wingham et al., 2006; Laxon et al., 2013; Ricker et al.,
2014; obtained from http://data.meereisportal.de/data/cryosat2/version2.0/). The CryoSat‐2 sea ice thick-
ness data are retrieved from radar altimetry measurements of sea ice freeboard. The estimated sea ice thick-
ness uncertainties are included in the SMOS and CryoSat‐2 data. Both the SMOS and CryoSat‐2 sea ice
thickness data are only available in wintertime from November to April. The SSMIS sea ice concentration,
the SMOS and CryoSat‐2 sea ice thickness, as well as sea ice thickness uncertainties, are interpolated onto
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the MITgcmmodel grid. As the satellite data products are already gridded,
we interpolate them onto model grid for convenience. We can assume the
interpolation error is not larger than that for interpolating the model vari-
able onto the data grid.

Daily SST observations for assimilation are derived from the Group for
High‐Resolution SST Multi‐Product Ensemble (GMPE) data, which
are provided by the UKMO. The GMPE SST data is a near‐real‐time
Level‐4 satellite‐retrieved product with a horizontal resolution of
0.25° (obtained from http://marine.copernicus.eu/, product identifier:
SST_GLO_SST_L4_NRT_OBSERVATIONS_010_005). Within the frame-
work of the Group for High‐Resolution SST project, the GMPE system pro-
duces daily global SST maps that computed as the median of a large
number of SST products by various institutes around the world. Each pro-
duct contributing to the GMPE product uses different observational data
sets including both in situ and satellite SST data that are then combined
with a model as a reanalysis product. Derived from multiproduct ensem-
ble data, the GMPE SST data product greatly reduces measurement uncer-
tainties. The GMPE SST data cover the ice‐free area in the Arctic Ocean.
Figure 1 shows days with available temperature observations and mean
uncertainties of the observations in 2012 in the GMPE SST data. The
SST observations are available for more than 300 days in the high‐latitude
North Atlantic Ocean, the Labrador Sea, the Greenland Sea, the
Norwegian Sea, the Barents Sea, and the Bering Sea. The SST observations
are available for 90 to 210 days in most of the Arctic marginal seas, and for
less than 60 days in the central Arctic Ocean. The mean uncertainties are
lower than 0.4 °C in most of the areas where observations are available for
more than 300 days. In most of the Arctic marginal seas, the mean uncer-
tainties are higher than 1 °C. Large uncertainties exist in the coastal areas
of the Beaufort Sea, the Kara Sea, and the Laptev Sea. The GMPE SST data,
as well as its uncertainties, are interpolated onto the MITgcm model grid.

Here we use four kinds of in situ ocean observations in 2012 to validate the
simulated potential temperature in ice‐free regions. (1) Argo standard
depth level (Argo SDL) data are produced by International Pacific
Research Center by interpolating global Argo temperature and salinity
profiles onto 26 standard levels between 0‐ and 2,000‐m depths. They
are available since October 2010 (obtained from http://apdrc.soest.
hawaii.edu/projects/Argo/data/profiles/). (2) Glider data are collected
by Autonomous Profiling Explorer profiling float system and processed
by French Research Institute for Exploitation of the Sea. They provide ver-
tical temperature profiles in the high‐latitude North Atlantic Ocean. Most
of the profiles reach 1,000‐m deep. (3) Shipboard conductivity‐tempera-
ture‐depth (CTD) data, managed by the Norwegian Marine Data Center,
provide vertical temperature profiles along the coast of Norway and
Svalbard Island. Most of the profiles are hundreds of meters deep. (4)
Along‐trajectory data, collected by French Research Institute for
Exploitation of the Sea, provide SST records along the fixed seaway
between Denmark and Greenland (The Glider, CTD, and along‐trajectory
data were obtained from http://marine.copernicus.eu/, product
identifier: INSITU_ARC_TS_REP_OBSERVATIONS_013_037.).

Furthermore, additional data sets are used to evaluate the influence of the assimilation of SST data on the sea
ice simulation in 2012: (1) sea ice edge observations in March and September derived from sea ice concen-
tration data of the Advanced Microwave Scanning Radiometer (AMSR; Spreen et al., 2008; obtained from
http://data.meereisportal.de/data/median_edge/) are used to compare with the simulated sea ice edge,

Figure 1. (a) Number of days with available potential temperature observa-
tions and (b) mean uncertainties of the observations (°C) in 2012 in
GMPE data. Values in the Gulf of Alaska and the Okhotsk Sea are set to zero.
GMPE = Group for High‐Resolution Sea Surface Temperature Multi‐
Product Ensemble.
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defined as a marginal zone with 15% sea ice concentration. (2) Sea ice extent observations derived from the
Multisensor Analyzed Sea Ice Extent‐Northern Hemisphere (MASIE‐NH; National Ice Center and National
Snow and Ice Data Center, 2010; obtained from http://nsidc.org/data/masie/) data are used to compare with
the simulated sea ice extent. The MASIE‐NH data are provided daily by the National Ice Center Interactive
Multisensor Snow and Ice Mapping System with a spatial resolution of 4 km. (3) Moored upward‐looking
sonar (ULS) ice draft observations from the Beaufort Gyre Exploration Project (BGEP; Proshutinsky et al.,
2005; obtained from http://www.whoi.edu/beaufortgyre) are available at three positions in the Beaufort
Gyre. They are used to compare with the simulated sea ice thickness. The ULS samples the ice draft with
a precision of 0.1 m (Melling et al., 1995), and the ice draft can be converted to ice thickness by multiplying
a factor of 1.1 (Nguyen et al., 2011).

2.4. Experiment Design

To assess the effects of the SST assimilation on the simulated sea ice concentration and sea ice thickness, we
run three experiments named CTRL, NoSSTasim, and SSTasim. The experiment schematic is shown in
Figure 2. In all cases the model ensemble includes 23 parallel runs. The CTRL run, aiming to build the
reference and its variability, which is used to generate the ensemble perturbations, is a purely prognostic
experiment without any data assimilation. It is obtained by integrating the model from a historical restart
file on 1 October 2011 until 31 December 2012 driven by the mean UKMO ensemble forcing. Daily snapshots
of the model states (sea ice concentration, sea ice thickness, and upper 1,000‐m ocean temperature) during
2012 are stored. After subtracting the mean value from the model states, a singular value decomposition is
computed from which the 22 leading singular values of the model states' variability are used to generate
the ensemble by second‐order exact sampling (Pham, 2001).

The NoSSTasim run assimilates the SSMIS sea ice concentration, the SMOS, and CryoSat‐2 sea ice thickness
data as in Mu, Losch, et al. (2018). In this run the model state vector for the assimilation includes only
include sea ice concentration and sea ice thickness. The observations are assimilated daily followed by an
ensemble integration over 24 hr in which each run is forced by one of the 23 ensemble forecasts of the
UKMO UM. Forecast error uncertainties of the ensemble can be represented by the UKMO UM 23 atmo-
spheric forecasts, so that there is no need for additional ensemble inflation (Yang, Losa, Losch, Jung, &
Nerger, 2015).

Figure 2. Setup of experiments: CTRL without data assimilation; NoSSTasim assimilating only sea ice data; SSTasim
assimilating sea ice and SST data. UKMO = UK Met Office Unified Model; SVD = singular value decomposition; SST =
sea surface temperature.
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The SSTasim run assimilates the same sea ice data as in the NoSSTasim run and additionally the GMPE SST
data. The assimilation cycle of the SSTasim run is analogous to that of the NoSSTasim run. Note that here the
model state vector includes sea ice concentration, sea ice thickness, and upper 1,000‐m ocean temperature.
The observation vector includes sea ice concentration, sea ice thickness, and SST. Within the mixed layer,

Figure 3. Spatial distributions of the RMSD of SST in degrees Celsius (a, b), sea ice concentration (c, d), sea ice thickness
in meters (e, f) between the NoSSTasim and CTRL runs (a, c, and e) and between the SSTasim and NoSSTasim runs (b, d,
and f). SST = sea surface temperature; RMSD = root‐mean‐square difference.
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the temperature is strongly correlated to the surface temperature, which
can vary on short time scales. In contrast, the temperature below the
mixed layer develops more slowly. For this physical reason, we decide to
update the entire mixed layer along with the temperature of the surface
level of the model. The temperature at model layers below the mixed layer
is not updated by the data assimilation for the reason that the different
time scale and the non‐Gaussian intermittency of deep convection cannot
be properly represented by a prior error covariance. This corresponds to a
vertical localization with a step function and a radius equal to the thick-
ness of the mixed layer. The thickness of the mixed layer in the model var-
ies in time and space, so that in some places only surface values are
updated and in others almost the entire water column. The mixed layer
depth is read from model outputs.

The NoSSTasim and SSTasim runs run from 1 January to 31 December
2012. Storing daily snapshots allows us to evaluate the assimilation perfor-
mance in both wintertime and summertime. The localization radius is set
to 12 grid points, corresponding to approximately 216 km. The uncertain-
ties of the SSMIS sea ice concentration data accounting for measurement
and representation errors are assumed to be uniform with 25% following
Mu, Losch, et al. (2018). The postassimilation process focuses on basic
physical relationships among sea ice concentration, sea ice thickness,
and ocean temperature. Thus, sea ice thickness is set to 0 whenever the
sea ice concentration is 0. Further, in the marginal sea ice zone, the sea
ice concentration and thickness are set to 0 whenever the surface ocean
temperature is warmer than the surface freezing point, because the sea
ice can only exist in the simulation where the SST is below surface freez-

ing point. Besides these relationships, we further introduce an ocean surface salinity adjustment parameter-
ization. During the analysis step, sea ice volume change can be generated or destroyed by the data
assimilation algorithm. To conserve the net mass, this change in ice volume or thickness requires a corre-
sponding volume change of the surface layer of opposite sign and since sea ice has no salinity in our experi-
ments, conservation of salt in the surface layer implies that the amount of salt in the top layerHocean, which
is 10 m in our experiments is the same before and after the analysis step:

Spost ρoceanHocean−ρiceΔH iceð Þ ¼ SpreρoceanHocean

⇔Spost ¼ SpreρoceanHocean

ρoceanHocean−ρiceΔH ice

where Spost and Spre represent ocean top‐layer salinity after and before data assimilation, ρocean and ρice
represent ocean top‐layer density and sea ice density, and ΔHice is sea ice thickness increment due to data
assimilation. We use ρice = 880 kg/m3 and ρocean = 1,027 kg/m3. Note that this procedure needs to be
adjusted if sea ice is allowed to be saline.

3. Results
3.1. Overall Assimilation Effect

The model state differences between simulations with and without data assimilation illustrate the data
assimilation effects. Figure 3 shows the spatial distributions of root‐mean‐square difference (RMSD)
between the experiments NoSSTasim and CTRL (left column) and between SSTasim and NoSSTasim (right
column) for the model state variables sea ice concentration, sea ice thickness, and SST. The RMSDs are
derived from calculating correspondingmodel states on daily basis in 2012 and show how strongly the assim-
ilation changes the fields.

Similar to the impact of sea ice assimilation on the sea ice variables, the impact of the SST assimilation on the
simulated SST is as expected (Figure 3b). The RMSDs between the model states with and without data

Figure 4. Spatial distribution of the annual mean sea surface temperature
bias in degrees Celsius between the NoSSTasim run and the Group for
High‐Resolution Sea Surface Temperature Multi‐Product Ensemble sea
surface temperature data. The values are averaged in 2012 when the Group
for High‐Resolution Sea Surface Temperature Multi‐Product Ensemble data
are available.
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Figure 6. Vertical distribution of (a) the root‐mean‐square error and (b) mean bias of ocean temperature in °C with respect to the Argo SDL data for the SSTasim
(red dots), NoSSTasim (blue dots), and CTRL (black crosses) runs; (c) number of the Argo SDL observations at each SDL. SDL = standard depth level.

Figure 5. Vertical distribution of (a) mean ocean temperature in degrees Celsius south of 75°N; (b) mean ocean salinity
north of 75°N for the SSTasim (red), NoSSTasim (blue), and CTRL (black) runs.
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assimilation correspond to the deviations between the assimilated observations and themodel states without
data assimilation, which are reduced by the data assimilation. The SST assimilation affects the SST in ice‐free
regions with large differences around Svalbard, along the southern coast of Greenland, in the areas east of
Iceland, in the Labrador Sea and Beaufort Seas (Figure 3b). This corresponds to the annual mean SST biases
between the NoSSTasim run and the GMPE SST data, which reach an amplitude of up to 4 °C in these
regions (Figure 4). The sea ice assimilation affects the sea ice concentrations with large changes in the mar-
ginal sea ice zone both in the Atlantic and Pacific sectors (Figure 3c), where the CTRL run is biased with a
broader marginal sea ice zone than the SSMIS data (we discuss these biases in section 3.4). Large changes in
the sea ice thickness exist in the regions of multiyear ice in the Arctic Ocean and along the eastern coast of
Greenland where sea ice is exported from the Arctic (Figure 3e). In these areas, the simulated sea ice thick-
ness in the CTRL run is overall thicker than that in the CryoSat‐2 data (not shown).

We note for the discussion in section 4 that the physical processes implemented in the sea ice‐ocean model
induce indirect effects of the assimilation: The SST assimilation affects the sea ice state and, vice versa, sea
ice assimilation affects the SST. The assimilation of sea ice data has the largest effect on the SST in the
marginal sea ice zones, such as the Greenland Sea and the Bering Sea (Figure 3a). The SST assimilation
has strong effects on the sea ice concentration in the thin ice regions, such as the Greenland Sea, the
Barents Sea, the Kara Sea, and the Chukchi Sea (Figure 3d). Sea ice thickness is affected notably by the
SST assimilation along the eastern coast of Greenland (Figure 3f).

Figure 7. Spatial distribution of the root‐mean‐square error of ocean temperature in degrees Celsius with respect to the
Argo standard depth level data at 200‐m depth for (a) the NoSSTasim and (b) SSTasim runs.
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Because the GMPE SST data are only available in ice‐free areas and a
localized data assimilation scheme is used, we use the regional mean
temperature south of 75°N to assess the temperature change (Figure 5a).
Compared to the NoSSTasim run, the additional GMPE SST data assimi-
lation cools the entire upper ocean down to 1,800‐mdepth. Themaximum
temperature reduction is close to −1 °C and occurs at 220‐m depth. The
mean ocean salinity north of 75°N as a function of depth is shown in
Figure 5b. Assimilating sea ice data reduces the ocean surface salinity in
the NoSSTasim run. Assimilating GMPE SST data further reduces the
ocean surface salinity. The salinity change of the ocean surface layer pene-
trates to 80‐m depth due to the model dynamics.

3.2. Comparison With the Argo SDL Data

Most of the Argo profiles in Arctic and sub‐Arctic regions are concen-
trated in the high‐latitude North Atlantic Ocean, the Labrador Sea, the
Greenland Sea, the Norwegian Sea, and the Bering Sea. The Argo SDL
data set is available on the 26 SDLs, specifically 1 level at 5 m, 3 levels from
10 to 30 m, 5 levels from 50 to 150 m, 3 levels from 200 to 300 m, 12 levels
from 400 to 1,500 m, and 2 levels from 1,750 to 2,000 m, each with equal
depth intervals of 10, 25, 50, 100, and 250 m, respectively. Here, we choose
not to explore the seasonal differences of the SST assimilation influence,
so we calculate the RMS error (RMSE) of ocean temperature of the analy-
sis ensemble mean relative to the Argo SDL observations over the full year
taking into account all available observations within the model grid
in 2012.

Because in the CTRL run we only stored ocean temperature in the upper
1,000 m, the CTRL run is evaluated only in the upper 18 SDLs (Figures 6a
and 6b). Figure 6c shows the number of Argo SDL data values for each
standard depth. There are more than 5,500 Argo SDL data values at each
of the upper 18 levels. Below this, the number decreases slowly to 3,671 at
2,000‐m depth. The CTRL run simulates a warmer North Atlantic Ocean
and Nordic Sea with the maximum mean bias exceeding 1 °C at 30‐m
depth (Figure 6b). The RMSE of ocean temperature of the CTRL run
increases from 1.73 °C at 5‐mdepth to 2.22 °C at 75‐mdepth and decreases
to 1.2 °C at 900‐m depth (Figure 6a). The ocean temperature RMSE of the
NoSSTasim run are slightly smaller by 0.05 °C in the upper 500 m. We
attribute this improvement to the ocean's response to the more accurate
sea ice distribution and ice edge position after assimilating sea ice para-
meters. The SST assimilation greatly improves the ocean temperature

Figure 8. Locations of the Glider profiles in 2012 where the root‐mean‐
square error of the entire temperature profile between the SSTasim run
and the observed profile is (a) smaller or (b) larger than that between the
NoSSTasim run and the observed profile. The colors denote the Glider
locations where the surface temperature of the NoSSTasim run is (blue)
higher than that of the Glider profile and also higher than that of the
SSTasim run, (green) lower than that of the Glider profile but higher than
that of the SSTasim run, (orange) lower than that of the Glider profile and
also lower than that of the SSTasim run, and (red) higher than that of the
Glider profile but lower than that of the SSTasim run.

Table 1
Regional Mean RMSE of Ocean Temperature (°C) With Respect to the Argo SDL Data

SDL Experiment HLWAO HLCAO HLEAO Greenland Sea Bering Sea

10 m NoSSTasim 1.84 1.11 0.89 0.85 0.91
SSTasim 1.28 0.71 0.37 0.41 0.67

200 m NoSSTasim 1.25 1.87 1.22 1.21 1.76
SSTasim 1.13 1.49 0.94 1.01 1.54

1,500 m NoSSTasim 0.72 1.03 1.13 0.80 0.12
SSTasim 0.60 0.96 1.00 0.68 0.21

Note. The high‐latitude western Atlantic Ocean (HLWAO) refers to the area enclosed by the longitudes 45°W to 70°W
and the latitudes 55°N to 65°N. The high‐latitude central Atlantic Ocean (HLCAO) refers to the area enclosed by the
longitudes 20°W to 45°W and the latitudes 55°N to 65°N. The high‐latitude eastern Atlantic Ocean (HLEAO) refers
to the area enclosed by the longitudes 20°W to 15°E and the latitudes 55°N to 65°N. SDL = standard depth level;
RMSE = root‐mean‐square error.
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simulation from surface to 1,750‐m depth. Compared with the NoSSTasim run, the RMSE of ocean
temperature of the SSTasim run has been reduced by 0.41 °C in upper 30 m, by 0.35 °C between 50 and
250 m, by 0.2 °C between 300 and 400 m, and by 0.1 °C between 1,000 and 1,500 m. The warm bias of the
NoSSTasim run in the North Atlantic Ocean and the Nordic Sea has been corrected in the upper 1,750 m
with maximal improvements of 0.7 °C in the upper 300 m.

The spatial distributions of the ocean temperature RMSE with respect to the Argo SDL data at 200‐m depth
are shown in Figure 7. The RMSE of the NoSSTasim run is large in the high‐latitude central Atlantic Ocean,
the southern Norwegian Sea, and the Bering Sea. In the SSTasim run, large improvements of ocean tempera-
ture simulation are found in the high‐latitude central Atlantic Ocean and the southern Norwegian Sea. To
further describe the ocean temperature RMSE in different areas, the regional mean RMSE at 10‐, 200‐,

Figure 9. Vertical distributions of temperature deviations in degrees Celsius (a) between the NoSSTasim run and Glider
profiles, (b) between the SSTasim run and Glider profiles, (c) between the SSTasim and NoSSTasim run, and (d) between
the absolute value of (a) and absolute value of (b). The labels IA to ID and DA to DD present the profile types shown
in Figures 8a (IA = blue; IB = green; IC = orange; ID = red) and 8b (DA = blue; DB = green; DC = orange; DD = red).

10.1029/2019JC015073Journal of Geophysical Research: Oceans

LIANG ET AL. 4737



and 1,500‐m depth are listed in Table 1. In general, the RMSE of the
NoSSTasim run with respect to the Argo SDL data is reduced by the addi-
tional assimilation of the GMPE SST data in the SSTasim run. The largest
reductions are found where the RMSE is also very large, for example, in
the high‐latitude western Atlantic Ocean at 10‐m depth, or the high‐
latitude central Atlantic Ocean at 200‐m depth. The only exception is
the deep Bering Sea, where the RMSE is already quite small without
SST assimilation and the RMSE in the SSTasim run is larger by 0.09 °C
than that in the NoSSTasim run.

3.3. Comparison With the Glider Data

All of the Glider profiles used in this study are located in the high‐latitude
North Atlantic Ocean, the Labrador Sea, the Norwegian Sea, and the
Greenland Sea. Temperature profile observations were collected during
ascending phase of the Gliders to enhance the accuracy of the geographic
information received by satellites at the end of the ascent. Only profiles
flagged as “good data” are used here for the model‐data comparison.
There are 1,988 Glider profiles of which 1,902 profiles reach below 800
m. The 1,507 modeled temperature profiles out of the 1,988 profiles, that
is, approximately 75.8% of the profiles, are improved in the SSTasim run
(Figure 8a). For the improved profiles, the mean RMSE with respect to
the Glider observations decreases from 1.41 °C of the NoSSTasim run to
0.98 °C of the SSTasim run. For the remaining 24.2% of the profiles
(Figure 8b), the mean RMSE with respect to the Glider observations
increases from 1.02 °C of the NoSSTasim run to 1.45 °C of the SSTasim
run. The mean RMSE with respect to all Glider observations decreases
from 1.32 °C of the NoSSTasim run to 1.1 °C of the SSTasim run.

To further assess the model results, we categorize the relations between
modeled and observed ocean surface temperature into four types (marked
by different colors in Figure 8). Figure 9 shows the vertical temperature
profile deviations, which are classified according to the different types.
Out of the 1,507 improved temperature profiles, 1,277 profiles (84.7%, blue
in Figure 8a) are characterized by the situation that the simulated surface
temperature of the NoSSTasim run is higher than the observed surface
temperature of the Glider profile and that the simulated warm surface
temperature bias decreases in the SSTasim run. The corresponding tem-
perature profile deviations are shown as Type IA in Figure 9. In this situa-
tion, the assimilation of the GMPE SST data reduces the simulated ocean
surface temperature (Figure 9c) and consequently induces stronger verti-
cal convection. Therefore, the information of lower surface temperatures
can reach the deeper layers, and the simulated entire temperature profile
improves (Figure 9d). However, if the modeled surface temperature of the
NoSSTasim run is close to the Glider profile (Type DA in Figure 9a) and
the modeled ocean surface cools in the SSTasim run (Type DA in
Figure 9c), which leads to the amplification of surface temperature bias,

the entire modeled temperature profile of the SSTasim run deteriorates (Type DA in Figure 9d) because
too cold water (as imposed by the GMPE SST value) is convected by static instability. This happens for
291 in 481 deteriorated profiles (blue in Figure 8b).

Another situation (orange in Figures 8a and 8b) occurs when the modeled surface temperature of the
NoSSTasim run is lower than the observed surface temperature of the Glider profile (Types IC and DC in
Figure 9a) and the modeled surface temperature increases in the SSTasim run (Types IC and DC in
Figure 9c). This warming leads to more stability and cannot penetrate to the deeper layers. This phenom-
enon is especially clear in the deteriorated profiles (Type DC in Figure 9d). For the other two types (green

Figure 10. Sea ice edge in (a) September and (b) March in 2012. The purple
patch denotes the area where the sea ice concentration from Advanced
Microwave Scanning Radiometer is larger than 15%. The lines denote the
sea ice edge in the CTRL run (blue), in the NoSSTasim run (green), and in
the SSTasim run (red).
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and red in Figure 8), the effects of SST assimilation depend on the individual vertical temperature
gradients of the observations and the simulated profiles. For example, if the model surface temperature
of the NoSSTasim run is lower than the observed surface temperature of the Glider profile (Types IB
and DB in Figure 9a) and the modeled surface temperature decreases in the SSTasim run (Types IB and
DB in Figure 9c), the simulated temperature profile improves in the case of the model subsurface
temperature of the NoSSTasim run being higher than the observed subsurface temperature of the Glider
profile (Type IB in Figure 9d), but it deteriorates in the case of the model subsurface temperature of
the NoSSTasim run being lower than the observed subsurface temperature of the Glider profile (Type
ID in Figure 9d).

We also compare model simulations with shipboard data. The 1,939 CTD profiles in the Norwegian Sea and
the western Barents Sea and 1,2786 records of ocean surface temperature were collected in 2012. Compared
with the model simulations of the NoSSTasim run, 59% of the temperature profiles and 82% of the SST
records are improved in the SSTasim run (not shown).

Figure 11. Time evolution of sea ice thickness in meters at three positions: (a) 75°N, 150°W; (b)78°N, 150°W; and
(c) 74°N, 140°W. The blue, green, and red lines denote sea ice thickness of the CTRL run, the NoSSTasim run, and the
SSTasim run, respectively. The black solid and dashed lines denote sea ice thickness observations of BGEP ULSs, which
were deployed in the summers of 2011 and 2012. The black lines of BGEP ULS observations have been smoothed with the
gray bar representing the observational uncertainty. The cyan and pink crosses denote the assimilated CryoSat‐2 and
SMOS sea ice thickness observations, respectively. BGEBeaufort Gyre Exploration Project; ULS = upward‐looking sonar;
SMOS = Soil Moisture Ocean Salinity.
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3.4. Comparison With MASIE‐NH and AMSR Data

The sea ice extent in 2012 is provided by the MASIE‐NH data. The RMSE
with respect to the MASIE‐NH data decreases from 2.24 million km2 in
the CTRL run, to 2.15 million km2 in the NoSSTasim run, and 2.12 million
km2 in the SSTasim run. Figure 10 shows the simulated and observed sea
ice edge in March and September 2012. In September (Figure 10a), the
CTRL run overestimates the sea ice extent (defined as where sea ice con-
centration is larger than 15%) compared to the observations. The sea ice
data assimilation in the NoSSTasim run improves the simulated sea ice
edge. In the SSTasim run, there is a slight further improvement of the
sea ice edge simulation. In terms of the integrated ice edge error
(Goessling et al., 2016) computed with respect to the AMSR data for
September, the error decreases from 2.41 million km2 in the CTRL run,
to 0.36 million km2 in the NoSSTasim run, and 0.25 million km2 in the
SSTasim run. In March, the sea ice extent in the CTRL run is too small
compared to observations. With data assimilation, the sea ice edge
improves, especially in the Barents Sea, the Kara Sea and the Bering Sea
(Figure 10b). The integrated ice edge error in March decreases from 1.95
million km2 in the CTRL run, to 1.57 million km2 in the NoSSTasim
run, and 1.39 million km2 in the SSTasim run.

In September, the ocean surface temperature in areas between the sea ice
edge of the CTRL run and that of the NoSSTasim run is close to the freez-
ing point; thus, sea ice data assimilation can substantially improve the
simulated sea ice edge (Figure 10a). In March, however, there are large
sea ice edge deviations between the runs and observations in the
Labrador Sea (Figure 10b) where the ocean surface in the NoSSTasim
run is too warm (Figure 4). The ocean surface warm bias between the data
assimilation runs and in situ observations are also quite large (not shown);
thus, sea ice created by the data assimilation melts immediately. The
simulated sea ice edge in the Labrador Sea indicates that to accurately
simulate the sea ice edge it is necessary to simulate the correct ocean sur-
face temperature. Even with SST assimilation, this appears to be unsuc-
cessful in the Labrador Sea in our simulations.

3.5. Comparison With BGEP ULS Data

Besides the sea ice edge, the sea ice thickness is another critical variable
for marine safety of commercial vessels. Figure 11 shows the time evolu-
tion of modeled and observed sea ice thickness in 2012 at three locations
in the Beaufort Sea. From January to April, SMOS and Cryosat2 sea ice
thickness observations are available. Thus, the modeled sea ice thickness
of both the NoSSTasim and SSTasim run are the result of the combina-
tion of the assimilated satellite sea ice thickness observations and sea
ice thickness dynamics implemented in the numerical model. Between
May and October, there are no sea ice thickness observations, so the
simulated sea ice thickness evolution is determined by the model physics
and the correlation between sea ice concentration, sea ice thickness, and

SST. The thickness assimilation in winter preconditions the sea ice appropriately, so that the summer sea
ice thickness is also simulated more accurately. The long sea ice memory is attributed to the relatively slow
melting and freezing processes (Day et al., 2014; Mu, Losch, et al., 2018).

Focusing on August to November, the sea ice data assimilation greatly reduces the sea ice extent where
sea ice concentration is larger than 15% (Figure 10a). However, in the marginal sea ice zone in the
Beaufort Sea where the sea ice concentration is below 15%, there are still patches of sea ice (Figures 11b

Figure 12. September sea ice concentration in 2012 in marginal sea ice zone
of (a) the NoSSTasim run and (b) the SSTasim run. White areas represent
concentrations above 15% and ice‐free regions.
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and 11c). By assimilating SST data, these patches are removed when the ocean surface temperature is
corrected (Figure 12).

4. Discussion and Conclusion

In this paper, satellite‐retrieved sea ice concentration, sea ice thickness, and SST data are assimilated simul-
taneously into an Arctic sea ice‐ocean model using a localized ensemble Kalman filter scheme. It is found
that assimilating SST data in addition to sea ice concentration and sea ice thickness not only improves the
upper ocean temperature simulation but also improves the sea ice edge and sea ice extent simulations, as
well as the sea ice thickness in the marginal sea ice zone. The effects of the SST data assimilation on upper
ocean temperature improvements are not homogeneous. The improvements are significant in two situa-
tions: (1) when the simulated SST without data assimilation is warmer than the in situ observations, and
when the assimilation reduces the SST warm bias. Hydrostatic instabilities favor the propagation of the cold
surface signal induced by the SST assimilation downwards, and thus, the entire upper ocean temperature
simulation is improved. (2) When the simulated SST without data assimilation is colder than the in situ
observations, and when the assimilation reduces the SST cold bias. In this situation, the improvements in
the simulated ocean temperature due to the SST assimilation are restricted to the surface layers. The
GMPE SST data used in this study is a median SST product from a multiproduct ensemble. Stroh et al.
(2015) suggested that state‐of‐the‐art SST products commonly have a cold temperature bias magnitude of
less than −0.5 °C compared with in situ observations. The NoSSTasim run overestimates surface tempera-
ture in most areas of the North Atlantic Ocean and the Nordic Sea, the assimilation of the GMPE SST data
corrects the model's warm surface bias. The thermal relationship between model surface temperature and
assimilated SST data in the North Atlantic Ocean and the Nordic Sea contributes to the positive results in
this study.

Assimilating sea ice concentration data can substantially improve the forecast of the sea ice edge location
(Posey et al., 2015). Marginal sea ice is directly affected by horizontal heat advection of ocean surface cur-
rents. Thus, the SST assimilation has the largest effects in the marginal sea ice zone (Figures 3d and 3f).
Our results suggest that sea ice data assimilation only improves the sea ice edge simulation if ocean surface
temperature is close to the freezing point. When the ocean surface temperature is unrealistically high, sea ice
data assimilation cannot overcome this bias and consequently cannot simulate an accurate sea ice edge loca-
tion (e.g., in the Labrador Sea in Figure 10b). During summer, assimilating sea ice data can correctly reduce
the marginal sea ice zone, but when the surface water is too cold, continued freezing will form new ice. This
process is suppressed by assimilating the correct SST data. As a consequence, SST data assimilation emerges
as a key component in a sea ice forecasting system.

In the Labrador Sea, there is a large systematic SST bias in the simulation without data assimilation. SST data
assimilation corrects the bias only in part. The covariance relationship, on which the data assimilation
scheme is based, cannot entirely correct this systematic bias. In other words, the effect of SST data assimila-
tion is small if the systematic SST bias is too large. The bias needs to be reduced prior to data assimilation, for
example, by tuning model parameters.

Because of the localization in the data assimilation algorithm and because the GMPE SST data are available
only in ice‐free regions, the assessment of the upper ocean temperature and sea ice simulations is also mostly
restricted to the ice‐free region or the vicinity of the sea ice edge. The sea ice data assimilation reduces sea ice
extent and thickness. The freshwater volume increment of the surface layer leads to the decrease of the
ocean surface salinity. Assimilating GMPE SST data diminishes the marginal sea ice in summertime, further
reducing the ocean surface salinity (Figure 5b). Temperature and salinity observations under sea ice in the
central Arctic Ocean are so scarce that we do not assess the temperature and salinity simulation in the pack
ice areas in this study, avoiding a necessarily unrepresentative evaluation of the upper ocean.

We have left aside the question of how the parameters of the data assimilation scheme affect the results. The
parameters, such as the localized radius (Losa et al., 2012) and the uncertainties of the SSMIS sea ice concen-
tration (Yang et al., 2014), will affect the solutions, but we anticipate that they will not lead to fundamentally
different conclusions. Further, the ensemble size has an influence on the results. While the chosen ensemble
size of 23 members is sufficient for our application, larger ensembles will at least incrementally improve the
results and should allow to use a larger localization radius, which can also contribute to improved results.
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Our results suggest that for accurate sea ice edge forecasts, not only the ice state but also the upper ocean
state needs to be known. In this sense, further systematic improvements of sea ice forecasts to support the
safety of marine operations in the Arctic may only be possible if ocean surface observations also under the
ice cover become available. Closed loop simulations could elucidate the effect of under ice‐ocean tempera-
ture data to be able to understand whether such an effort is worth the high costs.
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