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Abstract
1.	 Reliable	 determination	 of	 organisms	 is	 a	 prerequisite	 to	 explore	 their	 spatial	
and	temporal	occurrence	and	to	study	their	evolution,	ecology,	and	dispersal.	In	
Europe,	Bavaria	(Germany)	provides	an	excellent	study	system	for	research	on	the	
origin	 and	diversification	of	 freshwater	organisms	 including	dinophytes,	 due	 to	
the	presence	of	extensive	lake	districts	and	ice	age	river	valleys.	Bavarian	fresh‐
water	environments	are	ecologically	diverse	and	range	from	deep	nutrient‐poor	
mountain	lakes	to	shallow	nutrient‐rich	lakes	and	ponds.

2.	 We	obtained	amplicon	sequence	data	(V4	region	of	small	subunit‐rRNA, c.	410	bp	
long)	 from	 environmental	 samples	 collected	 at	 11	 sites	 in	 Upper	 Bavaria.	We	
found	186	operational	taxonomic	units	(OTUs)	associated	with	Dinophyceae	that	
were	further	classified	by	means	of	a	phylogenetic	placement	approach.

3.	 The	maximum	likelihood	tree	inferred	from	a	well‐curated	reference	alignment	com‐
prised	a	systematically	representative	set	of	251	dinophytes,	covering	the	currently	
known	molecular	diversity	and	OTUs	linked	to	type	material	if	possible.	Environmental	
OTUs	were	scattered	across	the	reference	tree,	but	accumulated	mostly	in	freshwa‐
ter	lineages,	with	79%	of	OTUs	placed	in	either	Apocalathium, Ceratium,	or	Peridinium,	
the	most	frequently	encountered	taxa	in	Bavaria	based	on	morphology.

4.	 Twenty‐one	Bavarian	OTUs	 showed	 identical	 sequences	 to	 already	 known	and	
vouchered	accessions,	two	of	which	are	linked	to	type	material,	namely	Palatinus 
apiculatus and Theleodinium calcisporum.	Particularly	within	Peridiniaceae,	delimi‐
tation	of	Peridinium	species	was	based	on	the	intraspecific	sequence	variation.

5.	 Our	approach	indicates	that	high‐throughput	sequencing	of	environmental	sam‐
ples	is	effective	for	reliable	determination	of	dinophyte	species	in	Bavarian	lakes.	
We	further	discuss	the	importance	of	well‐curated	reference	databases	that	re‐
main	to	be	developed	in	the	future.
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1  | INTRODUC TION

Solid	knowledge	of	ecosystem	functioning	and	community	dynamics	
during	seasonal	or	longer	periods,	as	well	as	conservation	strategies	
and	the	impact	of	invasive	species,	essentially	relies	on	precise	origi‐
nal	data	about	the	spatial	and	temporal	occurrence	of	the	inhabiting	
organisms.	Recent	 advances	 in	 the	 application	of	 high‐throughput	
sequencing	 (HTS)	to	analyse	the	molecular	diversity	 in	aquatic	en‐
vironments	have	enabled	a	better	understanding	of	the	community	
composition	 and	 species	 distribution	 in	 such	 ecosystems.	 Within	
the	last	decade,	our	knowledge	of	the	microbial	biodiversity	has	in‐
creased	faster	than	ever,	especially	after	Edwards	et	al.	(2006)	pub‐
lished	the	first	metagenome	analysis	of	environmental	samples	using	
next‐generation	sequencing	technologies.	An	unexpectedly	high	pro‐
tist	diversity	has	been	described	since	then	in	various	aquatic	envi‐
ronments	 (Cuvelier	et	al.,	2010;	Keeling	et	al.,	2014;	Kohli,	Neilan,	
Brown,	Hoppenrath,	&	Murray,	2014;	Massana	et	al.,	2015;	Stoeck	
et	 al.,	 2010),	 revealing	 also	 the	 existence	 of	 seasonal	 variation	 in	
many	phytoplankton	 taxa	 (Tillmann,	Salas,	 Jauffrais,	Hess,	&	Silke,	
2014;	 Toebe,	 Joshi,	 et	 al.,	 2013)	 and	 demonstrating	 the	 power	 of	
these	methods	in	discovering	the	world's	hidden	microbial	diversity	
(Lindeque,	Parry,	Harmer,	Somerfield,	&	Atkinson,	2013;	Medinger	
et	al.,	2010).	Unknown	sequences	derived	from	environmental	sam‐
ples	may	additionally	assist	discovering	new	species	and	even	new	
lineages	(Seenivasan,	Sausen,	Medlin,	&	Melkonian,	2013).

One	of	the	most	basic	and	important	questions	in	evolutionary	
biology	of	microorganisms	refers	to	mechanisms	that	have	shaped	
their	current	distribution	(O'Dwyer,	Kembel,	&	Sharpton,	2015).	The	
relative	 importance	of	principal	processes	such	as	divergence,	dis‐
persal,	and	selection	by	ecological	filtering	(Vellend,	2010)	is	a	key	
point	 that	needs	to	be	worked	out	 rigorously.	There	 is	an	ongoing	
debate	 (Bass	 &	 Boenigk,	 2011;	 Caron,	 2009;	 Foissner,	 2011)	 into	
whether	microbes	 are	 all	 cosmopolitan,	 and	 lack	 distinct	 distribu‐
tions	 (Fenchel	&	 Finlay,	 2004;	 Finlay,	 2002;	 Read	 et	 al.,	 2013),	 or	
rather	follow	a	moderate	endemism	model	(Bass,	Richards,	Matthai,	
Marsh,	&	Cavalier‐Smith,	2007;	Bates	et	al.,	2013;	Coleman,	2001).	
Under	a	 less	dogmatic	perspective,	plankton	communities	may	ac‐
tually	consist	of	both	widespread	species	and	those	with	a	smaller	
range	 (Bik	 et	 al.,	 2012;	 Coleman,	 2001;	 Foissner,	 2008;	 Žerdoner	
Čalasan,	Kretschmann,	Filipowicz,	et	al.,	2019),	and	occurrences	for	
such	species	remain	to	be	identified	individually.

A	 limitation	 that	still	precludes	a	comprehensive	knowledge	of	
protist	 distribution	 is	 the	 taxonomic	 confusion	 that	 exists	 due	 to	
complex	determination	procedures	(Wheeler,	2008).	To	take	full	ad‐
vantage	of	environmental	sequencing,	curated	reference	collections	
are	necessary,	linking	the	molecular	data	with	scientific	binominals.	
Much	progress	has	been	made	in	the	past	years	to	build	such	DNA‐
barcoding	databases,	not	only	for	animals	and	plants	(Hollingsworth,	
2011;	 Vernooy	 et	 al.,	 2010),	 but	 also	 for	 various	 microorgan‐
isms	 (Quast	 et	 al.,	 2013)	 such	 as	 fungi,	 diatoms,	 and	 dinophytes	
(Del	 Campo	 et	 al.,	 2018;	 Fourtanier	 &	 Kociolek,	 2009;	 Mordret	
et	al.,	2018;	Peršoh,	2015;	Schoch	et	al.,	2012;	Stern	et	al.,	2012).	
These	 databases	 are	 continuously	 updated	 and	 curated	 (Rigden,	

Fernandez‐Suarez,	&	Galperin,	2016),	preferably	based	on	informa‐
tion	from	type	material	(Pawlowski	et	al.,	2012).	However,	the	avail‐
ability	of	reference	data	for	environmental	sequencing	studies	is	still	
highly	unbalanced	across	various	taxonomic	protist	lineages.

A	 prerequisite	 to	 any	 assessment	 of	 the	microbial	 biodiversity	
found	in	a	given	ecosystem	is	the	confident	placement	of	resulting	
molecular	operational	taxonomic	units	(OTUs)	within	particular	lin‐
eages	in	the	Tree	of	Life.	Due	to	a	huge	number	of	reads,	and	the	di‐
versity	of	organisms	captured	by	HTS	of	environmental	DNA,	initial	
OTU	annotation	using	reference	databases	usually	allows	for	confi‐
dent	 taxonomic	classifications	only	up	 to	coarser	 taxonomic	 ranks	
(such	as	phylum,	class,	or	order:	Quast	et	al.,	2013).	A	complemen‐
tary	approach,	which	enables	finer	levels	of	taxonomic	assignments	
(i.e.	family,	genus,	or	species),	is	the	phylogenetic	placement	of	reads	
in	 reference	 trees,	 which	 also	 offers	 the	 advantage	 of	 estimating	
statistical	 support	 values	 for	 annotations,	 regardless	 of	 the	 read's	
length	(Dunthorn	et	al.,	2014).	This	method	has	been	recently	used	
in	barcoding	and	biomonitoring	projects	of	protists	 (Elferink	et	al.,	
2017;	Keck,	Vasselon,	Rimet,	Bouchez,	&	Kahlert,	2018;	Medinger	
et	al.,	2010;	Vergin	et	al.,	2013).

In	 comparison	 to	 those	 living	 in	 marine	 environments,	 the	
freshwater	 dinophytes	 are	 relatively	well	 understood.	Currently,	
350	species	are	listed	based	on	morphology	(Mertens,	Rengefors,	
Moestrup,	 &	 Ellegaard,	 2012;	 Moestrup	 &	 Calado,	 2018),	 and	
continuous	 efforts	 to	 revise	 them	 taxonomically	 have	 been	
made	 in	 the	 past	 years	 (Moestrup,	 Lindberg,	 &	 Daugbjerg,	
2009;	 Craveiro,	 Pandeirada,	 Daugbjerg,	 Moestrup,	 &	 Calado,	
2013;	Takano,	Yamaguchi,	 Inouye,	Moestrup,	&	Horiguchi,	2014;	
Kretschmann,	 Filipowicz,	 Owsianny,	 Zinßmeister,	 &	 Gottschling,	
2015;	Kretschmann,	Owsianny,	Žerdoner	Čalasan,	&	Gottschling,	
2018,	to	mention	only	a	few	studies).	This	also	includes	the	gen‐
eration	 of	 reference	 DNA	 sequence	 information	 being	 available	
for	 a	 considerable	portion	of	 the	 species.	Nevertheless,	 there	 is	
still	a	significant	portion	of	freshwater	dinophyte	flora	that	is	nei‐
ther	taxonomically	revised	nor	molecularly	investigated.	As	such,	
it	hinders	the	transparent	research	in	this	field	and	calls	all	newly	
obtained	data	into	question.	Moreover,	the	phenomenon	of	cryp‐
tic	speciation	(i.e.	molecular	diversification	without	morphological	
differentiation),	which	is	taxonomically	challenging	in	a	number	of	
marine	dinophytes	(Hariganeya	et	al.,	2013;	Söhner,	Zinßmeister,	
Kirsch,	&	Gottschling,	2012;	Toebe,	Alpermann,	et	al.,	2013),	ap‐
pears	 rare	 (or	understudied)	 in	 the	 freshwater	habitat.	From	 the	
phylogenetic	perspective,	freshwater	dinophytes	are	a	heteroge‐
neous	 group	 and	 have	 colonised	 their	 habitats	 from	 the	marine	
environment	 several	 times	 independently	 (Logares	 et	 al.,	 2007;	
Žerdoner	Čalasan,	Kretschmann,	&	Gottschling,	2019).	Dinophyte	
development	is	complex	and	frequently	includes	at	least	two	eco‐
logically	differentiated	stages	of	life‐history,	namely	a	motile	theca	
(vegetative cell)	and	an	 immotile,	coccoid	cell	 (colloquially	termed	
cyst:	von	Stosch,	1973;	Pfiester	&	Anderson,	1987).

In	Germany,	a	number	of	dinophyte	species	have	been	originally	
described	from	the	Bavarian	region	(Baumeister,	1957;	Lindemann,	
1920;	 Schrank,	 1802)	 also	 being	 the	 focus	 of	 the	 present	 study.	
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However,	 most	 algae	 inhabiting	 Bavarian	 waters	 are	 presumably	
wider‐ranging,	 with	 type	 localities	 outside	 of	 that	 region.	Mauch,	
Schmedtje,	Maetze,	and	Fischer	 (2003)	 reports	62	dinophyte	spe‐
cies	 (online	 table	available	at	www.gewae	sser‐bewer	tung.de/files/	
taxal	iste.pdf),	but	this	checklist	does	not	provide	any	source	refer‐
ences,	is	taxonomically	not	rigorous	and	also	includes	species	from	
the	 marine	 environment	 (e.g.	Heterocapsa rotundata,	 which	 is	 un‐
likely	 to	 be	 present	 in	 Bavarian	 freshwater	 habitats).	Morphology	
based	records	of	Bavarian	dinophytes	are	otherwise	rather	sporadic,	
and	only	a	few	species	have	been	reported	so	far	including	common	
Ceratium hirundinella, Gyrodinium	 (≡	Gymnodinium)	 helveticum,	 and	
Peridinium willei	 (Raeder,	1990;	Schaumburg,	1996;	Siebeck,	1982),	
as	well	as	rarer	species	such	as	Cystodinium cornifax and Gloeodinium 
montanum	 (Höll,	 1928).	 The	 true	 number	 of	 dinophyte	 species	 in	
Bavaria,	and	their	spatial	occurrences,	 is	thus	unknown	at	present,	
and	more	 thorough	biodiversity	assessments	of	 these	key	protists	
will	benefit	from	the	application	of	contemporary,	high‐throughput	
molecular	methods.

In	the	present	study,	we	provide	an	initial	attempt	to	apply	en‐
vironmental	amplicon	sequences	with	the	principal	aim	to	uncover	
the	yet	unexplored	dinophyte	diversity	in	Bavarian	lakes	as	an	exem‐
plary	system.	We	determine	their	species	by	placing	the	ribotypes	
in	phylogenetic	reference	trees	(i.e.	rRNA	sequence	comparison	of	
multiple	sequences	including	GenBank	vouchers	collected	all	around	
the	world).	Bavarian	freshwater	environments	range	from	deep	nu‐
trient‐poor	mountain	lakes	to	shallow	nutrient‐rich	lakes	and	ponds	
(basic	 information	 is	 available	 at	 www.lfu.bayern.de/).	 These	 are	
characterised	 by	 a	 broad	 range	 of	 environmental	 conditions	 and	
resource	 levels	 and	 represent	 potential	 habitats	 for	 phytoplank‐
ton	 communities.	We	expect	 the	 dinophyte	 communities	 in	 those	
lakes	to	be	composed	of	species	with	different	ecological	 require‐
ments	and	potentials	for	dispersal	(Žerdoner	Čalasan,	Kretschmann,	
Filipowicz,	et	al.,	2019),	resulting	in	different	effects	on	their	distri‐
bution.	Our	results	will	lay	the	basis	for	a	better	knowledge	of	eco‐
system	 functioning	 and	 evolutionary	 dynamics	 of	 protists	 such	 as	
freshwater	dinophytes.

2  | METHODS

Surface	plankton	tow	samples	were	collected	from	piers	at	13	locali‐
ties	 in	Upper	Bavaria	 (Germany)	 in	April	2017	using	a	plankton	net	
(mesh	size	20	μm).	The	 localities	 included	10	 lakes	 (two	 lakes	were	
sampled	at	two	sites)	and	one	subsidiary	river,	to	cover	standing	and	
flowing	bodies	of	water	as	well	 (Table	1,	Figure	1).	Geographic	co‐
ordinates	were	 recorded	 for	 all	 sites	using	 a	 standard	GPS	Garmin	
Ltd	device.	Cells	were	observed,	documented,	and	measured	under	a	
CKX41	inverted	microscope	(Olympus;	Hamburg,	Germany)	equipped	
with	a	phase‐contrast	option	and	a	DP73	digital	camera	(Olympus).

Environmental	DNA	was	extracted	using	the	Genomic	DNA	from	
Soil	kit	(Machery‐Nagel;	Düren,	Germany)	following	the	manufactur‐
er's	protocol.	The	small	subunit	(SSU	or	18S)	of	the	ribosomal	RNA	
(rRNA)	 operon	V4	 region	 (c.	 410	 bp)	was	 the	 amplification	 target.	

Due	to	polymerase	chain	reaction	 (PCR)	biases	or	PCR	errors	 that	
may	artificially	increase	diversity,	each	PCR	was	performed	in	trip‐
licates	 (Acinas,	 Sarma‐Rupavtarm,	 Klepac‐Ceraj,	 &	 Polz,	 2005).	
Forward	and	reverse	primers	were	those	used	by	Xiao,	Wu,	Liu,	Xu,	
and	Chi	(2017).	Amplification	of	DNA	(PCR)	for	subsequent	amplicon	
sequencing	(Illumina)	was	carried	out	using	5	ng/μl	template	DNA,	
1 μM	of	each	primer	and	2×	KAPA	Hifi	HotStart	Ready	Mix	(Roche;	
Penzberg,	 Germany).	 Resulting	 PCR	 products	 were	 visualised	 in	
1%	 agarose	 gels	 and	 purified	 using	 AMPure	 XP	 Beads	 (Beckman	
Coulter).	Dual	indices	and	Illumina	sequence	adapters	were	attached	
by	means	of	an	Index	PCR	using	the	Nextera	XT	Index	Kit	(Illumina),	
and	 final	 PCR	 products	 were	 again	 purified	 using	 AMPure	 XP	
Beads.	The	library	was	validated	using	an	Agilent	2100	Bioanalyzer	
Software	and	a	DNA	1000	Chip	(Agilent	Technologies)	to	verify	the	
size	of	the	resulting	fragments.	The	final	DNA	libraries	were	equimo‐
larly	pooled	and	run	in	a	MiSeq	System	(Illumina)	after	combining	the	
denatured	PhiX	control	library	(15%)	and	the	denatured	amplicon	li‐
brary.	Some	6.5	million	2	×	300	bp	paired‐end	reads	were	produced	
and	demultiplexed	into	13	samples.

Using	Trimmomatic	(v0.38;	Bolger,	Lohse,	&	Usadel,	2014),	3′‐
ends	of	the	reads	were	trimmed	based	on	read	quality	information.	
PEAR	(v0.9.10;	Zhang,	Kobert,	Flouri,	&	Stamatakis,	2014)	with	de‐
fault	settings	was	used	to	merge	the	paired‐end	reads.	Sequences	
that	 could	 not	 be	 merged	 were	 discarded.	 Primer‐matching	 se‐
quence	segments	were	truncated	from	the	amplicons	by	cutadapt	
(v1.9;	Martin,	2011)	and	amplicons	were	only	kept	in	the	sequence	
pool	if	both	the	segments	of	the	forward	and	of	the	reverse	primer	
could	 be	 found.	 Remaining	 sequences	 were	 filtered	 for	 further	
quality	features	by	vsearch	(v2.3.0;	Rognes,	Flouri,	Nichols,	Quince,	
&	Mahé,	 2016).	 Sequences	were	 discarded	 if	 they	were	 outside	
a	50	bp	 radius	above	or	below	 the	median	 length	of	 the	primer‐
truncated	 amplicon	 (c.	 387	 bp),	 if	 they	 carried	 any	 ambiguity,	 or	
if	the	expected	number	of	miscalled	bases	of	a	sequence	(sum	of	
all	 base	error	probabilities	of	 a	 sequence)	was	>1.	Chimera	were	
predicted	also	by	vsearch	utilising	the	UCHIME	algorithm	(Edgar,	
Haas,	Clemente,	Quince,	&	Knight,	2011)	with	default	settings	 in	
de	novo	mode	for	each	sample	separately	and	removed	from	the	
sample	 files.	About	4	million	 sequences	passed	all	 filtering	 steps	
and	were	used	as	 input	 for	 the	OTU‐clustering,	which	was	done	
using	 the	 tool	Swarm	 (v2.1.8;	Mahé,	Rognes,	Quince,	De	Vargas,	
&	Dunthorn,	2015)	with	default	settings.	The	most	abundant	am‐
plicon	 of	 each	OTU‐cluster	was	 used	 as	 an	OTU	 representative.	
These	 sequences	 were	 annotated	 by	 the	 RDP	 classifier	 (Wang,	
Garrity,	 Tiedje,	 &	 Cole,	 2007)	 implemented	 in	 mothur	 (v1.38.1;	
Schloss	et	al.,	2009)	using	the	Ref_NR99	version	of	release	128	of	
the	SILVA	SSU	sequence	set	(Quast	et	al.,	2013)	using	a	reference	
with	a	confidence	cut‐off	of	90.	The	annotation	of	each	represen‐
tative	sequence	was	used	as	annotation	of	the	OTU‐cluster	as	well	
and	added	to	the	corresponding	line	of	the	OTU	table.

Operational	 taxonomic	 units	 classified	 as	 Dinoflagellata	 as	
search	strings	and	with	an	abundance	of	≥10	were	classified	more	
accurately	by	phylogenetic	placement	onto	a	reference	tree	based	
on	concatenated	rRNA	alignments.	Full	voucher	information	of	this	
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systematically	representative	set	comprising	241	dinophytes	(plus	
10	 outgroup	 accessions)	 are	 provided	 in	 Table	 S1.	 To	 further	 ex‐
plore	dinophyte	identities	based	on	DNA	sequences,	we	performed	
BLAST	searches	(Altschul,	Gish,	Miller,	Myers,	&	Lipman,	1990).

For	alignment	constitution,	separate	matrices	of	 the	rRNA	op‐
eron	(i.e.	SSU,	ITS,	LSU)	were	constructed,	aligned	using	"MAFFT"	
v6.502a	 (Katoh	 &	 Standley,	 2013)	 and	 concatenated	 afterwards.	
The	 aligned	 matrices	 are	 available	 as	 *.nex	 files	 upon	 request.	
Dinophyte	phylogenetic	analyses	were	carried	out	using	maximum	
likelihood	 (ML)	 and	 Bayesian	 approaches,	 as	 described	 in	 detail	
previously	 (Gottschling	 et	 al.,	 2012)	 using	 the	 resources	 available	
from	 the	 CIPRES	 Science	 Gateway	 (Miller,	 Pfeiffer,	 &	 Schwartz,	

2010).	The	Bayesian	analysis	was	performed	using	"MrBayes"	v3.2.6	
(Ronquist	 et	 al.,	 2012,	 freely	 available	 at	 http://mrbay	es.sourc	
eforge.net/downl	oad.php)	 under	 the	 GTR+Γ	 substitution	 model	
and	the	random‐addition‐sequence	method	with	10	replicates.	We	
ran	 two	 independent	 analyses	 of	 four	 chains	 (one	 cold	 and	 three	
heated)	with	20,000,000	generations,	sampled	every	1,000th	cycle,	
with	an	appropriate	burn‐in	 (10%)	as	 inferred	 from	the	evaluation	
of	 the	 trace	 files	 using	Tracer	 v1.5	 (http://tree.bio.ed.ac.uk/softw	
are/	tracer/).	For	 the	ML	calculation,	 the	MPI	version	of	 "RAxML"	
v8.2.4	 (Stamatakis,	 2014,	 freely	 available	 at	 http://www.exeli	xis‐
lab.org/)	was	applied	using	the	GTR+Γ	substitution	model	under	the	
CAT	approximation.	We	determined	the	best‐scoring	ML	tree	and	

F I G U R E  1  Selected	Bavarian	lakes	under	investigation.	Collection	sites	are	indicated	by	red	dots,	GPS	coordinates	are	given	in	Table	1.	
The	map	was	made	using	geographic	data	for	the	inland	waters	in	Germany,	which	are	freely	available	at	the	DIVA‐GIS	website	(http://
www.diva‐gis.org/gdata	,	accessed	12	April,	2019)	and	the	free	software	QGIS,	Free	Open	Source	Geographic	Information	System	(QGIS	
Development	Team,	2019)

http://mrbayes.sourceforge.net/download.php
http://mrbayes.sourceforge.net/download.php
http://tree.bio.ed.ac.uk/software/
http://tree.bio.ed.ac.uk/software/
http://www.exelixis-lab.org/
http://www.exelixis-lab.org/
http://www.diva-gis.org/gdata
http://www.diva-gis.org/gdata
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performed	1,000	non‐parametric	bootstrap	 replicates	 (rapid	anal‐
ysis)	 in	a	single	step.	Statistical	support	values	(LBS:	ML	bootstrap	
support,	BPP:	Bayesian	posterior	probabilities)	were	drawn	on	the	
resulting,	 best‐scoring	 tree.	 To	 assess	 whether	 certain	 amplicons	
are	nested	in	other	freshwater	clades,	or	belong	to	yet	unidentified	
lineages	deriving	from	marine	clades,	we	focussed	on	phylogenetic	
context	of	reads	with	<95%	similarity	to	known	species.

3  | RESULTS

In	 the	 plankton	 tow	 samples	 analysed	 using	 light	 microscopy,	 we	
observed	 a	 considerable	 morphological	 diversity	 of	 dinophytes	
(Figures	 2	 and	 3),	 comprising	 about	 10	 different	 species	 and	 2–3	

easily	 distinguishable	 species	 per	 locality.	 It	 included	 photoauto‐
troph	 taxa	 such	 as	 the	 relatively	 easy	 recognisable	 Apocalathium 
(Figure	2f,g),	Ceratium	(Figure	3),	and	Peridinium	(Figure	2d,h–n),	but	
also	heterotroph	taxa	such	as	a	Pfiesteria‐like	dinophytes	(Figure	2e).	
Occasionally,	coccoid	developmental	stages	of	dinophytes	were	also	
observed	(Figure	2b–d).

The	 rRNA	 reference	 alignment	 of	 dinophytes	 was	
1,857	+	1,670	+	3,745	bp	long	and	was	composed	of	965	+	839	+	1,963	
parsimony‐informative	 sites	 (51.8%,	 mean	 of	 15.0	 per	 terminal	
taxon)	 and	 5,308	 distinct	 RAxML	 alignment	 patterns.	 Figure	 4	
shows	the	best‐scoring	ML	tree	(−ln	=	232,502.267554),	with	the	
internal	topology	not	fully	resolved.	However,	Dinophyceae	were	
monophyletic	 (99LBS),	 many	 nodes	 were	 statistically	 well	 if	 not	
maximally	supported,	and	a	number	of	lineages	at	high	taxonomic	

F I G U R E  2  Morphological	diversity	of	dinophytes	from	Bavarian	lakes.	(a)	Theca	of	unidentified	dinophyte	(Ammersee	[Herrsching]).	 
(b)	Developmental	stage	of	unidentified	dinophyte	(Lech	at	Apfeldorf).	(c)	Developmental	stage	of	unidentified	dinophyte	(Lech	at	
Apfeldorf).	(d)	Developmental	stage	of	Peridinium cinctum	(Lake	Kochel).	(e)	Theca	of	Pfiesteria‐like	dinophyte	(Riegsee).	(f)	Empty	theca	of	
Apocalathium aciculiferum.	(g)	Theca	of	Apocalathium aciculiferum.	(h)	Theca	of	Peridinium cinctum	(dorsal	view;	Starnberg).	(j)	Empty	theca	
of Peridinium willei	showing	epitheca	conformation	and	areolate	surface	(Lake	Wörth,	where	high	abundance	of	the	species	is	confirmed	by	
amplicon	sequences).	(k)	Theca	of	Peridinium cinctum	(interior	ventral	view;	Lake	Kochel).	(l)	Theca	of	Peridinium bipes	(Oster	See,	where	high	
abundance	of	the	species	is	confirmed	by	amplicon	sequences).	(m)	Empty	theca	of	Peridinium bipes	showing	areolate	surface	(interior	ventral	
view;	Hardtbach,	where	high	abundance	of	the	species	is	confirmed	by	amplicon	sequences).	(n)	Theca	of	Peridinium bipes	(Riegsee).	Image	
adjustments	(such	as	scaling,	cropping,	white‐balancing,	colour	management;	l–n	mirrored)	were	carried	out	in	Photoshop®	and	Illustrator® 
(Adobe	Systems;	Munich,	Germany)	and	images	were	arranged	in	QuarkXPress®	(Quark	Software;	Hamburg,	Germany)
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level	 such	 as	 Dinophysales	 (100LBS,	 1.00BPP),	 Gonyaulacales,	
Gymnodiniales	(75LBS,	1.00BPP),	Peridiniales,	Prorocentrales	and	
Suessiales	 (91LBS,	 1.00BPP),	 but	 also	Amphidomataceae	 (95LBS,	
1.00BPP),	 Brachidiniaceae	 (97LBS),	 and	 Tovelliaceae	 (82LBS,	
1.00BPP)	were	recognised.	Only	13	of	241	dinophytes	(5.4%)	were	
not	assigned	to	any	of	such	lineages.	At	 least	21	distantly	related	
lineages	of	 freshwater	dinophytes	were	scattered	over	 the	 refer‐
ence	tree,	showing	a	polyphyletic	pattern.

In	total,	we	obtained	1,155	OTUs	classified	as	dinophytes,	most	of	
which	were	singletons,	doubletons,	or	occurred	in	frequencies	of	<10	
(data	available	upon	request).	All	subsequent	work	was	performed	with	
those	186	dinophyte	OTUs	with	an	abundance	of	≥10.	The	vast	major‐
ity	of	environmental	OTUs	were	assigned	to	the	photoautotrophic	di‐
nophytes	and	were	placed	mostly	in	the	freshwater	lineages	(Figure	5).	
Large	 amounts	 of	 OTUs	 were	 determined	 as	Apocalathium	 (16.1%),	
Ceratium	(45.2%),	or	Peridinium	(17.7%).	However,	18	OTUs	(9.7%)	were	
assigned	 to	 so	 far	marine	 taxa	 including,	 for	 example,	Blastodinium,	
†Calcicarpinum	 (both	 Peridiniales),	 Dinophysis	 (Dinophysales),	 and	
Tripos	(Gonyaulacales).	A	number	of	OTUs	exhibited	considerable	phy‐
logenetic	distance	to	known	vouchered	sequences.	These	were	found	
among	Blastodiniaceae,	Borghiellaceae,	Gonyaulacaceae	and	particu‐
larly Pfiesteria‐like	dinophytes	(Thoracosphaeraceae;	not	shown).

Figure	6	shows	a	phylogeny,	as	a	cut‐off	from	the	reference	tree	
plus	the	environmental	OTUs,	including	Peridinium	with	considerable	
sequence	 variation.	 All	 respective	OTUs	were	 placed	 in	 one	 of	 the	
established	 species	 Peridinium bipes, Peridinium cinctum, Peridinium 
gatunense,	 or	Peridinium willei,	 each	based	on	 statistical	 support	val‐
ues	 ≥	 75LBS	 and	 .92BPP,	 respectively.	 Twenty‐one	 OTUs	 (11.3%)	
were	 (almost)	 identical	 to	 known	 (reference)	 sequences,	 and	 were	
therefore	 reliably	 assigned	 to,	 for	 example,	 Naiadinium polonicum 
and Theleodinium calcisporum	 from	 the	 Thoracosphaeraceae	 as	 well	
as	 Palatinus apiculatus	 from	 the	 Peridiniopsidaceae	 (Figure	 6)	 and	
Biecheleria brevisulcata	from	the	Suessiaceae	(the	latter	three	species	
are	linked	to	type	material:	Table	S1).	Five	OTUs	identical	to	vouchered	

sequences	were	assigned	to	the	marine	species	"Alexandrium"	hiranoi, 
Lingulodinium polyedra	 (both	 Gonyaulacales),	 Phalacroma rotundatum 
(Dinophysales),	Pelagodinium bei,	and	Polarella glacialis	(both	Suessiales).	
Reliable	species	determinations	of	our	study	are	summarised	in	Table	2.

4  | DISCUSSION

Reliable	determination	of	organisms	 is	 a	necessary	prerequisite	 to	
explore	their	spatial	and	temporal	occurrence	and	to	rigorously	test	
hypotheses	on	their	diversification,	ecology,	and	dispersal.	Flowering	
plants,	insects,	and	larger	animals	are	well	represented	in	extensive	
collections	(Krupnick	&	Kress,	2005;	Mayer	et	al.,	2013;	Rocha	et	al.,	
2014;	Steinicke,	2014).	In	numerous	cases,	these	have	also	been	dig‐
itised	over	 the	course	of	 the	past	decade,	providing	enduring	and	
exact	publicly	available	occurrence	data	 (e.g.	GBIF,	GBOL,	 JSTOR,	
Tropicos®).	Such	powerful	and	continuously	curated	databases	are	
scarce	 for	protists,	which	are	 too	small	 for	direct	observation	and	
need	microscopic	expertise	for	examination.	However,	the	problem	
is	 recognised,	 and	 considerable	 efforts	 have	 been	 made	 to	 build	
curated	 sequence	 databases	 and	 reference	 phylogenetic	 trees	 for	
dinophytes	 (Del	Campo	et	al.,	2018;	Elferink	et	al.,	2017;	Mordret	
et	al.,	2018;	Quast	et	al.,	2013)	and	other	microbial	taxa.

Our	reference	tree	comprising	the	known	dinophycean	sequence	
diversity	 is	 largely	 in	 agreement	 with	 previous	 rRNA	 approaches	
(Gu	 et	 al.,	 2013)	 as	 well	 as	 those	 based	 on	 excessive	 transcrip‐
tome	sequence	data	(although	using	a	much	smaller	taxon	sample:	
Janouškovec	 et	 al.,	 2017;	 Price	 &	 Bhattacharya,	 2017).	 The	 tree	
reflects	 traditional	 taxonomic	concepts	based	on	morphology	bet‐
ter	 than	previous	 (frequently	single‐locus)	approaches,	and	we	are	
able	to	recognise	major	monophyletic	lineages	of	dinophytes.	Trees	
such	 as	 that	 obtained	 in	 this	 study	 serve	 as	 a	 taxonomic	 scaffold	
for	 the	 systematic	 placement	 of	 newly	 generated	 dinophyte	 se‐
quences,	even	if	they	are	short	as	it	is	in	the	case	of	next‐generation	

F I G U R E  3  Morphological	diversity	
of Ceratium	from	Bavarian	lakes.	(a)	
Theca	(Ammersee	[Diessen],	where	high	
abundance of Ceratium	sp.	is	confirmed	
by	amplicon	sequences).	(b)	Theca	
(Starnberger	See,	where	high	abundance	
of Ceratium	sp.	is	confirmed	by	amplicon	
sequences).	(c)	Theca	(Lake	Kochel).	(d)	
Theca	(Riegsee,	where	high	abundance	
of Ceratium	sp.	is	confirmed	by	amplicon	
sequences)
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sequencing	amplicons.	Our	approach	to	determine	dinophyte	spe‐
cies	using	reference	trees	as	 inferred	from	multi‐locus	rRNA	align‐
ments	is	proven	successful	to	a	certain	degree,	at	least	for	samples	
from	 the	 freshwater	 environment	 (providing	 also	 some	 new	dino‐
phyte	records	for	Bavaria:	Table	2),	but	also	from	the	marine	realm	

(Elferink	 et	 al.,	 2017;	Wohlrab	 et	 al.,	 2018).	Only	 if	 taxonomically	
curated	and	kept	up	to	date	can	the	rRNA	alignments	also	serve	as	
a	tool	for	placing	other	unknown	protist	environmental	sequences	
into	 the	 Tree	 of	 Life.	 However,	 such	 rRNA‐based	 reference	 data‐
bases	are	still	in	their	infancy	for	most	other	protist	lineages.

F I G U R E  4  A	molecular	reference	tree	recognising	major	groups	of	dinophytes.	Maximum	likelihood	(ML)	tree	of	241	systematically	
representative	dinophyte	sequences	(with	strain	number	information)	as	inferred	from	a	rRNA	nucleotide	alignment	(3,767	parsimony‐
informative	positions).	Numbers	on	branches	are	ML	bootstrap	(above)	and	Bayesian	support	values	(below)	for	the	clusters	(asterisks	
indicate	maximal	support	values,	values	under	50	and	0.90,	respectively,	are	not	shown).	Colour	coding:	black,	marine	OTU;	red,	freshwater	
OTU
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The	most	frequently	encountered	taxa	correspond	to	those	that	
are	known	from	morphological	surveys	 in	Bavaria,	which	comprise	
Apocalathium	 (Mauch	 et	 al.,	 2003;	 Mischke,	 Riedmüller,	 Hoehn,	
Deneke,	 &	 Nixdorf,	 2015;	 Schaumburg,	 1996),	 Ceratium	 (Mauch	
et	al.,	2003;	Raeder,	1990;	Schaumburg,	1996;	Schaumburg	&	Hehl,	
2001),	 and	 Peridinium	 (Fröbrich,	 Mangelsdorf,	 Schauer,	 Streil,	 &	
Wachter,	 1977;	Mauch	 et	 al.,	 2003;	Mischke	 et	 al.,	 2015;	 Raeder,	
1990;	Schaumburg,	1996),	summing‐up	to	almost	80%	of	all	identi‐
fied	OTUs.	Our	sequence‐based	findings	seem	to	support	our	own	
morphological	 confirmations	 in	 the	 samples	 that	we	 have	 investi‐
gated,	 and	 such	 combinatorial	 approaches	 are	 needed	 (Medinger	
et	 al.,	 2010;	 Rimet,	 Vasselon,	 A‐Keszte,	 &	 Bouchez,	 2018;	 Mora	
et	al.,	2019),	as	long	as	the	taxonomic	impediment	and	uncertainty	
with	 taxon	 determination	 continue	 to	 exist.	However,	when	 com‐
paring	 morphological	 and	 genetic	 species	 diversity	 assessments,	
one	 has	 to	 take	 into	 account	 the	morphological	 variation	 and	 the	
cryptic	speciation.	On	a	broader	spectrum,	these	might	namely	ei‐
ther	 seemingly	corroborate	or	contradict	each	other.	Thus,	having	
a	broad	knowledge	on	the	biology	of	 investigated	microbiota	 is	of	
great	importance,	as	for	the	example	given	below.

The	 Peridiniaceae	 are	 one	 of	 the	 most	 important	 groups	 of	
freshwater	 dinophytes	 and	 may	 comprise	 about	 a	 dozen	 species	
(Gottschling,	 Kretschmann,	 &	 Žerdoner	 Čalasan,	 2017;	 Moestrup	
&	Calado,	 2018),	 half	 of	which	 are	 already	 known	 from	molecular	
DNA	sequences	(Table	S1).	In	rRNA	sequences,	they	show	a	consid‐
erable	variation	even	within	species	(Izquierdo	López,	Kretschmann,	
Žerdoner	Čalasan,	&	Gottschling,	2018)	leading	to	long	branches	in	
phylogenetic	trees	(Gu	et	al.,	2013).	This	intraspecific	variability,	in	
combination	with	a	reliable	taxonomy	at	the	species	level,	makes	the	
Peridiniaceae	a	good	example	of	how	species	determination	can	be	
effective	using	environmental	amplicon	sequences.	We	are	able	to	
assign	all	peridiniacean	OTUs	gained	in	this	study	to	an	established	
species	of	Peridinium	 (at	 least	 as	 long	as	no	cryptic	 speciation	has	
been	documented	in	this	lineage).	Peridinium bipes	exhibits	a	distinct	
morphology,	 but	 our	 approach	 allows	 for	 efficient	 differentiation	
between,	for	example,	P. cinctum and P. willei	that	are	challenging	to	
tell	apart	using	just	light	microscopy	in	monitoring	studies.	However,	
sequence	variation	might	be	lower	(and	closely	related	species	may	
exhibit	identical	SSU	sequences)	in	other	groups	such	as	Scrippsiella,	
and	 it	 is	 therefore	 not	 always	 possible	 to	 differentiate	 between	

F I G U R E  5  Variation	in	dinophyte	abundances	in	Bavarian	lakes.	Abundance	of	environmental	OTUs	in	the	different	collection	sites,	with	
names	based	on	phylogenetic	placement.	GON,	Gonyaulacales;	GYM,	Gymnodiniales;	PER,	Peridiniales;	SUE,	Suessiales
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species	based	on	one	particular	molecular	locus	(Söhner	et	al.,	2012;	
Žerdoner	Čalasan,	Kretschmann,	 Filipowicz,	 et	 al.,	 2019).	 Because	
of	 the	 large	 heterogeneity	 of	 evolutionary	 rates	 in	 the	 rRNA	 op‐
eron	(Gu	et	al.,	2013;	Saldarriaga	Echavarría,	Taylor,	Cavalier‐Smith,	
Menden‐Deuerd,	 &	 Keeling,	 2004;	 Stern	 et	 al.,	 2012;	 Žerdoner	
Čalasan,	Kretschmann,	&	Gottschling,	2019),	there	is	no	such	thing	
as	an	universal	DNA barcode	for	all	constituting	lineages,	and	other	
loci	including	ITS	or	LSU	may	prove	better	suited	for	reliable	species	
determination	of	such	organism	sets	using	HTS.

The	potential	identification	of	few	marine	taxa	in	the	freshwater	
environment	based	on	sequences	comes	as	a	surprise.	Contamination	
due	to	the	applied	methods	is	very	unlikely,	as	these	species	are	not	
cultivated	 in	 our	 laboratories,	 but	 the	 incomplete	 assessment	 of	
freshwater	 dinophytes	 in	 DNA	 reference	 databases	 may	 account	
for	the	ostensible	detection	of	marine	taxa	in	our	samples.	However,	
some	 dinophytes	 have	 colonised	 freshwater	 from	marine	 habitats	
relatively	recently	 (Žerdoner	Čalasan,	Kretschmann,	&	Gottschling,	
2019).	 Furthermore,	 different	 rates	 of	 the	 rRNA	operon	 evolution	

F I G U R E  6  Reliable	placement	of	selected	Bavarian	dinophycean	OTUs	on	a	phylogenetic	reference	tree.	Maximum	likelihood	(ML)	tree	
of	241	systematically	representative	dinophyte	sequences	plus	186	environmental	OTU	sequences	(cut	out	of	freshwater	Peridiniaceae	as	
well	as	Scrippsiella s.l.	and	Peridiniopsidaceae;	black:	marine,	blue:	freshwater).	Numbers	on	branches	are	ML	bootstrap	(above)	and	Bayesian	
support	values	(below)	for	the	clusters	(asterisks	indicate	maximal	support	values,	values	under	50	and	.90,	respectively,	are	not	shown).	
Colour/font	coding:	black,	marine	OTU;	red,	freshwater	OTU;	green,	environmental	OTU;	bold,	OTU	represented	by	type	material.	Localities	
of	environmental	OTUs	are	indicated:	Apd,	Lech	at	Apfeldorf;	Die,	Ammersee	(Diessen);	Eib,	Eitzenberger	Weiher;	Har,	Hardtbach	near	
Haarsee;	Her,	Ammersee	(Herrsching);	Koc,	Lake	Kochel;	Ost,	Oster	See;	Pil,	Pilsensee;	Rie,	Riegsee;	Stb,	Starnberger	See;	Stf,	Staffelsee;	
Wör,	Lake	Wörth;	Zel,	Zellsee.	Note	that	species	of	Peridinium	show	intraspecific	variability	regarding	rRNA	sequences	(Izquierdo	López	
et	al.,	2018)	and	that	all	species,	to	which	OTUs	are	assigned	(i.e.	Peridinium bipes, Peridinium cinctum, Peridinium gatunense, Peridinium willei),	
show	high	LBS	statistical	support	≥	80.	Further	note	that	we	found	OTUs	being	identical	to	known	sequences	of,	for	example,	Naiadinium 
polonicum, Palatinus apiculatus,	and	Theleodinium calcisporum	(the	latter	two	represented	by	type	material)
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may	impact	the	phylogenetic	position	of	certain	reads.	For	instance,	
Gonyaulax clevei	 has	 been	 reported	 from	 German	 lakes	 (Hickel	 &	
Pollhinger,	1986),	but	has	never	been	sequenced.	It	 is	possible	that	
those	 sequences	 once	 gained	will	 group	with	marine	 taxa	 such	 as	
species	of	Lingulodinium.	Moreover,	a	few	organisms	are	physiologi‐
cally	able	to	successfully	overcome	the	physiological	barrier	between	
the	 oceans	 and	 freshwater	 habitats	 (Pokorný,	 2009)	 and	 establish	
new	populations.	As	living	models,	species	such	as	Huia caspica and 
Kolkwitziella acuta	might	be	a	key	in	this	respect,	as	they	are	found	
in	both	marine	and	freshwater	habitats	 (Gu,	Mertens,	&	Liu,	2016;	
Mertens	et	al.,	2015).	By	any	means,	the	precise	biological	role,	and	
the	overall	biological	activity,	has	to	be	worked	out	for	marine	taxa	
in	 freshwater	environments.	Future	 research	should	 rigorously	use	
physical	 specimens	 and	 preferably	 living	 strains.	 Moreover,	 dino‐
phyte	 species	 richness	 in	Bavarian	 lakes	may	 be	 greater	 than	 that	
previously	reported	 in	the	 literature	based	on	our	genetic	analysis.	
Particularly,	the	considerable	number	of	so	far	unknown	Pfiesteria‐
like	 sequences	 (Burkholder	 &	 Marshall,	 2012;	 Calado,	 Craveiro,	
Daugbjerg,	&	Moestrup,	2009;	Litaker	et	al.,	2005)	is	impressive.	A	
targeted	search	in	future	will	assess	this	diversity	and	address	ques‐
tions,	such	as	whether	these	are	already	accepted	species	without	
hitherto	known	DNA	sequence	information	or	even	new	species.

In	 the	 microbial	 world,	 the	 importance	 of	 DNA	 sequences	
linked	 to	 type	 material	 cannot	 be	 overestimated.	 In	 this	 respect,	
our	 approach	 to	 place	 OTUs	 on	 a	 reference	 tree	 using	 curated	
and	 vouchered	 representatives	 has	 been	 proven	 successful	 with	
the	 documentation	 of	 sequences	 identical	 to	 Biecheleria brevisul‐
cata	 (Suessiaceae),	 Palatinus apiculatus	 (Peridiniopsidaceae),	 and	
Theleodinium calcisporum	(Thoracosphaeraceae).	The	first	and	latter	
species	have	been	described	only	a	 few	years	ago	 (Craveiro	et	al.,	
2013;	Takahashi,	Sarai,	&	Iwataki,	2014),	but	Palatinus apiculatus re‐
fers	 to	a	historical	name	from	the	19th	century	 (Ehrenberg,	1838).	
Usually,	 such	names	are	not	 linked	 to	DNA	sequence	 information,	
but	 the	 application	 of	 epitypification	 has	made	 the	 determination	
of	 such	 species	 unambiguous	 (Kretschmann,	 Žerdoner	 Čalasan,	
Kusber,	&	Gottschling,	2018).	This	strategy	has	not—to	the	best	of	
our	 knowledge—been	 applied	 for	 the	 species	 of	 Ceratium,	 which	
makes	the	determination	of	numerous	OTUs	gained	in	this	study	at	
the	 species	 level	 vague.	Once	 identified,	 strategic	 taxonomic	 clar‐
ifications	of	target	organisms	are	possible	and	may	refer	to	names	
such	 as	 Ceratium macroceras and Ceratium tetraceros,	 both	 being	
described	from	Bavaria	(Schrank,	1793,	1802).	However,	as	the	po‐
tential	intraspecific	and	interspecific	variability	together	with	possi‐
ble	cryptic	speciation	and	morphological	variability	of	Ceratium are 
currently	unknown,	the	taxonomic	clarification	must	be	performed	
with	a	great	caution,	taking	all	such	aspects	into	account.	The	taxo‐
nomic	tool	of	epitypification	provided	by	the	International	Code	of	
Nomenclature	for	algae,	fungi,	and	plants	(Turland	et	al.,	2018)	is	still	
not	regularly	used	in	phycology,	despite	being	of	great	importance	
for	stable	taxonomy.	Such	approaches	must	be	carried	out,	because	
the	 resolution	power	of	 all	 available	HTS	methods,	 as	exemplified	
in	this	study,	always	comes	down	to	the	basic	necessity	of	a	reliable	
application	of	names.

Curated	 contemporary	 reference	 databases	 leave	 further	 room	
for	 improvements.	 For	 example,	 a	 number	 of	 the	 OTU	 sequences	
obtained	 in	 this	 study	 were	 assigned	 to	 Scrippsiella	 by	 the	 SILVA	
(Quast	 et	 al.,	 2013)	 reference,	which	 is	 a	 predominantly	marine	 di‐
nophyte	lineage.	Such	entries	misleadingly	refer	to	it	as	"Scrippsiella"	
hangoei,	which	is	a	name	being	classified	today	under	Apocalathium. 
Therefore,	the	correct	species	name	for	the	OTUs	is	(probably)	fresh‐
water	Apocalathium aciculiferum.	It	might	be	only	a	matter	of	time	until	
this	particular	 taxonomic	 confusion	 is	 corrected	 for	 future	 releases	
of	 the	SILVA	databases,	as	 this	error	has	been	already	corrected	 in	
the	dinoref	database	(Mordret	et	al.,	2018).	The	latter,	in	turn,	relies	
on	 SSU	 reference	 sequence	 data	 only	 and	 is	 therefore	 unable	 to	
place	environmental	OTUs	of	studies	using	LSU	(Elferink	et	al.,	2017)	
and/or	 ITS	 sequences	 (Lutz,	 McCutcheon,	 McQuaid,	 &	 Benning,	
2018).	 Concomitantly,	 taxa	 such	 as	 Peridiniella, Sphaerodinium and 
Tyrannodinium,	of	which	only	LSU	sequences	are	known	at	present,	
are	subsequently	undetectable	using	dinoref	(however,	†Leonella and 
†Posoniella	are	also	missing,	although	SSU	reference	sequences	are	al‐
ready	available).	The	variety	of	sequencing	approaches	thus	requires	
a	database	that	assures	both,	provision	of	extensive	rRNA	sequence	
information	and	 taxonomic	 reliability.	 In	 this	 respect,	 the	 indication	
of	 sequences	 that	 have	been	 gained	 from	 type	material	 is	 also	 im‐
portant	 (Pawlowski	 et	 al.,	 2012)	 and	 needs	 to	 be	 added	 in	dinoref. 
Moreover,	curation	of	the	dinoref	database	has	not	prevented	the	use	
of	names	such	as	'Goniodomataceae',	which	have	been	nomenclatur‐
ally	rejected	(Elbrächter	&	Gottschling,	2015;	Prud'homme	Van	Reine,	
2017).

Our	approach	to	detect	dinophytes	 in	Bavarian	 lakes	 is	power‐
ful	and	will	lay	the	basis	for	solid	information	on	which	species	are	
widely	distributed	 and	 abundant,	 and	which	 species	 are	 rarer	 and	
represent	rather	endemic	entities	with	narrower	distributions.	If	oc‐
currences	of	dinophyte	species	correlate	with	environmental	traits,	
then	improved	species	circumscriptions	also	taking	their	ecological	
niche	 into	account	are	possible.	With	our	project,	we	may	start	to	
understand	not	only	that	a	certain	species	occurs	in	a	given	freshwa‐
ter	habitat,	but	also	why.	Our	example	of	field	mapping,	and	the	pur‐
sued	predictability	of	freshwater	dinophyte	occurrences,	has	thus	a	
great	potential	to	serve	as	a	model	for	other	taxonomic	groups	and	/	
or	the	investigation	of	similar	and	alternative	environments	in	other	
parts	of	the	world.
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