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Abstract 19 

Understanding the distribution and structure of biotopes is essential for marine conservation 20 

according to international legislation, such as the European Marine Strategy Framework 21 

Directive (MSFD). The biotope ‘Sea Pen and Burrowing Megafuna Communities’ is included in 22 

the OSPAR list of threatened and/or declining habitats. Accordingly, the MSFD prescribes a 23 

monitoring of this biotope by the member states of the EU. In the German North Sea, 24 

however, the distribution and spatial extent of this biotope as well as the structuring of its 25 

benthic species inventory is unknown. We used an extensive geo-referenced dataset on 26 

occurrence, abundance and biomass of the benthic infauna of the south-eastern North Sea to 27 

estimate the distribution of the biotope and to characterize the associated infauna 28 

assemblages. Sediment preferences of the burrowing megafauna, comprising decapod 29 

crustaceans and echiurids, were identified and the core distribution areas of the burrowing 30 

megafauna were modelled using Random Forests. Clusters of benthic infauna inside the core 31 



distribution areas were identified by fuzzy clustering. The burrowing megafauna occurred on 32 

a wide range of sediments with varying mud contents. The core distribution area of the 33 

burrowing megafauna was characterized by elevated mud content and a water depth of 25-34 

55 m. The analysis of the benthic communities and their relation to sedimentological 35 

conditions identified four infauna clusters of slightly varying species composition. The biotope 36 

type ‘Sea Pen and Burrowing Megafuna Communities’ is primarily located inside the paleo 37 

valley of the river Elbe and covers an area of 4980 km2. Dedicated monitoring will have to take 38 

into account the spatial extent and the structural variability of the biotope. Our results can 39 

provide a baseline for the evaluation of the future development of the environmental status 40 

of the biotope. The maps generated herein will facilitate the communication of information 41 

relevant for environmental management to authorities and policy makers.  42 
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Introduction 47 

The biotope is a basic concept in marine benthic conservation and spatial planning. In this 48 

context, a benthic biotope is defined by its distinct physico-chemical and geo-morphological 49 

seafloor environment (i.e. the habitat) and the specific assemblage of species inhabiting this 50 

particular environment (Olenin and Ducrotoy 2006). The composition of benthic species 51 

assemblages is strongly shaped by the environmental conditions, with sediment 52 

characteristics and water depth being, among others, important determinants of species’ 53 

occurrence (Gray 1974, Reiss et al. 2011, Armonies et al. 2014). The vast geomorphological 54 

heterogeneity of the seafloor at various spatial scales and the high diversity of the benthic 55 

biota has led to the classification of numerous different seafloor biotopes in European waters 56 

and beyond (Davies et al. 2004). According to international legislative frameworks to protect 57 

the marine environment, such as the European Marine Strategy Framework Directive (MSFD, 58 

2008/56/EC), member states of the European Union are obliged to carry out an assessment 59 

and continuous monitoring of widespread and specific benthic biotopes. The results from the 60 

mandatory monitoring programs provide the basis for an evaluation of the environmental 61 



status of the marine environment and the effectiveness of management and conservation 62 

measures. 63 

The development and implementation of successful biotope monitoring programs requires 64 

knowledge of the distribution, the spatial extent and the structure of biotopes in order to 65 

determine the appropriate temporal and spatial resolution of sampling activities (Van der 66 

Meer 1997). Often, however, information on the exact geo-morphological characteristics, the 67 

faunal composition, and the spatial distribution of specific biotopes is limited. Additionally, 68 

functional aspects are being increasingly considered in the definition of biotopes accounting 69 

for the importance of crucial ecological processes for achieving and maintaining a good 70 

environmental status of sensitive marine ecosystems (Berg et al. 2015). Decades of research 71 

have generated extensive, highly resolved datasets on the distribution of benthic species and 72 

environmental variables in many shelf sea areas. Along with an advanced understanding of 73 

the factors that shape benthic communities (Pesch et al. 2008) these datasets suggest a 74 

complex structuring of benthic biotopes, which are on a regional scale often linked with broad 75 

sediment features, such as mud content (Degraer et al. 2008). 76 

Continuous discharge of large quantities of suspended organic matter and finest sediment 77 

fractions by major rivers have formed extensive areas of muddy sediments in the German 78 

Bight (south-eastern North Sea), especially off the mouth of the river Elbe and along its paleo 79 

river valley extending towards the central North Sea. The organic content of muddy sediments 80 

sustains a considerable species richness and biomass of the benthic fauna (Duineveld et al. 81 

1991), which itself provides a valuable food resource for organisms at higher trophic levels of 82 

the marine food web, such as (commercially important) fish (Greenstreet et al. 1997). 83 

Moreover, muddy biotopes are sensitive to environmental and physical stressors such as 84 

oxygen limitation, pollution, and bottom trawling (Rachor 1977, Kaiser et al. 2006). 85 

An ecologically important functional attribute of mud is the cohesiveness of the sediment 86 

that allows certain infaunal organisms to construct and sustain persistent burrows. The 87 

penetration depth for oxygen in fine-grained muddy sediment is low (Brotas et al. 1990) and 88 

high microbial activity may lead to oxygen depletion and formation of toxic hydrogen sulfide 89 

(Rachor 1977). Burrowing organisms, including some decapod crustaceans and echiurids, 90 

enhance the ventilation of the sediment by flushing their burrows, a process referred to as 91 

bio-irrigation (Meysman et al. 2006). By providing oxygen and nutrients to micro-organisms in 92 

deeper sediment layers burrowing organisms support important sediment-bound bio-93 



geochemical processes, the recycling of nutrients from organic matter and, thus, marine 94 

primary and secondary production (Lohrer et al. 2004). To account for these important 95 

ecological functions and for the sensitivity of benthic organisms to, for example, mechanical 96 

damage induced by continuous bottom trawling, the biotope type ‘Sea pen and burrowing 97 

megafauna communities’ was included in the OSPAR list of threatened and/or declining 98 

habitats (OSPAR 2008a). The biotope is defined as “Plains of fine mud, at water depths ranging 99 

from 15-200 m or more, which are heavily bioturbated by burrowing megafauna with burrows 100 

and mounds typically forming a prominent feature of the sediment surface. The habitat may 101 

include conspicuous populations of seapens, typically Virgularia mirabilis and Pennatula 102 

phosphorea. The burrowing crustaceans present may include Nephrops norvegicus, Calocaris 103 

macandreae or Callianassa subterranea.  In the deeper fjordic lochs, which are protected by 104 

an entrance sill, the tall seapen Funiculina quadrangularis may also be present. The burrowing 105 

activity of megafauna creates a complex habitat, providing deep oxygen penetration. This 106 

habitat occurs extensively in sheltered basins of fjords, sea lochs, voes and in deeper offshore 107 

waters such as the North Sea and Irish Sea basins” (OSPAR 2008b). Sea pens are entirely 108 

lacking in the south-eastern North Sea. However, according to the above definition the 109 

occurrence of sea pens is not mandatory for this biotope to be present. 110 

As a threatened or declining habitat according to OSPAR, the biotope ‘Sea pen and 111 

burrowing megafauna communities’ has to be considered as a specific biotope according to 112 

the MSFD in the mandatory environmental monitoring programs of member states of the EU. 113 

Besides this muddy biotope, a single additional MSFD specific biotope (‘Species-rich coarse 114 

sand and shell gravel bottoms’ – protected under the German Federal Law of Nature 115 

Conservation) exists in offshore regions of the German North Sea. The remaining extensive 116 

seafloor areas in this region constitute the MSFD broad biotope ‘Offshore sands’. Detailed 117 

characterizations of the biotopes, including sedimentological and ecological characteristics, as 118 

well as information on their spatial extent and distribution in the German North Sea are still 119 

lacking. Furthermore, only little is known about the structural variations of the benthic faunal 120 

assemblages associated with the biotopes. However, this information is essential for 121 

successful marine environmental management and conservation according to the MSFD, 122 

which aims at achieving a good environmental status of European marine waters. Defining the 123 

good environmental status and evaluating the actual status requires a proper monitoring 124 

based on sound knowledge on the distribution and structure of biotopes and the inherent 125 



spatial and temporal variability. Additionally, this knowledge is needed for marine spatial 126 

planning, for example, for the designation of marine protected areas (Degraer et al. 2008). 127 

This study on a protected seafloor biotope generates important information for 128 

management and conservation from an extensive geo-referenced data set on the benthic 129 

macro-infauna of the German North Sea. Specifically, we describe the distribution and 130 

sedimentological preferences of organisms belonging to the burrowing benthic megafauna, 131 

including thalassinidean crustaceans (‘mud shrimps’) and echiurids. The full coverage 132 

distribution of the muddy biotope is modelled based on the occurrence of the burrowing 133 

benthic megafauna in combination with sedimentological and topographical geodata. Finally, 134 

the benthic infauna assemblages associated with the biotope are described in terms of 135 

characteristic species to achieve a comprehensive sedimentological, bathymetric and 136 

biological characterization of the OSPAR biotope type of the German North Sea. Maps are 137 

provided, which will facilitate the planning of an appropriate monitoring of the protected 138 

biotope in the German North Sea to support management and conservation according to 139 

international legislative frameworks. 140 

 141 

Material and methods 142 

Study area 143 

This study addresses the German Exclusive Economic Zone (EEZ) and the German coastal 144 

waters >1 nm off the coast in the south-eastern North Sea (Figure 1). The area covers about 145 

35,000 km2 and stretches from the North and East Frisian coasts towards the easternmost 146 

offset of the Dogger Bank, which separates the coastal waters of the south-eastern coastal 147 

North Sea from the waters of the more oceanic central North Sea. The sediment types cover 148 

the full range from extensive areas dominated by muddy and sandy sediments to more patchy 149 

stretches of coarse sand and scattered glacial depositions of rocks and boulders, which are 150 

primarily found around the rocky island of Helgoland, the Sylt Outer Reef, Borkum Reef 151 

Ground and off the island of Sylt (Diesing et al. 2006, Michaelis et al. 2019). A dominant 152 

geomorphological structure of the southern North Sea is the paleo valley of the river Elbe, 153 

which extends from the present day Elbe river mouth in north-western direction towards the 154 

central North Sea. The seafloor of the paleo river valley is characterized by sediments with 155 

elevated mud content and it traverses extensive areas of fine sandy sediments (Figge 1981). 156 



The discharge of the river Elbe enhances the organic load of the muddy sediment inside the 157 

river valley. 158 

 159 

 160 

Figure 1: Bathymetry of the south-eastern North Sea with sampling stations for benthic 161 

infauna 162 

 163 

Major associations of benthic infauna species broadly match the distribution of the 164 

dominant sediment types in the south-eastern North Sea (Salzwedel et al. 1985, Reiss et al. 165 

2010, Neumann et al. 2013). The south-eastern North Sea is a shallow marine region with 166 

water depths off the intertidal Wadden Sea ranging from 20 to 60 m (Bockelmann et al. 2018). 167 

The benthic system of the region is strongly influenced by exceptional meteorological events, 168 

such as extremely low winter temperatures (Reiss et al. 2006). Moreover, bottom-near 169 

hypoxia can develop during seasonal stratification of the water body, especially in summer. 170 

The average sea surface temperature in the southern North Sea ranges from 3°C in winter to 171 

18°C in summer (Elliot et al. 1991). The salinity varies between 30 PSU in coastal waters and 172 

35 PSU in offshore waters (Skov and Prins 2001). Dominant hydrographic and oceanographic 173 



features, including persistent frontal systems and gyres, shape the distribution and residence 174 

time of water masses and the dissolved and suspended matter therein (Dippner 1993).  175 

 176 

Data origin 177 

The analyses performed in this study are based on an extensive dataset on the benthic 178 

infauna of the German North Sea. Over the years 1997 to 2016 data were collected from 8883 179 

infauna stations within various ecological long-term programs, research projects, and impact 180 

assessments studies for approval procedures for industrial offshore projects, including wind 181 

farm constructions and underwater cables. For 64 % of the stations the data on the infauna 182 

were generated from a single van Veen grab (area: 0.1 m2, weight: 90 kg) whereas three grab 183 

samples per station were taken at 36 % of the stations. The samples were sieved (mesh size: 184 

1000 µm), and stored in buffered 4 % formalin-seawater solution for further processing in the 185 

laboratory. In the laboratory, the samples were washed with freshwater. All organisms of the 186 

benthic macro-infauna were extracted and determined to the lowest taxonomic level possible. 187 

All individuals were counted and the biomass (wet weight) was determined at the species 188 

level. Colonial organisms were not counted but recorded as present. Sedimentological 189 

information was available for 4549 stations sampled between the years 2000-2016. Sub-190 

samples for the sediment analysis were taken either from a fourth grab or from one of the 191 

infauna grabs. Each sub-sample was dried and sieved through a sieve cascade (Wentworth 192 

1922). The fraction that passed through the sieve with a mesh size of 63 µm was weighed to 193 

determine the mud content (%). 194 

 195 

Borrowing megafauna occurrence and sediment composition 196 

Five species of the burrowing megafauna were considered for the analysis: Callianassa 197 

subterranea, Goneplax rhomboides, Echiurus echiurus, Upogebia deltaura and Upogebia 198 

stellata (for data availability and selection of species for analysis see the supplementary 199 

material as well as Figure S1 and Table S1). The relationship between sedimentological 200 

characteristics and the occurrence of species of the burrowing megafauna was analysed from 201 

abundance and biomass data (averaged by station) at those stations, for which information 202 

was available on both abundance and/or biomass of the species and the mud content of the 203 



sediment. For 2200 stations abundance data were available for at least one megafauna 204 

species. For 1600 of these stations additional data on biomass were available. For each taxon, 205 

abundance and biomass were tested for correlation with the mud content of the sediment 206 

using correlation analysis. To account for non-normality in the data distributions and missing 207 

linear relationships between abundance/biomass and mud content, coefficients of correlation 208 

were calculated according to Spearman (1904). 209 

All stations were assigned to one of six classes according to the mud content of the 210 

sediment: <5 %, 5-10 %, >10-20 %, >20-50 %, >50-80 %, and >80 %. Each taxon was tested for 211 

differences in abundance and biomass between the classes using non parametric pairwise 212 

tests according to Wilcoxon as available in the R package ‘coin’ (Hothorn et al. 2008). Test 213 

statistics were calculated from permutations of the input data by Monte Carlo approximations 214 

based on 10,000 permutations drawn from the original data set. Variations in taxon specific 215 

abundances and biomasses among sediments with different mud contents are displayed in 216 

Box-Whiskers-graphs with statistically significant differences being indicated by different 217 

letters. 218 

 219 

Core areas of distribution of the burrowing megafauna in the German North Sea 220 

Core areas of the distribution of the burrowing megafauna in the German North Sea (i.e., 221 

German EEZ plus coastal waters of ≥1 nm distance from the shore) were identified using 222 

Random Forests (Breimann 2001). Random Forests is a machine learning method to derive 223 

prediction models for target variables of either metric, ordinal or nominal levels of 224 

measurement from chosen predictor variables. Due to its robustness Random Forests has 225 

successfully been applied in previous studies to predict both biotic and abiotic characteristics 226 

of the seafloor (Darr et al. 2014, Diesing et al. 2014, Gonzalez-Mirelis et al. 2011, Lindegarth 227 

et al. 2014, Šiaulys and Bučas 2012). Derived from Classification and Regression Trees (CART 228 

– Breimann et al. 1984) Random Forests calculates a multitude of independent decision trees 229 

from bootstrap samples of the original data. The decision trees can then be used to predict 230 

the variable of interest for objects (here: grid cells), where information on the predictor 231 

variables is available. If the target variable is categorical, the category is assigned to a given 232 

object that was predicted from most of the independent decision trees. Globally, the quality 233 

of Random Forests models can be described by the Out of Bag (OOB) Error, which is calculated 234 

by the above mentioned independent decision trees produced within Random Forests. As all 235 



decision trees rely on randomly chosen bootstrap samples from the total data set they can 236 

each be applied to the remaining data to quantify whether true or observed categories were 237 

classified correctly. Correspondingly, the OOB Error is the average error rate over all 238 

categories and observations and is given as percentage. A further global reliability measure of 239 

classification is the Kappa coefficient of agreement according to Cohen (1960), which can be 240 

calculated from the confusion matrix provided by Random Forests. Cohen’s Kappa 241 

corresponds to the proportion of agreement corrected for chance and takes values between 242 

0 (highest possible classification disagreement) and 1 (highest possible classification 243 

agreement). 244 

In total, data from all 8883 stations from the years 1997-2016 were used for the modelling 245 

of core distribution areas via Random Forests. The occurrence (presence/absence) of the 246 

megafauna taxa were used as target variables because high spatial and temporal variability of 247 

abundance and biomass led to constantly low degrees of explained variance in corresponding 248 

random forest models (each r2 < 0.3). As predictors we used the UTM 32-coordinates 249 

(according to recommendations given by Evans et al. 2011), full coverage data on bathymetry 250 

(Populus et al. 2017), geo-statistically interpolated sand, gravel and mud fractions (Schönrock 251 

2016) as well as an ordinal mud index derived from the map on sediment types for the German 252 

North Sea according to the classification by Figge (1981). The map was available at a spatial 253 

resolution of 1:250,000 (Laurer et al. 2013) and provided information on 22 sediment types 254 

including coarse sands, medium coarse sands, medium sands, fine sands, and mud for most 255 

parts of the German North Sea. For some areas in the outer German EEZ (i.e. 2.1 % of the 256 

entire study area) no information on sediment types were given in the map due to missing 257 

primary data on grain sizes (Laurer et al. 2013). These areas could, thus, not be considered in 258 

the Random Forests modelling. The percentages mud content were assigned for each sand 259 

fraction to one of the following classes: <5 %, 5-10 %, >10-20 %, >20-50 %, >50-80 %, and >80 260 

%. These classes were used to derive the ordinal mud index ranging from 1 (<5 % mud) to 6 261 

(>80 % mud). All presence/absence data for the megafauna taxa were intersected with the 262 

full coverage maps, which were harmonized to a 230 x 230 m grid according to the resolution 263 

provided by the map on the geostatistical grain size maps by Schönrock (2016). The application 264 

of the grid led to the aggregation of records within single cells, which may have affected the 265 

model performance (in terms of OOB Error and Kappa). However, given the great spatial 266 

coverage of the data set we expect no effects on the modelled core distribution areas of the 267 



burrowing megafauna. All geo-processing tasks were performed using the software packages 268 

QGIS 2.18 and ArcGIS 10.4.  269 

Random forests modelling was done based on 5000 classification trees for each taxon, and 270 

three out of the seven predictors were chosen for the bootstrap samples. The random forests 271 

modelling was performed in R version 3.4.0. using the package ‘random forests’ (Liaw and 272 

Wiener 2002). The adequate presence threshold for each taxon was determined using the R 273 

package ‘Presence Absence’ (Freeman and Moisen 2008). Thresholds were derived using the 274 

method ‘Sens=Spec’ so that modelled positive observations are equally likely to be wrong as 275 

negative observations. 276 

Random Forests models were calculated individually for each taxon of the burrowing 277 

megafauna. However, for most of the taxa the OOB Errors were high, especially for E. echiurus, 278 

G. rhomboides and U. stellata (Table S2). Therefore, an additional model was calculated using 279 

the combined occurrence data of all taxa of the burrowing megafauna resulting in an 280 

acceptable rate of misclassification of <25 %. An additional model was calculated excluding 281 

the species E. echiurus, which showed a distribution that was largely disconnected from the 282 

other species, resulting in a further improvement of the rate of misclassification to 22 %. 283 

Therefore, the core distribution areas of the burrowing megafauna presented in this study, 284 

were subsequently based on the model, which was calculated excluding E. echiurus. The 285 

modelled core distribution areas were described by the above described full coverage 286 

information on bathymetry and the station-specific mud content (%) and contrasted with the 287 

remaining areas of the German North Sea. 288 

 289 

Infauna communities inside the core areas 290 

Specific infauna communities were identified from a total of 4251 stations sampled inside 291 

the core distribution areas of the burrowing megafauna during the years 1997-2016 using the 292 

fuzzy k means clustering approach (Bezdek 1981) as available in the R package fclust (Ferraro 293 

and Giordani 2015). Different from commonly used hierarchical cluster approaches in benthic 294 

ecology, fuzzy k means clustering is an iterative, partitioning clustering algorithm to achieve 295 

optimal cluster homogeneity accounting for non-crisp assignments of objects (here: stations 296 

attributed by taxon abundances) to the resulting clusters. The uncertainty of assigning a given 297 

cluster to a chosen monitoring station is quantified in terms of a fuzzy membership ranging 298 

from 0 (i.e. minimum strength of affiliation to a given cluster) to 1 (i.e. maximum strength of 299 



affiliation to a given cluster). A fuzzy clustering approach was preferred over other crisp 300 

clustering techniques, such as hierarchical clustering, because previous applications in biotope 301 

mapping identified plausible infauna communities in the German North Sea (Fiorentino et al. 302 

2017; Pesch et al. 2015). Furthermore, fuzzy clustering results allow for alternative mapping 303 

procedures for selected biotopes of interest (Schönrock et al. in press) and calculating the 304 

Fuzzy Silhouette index as an alternative clustering validity measure (Ferraro and Giordani 305 

2015). The Fuzzy Silhoutte criterion performs equally well or even better than other cluster 306 

validity criteria (Campello and Hruschka 2006). Therefore, the Fuzzy Silhouette index was 307 

selected to evaluate different numbers of benthic infauna clusters (Ferraro and Giordani 308 

2015). 309 

The fuzzy k means clustering algorithm was applied to Hellinger transformed abundance 310 

data from all stations sampled inside the core areas (Rao 1995, Legendre and Legendre 1998, 311 

Legendre and Gallagher 2001, Borcard et al. 2011). Solutions with two, three, four and five 312 

clusters, respectively, were calculated and the highest quality of the cluster solution was 313 

identified at maximum values of the Fuzzy Silhouette index (Campello and Hruschka 2006). 314 

For each cluster solution, characteristic species of the infauna community were identified 315 

according to Salzwedel et al. (1985) modified after Rachor and Nehmer (2003) and Rachor et 316 

al. (2007). A species was accepted as characteristic for an assemblage if at least three out of 317 

the following five criteria were met: 318 

(1) Numerical dominance – ND: numerical dominance within the assemblage (abundance 319 

of a species divided by the total abundance of the assemblage)  320 

(2) Presence – P: presence within the association (proportion of stations within the 321 

assemblage the species was found at) 322 

(3) Fidelity in abundance – FA: degree of association regarding individuals (number of 323 

individuals of a species in the assemblage divided by the number of individuals of that 324 

species in the entire study area) 325 

(4) Fidelity in presence – FP: degree of association regarding stations (number of stations 326 

within an assemblage the species was found at divided by number of stations that 327 

species was found at in the entire study area) 328 

(5) Rank of dissimilarity – RD: rank of species contribution to dissimilarity of a cluster group 329 

compared with all other stations determined by SIMPER analysis (Clarke and Warwick 330 

1994)  331 



Threshold values were set to ND > 3 %, P > 60 %, FA > 50 %, FP > 50 % and RD according to 332 

ranks 1 to 8. These threshold values were less strict than those applied by Rachor et al. (2007), 333 

which did not allow to identify characteristic species for each cluster because of the high 334 

structural similarities among the clusters in the muddy sediments. 335 

The definition of the OSPAR biotope ‘Sea pen and burrowing megafauna communities’ 336 

specifically refers to muddy habitats as the cohesiveness of muddy sediments allows for the 337 

construction and maintenance of complex infaunal burrow structures. The cohesiveness of 338 

sediment is fundamentally dependent on the clay content. At a clay content of about 10 %, 339 

the erosion behaviour of sediment shifts from non-cohesive to cohesive (van Ledden et al. 340 

2004). In our data set, the mud fraction of the sediment was characterized by a grain size <63 341 

µm without distinguishing between silt and clay. Therefore, we defined sediments as being 342 

muddy at a mud content >10 %. The average (± SD) mud content of the sediment was 343 

calculated for each cluster and tested for deviation from 10 % using the perm Test routine of 344 

the R package jmuOutlier (Higgins 2004, Garren 2017). All cluster solutions were spatially 345 

extrapolated for the core distribution areas of the burrowing megafauna by Random Forests 346 

using the above listed predictor variables. For each of the two, three, four and five cluster 347 

solutions cluster categories were used as target variables by assigning the cluster to each 348 

station that showed the highest fuzzy membership score. 349 

 350 

Results 351 

Burrowing megafauna occurrence and sediment composition 352 

Abundance and biomass of Callianassa subterranea were both positively correlated with 353 

the mud content (grain size faction <63 µm) of the sediment (Table 1). The correlation 354 

coefficients were low but the relationships were statistically significant. The abundance of 355 

Upogebia deltaura was not related to the mud content of the sediment whereas the biomass 356 

of this species increased significantly with the mud content. For Upogebia stellata and 357 

Goneplax rhomboides no relationships could be confirmed between abundance and biomass, 358 

respectively, and the mud content of the sediment. The strongest positive correlation with 359 

the mud content was identified for the biomass of Echiurus echiurus whereas the abundance 360 

of this species was not related to the mud content. 361 

  362 



Table 1: Results of Spearman correlation analysis to test for correlations between abundance 363 

and biomass of taxa of the burrowing megafauna and the mud contents of sediments in the 364 

German North Sea. The numbers give the correlation coefficients (r). Numbers in parentheses 365 

give the number of replicates. Due to zero inflation absence data were excluded from the 366 

analysis. Significant correlations are marked with asterisks. 367 

  368 

 369 

Abundance of C. subterranea was highest in sediments with a mud content of >5-10 % 370 

(Figure 2). The abundance was significantly higher in this sediment than in any other sediment 371 

except for sediment with the highest mud content above 80 %. The biomass of C. subterranea 372 

was highest in sediments with high mud contents (>50 %). 373 

The abundance of U. deltaura varied only little with the mud content of the sediment but 374 

was significantly reduced in sediment with a mud content of >10-20 %. The biomass of U. 375 

deltaura increased towards sediments with increasing mud content (>10 %) but only very few 376 

records for this species were available from sediments with the highest mud content (>80 %). 377 

Abundances and biomass of U. stellata and G. rhomboides did not show any relationship 378 

with the mud content of the sediment. However, both species were entirely missing from 379 

sediments with highest mud contents.  380 

The abundance of E. echiurus was highest in sediment with a mud content of >5-10 % but 381 

low on all other sediment types. The variations were mostly not significant. There were only 382 

very few records of E. echiurus and no biomass record from sediments with a mud content 383 

>80 %. The median biomass of E. echiurus was highest in sediments with a mud content of >5-384 

10 % but also increased towards sediments with elevated mud content (>20 %). 385 

Abundance Biomass

Species (ind. m
-2

) (g m
-2

)

Callianassa subterranea 0.06* (1989) 0.25* (1474)

Upogebia deltaura -0.05 (412) 0.19* (343)

Upogebia stellata 0.03 (46) 0.16 (40)

Goneplax rhomboides -0.06 (72) 0.08 (72)

Echiurus echiurus -0.04 (146) 0.29* (43)



  386 

Figure 2: Abundance (ind. m-2 – left-hand panel) and biomass (g m-2 – right-hand panel) 387 

distributions of species of the burrowing megafauna in sediments with different mud contents 388 

(%) in the German North Sea. Letters display the results of permutation tests: boxes that share 389 

the same letter are statistically not different. Number in brackets give the number of 390 

occurrences of the respective species in the dataset. 391 
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Callianassa subterranea

Upogebia deltaura

Upogebia stellata

Goneplax rhomboides

Echiurus echiurus
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(390) (388) (1170) (854) (793) (31) (390) (388) (1170) (854) (793) (31)

AB AB C AB A B A B BC C ABC

(78) (170) (94) (52) (16) (2) (78) (170) (94) (52) (16) (2)

A A A A A A A A

(3) (5) (29) (9) (3) (5) (29) (9)

A A A A A A A A

(6) (37) (28) (1) (6) (37) (28) (1)

AB A AB B B AB A B AB B AB

(9) (17) (11) (46) (61) (2) (9) (17) (11) (46) (61) (2)

Mud content [%] Mud content [%]



 392 

Core areas of distribution of the burrowing megafauna in the German North Sea 393 

The core distribution areas of the burrowing megafauna in the German North Sea extend 394 

along the paleo valley of the river Elbe from the inner German Bight towards the central North 395 

Sea (OOB Error = 0.23; Kappa = 0.57 – Figure 3A). In the inner part of the German North Sea 396 

the distribution of the burrowing megafauna is scattered whereas in the central-western part 397 

of the German EEZ of the North Sea it forms an extensive, homogenous area of occurrence 398 

with a narrow, more scattered extension towards the central-northern part of the EEZ. The 399 

core areas were primarily determined by the occurrences of C. subterranea and U. deltaura. 400 

G. rhomboides and U. stellata are comparatively rare in the German North Sea and show 401 

similar distributions as C. subterranea and U. deltaura. Another considerable fraction of the 402 

core area was located at the base of the narrow north-western stretch of the German EEZ. 403 

This was primarily the core distribution area of E. echiurus. When E. echiurus was excluded 404 

from the analysis to reduce the rate of misclassification of the model (OOB Error = 0.22; Kappa 405 

= 0.57), this area was no longer designated as part of the core distribution areas of the 406 

burrowing megafauna (Figure 3B). In total, the core distribution areas extended over 7560 407 

km2 when E. echiurus was included in the analysis. Without E. echiurus, the core areas were 408 

reduced by about 11.6 % to 6681 km2. 409 



   410 

Figure 3: Predicted core distribution areas of (A) the entire burrowing megafauna and (B) the 411 

burrowing megafauna excluding Echiurus echiurus in the German North Sea. ‘No data’ 412 

indicates areas where no data on sediment types were available from the geological map by 413 

Laurer et al. (2013).  414 

 415 

The mud content of the sediments inside the core distribution areas of the burrowing 416 

megafauna (excl. E. echiurus) varied substantially from almost zero to more than 80 % (Figure 417 

4A). Similarly, the mud content of the sediment was very variable outside the core areas, 418 

however, with lower maximum mud contents. Consequently, the mud content was 419 

significantly higher inside the core areas than outside (Wilcoxon permutation test: p < 0.01). 420 

Most sediments inside and outside the core areas were characterized by relatively low mud 421 

content (see supplementary Figure S2). In 97.3 % of the area inside the core areas the 422 

sediment had a maximum mud content of 20 % with the largest fraction (42.6 %) having a mud 423 

A

B



content of >5-10 %. Outside the core area, the mud content was ≤20 % in 92.6 % of the area 424 

with the largest fraction (69.5 %) having a mud content < 5 %. 425 

Outside the core area the burrowing megafauna occurred in a wide range of water depths 426 

from zero down to almost 70 m (Figure 4B). The core areas of distribution of the burrowing 427 

megafauna (excl. E. echiurus) were restricted to a much narrower range of water depth 428 

ranging from about 25 to 55 m. The water was significantly deeper inside the core area than 429 

outside (Wilcoxon permutation test: p < 0.01). 430 

  431 

Figure 4: (A) Mud content of the sediments and (B) water depth inside and outside the 432 

predicted core areas of distribution of the burrowing megafauna (excl. Echiurus echiurus) in 433 

the German North Sea. Asterisks indicate significantly different mud contents and water 434 

depths, respectively, inside and outside the core areas (Wilcoxon permutation test: each p < 435 

0.01).  436 
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Infauna communities inside the core areas 437 

The validation measures (OOB Errors, Kappa – Figure 5A-D) suggested that models 438 

realistically predicted infauna community (or association) type (i.e. Cluster) at different levels 439 

of resolution. The Fuzzy Silhouette index to evaluate the optimal number of infauna clusters 440 

as identified by fuzzy clustering varied between the solutions from 0.40 to 0.56. 441 

Cluster I of the two cluster solution (Fuzzy Silhouette index: 0.40) was located in two major 442 

areas in the western central part of the German North Sea and in some patches in the central 443 

northern part of the region (Figure 5A). Additionally, some scattered patches of Cluster I 444 

stretched from around the island of Helgoland along the Elbe paleo river valley towards the 445 

central region of the German North Sea. Cluster II of this solution showed a relatively joint 446 

distribution in the central part of the area. 447 

In the three cluster solution (Fuzzy Silhouette index: 0.51), Cluster I of the two cluster 448 

solution split into two separate clusters (Figure 5B). The new Cluster I still occupied the central 449 

and northern parts of the former Cluster I and a small area around Helgoland whereas the 450 

newly formed Cluster III occupied the scattered occurrences between Helgoland and the 451 

offshore areas. The former Cluster II persisted as identified by the two cluster solution but was 452 

progressively split into the Clusters II, IV and V in the higher order solutions (Figures 5C and 453 

D). The extent and distribution of the Clusters I and III remained unchanged in the four cluster 454 

solution (Fuzzy Silhouette index: 0.56) and in the five cluster solution (Fuzzy Silhouette index: 455 

0.50).  456 



 457 

Figure 5: Distribution of clusters of infauna assemblages inside the predicted core distribution 458 

areas of the burrowing megafauna (excl. Echiurus echiurus) in the German North Sea as 459 

identified by fuzzy clustering. The maps show the interpolated areas of distribution of the 460 

clusters for the (A) 2-cluster solution, (B) 3-cluster solution, (C) 4-cluster solution, and (D) 5-461 

cluster solution. For the distribution of occurrences of the species of the burrowing 462 

megafauna inside the clusters see supplementary Figure S3. ‘No data’ indicates areas where 463 

no data on sediment types were available from the geological map by Laurer et al. (2013). 464 

 465 

Depending on the solution the number of characteristic species per cluster varied between 466 

two and ten (Table S3). Phoronids were characteristic for all infauna clusters. The brittle star 467 

Amphiura filiformis was a characteristic species of Cluster I for all solutions whereas the 468 

bivalve Corbula gibba was characteristic for the Cluster II and all clusters that emerged thereof 469 

in higher order solutions (Clusters IV and V). The polychaetes Owenia fusiformis, Spio 470 

symphyta and Spiophanes bombyx were characteristic for Cluster III only. 471 

The mud content of the sediment was consistently highest in all areas assigned to the 472 

infauna Cluster I (Figure 6). The average (± SD) mud content of the sediment from the stations 473 

of Cluster I varied between 29.1 ± 26.2 % and 37.2 ± 25.7 % and was significantly higher than 474 

in the areas of all other clusters. For all solutions, the average mud content of the sediment 475 

of Cluster I was significantly above 10 % (p < 0.01). The stations located in the areas of Cluster 476 

A B

C D



III had the lowest average mud content, which was always significantly below 10 % (p < 0.01). 477 

Accordingly, the sediments of this cluster were categorized as not being muddy. The 478 

sediments of Clusters II, IV and V had intermediate average mud contents ranging from 15.2 479 

± 6.5 % to 23.1 ± 18.0 %. The mud content of the sediment in Clusters II, IV and V were 480 

consistently above 10 % (p < 0.01). 481 

 482 

Figure 6: Average (± SD) mud content of the sediments inhabited by different infauna clusters 483 

inside the core distribution areas of the burrowing megafauna (excl. Echiurus echiurus) in the 484 

German North Sea as identified by fuzzy clustering. 485 

 486 

Discussion 487 

Distribution of the burrowing megafauna 488 

The distribution of the burrowing megafauna in the German North Sea was analysed for 489 

five species. The mud shrimps Callianassa subterranea and Upogebia deltaura occurred 490 

reliably and in considerable densities. The remaining burrowing megafauna species (Upogebia 491 

stellata, Goneplax rhomboides and Echiurus echiurus) largely occurred in the same areas as C. 492 

subterranea and U. deltaura but at much lower densities and much less consistently. 493 

Accordingly, the core areas of distribution of the burrowing megafauna were mainly 494 

determined by the distribution of the two common and abundant species C. subterranea and 495 

U. deltaura. 496 
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Our dataset did not provide any entries on the Norway lobster Nephrops norvegicus. N. 497 

norvegicus burrows down to 30 cm into the sediment (Rice and Chapman 1971) and is, thus, 498 

unlikely to be caught by our standard sampling device. The distribution of the species extends 499 

into the southern North Sea allowing for intensive Nephrops fishery off the Danish west coast 500 

(Ungfors et al. 2013). A previous study showed that N. norvegicus occurs in the central 501 

northern part of our study region (Neumann et al. 2013) in an area that is already part of the 502 

modelled core distribution areas as predicted from the occurrence of the other burrowing 503 

megafauna species. Accordingly, we expect that the absence of data on this species in our 504 

dataset had no implications for the identification of the core distribution areas and the 505 

characterization of the infaunal assemblages. However, due to its relatively large body size N. 506 

norvegicus likely is a key species of the burrowing megafauna on muddy sediments of the 507 

North Sea. The species is under intense commercial use (Ungfors et al. 2013). Accordingly, it 508 

will be essential in future monitoring to put special emphasis on the population status of N. 509 

norvegicus and to apply alternative sampling methods that capture this species 510 

representatively in order to understand the effects of bottom trawling and the extraction of 511 

biological resources on the structure and the environmental status of the threatened muddy 512 

biotope. 513 

Previous studies suggest that in the North Sea mud shrimps predominantly occur in muddy 514 

sediments (Witbaard and Duineveld 1989, Rowden et al. 1998), which probably facilitate the 515 

maintenance of the complex burrows. Additionally, muddy sediments seem to support the 516 

nutrition of mud shrimps. Stomach content analyses revealed that the proportion of the finest 517 

grain size fraction was disproportionally higher inside the stomach of C. subterranea and U. 518 

deltaura than in the sediments the shrimps were living in (Pinn et al. 1998, Stamhuis et al. 519 

1998). Despite the preference for muddy sediments various mud shrimp species of the genera 520 

Callianassa and Upogebia, including C. subterranea and U. deltaura, have been reported from 521 

a wide range of sediments (Coleman and Poore 1980). Mud shrimps achieve considerable 522 

abundances also on coarse sediments and even in gravel and maerl beds (Tunberg 1986, 523 

Hughes and Atkinson 1997, Hall-Spencer and Atkinson 1999) suggesting that the species are 524 

generalists with regard to sediment conditions. The habitat generalism of mud shrimps was 525 

corroborated in this study by the occurrence of C. subterranea and U. deltaura on diverse 526 

sediments in the German North Sea. 527 



The habitat selectivity of the mud shrimps may have been masked in our data by 528 

ontogenetic shifts in habitat selection. The species were not numerically concentrated in 529 

muddy sediments. However, the biomasses of both, C. subterranea and U. deltaura, were 530 

highest in sediments with elevated mud contents suggesting that especially larger individuals 531 

preferentially inhabit muddy sediments. Ontogenetic shifts in habitat use are common 532 

(Werner and Gilliam 1984) and have previously been reported for marine benthic crustaceans 533 

(Pallas et al. 2006). Alternatively, good nutritional conditions may have led to larger body sizes 534 

of the mud shrimps in the fine grained and organically enriched muddy sediments. 535 

The detection of a preference of the deep-burrowing mud shrimps for muddy habitats may 536 

have also been compromised by the use of inappropriate sampling device. Burrows of mud 537 

shrimps extend deeply into the sediment (Nickell and Atkinson 1995) and individuals in deeper 538 

sections of the burrows may easily be missed by a common van Veen grab with a maximum 539 

penetration depth of 15-20 cm. Therefore, in studies specifically focusing on mud shrimps, 540 

specimens are sampled using, for example, box corers that penetrate deeply into the sediment 541 

(Howe et al. 2004, Tempelman et al. 2013). The data used in our analyses were collected 542 

within broad programs on benthic ecology and were not specifically compiled to investigate 543 

the distribution of the burrowing megafauna. Nevertheless, our data reveal that mud shrimps 544 

occur in a wide range of sediments in the south-eastern North Sea which is in agreement with 545 

previous reports on the distribution of these species. 546 

Habitat requirements of E. echiurus in the North Sea have not been investigated in detail. 547 

Previous studies confirm the occurrence of E. echiurus in muddy habitats of the German Bight 548 

where the species can attain high densities (Rachor 1980). In this study, the biomass of E. 549 

echiurus correlated positively with the mud content of the sediment. Our results showed that 550 

the species also occurs in sediments with relatively low mud content of only 5-10 %. E. echiurus 551 

is sensitive to stress induced by, for example, extreme temperatures and oxygen deficiency, 552 

which can induce strong fluctuations in population density and even temporary local 553 

extinction (Rachor 1977). The unstable and patchy occurrence of E. echiurus in the south-554 

eastern North Sea reduced the ability of the Random Forests to predict the core distribution 555 

areas of the burrowing megafauna, which was not based on abundance or biomass data but 556 

on presence/absence data. Accordingly, we excluded E. echiurus from the analysis to improve 557 

the model quality and to achieve a more reliable prediction of the core distribution areas. 558 



The core distribution areas of the burrowing megafauna were located along the paleo 559 

valley of the river Elbe. The valley extends from the Elbe estuary towards the central North 560 

Sea. The seafloor of the funnel shaped river valley is characterized by a variable but mostly 561 

elevated mud content (Bockelmann et al. 2018). Accordingly, the mud content of the sediment 562 

was on average higher inside the core distribution areas than outside confirming a general 563 

preference of the burrowing megafauna for muddy sediments. The organically enriched 564 

muddy sediments likely promote food supply for the deposit feeding organisms of the 565 

burrowing megafauna, which extract nutritional organic material from ingested sediment 566 

(Dworschak 1987). 567 

The burrowing megafauna was mainly distributed in a narrow range of water depth in 568 

deeper offshore sections of the paleo river valley. Towards the inner German Bight, the 569 

occurrence of the burrowing megafauna was scattered suggesting a higher environmental 570 

heterogeneity in the shallower sections of the valley. Water depth has a profound impact on 571 

the structure of benthic communities in the south-eastern North Sea (Armonies et al. 2014). 572 

Storm induced waves can mobilize sediments in shallow waters (Warner et al. 2012). 573 

Additionally, the burrowing activity of mud shrimps promotes sediment erosion (Amaro et al. 574 

2007). The joint action of wave force and biologically induced sediment destabilization 575 

increases spatial variability in the structure of benthic communities (Borsje et al. 2008, Gray 576 

2002, Ramey et al. 2009) and likely promotes the patchiness in the distribution of the 577 

burrowing megafauna in the shallower parts of the Elbe river valley. 578 

 579 

Infauna communities in the core distribution areas of the burrowing megafauna 580 

Depending on the solution of the fuzzy clustering, two to five different infauna clusters 581 

were identified inside the core distribution areas of the burrowing megafauna. In previous 582 

studies, three infauna associations have been identified inside the paleo Elbe river valley 583 

(Salzwedel et al. 1985). The Amphiura filiformis association and the Nucula nitidosa 584 

association are typically associated with muddy sediments with the latter occurring primarily 585 

in the inner German Bight off the mouth of the Elbe. The Spio filicornis association has been 586 

suggested to be a transient variant of the Amphiura filiformis association with high 587 

compositional overlap also with the Tellina fabula association, which typically occurs on fine 588 

sand (Salzwedel et al. 1985). At the level of the three cluster solution and above, Cluster III 589 

separated from all other clusters. Characteristic species of Cluster III were the polychaetes 590 



Spio symphyta, Spiophanes bombyx and Owenia fusiformis, which abound primarily on fine 591 

sand (Van Hoey et al. 2004). Characteristically, the sediments at the stations of Cluster III had 592 

the lowest average mud content of below 10 %. The geographical position of Cluster III 593 

between the muddy areas of the inner and the outer river valley roughly fits with the 594 

distribution of the Spio filicornis association as depicted by Salzwedel et al. (1985). The 595 

dominance of typical fine sand species and the low mud content of the sediment argue against 596 

a classification of Cluster III as OSPAR biotope type ‘Sea pen and burrowing megafauna 597 

communities’. 598 

Cluster I was identified at the level of the three cluster solution and persisted unchanged 599 

throughout all higher order solutions. Cluster I was mostly located in the deeper offshore 600 

sections of the paleo Elbe valley. The characteristic species of Cluster I was the ophiuroid 601 

Amphiura filiformis, which typically dominates benthic assemblages of muddy habitats in the 602 

southern North Sea (Künitzer 1990, Rachor et al. 2007). The sediments in the areas occupied 603 

by the benthic assemblages of Cluster I had the highest average mud content with almost 30 604 

% of all stations showing a mud content ≥50 %. Accordingly, Cluster I represents the benthic 605 

assemblage that typically evolves in muddy habitats of the south-eastern North Sea. This 606 

cluster fully complies with the definition of the OSPAR biotope type ‘Sea pen and burrowing 607 

megafauna communities’. Cluster I covers an area of 2546 km2 in the south-eastern North Sea 608 

which equals to 7.2 % of the study region. 609 

The distribution of Cluster I was intersected by extensive areas occupied by the infauna 610 

Clusters II, IV and V, which are also entirely located inside the paleo Elbe valley. Similar to 611 

Cluster I, these clusters comprised characteristic species, which are typical for the Amphiura 612 

filiformis association. The average mud content of the sediments inhabited by these clusters 613 

was lower than for the sediments of Cluster I but on average clearly above 10 %. Accordingly, 614 

these clusters also comply with the definition of the OSPAR biotope type ‘Sea pen and 615 

burrowing megafauna communities’. The integration of these clusters increases the spatial 616 

extension of the biotope to 4980 km2 which equals to 14.1 % of the study region. 617 

Cluster I spreads homogeneously over large areas. Contrarily, Clusters II, IV and V are 618 

intermixed with each other indicating considerable habitat heterogeneity within the areas 619 

occupied by these clusters. Clusters II, IV and V separated from each other at the highest levels 620 

of analytical resolution and show thus a relatively high degree of structural similarity. The data 621 

set used herein was compiled over numerous years. Accordingly, the pattern of patchiness 622 



may the combined effect of spatial and temporal variation in the benthic communities at 623 

various scales. 624 

The Amphiura filiformis association is the most widespread infauna association inside the 625 

paleo Elbe valley (Salzwedel et al. 1985) but occurs also on extensive areas in other parts of 626 

the southern North Sea, for example on the Oyster Ground off the coast of the Netherlands 627 

(Duineveld et al. 1991). It is characterised by a considerable species number and intermediate 628 

total infauna abundance and biomass (Künitzer 1990). The spatial distribution of the 629 

association in the south-eastern North Sea is stable since the earliest comprehensive studies 630 

on the distribution of the benthic fauna (Hagmeier 1925, Salzwedel et al. 1985, Rachor and 631 

Nehmer 2003, Fiorentino et al. 2017). The occurrence of different infauna clusters within the 632 

Amphiura filiformis association illustrate the structural heterogeneity of the biotope ‘Sea pen 633 

and burrowing megafauna communities’. The clusters had similar characteristic infauna 634 

species because all clusters occurred in muddy sediments with similar environmental 635 

conditions. Characteristic species are not necessarily unique characteristics of specific 636 

assemblages but rather indicators of environmental conditions. The structural variations 637 

between the clusters are primarily based on quantitative variations in abundances of all 638 

species of the associated assemblages. These variations among the clusters have to be taken 639 

into account when the responses of the benthic communities to environmental stressors are 640 

being evaluated. 641 

 642 

Conclusions 643 

The occurrence of burrowing megafauna alone is not a conclusive indicator for the 644 

distribution of the OSPAR biotope ‘Sea pen and burrowing megafauna communities’ in the 645 

German North Sea. The ultimate identification of the biotope and its structure required 646 

additional analysis of the associated benthic communities and the spatial variations thereof 647 

related to sedimentary conditions. The combined analysis of extensive sets of environmental 648 

and biological data in a modelling approach allowed for the conclusive designation and 649 

characterization of the specific biotope. The existence of various infauna clusters inside this 650 

area suggests a considerable heterogeneity of the biotope that would have been missed if the 651 

biotope type was characterized solely by the mud content of the sediment and the occurrence 652 

of the burrowing megafauna. The additional analysis of the associated infauna communities 653 



provided information on the structural diversity of the biotope that will be essential for the 654 

interpretation of the spatial and temporal variations of the benthic communities in response 655 

to environmental fluctuations and stressors. 656 

A conclusive environmental monitoring requires appropriate spatial coverage of biotopes. 657 

Therefore, knowledge of the extent, distribution and structuring of protected biotopes is 658 

essential for the development of monitoring programs to evaluate the environmental status 659 

according to the requirements of the MSFD. Sources and magnitude of natural variability, 660 

including the spatial heterogeneity of benthic assemblages, must be known to evaluate 661 

variations in response to environmental stressors. The status and spatial extent of a biotope 662 

as depicted from extensive long-term and large-scale datasets can provide a baseline for the 663 

evaluation of future changes and the effectiveness of management measures (Edwards et al. 664 

2010). The maps created herein can facilitate the communication of environmental 665 

information to managers and policy makers (Degraer et al. 2008). Furthermore, the full 666 

coverage spatial maps can support marine spatial planning, as the planning of networks of 667 

marine protected areas requires information on the spatial extent and distribution of 668 

scattered habitats and on the species inventories to take into account the connectivity of 669 

populations (Sundblad et al. 2011). 670 
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Supplementary material 907 

Selection of burrowing megafauna species for analysis 908 

Abundance and biomass data for nine taxa of the burrowing megafauna were available in our 909 

dataset (supplementary Table S1). However, not all species were considered in the analyses. 910 

The mud shrimps Callianassa subterranea, Upogebia deltaura and Upogebia stellata occur 911 

abundantly in sediments of the southern North Sea (Adema et al. 1982) where their 912 

bioturbating activity has substantial effects on biogeochemical processes (Atkinson and Taylor 913 

2005). C. subterranea is the only species of the genus Callianassa in the southern North Sea. 914 

Accordingly, the taxa C. subterranea and Callianassa sp. were aggregated in the taxon 915 

Callianassa subterranea. The taxon Upogebia sp. was excluded from the analysis as it probably 916 

comprised U. deltaura and U. stellata with, however, unknown contributions of both species. 917 

Similarly, Pestarella tyrrhena was not considered in the analysis. P. tyrrhena is a warm-water 918 

species that has only recently arrived in the southern North Sea (Lindley et al. 2010). The 919 

rather sporadic occurrence of this species in our dataset suggests that P. tyrrhena may not 920 

have fully established in the study region and that the data may not representatively display 921 

the species’ actual habitat preferences. Goneplax rhomboides, too, is a recent immigrant in 922 

the southern North Sea. However, this species was frequently encountered at numerous 923 

stations indicating that it has well established in the study region. For the analysis, G. 924 

rhomboides and Goneplax sp. were aggregated in the taxon Goneplax rhomboides as this is 925 

the only species of this genus that has ever been recorded in the southern North Sea. Echiurids 926 

are not explicitly mentioned as typical representatives of the burrowing megafauna in the 927 

OSPAR definition of the biotope type ‘Sea pen and burrowing megafauna communities’. 928 

Nevertheless, we considered the species Echiurus echiurus in our analyses as it can reach 929 

considerable abundances in the study region and has, similar to the mud shrimps, profound 930 

effects on the biogeochemistry of sediments (Rachor and Bartel 1981). Therefore, the 931 

correlation analyses between abundance and biomass of the burrowing megafauna and the 932 

mud content of the sediments was performed for five megafauna species: Callianassa 933 

subterranea, Upogebia deltaura, Upogebia stellata, Goneplax rhomboides, and Echiurus 934 

echiurus. For the distribution of the occurrences of these species at the stations sampled in 935 

the German North Sea see the supplementary Figure S1.  936 



Table S1: Number of data base entries for abundance and biomass of species of the burrowing 937 

megafauna in the German North Sea. Only stations were taken into account for which 938 

information on the grain size distribution of the sediment was available. Additionally, the total 939 

number of occurrences in the dataset is given for each species of the burrowing megafauna.  940 

  941 

942 

No. of occurrences

Taxon Abundance Biomass in the dataset

Callianassa subterranea 2038 1503 2225

Upogebia deltaura 412 343 432

Upogebia stellata 46 40 46

Goneplax rhomboides 72 72 73

Echiurus echiurus 146 43 185

Upogebia  sp.* 40 37 40

Pestarella tyrrhena* 27 26 27

*species not considered in analyses

No. of entries



943 
Figure S1: Records of presence/absence of species of the burrowing megafauna in the 944 

dataset from the German North Sea  945 



Table S2: Out Of Bags (OOB) Errors describing the specificity of the Random Forests models 946 

calculated for each taxon of the burrowing megafauna individually and for the combined 947 

occurrence data of all taxa with (‘Megafauna’) and without Echiurus echiurus (‘Megafauna 948 

excl. E. echiurus’).  949 

  950 

Taxon OOB Error (%)

Callianassa subterranea 26.4

Upogebia deltaura 26.6

Upogebia stellata 54.3

Goneplax rhomboides 43.8

Echiurus echiurus 40.0

Megafauna 23.6

Megafauna excl. E. echiurus 22.0



 951 

Figure S2: Area percentages for mud classes derived from the map of Laurer et al. (2013) 952 

calculated separately for stations inside and outside the core distribution areas of the 953 

burrowing megafauna (excl. Echiurus echiurus) in the German North Sea  954 
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 955 
Figure S3: Distribution of occurrences of the burrowing megafauna inside the infauna 956 

clusters as identified by fuzzy clustering. ‘No data’ indicates areas where no data on 957 

sediment types were available from the geological map by Laurer et al. (2013).  958 



Table S3: Characteristic species of clusters of infauna assemblages identified inside the core 959 

distribution areas of the burrowing megafauna (excl. Echiurus echiurus) in the German North 960 

Sea 961 

  962 

Solution

Characteristic species I II I II III I II III IV I II III IV V

Bivalvia

Corbula gibba x x x x x x x x x x

Nucula nitidosa x x x x x x

Polychaeta

Kurtiella bidentata x x x x

Lanice conchilega x

Owenia fusiformis x x x x

Pholoe baltica x

Poecilochaetus serpens x

Scalibregma inflatum x

Spio symphyta x x x

Spiophanes bombyx x x x x x

Crustacea

Eudorella truncatula x

Harpinia antennaria x

Upogebia deltaura x

Nemertea

Nemertea x

Lineidae x

Phoronida

Phoronidae x x x x x x x x x x x x x x

Echinodermata

Amphiuridae x x x x

Amphiura filiformis x x x x x x x x x

Echonocardium cordatum x

Five clusterFour clusterThree clusterTwo cluster
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