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Abstract

A general framework for the implementation of ecological models directed towards the falsification of knowledge, as
opposed to models directed at making predictions. is proposed. The framework is constructed by defining a set of classes,
with their interrelationships, in an object-oriented programming language. The classes represent the major levels of the
so-called levels-of-integration hierarchy: individual, population and system. The abiotic physical and chemical environment
is implemented by the classes condition and resource, respectively. Class habitat is used to represent the spatial structure of
an ecosystem. The simulation is controlled by a class called analvser. The simulation mechanism is implemented by
deriving all these real-life objects from a more abstract class simobject. The engine of the simulation is formed by a dynamic
list of references to simobjects, sorted according to the time each simobject should be activated next. The data of each object
are implemented in class datobject, from which simobject is derived. The applicability of this framework. called OSIRIS
(object-oriented simulation framework for individual-based simulations), is shown for a population dynamical study on
daphnids. The effects of variation among individual daphnids on the growth rate and structure of a population of daphnids
are studied by comparing the results of the individual-based model with those of a life table. Moreover, variation in
population growth rate over time. which parameter cannot be derived from a life table, is calculated. Finally, the sensitivity
of the model for the number of modelled individuals and the sampling interval is analysed.

Keywords: Model: Falsification versus prediction; Levels of integration: Individuals versus ecosystem

1. Introduction

A variety of mathematical models is currently
applied in ecological studies. Failure to recognise
that different approaches underlay these models may
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easily lead to the adoption of a type of model less
suitable for the purpose intended (Hogeweg and
Richter, 1982). Therefore, each modelling activity
should start with a proper definition of the goal of
the model (Starfield and Bleloch, 1986). Generally
spoken, two goals can be distinguished: (1) falsifica-
tion of knowledge and (2) making realistic predic-
tions. To a certain extent these goals seems to be
incompatible (Levins, 1966). These different goals
have lead to different types of models (Nisbet and
Gurney, 1982).
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The goal of models directed towards the falsifica-
tion of knowledge is ‘to represent current knowledge
as faithfully as possible so that this knowledge can
be tested for sufficiency in generating the overall
behaviour of the ecosystems, and thus reveal lacunae
in our current knowledge’ (Hogeweg and Richter,
1982). This implies that for these kind of models,
negative results, i.e. discrepancies between model
and behaviour and ‘real world’ observations, are in
fact positive results, as they stimulate further re-
search for new mechanisms. It is important to stress
that even complete knowledge of the causal relation-
ships within a system does not necessarily lead to
predictive power as is shown by simple deterministic
models that show chaotic behaviour for part of their
parameter range (May, 1975; Scheffer, 1990). In
their most abstract form, knowledge-oriented models
are sometimes referred to as mini models (Hogeweg
and Richter, 1982). Well known examples of such
mini models are the Lotka-Volterra predation and
competition models (Yodzis, 1989). More complex
knowledge-oriented models share their expanding
number of parameters and dependency on data with
prediction-oriented models. Because falsification of
hypothesis is the essential objective of knowledge-
oriented models, such models should in principle
only included those state variables and parameters
that are measurable under experimental conditions.

Prediction-oriented models differ from knowl-
edge-oriented models in their objective. Their goal is
to produce realistic and reliable output, mostly for
management purposes, and as a consequence of this
they depend heavily on field data. In their extreme,
these models may consist of neural networks which
relate the output with the input using a black box of
hidden layers (Sarle, 1994). Mostly however, a more
reductionistic approach is followed. The ecological
system under study is divided in compartments and
the fluxes between these compartments are expressed
in a set of differential equations. Together, these
equations form a simulation model. This approach
results in large numbers of state variables, process
formulations and parameters. The value of the pa-
rameters is either determined a priori by expert
judgement (Jgrgensen et al., 1991) or a posteriori by
calibration procedures. The suggestion that these
models properly represent the causal relationships of
the studied system is under criticism (Peters, 1990;

Van Tongeren, 1995). Indeed, Klepper (1989)
showed that a wide range of parameter sets yielded
the desired relation between input and output in a 80
parameter compartment model of an aquatic system.
This shows that whereas the model as a whole may
produce reliable output (the prediction-oriented goal),
no conclusions can be drawn about the validity of its
components (the knowledge-oriented goal).

Because of their applied nature, a wide variety of
prediction-oriented models is currently used by ecol-
ogists. When prediction is the main target, it pays to
be opportunistic. For knowledge-oriented models,
however, which strive for a mechanistic explanation
of the studied phenomena, we may expect some
degree of generality in the way ecological systems
are represented. This generality expresses our current
conceptualisation of ecological systems, as described
in basic textbooks (i.e. Begon et al., 1990). Some
attempts have already been made to create a more
formal description of this conceptual framework
(Baveco and Lingeman, 1992; Maley and Caswell,
1993). Such a framework can serve as a template for
a knowledge-oriented model of a specific ecological
system. We want to contribute to this process of
defining a basic format for a knowledge-oriented
model of an ecological system.

To reach this goal we start with a survey of the
entities, with their interrelationships, that should form
the building blocks of such a framework. We then
set out to formalize these entities by implementing
them as classes of an object-oriented programming
language. At first hand, the translation of a concept
into source code seems to be superficial. However, it
is important to recognize that there is often a tight
relation between the development of a concept and
the tools to represent it. For instance, the develop-
ment of mathematics would not have been possible
without a mathematical notation. The suitability of
object-oriented programming languages for the im-
plementation of individual-based models has already
been stressed by Baveco and Lingeman (1992) and
Maley and Caswell (1993). We have come to the
conclusion that there are three levels of information
involved which can be represented by means of the
inheritance mechanism of object-oriented program-
ming (Meijer, 1988). We called the resulting frame-
work OSIRIS (object-oriented simulation framework
for individual-based simulations), after the egyptian
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god whose body, after being cut to pieces, was
restored by putting all the parts together. To show
the applicability of OSIRIS, we describe a Daphnia
application which we have built within the frame-
work. We have fed the model with experimentally
measured life-history parameters of individual
Daphnia and studied the resulting output parameters
from a population dynamical point of view.

2. Entities within ecological models

Individuals seem to be the most self-evident units
to be represented in knowledge-oriented models
(Hogeweg and Richter, 1982). At least in animal
ecology, they are the best defined entities (Mac-
Mabhon et al., 1981). An increasing number of papers
has appeared following this individual-based ap-
proach (Huston et al., 1988; DeAngelis and Gross,
1991; Van Winkle et al., 1993). Individual-based
models allow to take two basic aspects of ecological
systems into account which were paid little attention
to in traditional modelling. First, individuals vary in
their phenotype from each other (Chambers, 1993;
Tyler and Rose, 1994) and secondly, interactions
between them take place on a local scale (Mccauley
et al., 1993; Wilson et al., 1993).

However, an ecological model cannot be built
from individuals only. This holds of course for the
modelling of the abiotic physical and chemical envi-
ronment, but also for some of the biotic components.
Starfield and Bleloch (1986) stress that to be suc-
cessful in the modelling of ecological systems the
scope and detail of the model should be chosen
carefully: the choice for modelling individuals in the
focus of the model does not imply that biological
components on the border of the model should also
be represented at this level of detail. For instance,
the food of an organism which is modelled at the
individual level may be represented at the population
level or even as a functional group.

The insight that ecological processes can be ob-
served with varying scope and detail is expressed in
the hierarchy of ‘levels of integration’ (Begon et al.,
1990). Within an ecological context these levels may
range from single genes to whole landscapes. A
more common, restricted list contains the following
levels: individual, size group, population, functional

Table 1

A hierarchical representation of the levels of integration which are
currently used by ecologists. From this general list, two selections
of entities can be made, one used in production studies and one
used in population dynamics

Levels of integration Production studies Population dynamics

Individual Individual
Size group Size group !
Population T Population

Functional group Functional group !
Community T Community
Ecosystem Ecosystem

group, community, ecosystem (Table 1). We agree
with Polishchuk (1992) that this list, although self-
evident at first sight, is in fact a combination of two
lists, originating from different viewpoints, one pro-
duction-oriented and the other focusing on popula-
tion dynamics. A major difference between produc-
tion-oriented and population dynamical studies is the
unit by which biological tissue is described, biomass
respectively individuals.

Production-oriented compartment models of a cer-
tain area have a long tradition and formed in the late
sixties the basic concept behind the International
Biological Programme (Cameron and Billingsley,
1975). These type of models are often prediction-ori-
ented. Within this formalism, an ecosystem is a
spatial unit with relative little exchange of nutrients
with the surrounding world. The nutrient dynamics
within a certain ecosystem are modelled by grouping
organisms according to similarities in their food
resources and their predators in functional groups
(DeAngelis, 1992; Pauly and Christensen, 1995).
However, because many species have different food
types and /or predators during their ontogeny, differ-
ent size classes of a single population may be found
in different functional groups. The basic criticism
from a knowledge-oriented point of view on the
concept of functional groups is that the criterium by
which organisms are pooled in poorly defined groups.
Therefore, once measured, the parameters of a func-
tional group have a limited relevance for other
ecosystems and it is difficult to design experiments
in which they can be measured accurately.

The population dynamical hierarchy of an individ-
ual, which belongs to a population, which is part of a
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community, seems a better starting point for a
knowledge-oriented model. At least in animal ecol-
ogy, individuals are clearly defined and recogniz-
able. Given a certain geographical area and a clear
taxonomy, also a population is. at least theoretically,
a properly defined entity. A community, however, is
a more flexible entity (Diamond and Case, 1986).
We agree with Begon et al. (1990} that the ecosys-
tem and the community represent the same level of
biological complexity. They see an ecosystem as a
combination of the whole biotic community and the
abiotic physical and chemical environment.

The abiotic components of an ecosystem usually
taken into account are environmental parameters such
as temperature, light, nutrients and many others.
Begon et al. (1990) split these parameters into condi-
tions and resources. In their definition, conditions are
those environmental factors that affect components
of the ecosystem, but are not consumed (e.g. temper-
ature). Abiotic resources arc also external factors but
because they are depleted, there may be competition
for them (e.g. nutrients).

From this survey the following picture emerges.
An ecosystem is a concept which integrates the
concept of spatial structure with the concept of a
resource structure. The spatial units, or habitats, are
linked to form a spatial network, whereas the re-
sources are linked to form a trophic network. By
definition, resources interact on a local scale, that is
within habitats. We will further refer to these local
resources as ‘resource items’. Resources sensu lato
can take many forms. We suggest to distinguish
three types of resources: conditions, resources sensu
stricto and populations. following the major disci-
plines of the natural sciences: physics. chemistry and
biology. In our definition, condition items are those
entities which dynamics fall within the scope of
physics, such as light or temperature. Resource items
are those entities which, besides being governed by
the law of physics, also show chemical activity, such
as nutrients and detritus. The living objects. which
show besides physical and chemical activity also
biological activity, are represented as individuals,
grouped in populations.

We conclude that a knowledge-oriented model of
an ecological system can be built on the basis of the
following basic concepts: ecosystem, habitat, condi-
tion, condition item, resource. resource item, popula-

tion and individual. Using this approach, the state of
a system at a given moment in time can be given in a
relational database which lists all the individuals,
habitats, etc. To simulate the system, physical, chem-
ical and biological process formulations have to be
added to modify the records of these databases over
time. The link between a record and a set of func-
tions that acts on its contents is the basic concept
behind object-oriented programming. In the jargon of
this programming concept, the description of the
format of the record and the algorithms of functions
that act on its contents is called a class. The actual
records, which contain the data, are called objects.
At the creation of a new object, the class definition
acts as a template.

3. OSIRIS framework

In the tradition of program design by functional
decomposition (Yourdon, 1975) the development of
a program starts with definition of the context in
which the programme should function. In a so called
context diagram the relations between the pro-
gramme, which is still seen as a black box, and the
outside world are listed (Fig. 1). For a simulation
programme typically three kinds of information have
to be passed to and received from the model. (1)
Before starting each simulation the model has to be
fed with the databases which describes the state of
the system at the beginning of the simulation (inp

files), whereas the model returns the databases that

describes the state of the system at the end of each
simulation (our files). (2) To keep track of the state
of the system during simulation, the values of state
variables and process rates can be saved with a given
time interval (log files). (3) To document the differ-
ent runs of the model, all the above mentioned files
are listed in a set up file (ini file). Error messages
produced by the programme are written to an error
file Cerr file).

As a next step OSIRIS is decomposed. The func-
tional decomposition of a system for implementation
in an object-oriented programming language such as
C + + (Stroustrup, 1991) or SMALLTALK (Pinson
and Wiener, 1988) differs from that of a procedural
language such as FORTRAN or Pascal. In the ob-
ject-oriented programming concept two types of rela-
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(initialization)

inp files (construction)
v v
1

-—‘L OSIRIS H—><[ log files (simulation)
T
v v

Fig. 1. Context diagram of OSIRIS showing the five major steps in the simulation process (initialization, construction, simulation.

destruction and termination) and the files that are involved in each step.

tions among components of the system exist. These
relations are called HASA and ISA relations (Meijer,
1988). In the procedural programming concept lan-
guage only HASA relations are found.

ISA (from ‘is a’) relations express levels of ab-
straction. For instance, a human is also a primate, a
mammal, a vertebrate, an organism, a body of mass,
an entity (and not vice versa). One of the essential
innovations of object-oriented programming is that
these levels of abstraction. which play an important
role in human language, can be expressed directly by
means of a mechanism called inheritance. By refer-
ring in the class definition to another class as “base
class’, the variables and the functions of that base
class are automatically inherited. Classes that refer to
base classes are called *derived classes’. The chal-
lenge of object-oriented programming is to imple-

ment variables and functions at the highest possible
level of abstraction. For instance, the number of
vertebrae is a variable shared by all vertebrates and
so it would be unwise to implement it at the level of
a primate or a human. By doing so, all classes which
are derived from vertebrae can benefit from this
variable and the duplication of code is avoided.

In OSIRIS we chose to distinguish four levels of
abstraction (Fig. 2). At the most specific level (4) the
ecological recognizable units are implemented as the
classes System, Habitat, Condition, Conditionltem,
Resource, Resourceltem, Population and Individual.
To show the overall picture, all these classes are
referred to as a single class BioObject in Fig. 2.
Their interrelationships, which are discussed in depth
in the following paragraphs, are implemented by
means of pointers, arrays and Btrees and two addi-

(level 1)
DatObject (level 2)
1 1
"SimObjectTaskH " SimObject -" “SimObjectLink" (level 3)
T T
1 1 1
"BioObjectTaskH “ BioObject " "BioObjectLink" (level 4)

Fig. 2. ISA relations within OSIRIS (BioObject: one of Analyser, System. Habitat, Condition, Conditionltem, Resource. Resourceltem.

Population or Individual).
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tional classes, HabitatLink and ResourceLink. Both
link classes are referred to as class BioObjectLink in
Fig. 2. Although different in their biological mean-
ing, these classes share that we want to simulate their
behaviour. Therefore, they are all derived from a
class called SimObject. At the SimObject level of
abstraction (3), the simulation mechanism is imple-
mented, with the help of the class SimObjectTask.
At the last but one level (2) only the static properties
of an object are left in a class called DatObject. At
this level an object is seen as a record in a database,
with a given number of integer, real and string fields.
DatObject is derived from Object, a class without
any data or functionality, which forms the basic level
of abstraction (1). The derivation of every class from
one abstract class, which is an essential concept in
SMALLTALK (Pinson and Wiener, 1988), enables
us to benefit from a so called object-based library of
container classes (Borland International, 1993). The
benefit of such libraries is that complex data struc-
tures such as expandable arrays and balanced Btrees
(Knuth, 1969) are readily available.

HASA (from ‘has a’) relations are the type of
relations that form the structure of a relational
database. In a database system which is saved on
disk, HASA relations are implemented by including
the same field in the records of two different
databases. However, when loaded in the memory of
a computer, a more efficient way to implement
HASA relations between objects is by means of
pointers. In the case of OSIRIS, these pointers repre-
sent relations such as those between two spatially
linked habitats or between an individual and its
population. When the relation points to more than
one object, an array or a Btree of pointers is applied
(Maley and Caswell, 1993).

The implementation of the HASA relations among
the biological classes is straightforward (Fig. 3a and
b). Individuals have a pointer to their population and
a pointer to the habitat in which they currently live.
Populations keep track of their individuals by means
of a Btree. In the System object, the Populations,
Habitats, Conditions and Resources that are included
are listed in arrays. To enable Habitats, Conditions,
Resources and Populations to communicate with each
other, each of these objects has a pointer to the
System object. The spatial structure of the modelled
system is implemented by HabitatLink objects. These

A

ir L)
I ini file l——>—l:/ll Analyser M—>~[ err file
System
1
Elnk r Habltat ll lF:bl Resource Eink

]
IE Resource
r log files r out files l

Llnp files i

B
1 L 1 1 1 1
|[ Condition u H Resource " " Population |
= A 7 | T
- 1 P— | — 1 P i S
u&:nditionltem" IResourceItem “ lrIndividual ||
T T T T T T T T T
o}

L] ir L) r
[{ Simulator %—Esimobjecttaskf———ﬁ\ SimObject "

DatObject
=

— |
I
Iﬂ)teger arrayl real array J

Fig. 3. HASA relations at the BioObject level (M = member,
P = pointer, A = array, B = Btree). For reasons of simplicity, the
classes Condition, Resource and Population are shown as one
class GlobalResource, whereas the classes Conditionltem, Resour-
celtem and Individual are depicted as the class LocalResource. (b)
HASA relations at the BioObject level (P = pointer, A = array.
B = Btree), showing the three pairs of global and local resources
in OSIRIS, which were combined in (a). (¢) HASA relations at the
SimObject level (M = member, P = pointer, A =array, B=
Btree). (d) HASA relations at the DatObject level (M = member).

|;tring array

objects contain pointers to the Habitats that they
connect. The trophic structure of the system is imple-
mented by ResourceLink objects. These objects are
not modelled themselves (Fig. 2) but contain data
about the link they represent. During construction of
the system, the number of objects of each class and
their initial values are read from inp files. When the
system is destructed these data are written to out
files. During simulation objects of each class may
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write information to log files. There is one inp file,
out file and log file per class. In Fig. 3a these files
are only shown for a local resource class. The class
Analyser (Fig. 3a) is used to study and manage the
behaviour of the system in a series of computer
experiments. For example, it would be possible to
implement formal numerical analysis algorithms
(Kiepper and Rouse, 1991) as a function of this class
in order to study the behaviour and sensitivity of the
model. Because the Analyser controls the whole
simulation, the ini file and err file are connected to
this object.

Each of the above mentioned biological classes
shares the property that we may want to perform
some task in the simulation process. This functional-
ity is implemented with the help of three classes:
SimObject, SimObjectTask and Simulator (Fig. 3c).
The Simulator object, of which there is only one,
activates the SimObjects that we want to simulate
one by one. All SimObjects that are active are listed
in a Btree. The SimObjects are sorted according to
the moment that they should be activated. After
being simulated, a SimObject returns the time it
should be activated again to the Simulator, and is
scheduled accordingly. However, SimObjects are not
listed themselves in the Btree of the Simulator. This
is because we may want to have one SimObject to
perform several tasks. Therefore, an intermediate
data structure, SimObjectTask, is created. Each
SimObjectTask is linked to a specific SimObject by
means of a pointer. Moreover it contains a pointer to
the function of its SimObject that it should perform
when activated and it contains the time at which this
should happen. Each SimObject has an array of
pointers to its tasks, whereas the Simulator has a
Btree of pointers to all tasks.

Data are implemented in the class DatObject (Fig.
3d). Each DatObject has three arrays connected to it,
which contain the data as integers, reals and strings.
The main functions of DatObject is to read the data
from disk during construction of the system, to
control access to them during simulation and to write
them to disk during destruction of the system.

Although the object-oriented programming con-
cept is essential to our approach the actual language
in which the source code is written is a matter of
taste. We chose C + + for a number of reasons. One
is the availability of standard C + + compilers for a

wide number of platforms (PC, workstation, main-
frame) and operating systems (DOS, Windows,
0OS /2, Unix) which guarantees an optimal portabil-
ity. Moreover, extensive mathematical libraries are
available for C/C+ + (Press et al., 1992; Dyad
Software Corporation, 1992). Finally, we expect a
superior run-time performance of C + + compared
to other object-oriented languages such as
SMALLTALK.

4. Daphnia application

OSIRIS was designed to host a wide variety of
applications. Because we wanted to focus this paper
on the framework but not so without showing a
possible application, we looked for a relatively sim-
ple problem, which is still complex enough to be
interesting. Generally speaking, complexity can be
entered in an application in two ways: by creating a
complex spatial structure and or by creating a com-
plex resource structure. Cellular automata such as
Life (Sigmund, 1993) are an example of the first
type, whereas individual-based models (DeAngelis
and Gross, 1991) are of the second type. As freshwa-
ter ecologists (Mooij and Van Tongeren, 1990; Mooij
et al, 1994; Boersma and Vijverberg, 1994,
Boersma and Vijverberg, 1994b), we chose to use an
individual-based model of the population dynamics
of Daphnia galeata as an example. In this real life
application, we used the capability of OSIRIS to
easily create, monitor and destruct large numbers of
individuals to study the consequences of phenotypic
variation on the growth rate and structure of the
whole population. As a result, the classes Individual
and Population play a central role in this application.
Because we took no relations to food or abiotic
factors into account and did not look for spatial
processes, the classes Condition, Resource and Habi-
tat are only present in a rudimental form without any
data or functionality. The class System is used to
rebuild the system for several parameter settings,
under control of class Analyser.

Data on individual daphnids were obtained from
Boersma and Vijverberg (1994a). They measured
life-history traits of individual Daphnia galeata in
the laboratory at a fixed temperature (17.5°C) and
food supply (2.5 mg C 17") well above the incipient
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limiting level. From these data on the duration and
specific fecundities of the moulting stages — further
referred to as instars — the intrinsic rate of popula-
tion growth (r) was calculated by means of a life
table (Stearns, 1992). However, because a life table
only takes the average parameters of each instar into
account, this approach does not allow to evaluate
consequences of the experimentally measured vari-
ance in these parameters on the growth rate and
structure of the population. Including this variation
may lead to a different estimate of the average
population growth rate or structure, compared with
the results of a life table. For certain, variability
among individuals in instar duration and fecundity
will lead to a variation in the population growth rate
when measured repeatedly with a certain time inter-
val. This variation in r will depend on the number
of individuals and the interval at which the popula-
tion growth rate is measured. The expected relation
between the measured variations s5,(n, Atf) for a
certain number of individuals (n) and a given time
step (Ar) with variation in r of one individual and
one unit of time (s,) is (Sokal and Rohlf, 1982):

s(n, Aty =s,/VYn*Ar. (N

The description and functionality of an individual
Daphnia in our application is a simplification of the
INSTAR model (Hogeweg and Richter, 1982; Vi-
jverberg and Richter, 1982). In this discrete event
model, the life of a Daphnia is simulated each time
a new instar is reached. Each individual is character-
ized by two state variables: the current instar number
(1) and, if mature, the current number of eggs (F).
To simulate a Daphnia in this formalism we need
four functions, describing maturation. juvenile and
adult instar duration and fecundity (Table 2). Rather
than choosing functions on theoretical grounds we
adopted a more descriptive approach, because this
enabled us to minimize the number of parameters of
the model. Of the 37 individual Daphnia for which
data were available only one of them matured after 5
instars, the others after 4 instars. Because we were
not able to make a reasonable estimate of the vari-
ance in maturation from this data we ignored it in the
current model and chose a fixed number of four
juvenile instars. All three other functions could be
described by linear relationships, except for the first
clutch size, where we needed an extra parameter

Table 2

The four process formulations of an individual in the Daphnia
application, describing maturation, juvenile and adult moulting
stage (instar) duration and fecundity, respectively

Number of juvenile instars (JI)

= ay (N
Juvenile instar (JI) duration (JD):

ID = (ayp + By xIDxemrmalOvw (2)
Adult instar (Al) duration (AD):

AD = (LYAI) + ﬁAI) *AI)* er\orm;\l((ny,\[)) (3)
Adult instar (Al) fecundity (F):

F= ’SI" *(alf + ﬁ]‘ ::( AI)*enumml(O,v,,) (4)

(Figs. 4 and 5). To model the measured variance in
both traits, we multiplied the resulting instar specific
duration or fecundity with a lognormal distributed
deviate, resulting in a proportional rather then a
constant variance. Together, these four functions have
11 parameters (Table 3). These parameters we esti-
mated from the experimental data on individual
Daphnia by means of the maximum-likelihood tech-
nique.

The list of state variables, functions and parame-
ters contains all the information necessary for the
simulation of a given initial Daphnia population.
Both the life-table and the individual-based model
result in an exponential growing Daphnia popula-
tion and therefore produced comparable estimates of
the population growth rate. For the individual-based

(o4l

instar duration (d)
vy @
1
"

.}-\

o
l \
| ]

instar number

Fig. 4. Juvenile (1-4) and adult instar (4-7) duration of Daphnia
galeata. The lines indicate the 95% prediction limits of the
functions applied in the model. Data points are scattered both
horizontally and vertically to show more of them.
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« 5 & 7 8 9
instar number

Fig. 5. Fecundity of the first four adult instars (5-8) of Daphniu

galeata. The lines indicate the 95% prediction limits of the

functions applied in the model. Data points are scattered horizon-

tally to show more of them.

model the population growth rate r after a certain
time step Az can be calculated from the formula

r=(In(n,) —In(n,))/Az. (2)
in which n, and »n, represent the number of Daph-
nia at time 0 and r. Different strategies can be
chosen to avoid the problem of exhaustion of com-
puter memory due to the exponential increase of the
number of Daphnia. One is to remove (n, —n,)
randomly chosen animals after As, thereby resetting
the number of animals to n,. A¢ has then to be
chosen small enough so that the available memory is
not exhausted. At its extreme, we can decrease Af¢
until (n, —n,)=1, and hence we remove a ran-

Table 3

The eleven parameters of the four process lormulations of an
individual in the Daphnia application. The values of the parame-
ters were estimated from individual cultures by means of the
maximum-likelihood technique

a;  number juvenile instars (—) 4.0000 (1)
ay;y  intercept juvenile instar duration (d) 08577 (2)
By, slope juvenile instar duration (d) 0.1800  (3)
Y CV juvenile instar duration (=) 02936 (4)
ayp  intercept adult instar duration (d) 27817 (5)
Bap  slope adult instar duration (d) 0.1433  (6)
Yan  CV adult instar duration () 0.1089 (7)
ayp  intercept adult instar fecundity (=) 14.0785  (8)
B slope adult instar fecundity (-) 17566 (9)
vy CV adult instar fecundity (-) 01623 (10}

8y reduction fecundity first adult instar (=) 0.4934  (11)

Tablc 4

Population-dynamical output OSIRIS (n=3512. Ar=64, r=
0.345, 5, =0.799), showing the instar specific average instar
duration (d. Durat), fecundity (Fecun), age (d, Age), relative
survival (Surv), relative abundance (Abun) and reproduction (Re-
pro). For a full description of each variable see Stearns (1992)

Instar ~ Durat Fecun — Age Sury Abun  Repro
1 1.08 0 1.08  0.689 0309 0
2 1.27 0 232 0452 0237 0
3 1.46 0 373 0276 0175 0O
4 1.65 0 532 0159 0121 0
5 2.94 7.19 8.18  0.058  0.102 0458
6 3.09 17.83 11.23 0.020  0.037  0.350
7 323 19.62 1442 0.007 0013  0.128
8 3.38 2137 17775 0002 0005 0.044
9 3.53 2310 21.22 0001 0001 0014
10 3.69 2476 2483 0.000  0.000  0.004
1 3.83 26.78 2850 0.000  0.000  0.001
i2 3.99 2886 3389 0.000 0.000  0.001

domly chosen individual immediately after a new
individual is born. To keep track of the number of
animals born over a period Az, a separate counter
An is increased each time an animal is born. Be-
cause the number of individuals is now constant, the
population growth rate over a period At should now
be calculated as:

r=An/Ar. (3)

When sampled repeatedly, the standard deviation in
r for a given number of modelled individuals »n and
a certain time step At can be calculated. To compare
this standard deviation for different combinations of
n and A¢, it should be normalized with Eq. 1.

To compare the structure of the population in the
individual-based model with the structure that fol-
lows from a life table we sampled each of the
relevant population dynamical parameters in the
model. These parameters are instar duration, age,
relative survival. relative abundance, fecundity and
reproduction (Stearns, 1992). For each instar the
arithmetic mean of each parameter was calculated
(Table 4). To make the comparison with the life
table as fair as possible, we used the instar duration
and fecundity from the individual-based model as
input. From these two parameters two other columns
of the life table (Table 5) can be generated and r can
be calculated using the Euler equation (Stearns,
1992). Although there are small differences between
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Table 5

Population-dynamical life table (r=0.341), showing the instar
specific average instar duration (d, Durat), fecundity (Fecun), age
(d, Age), relative survival (Surv), relative abundance (Abun) and
reproduction (Repro). For a full description of each variable see
Stearns (1992)

Instar  Durat  Fecun  Age Surv Abun  Repro

1 1.68 0 .08 0.691 0309 0

2 1.27 0 235 0448 0243 0

3 1.46 0 381 0272 0176 O

4 1.65 0 546 0.155 0117 0O

5 2.94 7.91 840 0.057 0.098 0451

6 3.09 17.83 11.49 0.020 0.037 0.355

7 3.23 19.62 1472 0.007 0.013  0.130

8 3.38 2137 18.10 0.002 0.005 0.045

9 3.53 2310 21.62 0.001 0001 0.014
10 3.69 24.76 2531 0.000 0.000 0.004
11 3.83 26.78  29.14  0.000 0.000 0.001
12 3.99 2886 33.12  0.000 0.000 0.000

both tables and both estimators of r, it can be
concluded that a complex model which includes
individual variation and a simple life tables both give
essentially the same results. What is gained by the
individual-based model over the life-table approach
is an estimate of the variation in r over time (s,).
To study effect of n and Ar on r and s, we set
up a series of computer experiments with 14 times
14 combinations of n and At (Tables 6 and 7). 36

runs were not feasible because the calculations for
them took more than a period of a some days on a 66
MHz 486DX-2 PC and were therefore not per-
formed. The remaining 160 runs were each started
with one adult female. After the population had
grown to n animals, one randomly selected animal
was removed each time a new animal was born.
After an arbitrarily chosen period of 8 time steps,
meant to get rid of artefacts due to the initialization
of the system, r was calculated for 128 time steps.
The arithmetic mean and standard deviation of this
sample are estimators of r and s,. In Table 6, the r
of each run is expressed as the percentile deviation
from the grand average of r for all runs with n > 256.
In Table 7, the CV, (CV,=s,/r) of each run is
expressed as the percentile deviation from the grand
average of CV, for all runs with Az > 32. As can be
seen, r was a function of n for small values of n
(Fig. 6) but never of Ar (Table 6). Moreover, it
showed that CV, is a function of Ar for small values
of Ar (Fig. 7) and, to a lesser extend, a function of n
for small values of n (Table 7).

Besides having an effect on the population growth
rate, varying n will also influence the structure of the
modelled population. These effects can be shown by
plotting the average instar-specific relative survival,
relative abundance and relative reproduction as a
function of n (Figs. 8—10). Because the size of

Table 6
Percentile deviations of r for different combinations of n and A¢, relative to the grand average of r for runs with # > 256 (shown in italics)
At n
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
1/8 —31 —26 —14 —4 -1 -0 0 1 ] 7 -0 0 -0
1/4 —36 —21 —15 -7 -2 -1 -1 -0 -0 -0 -0 0 -0 0
1/2 —36 —21 —-13 —6 -3 -1 -0 0 -0 —1 0 -1 -0
1 —-30 -23 - 14 -6 -2 -1 -1 -0 -1 -1 -0 0 -0 -0
2 -33 -23 —15 -7 -1 -1 -2 0 I -0 0 -0 0 0
4 —-33 —-23 —13 -6 -3 -1 1 0 0 0 -0 -0 -0
8 -32 —21 - 14 -9 -1 0 -0 -1 -0 -0 0 0 -0
16 -32 -23 —11 -6 -2 -1 -2 0 -0 0 0 0
32 —-30 —-21 - 14 -5 -2 —1 -0 -0 0 -0 0
64 -32 -23 —-13 -6 -2 -1 -0 0 -0 -0
128 -30 -23 - 14 -6 -2 —1 -0 -0 -0
256 -3 -23 —13 —6 -2 -1 -0 0
512 —-32 -22 - 14 -7 -2 —1 -0

1024 -3l -23 —14 -6 -2 —1
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Table 7

Percentile deviations of CV, for different combinations of # and At, relative to the grand average of CV, for runs with 1 > 32 (shown in

italics)

128 256 512 1024 2048 4096 8192

1/8 68 79 104 133 153 169 178
1/4 58 82 106 129 150 167 173
1/2 57 82 105 124 145 160 169

1 S5 76 99 117 135 146 150

2 47 70 88 101 109 117 109

4 33 51 66 74 71 71 62

8 0 10 25 27 40 33 35

16 —4 7 15 23 15 27 22

32 -8 ! 15 8 1 11 -5

64 -1 -9 -3 15 10 12 -8

128 -9 2 6 3 17 —4 -7

256 -3 -8 5 5 -1 -3 4

512 -5 -6 3 7 9 / -9
1024 -9 -7 -7 13 ! —12

184 188 187 173 194 180 177
178 186 184 183 183 189 228
171 176 170 171 179 140 162
159 169 127 162 136 151 193
121 124 145 125 105 103 124
72 94 74 63 92 74 62
25 48 40 35 36 33

18 10 14 20 6
-8 2 -6 —1

2 -6 6
-7 -6
—10

Daphnia populations in nature will normally be many
orders of magnitude larger than the largest modelled
population, deviations of runs with a smaller n from
the runs with the higher value of n should be seen as
artefacts. A visual inspection of Figs. 8—10 shows
that below 128 modelled individuals the relative
survival, relative abundance and relative reproduc-
tion of the different instar begin to shift. This is
much earlier then the shift in the population growth
rate which becomes only pronounced below 16 indi-
viduals (Fig. 6).
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Fig. 6. Average population growth rate as function of the number
of modelled individuals.

Concluding, we can say that for n> 512 and
At > 32, the Daphnia application gave stable results
in terms of r, s, and the instar specific survival,
abundance and reproductive output. Moreover, these
runs were feasible in terms of memory and computa-
tional power requirements. What is won compared to
a life table is evidence that effect of the variation in
life-history traits on r is relatively small. Moreover,
we now have estimates of the standard-deviation in
population growth rate, and standard deviations of
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Fig. 7. Coefficient of variation of the population growth rate as a
function of the time interval between measurements.
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Fig. 8. Instar specific relative survival as a function of the number of modelled individuals.

the instar specific relative survival. relative abun-
dance and reproduction. It will be possible to falsify
these results in future experiments. Daphnia popula-
tions can be reared in the laboratory and sampled at
a time interval Atr. From a series of these samples r

and s, can be calculated and compared with the
model results. By doing so, we would test the hy-
pothesis that the population dynamics of Daphnia
under a fixed set of environmental conditions can be

explained from the mere interaction of the life-his-
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Fig. 9. Instar specific relative abundance as a function of the number of modelled individuals.
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Fig. 10. Instar specific relative reproduction as a tunction of the number of modelled individuals.

tory traits instar duration, instar at maturity and
fecundity.

5. Conclusions

Our experience during the implementation of
OSIRIS showed us that the object-oriented program-
ming paradigm is well suited for the creation of
simulation models of ecological systems. Although
mathematically very simple an individual-based
model of several populations of autonomous individ-
uals with their trophic relations, living in a spatially
structured environment involves an enormous amount
of bookkeeping and information exchange between
the different entities. By disentangling all these enti-
ties and their relations conceptually, and implement-
ing them as classes with ISA and HASA relations to
other classes, we get a formalized. well structured
and well behaving description of a ecological sys-
tem. At the OSIRIS level, we want to be as general
and global as possible. All basic concepts of ecologi-
cal theory are implemented at this level and, at least
for us, it is hard to think of an application that can
not be represented in this format. At the application
level however, the scope and detail of a specific

application have to be chosen carefully, with the goal
of the model. the available data and the possibility to
falsify the results in mind.

So far, our efforts have been limited to the imple-
mentation of models in which the environment is
kept very simple or even constant, as in the Daphnia
application. However, we think that there is a great
challenge in merging the virtues of pure individual-
based models with that of the more traditional pro-
duction-oriented models which give a detailed de-
scription of the environment. The latter type of
models have shown to be powerful in describing
behaviour of an ecosystem by means of differential
equations up to the level of algal dynamics (Klepper,
1989). The problem in merging both approaches lies
in the way time is handled. Individual-based models
often use a discrete event approach, with a separate
time schedule for each individual. A system of dif-
ferential equations, however, is mostly solved nu-
merically by applying an integration routine which
first calculates the derivatives of all processes and
then updates all state variables. Inconsistencies may
arise when individuals change their state, or any
other state in the system, between the moment that
the derivatives are calculated and the moment that
the state variables are updated. A clever scheduling
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of all the activities in the system will be needed to
take full advantage of the power of what should be
called individual-based compartment models.
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