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Many protist plankton are mixotrophs, combining phototrophy and phagotrophy. Their role in freshwater and
marine ecology has emerged as a major developing feature of plankton research over recent decades. To better
aid discussions, we suggest these organisms are termed “mixoplankton”; as “planktonic protist organisms that
express, or have potential to express, phototrophy and phagotrophy”. The term “phytoplankton” then describes
phototrophic organisms incapable of phagotrophy. “Protozooplankton” describes phagotrophic protists that do not
engage in acquired phototrophy. The complexity of the changes to the conceptual base of the plankton trophic web
caused by inclusion of mixoplanktonic activities are such that we suggest that the restructured description is termed
the “mixoplankton paradigm”. Implications and opportunities for revision of survey and fieldwork, of laboratory
experiments and of simulation modelling are considered. The main challenges are not only with taxonomic and
functional identifications, and with measuring rates of potentially competing processes within single cells, but with
decades of inertia built around the traditional paradigm that assumes a separation of trophic processes between
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different organisms. In keeping with the synergistic nature of cooperative photo- and phagotrophy in mixoplankton,

a comprehensive multidisciplinary approach will be required to tackle the task ahead.

KEYWORDS: mixotrophy; protist; mixoplankton; phytoplankton; protozooplankton; microbial loop; allometry

INTRODUCTION

Mixotrophy is the combination of autotrophy and het-
erotrophy in the same organism. The means by which this
combination occurs in different organisms varies, but the
form that has most fascinated scientists (and captured the
public attention; Wyndham, 1951) has been that which
combines photo(auto)trophy with carnivory, or as applied
to protists, with phago (hetero)trophy. Long considered by
most aquatic scientists to be of minor significance, or just
a curiosity, we now recognize that protist plankton engag-
ing in photo- and phago-mixotrophy are common and
important members of the global plankton community
(Leles et al., 2017, 2019; Faure et al., 2019).

Even though photo- and phago-mixotrophy in plank-
tonic protists has been studied by many scientists over
many decades in freshwater and marine systems (e.g
Biecheler, 1936; Blackbourn etal., 1973; Bird and
Kalff, 1986; Estep et al. 1986; Laval-Peuto and Febvre,
1986; Sanders et al., 1990; Sanders, 1991; Jones, 1994;
Stoecker et al., 1987; Jeong et al., 2010; Hansen, 2011),
appreciation that these organisms play a core role in
especially marine ecosystems has been slow to mature.
From 2011 to 2013 a series of workshops (funded by
the Leverhulme Trust, UK.) were held in Sweden
(Kalmar), UK (Swansea) and the USA (Horn Point),
bringing together experts across the field of marine
planktonic protists. Outputs from those meetings explored
the false dichotomy of the traditional phytoplankton—
zooplankton paradigm (Flynn ez al., 2013), advantages
of acquired phototrophy (Flynn and Hansen, 2013),
the role of mixotrophy in shaping the biological carbon
pump (Mitra et al., 2014b), stoichiometric implications
for mixotrophy (Lundgren et al., 2016), the functional
classification of planktonic protists (Mitra e/ al., 2016) and
the biogeographies of the different types of mixotrophic
protist plankton (Leles et al., 2017, 2019). Many addi-
tional publications have also raised the profile of photo-
and phago-mixotrophic plankton over the last two
decades (e.g. Stickney e/ al., 2000; Burkholder et al., 2008;
Zubkov and Tarran, 2008; Carvalho and Granéli, 2010;
Brutemark and Granéli, 2011; Sanders, 201 1; Hartmann
et al., 2013; Wilken et al., 2013; Saad et al., 2016; Selosse
et al., 2017; Stoecker et al., 2017), and brought the subject
to a wider audience (Mitra, 2016, 2018; Glibert ef al.,
2019).

Why is this subject important? Because the combining
of primary and secondary production in a single

organism radically changes biogeochemical and trophic
dynamics involving those organisms (Hitchman and
Jones, 2000; Mitra et al., 2014b; Caron, 2016; Ward and
Follows, 2016; Ghyoot et al., 2017a, 2017b; Leles et al.
2018). It alters the flows of energy and materials in and
out of organisms that form the base of the food chain, and
changes the way that we understand and thence simulate
processes from harmful algal blooms (HABs) and fisheries
to global climate change.

In all areas of science, there comes a point when
the weight of new evidence warrants a fundamental
reassessment of the paradigm in which we express
our understanding. Within marine ecology, while the
components of the microbial loop had been known
about for decades before the mid 1970s, the broad
mmportance of the concept was only brought to wide
attention with works such as those of Pomeroy (1974),
Williams (1981) and Azam et al. (1983), with increasing
acceptance following that (e.g. Pomeroy et al., 2007;
Fenchel, 2008). We suggest that a similar reassessment
point has now been reached concerning the importance
of photo- and phago-mixotrophic plankton, and its
potential to radically reshape marine ecology. To consider
such a reshaping represents a very significant, and
most likely controversial task, cutting across all sectors
of plankton research. Here we present some ideas
on how this task could be undertaken. However, we
start by considering naming conventions and some
misconceptions that surround the topic of evolution
and functional traits of planktonic mixotrophs. We then
continue by exploring the implications for marine ecology,
and then consider various specific challenges for plankton
research.

To aid this discussion we present a glossary (Table I).

WHAT IS IN A NAME?

Traditional descriptions of plankton most obviously com-
prise phytoplankton and zooplankton, with increasing
inclusion of bacterioplankton from the 1980s. Often these
descriptors attract add-on terms donating organism size
(pico-, nano-, micro-, meso-; e.g. Sicburth et al., 1978).
Over a century of marine research has been built upon
terminologies largely of terrestrial origin, dividing pri-
mary and secondary production neatly between plant-like
phytoplankton and animal-like zooplankton. Thus, phy-
toplankton may be referred to as the “grass of the sea”,
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Table I:  Glossary to terms describing forms of nourishment and functional types of plankton

Term

Definition

Autotrophy

Bacterioplankton

Constitutive mixoplankton (CMs)

Cyanobacteria

Generalists non-constitutive
mixoplankton (GNCMs)
Heterotrophy
Metazooplankton
Mixoplankton

Mixotrophy

Non-constitutive mixoplankton
(NCMs)

Osmotrophy

Phagotrophy

Phototrophy
Phytoplankton

Plankton

Protist
Protophytoplankton
Protozooplankton
Specialist non-constitutive

mixoplankton (SNCMs)
Zooplankton

Nutrition involving the synthesis of complex organic substances using photosynthesis (phototrophy)
or chemosynthesis. Typically associated with the use of inorganic nutrients.

Bacterial (prokaryote) plankton acquiring nourishment via osmo(hetero)trophy, and some also via
chemo (auto)trophy

Protist plankton with an inherent capacity for phototrophy that can also exhibit phagotrophy
Bacterioplankton (prokaryote) members of the phytoplankton

NCMs that acquire their capacity for phototrophy from general (i.e. non-specific) phototrophic prey
(cf. SNCM)

Nutrition involving the consumption and interconversions of sources of organic carbon

Multicellular (i.e. non-protist) zooplankton

Plankton protists capable of obtaining nourishment via photo(auto)trophy and phago(hetero)trophy,
as well as via osmo(hetero)trophy.

Nutrition involving both autotrophy and heterotrophy

Protist plankton that acquire the capability for phototrophy from consumption (via phagotrophy) of
phototrophic prey

A mode of heterotrophy (i.e. osmo(hetero)trophy) involving the uptake and consumption of
dissolved organic compounds

A mode of heterotrophy (i.e. phago(hetero)trophy) involving the engulfment of particles (often whole
organisms) into a phagocytic vacuole in which digestion occurs

A mode of autotrophy (i.e. photo(auto)trophy) involving the fixation of CO, using energy derived
from light.

Plankton obtaining nourishment via photo(auto) trophy and osmo(hetero)trophy. They are incapable
of phagotrophy; cf. mixoplankton.

Organisms that cannot maintain a fixed location in the water column, and are thus moved by the
tides and currents

Single-celled eukaryote organism

Protist phytoplankton

Protist zooplankton

NCMs that acquire their capacity for phototrophy from specific phototrophic prey (cf. GNCM)

Plankton obtaining nourishment via heterotrophy. They are incapable of phototrophy; cf.
mixoplankton.

Terms in jtalics are further defined within this glossary. To these terms may be applied (as appropriate), a prefix indicating organism size
according to pico- (0.2-2 ym), nano- (2-20 um), micro- (20-200 um) and meso- (>200 um). Thus, nano-protozooplankton include organisms

often termed “heterotrophic nanoflagellates’; while meso-metazooplankton include copepods.

and their copepod predators as “herbivores” or “insects
of the sea” (e.g. Cushing, 1975), with classic models
(e.g NPZ: Fasham etal., 1990; Iranks, 2002), their
complex successors (e.g. DARWIN: Follows et al., 2007,
MEDUSA: Yool et al., 2013; ERSEM: Baretta et al., 1995;
Butenschon et al., 2016) and indeed climate change
(Arora etal., 2013) and fisheries management models
(Plaganyi, 2007), also deploying this classic dichotomy:

The growing realization that plankton communities
often contain organisms that combine phototrophy
and phagotrophy (i.e. primary and higher production),
requires that we more readily and clearly discriminate
between organisms that are actually or potentially photo-
and phago-mixotrophic and organisms that are not.
We need greater clarity during our conversations, in
conferences, on posters, in scientific publications and
critically also in teaching. The problem is that the
terminology currently referencing these protist plankton
is unwieldy and/or ambiguous. And the problem starts
with the word “mixotroph” (the combining of autotrophy
and heterotrophy in one organism; Table I).

For protist plankton, the mode of autotrophy is
phototrophy, while heterotrophy may be enabled by
osmotrophy and/or phagotrophy (Iig. 1; Table I). There
is a profound difference between heterotrophy supported
by osmotrophy versus that by phagotrophy, both for
trophic dynamics and also for food web structuring.
Phagotrophy typically involves the killing of other organ-
isms through the process of capture, ingestion (either
partially or totally) and digestion. In contrast, osmotrophy
does not require the act of killing. Indiscriminate use of
“mixotrophy” fails to draw attention to this important
difference.

Osmotrophy, the ability to use dissolved organics
such as amino acids and vitamins (auxotrophy; Droop,
2007), 1s common in plankton typically considered as
phototrophs. In aquatic ecology the subject has a long
and controversial history (see Flynn and Butler, 1984
for a review of older discussions on the ecological
importance to plankton); for many species in nature the
role of osmotrophy probably acts mainly to mitigate
against metabolite leakage (Flynn and Berry, 1999).
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a ) b ) Protists
bacteria, fungi
troph
phytoplankton Osmotrophy Dinoflagellates

(inc. cyanobacteria) protozooplankton

VOID mixoplankton

Diatoms  prympesiophytes

Prasinophytes
Cryptophytes

Ciliates

Chl-containing = “Phytoplankton”

|
Grazers = “Protozooplankton”

| traditional terminologies

Fig. 1. Overlapsin the trophic capacity of different microplankton. (a) Venn diagram of overlaps between photo-, osmo- and phagotrophy. “VOID”
indicates that no organisms exist in this sector. Mixoplankton are, by definition, capable of all three modes. Phytoplankton are mixotrophic by virtue
of photo- and osmotrophy; they are non-phagotrophic. Protozooplankton are incapable of phototrophy. (b) Overlaps between traditional allocations
of chlorophyll (Chl) containing organisms as “phytoplankton” and microbial grazers as “protozooplankton”. Symbol sizes or area allocations do

not apportion significance.

Nonetheless, phytoplankton are typically mixotrophic in
this sense, and indeed various modelling explorations of
mixotrophy also refer to photo- and osmo-mixotrophy
(e.g. Vage etal, 2013). This mode of mixotrophy
(photo(auto)trophy 4 osmo (hetero)trophy) in protistan
and cyanobacterial microalgae is also exploited for
biotechnology (Chojnacka and Noworyta, 2004; Liang
etal., 2009; Bhatnagar et al., 2011; Morales-Sanchez
et al., 2013). Confusingly the mode of mixotrophy being
studied is neither always apparent from the title nor
in the abstract of many scientific publications (e.g.
Yelton etal., 2016), and indeed both osmotrophy and
phagotrophy may be implicated (Burkholder ez al., 2008).
We need to be able to differentiate readily between
generic “mixotrophy” and specifically that which involves
photo-phagotrophy.

Because of the likely ubiquity of osmotrophy, use
of this trait in the functional classification of protists
is compromised (Flynn et al., 2013). Accordingly, Mitra
etal. (2016) presented a revised classification of the
protist plankton based on functional types, centred on
the potential for and the mode of expressing photo-
and phago-mixotrophy. That publication differentiates
between the “pure” photo(auto)trophs (phytoplankton),
the mixotrophs that have a constitutive ability to
photosynthesise (“constitutive mixotroph”, CM), those
that need to acquire their phototrophic capability from
their prey (“non-constitutive mixotrophs”, NCM) and
the “pure” phago- and heterotrophs (protozooplankton).

NCMs are then themselves split between generalists
(GNCM), plastidic specialists (pPSNCM) and endosym-
biotic specialists (eSNCM) according to their mode of
acquiring phototrophic capabilities. All these groups are
fundamentally different functional types (Fig. 2). While
the terms CM and NCM are gradually gaining increased
usage (e.g. Johnson and Moeller, 2018; Hansson et al.,
2019; Naselli-Flores and Barone, 2019), what we are
still missing is a term akin to the traditional terms—
phytoplankton and zooplankton—to use to collectively
refer to all photo- and phago-mixotrophic planktonic
protists.

As such a short descriptive term, we propose that
the word “mixoplankton” be used to specifically refer-
ence photo- and phagotrophic protists. This term already
appears in various online teaching resources as well as
on Fishbase website (https://www.fishbase.de/glossary/
Glossary.php?q=mixoplankton), where mixoplankton are
defined as “Planktonic organisms that can be classified at several
trophic levels. For example, some ciliates can be photosynthetic
but also can ingest other plankton and are heterotrophic.” Such
a description perhaps does not make it clear that one
and the same organism is engaging simultancously or
alternatively in photo-plus phago-‘trophic activities. Nor
does this description exclude reference to mixotrophs that
are incapable of phagotrophy. We thus suggest that this
definition is reworded to read:

“mixoplankton: planktonic protist organisms that express, or
have potential to express, phototrophy and phagotrophy.”
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Fig. 2. Schematics showing the distinct differences between different protist plankton physiologies. The protozooplankton are osmo—phagotrophic;
they are incapable of phototrophy. The phytoplankton are photo-osmo mixotrophic; they are incapable of phagotrophy. The constitutive
mixoplankton (CM) and non-constitutive mixoplankton (NCMs) are all photo-, osmo- and phago-mixotrophic. However, some mixoplankton have
life stages that are not photo- and phagotrophic, with nutrition aligning with that of “phytoplankton” or “protozooplankton”. The generalist
GNCMs acquire phototrophy from many phototroph prey types; pSNCMs are plastidic specialists acquiring phototrophy from specialist prey
type(s); eSNCMs are endosymbiotic acquiring phototrophy by harbouring specific phototrophic prey. Note: illustrations are not to scale; in particular,
eSNCMs are in relative terms ca. 10 to 100 times larger than the others (see Fig. 3).

The word “potential” in the definition of mixoplankton
is also important, because while some mixoplankton are
obligatory photo- and phago-mixotrophs (or have life
stages that are), other species (specifically many CMs) may
not show such an obligatory requirement (Sanders et al.,
1990; Jones, 1997; Calbet et al., 2011; Berge and Hansen,
2016; Stoecker et al., 2017).

Usage of the overarching term “mixoplankton” has
various advantages:

¢ Itisshort and not hyphenated, amenable to the addition
of an allometric prefix (e.g nano-mixoplankton).

* There is a clear linkage to plankton; mixotrophy as a
mode of nutrition is distributed across many organism
groups besides plankton (e.g. corals, the sea slug Elysia
viridis, the Venus flytrap Dionaea muscipula).

* Importantly, “mixoplankton” discriminates between the
mixotrophy expressed in protists unable to phagocy-
tose (i.e. photo- and osmo-mixotrophy, as conducted by
diatoms for example), versus that expressed by protists
that can conduct phagotrophy (i.e. the mixotrophy of
the CM and NCM functional groups described by

Mitra et al., 2016). We can readily realign the origi-
nal descriptions of Mitra ¢t al., 2016 by modifying the
meaning of the abbreviations CM and NCM to “consti-
tutive mixoplankton” and “non-constitutive mixoplank-
ton”, respectively.

* Perhaps of equal importance to the above is that phyto-
plankton are then characterized as being incapable of
phagotrophy, while protozooplankton are incapable of
phototrophy (Table I; Fig. 2).

From here on, we shall use the term “mixoplankton”
in reference to photo- and phago-mixotrophic planktonic
protists, including where the original referenced paper
termed such organisms as “mixotrophs”.

MISCONCEPTIONS ON THE
EVOLUTION AND TRAITS OF
MIXOPLANKTON

To help understand why different organisms occupy the
niches that they do occupy requires a full understanding
of their functional traits, and also of those organisms
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with which they interact. A common conception is that
mixoplankton are inferior to their phytoplankton or pro-
tozooplankton counterparts with respect to their expres-
sion of traits such as photosynthesis, nutrient uptake and
feeding (Dolan and Pérez, 2000; Litchman et al., 2007; cf.
Calbet et al., 2011). This assumes that an organism that
specializes in two nutritional routes is a generalist in its
expression of each of those routes. This argument could
be considered as a trait-trade-off (T'TO), a concept which
has found considerable support in the plankton research
community, especially with respect to plankton modelling
(Litchman and Klausmeier, 2008; Litchman et al., 2013).
Such TTO arguments must only be applied to organisms
from the same environment (Litchman et al., 2007), and
TTOs are in any case questionable from an evolutionary
standpoint (Flynn et al., 2015).

Clearly, we expect traits expressed by phytoplankton
and protozooplankton to be advantaged in the environ-
ment in which they evolved, just as those species that
combine photo- and phagotrophy must be advantaged by
possessing both phototrophy and phagotrophy in other
environments. Questions of which trait is better or not
in a given environmental setting have been answered by
evolution. To better clarify this matter requires a consid-
eration of the evolution of the protists.

The genetic diversity of protists is vast, equalling that
of all other eukaryotes combined (Burki 2014; Adl et al.,
2019). The evolution of eukaryotes (eukaryogenesis) was
based on the phagotrophic acquisition of an alphaprote-
bacteria into a host, which subsequently lead to the for-
mation (evolution) of mitochondria (Hampl ¢t al., 2019).
The formation of mitochondria provided the cells with
extra energy that allowed the evolution of eukaryotic cell
structures (Martin e/ al., 2017). One prerequisite for this
event is that the host must have had an actin filament
system that enabled the formation of protrusions and the
subsequent engulfment of bacteria (Yutin e al., 2009).
Whether the last eukaryotic common ancestor was an
Archea or not is still not resolved (Martijn and Ettema,
2013), but under any scenario phagotrophy evolved very
early in life on Earth. Moreover, secondary endosymbi-
otic events gave rise to photosynthesis within eukaryotes,
which appears to have been lost and (re)gained several
times in many protist groups (Archibald, 2009). Extant
protozooplankton thus include organisms that gained and
then lost their scope for phototrophy (i.e. that had ances-
tors that were mixoplankton).

Protist evolution saw many cycles of gaining and losing
capabilities (I'igueroa-Martinez et al., 2015; Hampl et al.,
2019). Mixoplankton did not arise as a coming together
of protist phytoplankton plus protozooplankton traits into
one organism, and protist phytoplankton did not fail to
acquire the capability for phagotrophy. On the contrary,

NUMBER 4 | PAGES 375-391 | 2019

the most profound event in protist plankton evolution in
some ways was the loss of the ancestral trait of phagotro-
phy. Not only did this remove an important nutritional
pathway, but it also removed a major route through which
protists have acquired genetic and physiological variety of
importance for their evolution.

Ecologically the most important of those protist groups
in contemporary aquatic environments that lost phagotro-
phy are the diatoms, which also evolved a non-cellulosic
cell wall (frustule of silica) that was likely incompatible
with phagotrophy from an early stage in their evolution.
Planktonic diatoms are also effectively non-motile (they
cannot swim) within the plankton. Motility is rather
an important trait for a planktonic predator; the low
motility of the mixoplanktonic Foraminifera and other
Rhizaria are compensated for in this regard by the use
of pseudopods for feeding. The environment in which
diatoms flourish is also typically an immature one, of high
turbulence, relatively high inorganic nutrient concentra-
tions, and lacking in the prey that could otherwise provide
nutrients. A similar set of arguments could be made
for the often-assumed absence of phagotrophy in the
ecologically dominant calcified form of coccolithophorids
(cf. Rokitta etal., 2011). In contrast, mixoplankton
dominate in more mature systems containing competitors
that are also potential prey, and in systems in which
nutrients (which can include light) are supplied in
unbalanced proportions, if not limiting amounts (Mitra
et al., 2014Db). These are also the situations in which HABs
occur (Granéli, 2006; Granéli et al., 2008; Glibert et al.,
2018), where mixoplankton are often dominant species.

There is significant variation across different mixo-
plankton types with respect to their core physiology
(Fig. 2), and allied variation in feeding types, and hence
in the form of trophic interactions. Despite this, the
traits of these organisms have often been referenced in
the literature in a rather indiscriminate fashion, as if
all mixotrophic plankton are effectively the same rather
than being different (CM vs GNCM, vs SNCM etc.).
This is especially so in the conceptual and modelling-
orientated literature (e.g. Ward and I'ollows, 2016). The
allometric “rule”-based analysis of Andersen ez al. (2016),
suggesting that mixoplankton are mechanistically aligned
(optimized) at a position intermediate between smaller
phototrophic phytoplankton and larger phagotrophic
micro (proto) zooplankton, does not align with reality. In
fact, mixoplankton span size ranges that encompass the
whole breadth of protist phytoplankton and protozoo-
plankton (Fig. 3); this range exceeds that similar to that of
ant-to-cow. Equally important though, there appears to
be important functional-allometric differences between
the CMs, GNCMS and SNCMs, which is also seen in
their biogeography (Leles et al., 2017, 2019).
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Fig. 3. Size ranges for different microbial plankton functional types. As labelled here, phytoplankton (prokaryotic cyanobacteria and allies, and
eukaryotic protists) are photo- and osmo- mixotrophic; they are incapable of phagotrophy. Protozooplankton are osmo- and phagotrophic; they are
incapable of phototrophy. For the mixoplankton, which all express or have potential to express photo-, osmo- and phagotrophy, the typical size ranges
are as indicated by the boxes. Note that in total mixoplankton sizes span all other protist plankton types, though the CMs are the dominant examples
in the sub 20 um size categories. GNCM, generalist non-constitutive mixoplankton; pSNCM, plastidic specialist non-constitutive mixoplankton;
eSNCM, endosymbiotic non-constitutive mixoplankton; CM, constitutive mixoplankton. The size ranges for mixoplankton have been taken from
the data collected for Leles et al. (2017, 2019) and from personal observations made by authors. See also Figs 1 and 2.

In conclusion, mixoplankton should not be collectively
viewed as inferior, nor indeed superior, to phytoplank-
ton and protozooplankton. They are just different (and
different within themselves—I1ig. 2). They also, in con-
sequence, have the potential to fulfil different functional

roles within ecology, exploiting different niches. Before we
appreciated the global abundance of mixoplankton we
could perhaps justify ignoring their contribution. We can
no longer afford to do so.

PLACING MIXOPLANKTON WITHIN
MARINE ECOLOGY

Researching and understanding the role of mixoplank-
ton within marine plankton systems has the potential to
completely reform our understanding of marine ecology.
However, the development of plankton science in this
regard has been complicated by:

(i) the failure to appreciate the implications of different
modes of mixoplankton functioning; the differing degrees
with which mixotrophy is obligatory (Sanders ¢/ al., 1990;
Jones, 1997; Stoecker et al., 2017; Gomes et al., 2018) even
within the same or closely related species (Calbet ez al.,
2011; Berge and Hansen, 2016);

(ii) the afore-mentioned confusion in terminologies.

There 1s in consequence something of a legacy of
published works that ignore or misrepresent mixoplank-
ton and are in retrospect questionable as to whether
they are best considered as incomplete, or explorations

in theoretical biology or ecology rather than of real-
ity. The implications of the advance in our understand-
ing and appreciation of mixoplankton within plankton
ecology thus have similarities with the rise to promi-
nence of the “microbial loop” (Azam et al., 1983) and
the microbial food web in the 1980s, and the inclusion
of the “viral shunt” (Wilhelm and Suttle, 1999) in the
1990s. Before the 1980s, marine ecology saw at its base
a system dominated by net-sized phytoplankton (i.e. cells
retained in plankton nets (mesh size typically 20-35 um)
and meso-zooplankton (mesh size typically >200 pm;
Cushing, 1975). The pre-1980s paradigm can be seen
to have been augmented by the addition of microbial
food webs; the form of this revised trophic structure is
indicated in Fig. 4a. The whole web contributes in various
ways to the “biological carbon pump” (Turner, 2015)
and to the “microbial carbon pump” (Jiao et al., 2010;
Legendpre et al., 2015).

The enhanced appreciation of the importance of the
microbial food web was brought about in large measure
by discovering and identifying the importance of certain
types of biological entities (e.g. Procholorococcus, viruses,
etc.), as well as the overdue recognition of the importance
of known groups (bacteria, cyanobacteria, heterotrophic
nanoflagellates etc.). The recent expansion of interests
in mixoplankton could be argued as just the overdue
recognition of facets of ecology known for over a century
(e.g. Biecheler, 1936; Blackbourn et al., 1973; Jones, 1997,
Stoecker, 1998; Jones, 2000). However, the inclusion
of mixoplankton as a frequent and at times dominant
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Fig. 4. Differences between the pre-2010 paradigm for plankton trophic dynamics, (a), and the post-2010 paradigm, (b), that acknowledges
the significance and roles of mixoplankton. The microbial food web components are within the blue boxes; viruses impact all organism groups
though (because of higher numeric host abundances) may impact smaller organisms more. Red dashed arrows indicate input and outputs of
dissolved inorganic and organic nutrients, blue arrows are nutrient uptakes and black arrows indicate grazing routes. Non-motile phytoplankton
include diatoms, and also non-motile life stages of others (notably organisms such as the nanoplanktonic coccolithorphorid Emiliania, and the
microplanktonic colonial Phaceocystis). In configuring (b), motile phytoplankton in (a) are considered to be potentially mixoplankton, as are ca. half of
the protozooplankton indicated in (a). CM: constitutive mixoplankton. NCM: non-constitutive mixoplankton. HNF: heterotrophic nanoflagellates.
p/n: pico/nano-sized organisms (i.e. 0.2-2.0 and 2.0-20 pm diameter, respectively). u: micro-sized organisms (i.e. 20-200 pm diameter).

activity in plankton biogeography (Leles et al., 2017,
2019; Faure etal., 2019; Gutierrez-Rodriguez et al. in
preparation) and trophic dynamics (e.g. Hartmann et al.,
2013) marks a radically different development in marine
science compared to the inclusion of either the microbial
loop or the viral shunt. It is different because it sees the
bulk of the known members of the traditional trophic web
description actually undertaking different (additional)
trophic roles. Thus, most of the protist primary producers
traditionally labelled as “phytoplankton”, other than
those in immature ecosystems (notably diatoms), are
actually also part-time grazers, while half those organisms
traditionally labelled as “micro (proto)zooplankton” in
the photic zone are also photosynthesising (I'ig. 4b; see
review by Stoecker ¢ al., 2009). This situation operates
across the whole microbial plankton allometric scale, from
picoflagellates (Zubkov and Tarran, 2008; Stoecker and
Lavrentyev, 2018) to mm-dimension SNCMs (Decelle
etal., 2012; Biard etal., 2017) (Fig. 3). The trophic
linkages are redrawn and new links added.

One of the most frequent questions that arises in sci-
entific discussions on mixoplankton is, how important is
mixotrophy and when are these organisms functionally
mixotrophic? Whether we need to know when they are
eating, or whether it is sufficient just to know that they
may do so if the need or opportunity arises, is a non-
trivial question to answer. The ability to eat may supply
small but vital amounts of nutrition to a mixoplanktonic
organism that would be unavailable to non-mixoplankton

competitors at critical stages. At the same time com-
petitors are removed by a combination of phagotrophy
and production of compounds with allelopathic effects
(John et al., 2002, 2015; Skovgaard and Hansen, 2003;
Tillmann, 2003); every difference is a difference. We sus-
pect that many laboratory cultures of these organisms lose
their ability to express different nutritional mechanisms
over the years of them being held in constant light and
high nutrient conditions (e.g. Blossom and Hansen in
preparation). It thus follows that if organisms in nature
can express a trait then that trait is, at least occasionally,
exploited to advantage in nature.

Of the protist functional groups identified by Mitra
et al. (2016), the NCMs must be regularly and significantly
mixotrophic as many have to feed to acquire chloroplasts
to support their obligatory need to undertake photosyn-
thesis. The challenge is primarily with identifying when
CM species are eating. Some CM species are perhaps only
rare feeders in nature, while others (given the voracious
behaviour of those brought into culture) are most likely
regular feeders (reviewed by Jeong et al., 2010; Hansen,
2011). The former group include species such as Tripos
Jurca (=Ceratium furca; Smalley et al., 2003, 2012), Proro-
centrum minimum (Johnson, 2015) and Helerocapsa triquetra
(Jeong et al., 2005), while the latter include species such
as Prymnesium (Skovgaard and Hansen, 2003; Carvalho
and Granéli, 2010), Rarlodinium (Berge et al., 2008a and b;
Calbet et al., 2011) and Fragilidium spp (Jeong et al., 1999;
Hansen et al., 2000; Skovgaard et al., 2000).
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As evidence of the importance of differentiating
between the CM and NCM forms, it is perhaps
noteworthy that the microbial food web interfaces directly
with many CMs (Burkholder ez al., 2008; Jeong et al.,
2010; Hartmann et al., 2013; Stoecker and Lavrentyev,
2018), while the NCMs generally tend to be larger
(eSNCMs up to mm dimensions, e.g. green Noctiluca;
Saito et al., 2006; Stoecker et al., 2009) (Figs 3 and 4b).
That said, some NCMs are nano-sized, at least in the
oligotrophic ocean (Pitta and Giannakourou, 2000; Pitta
etal.,2001).

Although we do not yet know the full significance of
mixoplanktonic activity for community structure and
dynamics, or indeed for the physiology and growth of
most individual species, the structural difference between
Fig. 4a and b appears so profound as to represent a
paradigm shift. The mixoplankton paradigm is not
a “loop”, or a “shunt”, appended to the pre-2010
trophic web (Iig. 4). Indeed, mixoplankton activity has
potentially important implications for the functioning
of the microbial food web (Fig. 4b). Is it perhaps a
“multiplier”, improving assimilation efficiency and the
allometrics of trophic transfer? We do not know. Perhaps
until it becomes much clearer, we should just refer to it as
simply the “mixoplankton paradigm”.

IMPLICATIONS OF THE
MIXOPLANKTON PARADIGM FOR
PLANKTON RESEARCH

The ramifications of the mixoplankton paradigm for
plankton research are wide ranging. Some implications
are perhaps more obvious than others, but taking a
fresh look at everything may be the safer route forward.
To really understand the implication of mixoplank-
ton for marine ecology, future research will have to
answer many questions such as: when and where are
mixoplankton important? How and from where/who
do mixoplankton acquire their energy and nutrients?
What activity rates can be associated with mixoplankton?
Which circumstances promote mixotrophy? Only a
multidisciplinary approach can answer those questions;
below we commence such a review, though it is readily
apparent that the task will proceed for likely several
decades.

Survey and fieldwork

Survey and fieldwork are ideally suited to answer ques-
tions such as when, where and how many organisms
occur. These are still highly relevant questions regarding
mixoplankton. However, survey methods, irrespective of

the approach and technology (remote sensing, autobuoys,
Continuous Plankton Recorder, etc.) have been designed
and optimized essentially for organisms that are tradi-
tionally labelled as “phytoplankton” or “zooplankton”
(both groups of which we now appreciate include mixo-
plankton), and typically for species that are nearest the
surface, physically robust and relatively large. Many of
these approaches are best suited to organisms with clear
physiological traits (pigment signatures in cyanobacteria,
reflective signatures in coccolithophorids, high structural
integrity in diatoms). Many mixoplankton (flagellates and
ciliates) are small, not structurally robust or easily sam-
pled, nor amenable to identification. This means that
long-term surveys (such as the CPR), focussed as they
often are for specific groups or species, will unfortunately
not provide historic data on most specific mixoplanktonic
organisms. The work of Leles e/ al. (2017, 2019) shows
clearly that there are serious gaps in our appreciation of
the biogeography of] especially, the CMs stemming from
such traditional methods. It may be possible, through
suitable cross calibration with presence/absence of other
plankton to glean some information. More profound, per-
haps, is the need to detach a signal for chlorophyll from an
automatic and exclusive association with primary produc-
tion supported by inorganic nutrient acquisition, when in
mixoplankton that same Chl signal is directly linked to
primary production coupled to secondary production.

The paucity of suitably trained researchers who
can readily identify mixoplankton not only hinders
survey work directly, but will likely restrict the ground
truthing of other technologies. Crucially this includes
checking the veracity of molecular methodologies such as
metabarcoding (who is there?) and metatranscriptomics
(what might they be doing?); see discussion in Leles
etal. (2019) and Faure etal. (2019). The challenge of
exploiting molecular methods becomes even greater
when one considers the presence of non-self genetic
material within mixoplankton, as nucleic acids from
their prey, in acquired plastids and/or in symbionts;
more single-cell analyses are needed, including single-
cell polymerase chain reaction (PCR) and genomic
studies (Tai et al., 2013; Kolisko et al., 2014). Beisner
etal. (2019) gives a review of the current states of the
art in this subject arena, specifically for nano-sized
mixoplankton. Molecular approaches have contributed
much to elucidating patterns of mixotrophy in plankton
(Burns et al., 2015; McKie-Krisberg et al., 2018; Faure
etal., 2019). Nonetheless, “old fashioned” techniques,
such as optical and electron microscopy, also have
important continuing roles and have been, and still are,
frequently deployed in research on mixoplankton (Ander-
son, 1978; Swanberg and Caron, 1991; Mafra ez al., 2016;
Kim et al., 2017).
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Experimental work

Knowing what is there, is one thing. Knowing what it is
actually doing there and at what rate is more challenging,
and arguably more important (Flynn ez a/., 2018). Marine
scientists have spent decades developing and deploying
field and laboratory techniques for measuring primary
production (photosynthesis, nutrient uptake) and, with
markedly lesser success (Mitra el al., 2014a), for graz-
ing activities and secondary production by zooplankton.
Researchers have studied laboratory cultures with empha-
sis on using axenic strains, and most frequently using
strains that have been maintained in culture for decades
in high inorganic nutrient, constant temperature/light
environments (and thus have likely evolved, e.g. Martins
et al. 2004). These approaches, although undertaken for
perfectly sound reasons under the traditional paradigm of
considering these phototrophic protists as phytoplankton,
can now be seen as simplified too far. Our “laboratory
rats”; as single strain isolates, have indeed not represented
the true physiology of natural populations, which consists
of a high heterogenic diversity, but for reasons far beyond
just adapting to constant-temperature room conditions
(e.g Kremp et al., 2012; Alpermann ¢t al., 2010; Branden-
burg et al., 2018).

Simply determining whether a mixoplankton is oper-
ating at that instant as a photo- and phago-mixotroph,
and what its rate of grazing is upon what prey organisms,
presents a profound challenge that few researchers and
laboratories are well placed to even attempt to confront.
We need to know those rates of photosynthesis, grazing,
nutrient regeneration, respiration, etc.; without such data
we cannot verify the performance of simulation models.
To complicate things further, we need similar data for
their prey species as well (which could also be mixoplank-
ton), growing in the same water at the same time. There
are very few studies of mixoplankton physiology that
are adequately executed to provide data describing the
dynamics of growth and trophic activity (e.g. Skovgaard
et al., 2000, 2003), and even fewer provide the necessary
information on both the mixoplankton and its prey (Adolf
etal., 2003, Lin et al., 2018); see discussion in I'lynn and
Mitra (2009). Simply catching these organisms in the act
of eating is a problem (Anderson et al., 2017). Consider
a nano-mixoplankton eating bacteria; it may only need
to eat one bacterium a day to acquire its P or Fe quota.
Did we observe that event in our shipboard incubation?
Do we know whether the time of day 1s important for the
event? Is the prey presented for possible consumption in
an experiment an appropriate species, and in the correct
nutritional state?

Training in phytoplankton physiological ecology was
perhaps at its zenith during 1970-1980. Since the
emergence of molecular biology, however, the literature
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has seen far fewer papers reporting all-engrossing
experiments reporting time series incubations and
cultures growth dynamics, etc. Molecular biology and
genomics have played a pivotal role in elucidating the
evolution of phagotrophy and eukaryogenisis, which is
strongly linked to functionality of mixoplankton (Burns
etal., 2015). Those approaches were particularly useful
in revealing features of the trophic interactions between
NCMs (Takishita ef al., 2002). Emphasis has been placed
upon who is there (at best only semi-quantitatively), and
determining the scope for action (as implied from DNA
and RNA data). Even meta-transcriptomic approaches
can only indicate the potential contribution of genetic
functionality at community level rather than the actual
rate of action (Stewart ef al., 2012; Wohlrab et al., 2018).
The absence of genetic capability indicates an absence of
functional ability; molecular biology can at best indicate
potential capability for rate activity, but it (neither DNA
sequences data, nor RNA data) cannot provide the actual
rates. And will molecular biology be able to discriminate
between a bacterial-mixoplankton interaction where the
bacteria are external to the protist (as a contaminant or
part of its associated microbiome) rather than internal
having been eaten? There are many potential sources
of conflicting signals even in cultured organisms. For
example, membrane production and (auto)digestion
processes occur in cells that are not phagocytic. So,
to what extent molecular methods can provide help in
establishing rate processes and relative contributions of
photo- versus osmo- versus phagotrophy in mixoplankton
is far from clear at present, though various studies
have explored the topic (Santoferrara etal., 2014;
McKie-Krisberg et al., 2018).

In short, there is much to do in the laboratory and
in the field, and that applies whether these studies also
involve reappraisals of species formally labelled as just
phytoplankton or protozooplankton, or as prey, as com-
petitors, or as predators. Critically, while phytoplankton
are amenable to study in axenic conditions, or under
conditions in which autecology dominates, studies of
mixoplankton require a simultaneous study of their prey.
This greatly complicates matters, generating problems
comparable if not more complex, to those encountered
in studies of zooplankton (Mitra ¢/ al., 2014a).

Conceptual and simulation models

Survey and fieldwork, as well as experimental studies,
are very important for providing information needed to
support successful conceptual and numerical modelling
of plankton ecology; they provide data and understanding
to aid the construction and validation of the models.
The added value of models, especially of numerical
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simulation models, is the scope for their use to explore
cause-and-effect questions, such as why and how are
the pathways in trophic dynamics as they are. What
is apparent is that modelled mixoplankton activity
has clear scope to radically alter simulated trophic
dynamics and biogeochemical flows (Flynn and Mitra,
2009; Mitra et al. 2014b, 2016; Ward and Follows, 2016;
Ghyoot etal., 2017b; Leles etal. 2018). The question
is how closely those projections simulate reality, or
whether they simply reflect the conceptual basis of the
mixoplankton description. So, do we understand the
physiology and functional roles of mixoplankton well
enough to construct robust models to test hypotheses?

Mixotrophy in plankton has stimulated a curiosity-
driven exploration of simulated ecology (Jost ez al., 2004;
Hammer and Pitchford, 2005). Mixotrophy in such mod-
els has often been photo- and osmotrophic, rather than
photo-, osmo- and phagotrophic. Modelled mixotrophs
have often had traits that have been “traded” to prevent
them from becoming superior and dominating over their
pure phototrophic or heterotrophic counterparts (Jost
et al., 2004; Ward et al., 2011). The rationale behind TTO
models describing phytoplankton activity (Bruggeman
and Kooijman, 2007; Follows et al., 2007; Litchman and
Klausmeier, 2008; Smith et al., 2016) comes under a
different spotlight if we consider that these organisms
are also predators. Factors that appear of benefit for
phytoplankton (e.g. small size favouring nutrient acqui-
sition) or for consumers (e.g. larger size than the prey, and
to minimize predation), and the relative importance of
bottom-up and top-down factors become confused when
we consider mixoplankton ecology and physiology. Then
there are also the arguments against TTO approaches
mentioned above. For modellers who wish to exploit TTO
concepts for pragmatic computational reasons, at present
we simply do not have sufficient empirical evidence from
which to construct robust TTO arguments.

Other approaches (Flynn and Mitra, 2009; Ghyoot
etal., 2017a) have specifically sought to align model
construction with the functional type descriptions that we
observe (Mitra e/ al., 2016). It is important that we recog-
nize the importance of different functional forms of mixo-
plankton (Fig. 2). We need to do so at least for the forms
that are most frequently dominant in terms of biomass
(ile. CM vs GNCM), though pSNCM and eSNCM
forms are also important groups in terms of HABs
and biogeochemistry. All mixoplankton types appear
to be of significance across large areas of the oceans
(Leles etal., 2017, 2019). How does such knowledge
shape a reappraisal of works considered as exemplars for
global-scale plankton modelling, such as the DARWIN
model approach of TFollows ¢t al. (2007), which sought to
describe global “phytoplankton” productivities according

to standard phototrophic trait approaches, dominated
by bottom-up controls? Equally problematic, is that
plankton models that do not describe mixotrophic activity
have had their skill considered with reference to data
collected for natural populations that will most likely have
included, on occasion, significant mixoplankton presence
and activity.

Over the last decade, plankton simulation science
has gone from the extreme of ignoring mixotrophy, to
the opposite extreme of assuming that all plankton are
mixotrophic (Ward and Follows, 2016). Ward and Follows
(2016) deployed an allometric-linked sliding scale of
mixoplanktonic capability. However, as noted above, far
from being confined as an optimal strategy for mid-sized
protists (Andersen ez al., 2016), significant levels of photo-
and phago-mixotrophy operates in some of the smallest
phototrophic flagellates (Hartmann e a/., 2013; Hansen
and Hjorth, 2002; Anderson et al., 2018), through 1 mm
diameter green Noctiluca (Hansen et al., 2004; Gomes et al.,
2018), to the very largest colonial Radiolaria (Collodaria;
Swanberg, 1983; Biard et al., 2016). There is a clear
difference in the alignment of allometry and different
mixoplankton functional types as well (I'ig. 3). We should
perhaps guard against developing and exploiting simple
explanations that may lead to premature conclusions.

For sure, the modelling of protist plankton activities
requires a reappraisal. We need computationally efficient
models that describe these different organisms (Fig. 2), in
a fashion that is acceptable in the eyes of those scientists
who study the physiology and ecology of mixoplankton,
before we place them in ecosystem simulators. To do
otherwise, to describe theoretical mixoplankton forms
that do not simulate the behaviour of real organisms, is
surely at least as questionable as to continue to ignore the
existence of mixoplankton.

Conceptual models of planktonic ecology also extend
far beyond the form indicated in Fig. 4, to more overar-
ching concepts, which also warrant a revisit under the
mixoplankton paradigm. Thus, we can reconsider
the underpinning of Margalef’s mandala (Margalef,
1978) and perhaps even revisit the conceptual basis of
Longhurst (2007) provinces. When working on Leles
etal. (2017, 2019) we sought to place biogeographies of
CM and NCM protists within the Longhurst province
descriptions aware that what we were doing was using a
structure built in the era of the traditional paradigm, and
allied concepts, to attempt to explain the biogeography
of very different functional groups. It may come
to pass that a merging of a mixoplanktonic centric
revision of Margalef’s mandala (Glibert, 2016) and
the Longhurst-style provinces will see a reforming of
biogeographic interpretations to provide an enhanced
holistic understanding of ocean life.

385

610z Jaquieoa €0 U0 Jasn ¥ayoljqig Bunyosiojsaiss|y pun -1ejod Jany Jnjsul Jousbap) pay Aq L09LESS/SLE/P/ L bhoeasae-aoiue/yue|d/woo dno olwapeose//:sdjy Woly papeojumod]



JOURNAL OF PLANKTON RESEARCH | VOLUME 41

CONCLUSION

There is clearly much work to do across the entire gamut
of plankton research in the context of mixoplankton. It
1s possible that our holistic view of how planet-scale pro-
cesses operate may ultimately be little changed. Maybe, to
borrow from Williams (1984) commentary upon how the
microbial loop was not impacting the science of plankton
ecology as much as one may have expected, the mixo-
plankton paradigm will prove to be just another of the
“Emperor’s New Suit of Clothes” (i.e. de facto invisible).
The microbial loop is still not included commonly in
extant plankton models. While mixoplankton are ubiqui-
tous, and we will eventually understand better how their
food web operates, perhaps ultimately it is just a wheel
spinning inside other wheels of greater consequence, with
microbial primary, secondary and bacterial productions
being so integrated that we would be better considering
them as a whole (Flynn, 1988).

On the other hand, perhaps the mixoplankton
paradigm will bring into sharper relief that the microbial
loop and the allied bacterial food web, with its role in the
microbial carbon pump generating refractory dissolved
organic matter (DOM) (Jiao et al., 2010; Lechtenfeld et al.,
2014), 1s indeed collectively worthy of more detailed
inclusion in models. The important role of bacteria-
mixoplankton interactions in oligotrophic systems is clear
(Hartmann et al., 2013; Mitra ef al., 2014b). By similar
arguments, maybe our concepts for the management
of HABs will need to be reappraised, recognizing the
importance of alternative trophic interactions (including
the needs of some species for certain prey) in addition
to the primarily bottom-up light/inorganic-nutrient
processes that are currently focussed upon (Glibert ez al.,
2018; Shumway et al., 2018).

If such events come to pass, then the mixoplankton
paradigm will develop into more than just recognizing
the importance of photo- and phago-mixotrophic protist
plankton. We are only going to find out if we look, and
we can only attain that goal by combining the different
field of research in plankton ecology in a multidisciplinary
approach. We will need a combination of laboratory and
field rate determinations, biochemistry (stoichiometry)
and molecular approaches, new methodologies for field
and survey work and new models to test the mixoplankton
paradigm. And, of course, we need to train the next
generation of scientists to deliver this.
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