Observing the oceanic heat flux toward retreating outlet glaciers in NE-Greenland

♣ Janin Schaffer, Torsten Kanzow, Wilken-Jon von Appen, Luisa von Albedyll, Gereon Budéus, Jan Erik Arndt, and Andreas Münchow

INTRO

- In recent years, the outlet glaciers of the Northeast Greenland Ice Stream (NEGIS) have undergone major changes leading to increased mass flux from the ice sheet into the ocean.
- Glacier thinning & retreat has been attributed to increasing ocean temperatures.
- This study shows first ocean temperatures measured at Zachariæ Isstrøm and time series of heat flux below the 79 North Glacier.

DATA

- Bathymetry from multi-beam surveys
- Hydrography from ship-lowered, helicopterbased and moored CTDs
- Velocities from moored ADCPs

RESULTS

• 1°C-warm waters of Atlantic origin at 300 to 600-m depth are in direct contact with the calving front of **Zachariæ Isstrøm**.

- Topography-control implies that the heat supply below the 79 North Glacier is critically determined by large-scale hydrographic variations on the continental shelf.
- Variability on weekly timescales can be explained by topographic Rossby waves propagating towards the coast.

Local topography controls the ocean heat supply to retreating outlet glaciers in NE-Greenland, namely

Zachariæ Isstrøm and the

79 North Glacier.

ADDITIONAL INFORMATION

Overturning below the 79 North Glacier

Atlantic waters flush the cavity below the 79 North Glacier (residence time of **150 days**) causing high basal melt rates.

 Annual mean overturning rate: 42 ± 12 mSv

Annual mean heat transport: 166 + 64

transport: 166 ± 64 GW 100 m
 Mean basal melt rate: 200 m

10 ± 4 m/yr
Outgoing glacially
modified waters are
0.9°C cooler than
ingoing Atlantic waters.

Temperature Timeseries

• Temperatures **increased simultaneously** over the entire **shelf** in winter 2016/17.

Ekman Pumping

- Dispersive topographic Rossby waves with a period near 20 days propagate along Norske Trough to the coast.
- The wave is generated by Ekman pumping over the shelf break.

Visit the poster **EGU2019-14346** presented by **Andreas Münchow** on **Thursday 16:15!**

