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Abstract

1.

Reliable determination of organisms is a prerequisite to explore their spatial
and temporal occurrence and to study their evolution, ecology, and dispersal. In
Europe, Bavaria (Germany) provides an excellent study system for research on the
origin and diversification of freshwater organisms including dinophytes, due to
the presence of extensive lake districts and ice age river valleys. Bavarian fresh-
water environments are ecologically diverse and range from deep nutrient-poor

mountain lakes to shallow nutrient-rich lakes and ponds.

. We obtained amplicon sequence data (V4 region of small subunit-rRNA, c. 410 bp

long) from environmental samples collected at 11 sites in Upper Bavaria. We
found 186 operational taxonomic units (OTUs) associated with Dinophyceae that

were further classified by means of a phylogenetic placement approach.

. The maximum likelihood tree inferred from a well-curated reference alignment com-

prised a systematically representative set of 251 dinophytes, covering the currently
known molecular diversity and OTUs linked to type material if possible. Environmental
OTUs were scattered across the reference tree, but accumulated mostly in freshwa-
ter lineages, with 79% of OTUs placed in either Apocalathium, Ceratium, or Peridinium,

the most frequently encountered taxa in Bavaria based on morphology.

. Twenty-one Bavarian OTUs showed identical sequences to already known and

vouchered accessions, two of which are linked to type material, namely Palatinus
apiculatus and Theleodinium calcisporum. Particularly within Peridiniaceae, delimi-

tation of Peridinium species was based on the intraspecific sequence variation.

. Our approach indicates that high-throughput sequencing of environmental sam-

ples is effective for reliable determination of dinophyte species in Bavarian lakes.
We further discuss the importance of well-curated reference databases that re-

main to be developed in the future.
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1 | INTRODUCTION

Solid knowledge of ecosystem functioning and community dynamics
during seasonal or longer periods, as well as conservation strategies
and the impact of invasive species, essentially relies on precise origi-
nal data about the spatial and temporal occurrence of the inhabiting
organisms. Recent advances in the application of high-throughput
sequencing (HTS) to analyse the molecular diversity in aquatic en-
vironments have enabled a better understanding of the community
composition and species distribution in such ecosystems. Within
the last decade, our knowledge of the microbial biodiversity has in-
creased faster than ever, especially after Edwards et al. (2006) pub-
lished the first metagenome analysis of environmental samples using
next-generation sequencing technologies. An unexpectedly high pro-
tist diversity has been described since then in various aquatic envi-
ronments (Cuvelier et al., 2010; Keeling et al., 2014; Kohli, Neilan,
Brown, Hoppenrath, & Murray, 2014; Massana et al., 2015; Stoeck
et al., 2010), revealing also the existence of seasonal variation in
many phytoplankton taxa (Tillmann, Salas, Jauffrais, Hess, & Silke,
2014; Toebe, Joshi, et al., 2013) and demonstrating the power of
these methods in discovering the world's hidden microbial diversity
(Lindeque, Parry, Harmer, Somerfield, & Atkinson, 2013; Medinger
et al., 2010). Unknown sequences derived from environmental sam-
ples may additionally assist discovering new species and even new
lineages (Seenivasan, Sausen, Medlin, & Melkonian, 2013).

One of the most basic and important questions in evolutionary
biology of microorganisms refers to mechanisms that have shaped
their current distribution (O'Dwyer, Kembel, & Sharpton, 2015). The
relative importance of principal processes such as divergence, dis-
persal, and selection by ecological filtering (Vellend, 2010) is a key
point that needs to be worked out rigorously. There is an ongoing
debate (Bass & Boenigk, 2011; Caron, 2009; Foissner, 2011) into
whether microbes are all cosmopolitan, and lack distinct distribu-
tions (Fenchel & Finlay, 2004; Finlay, 2002; Read et al., 2013), or
rather follow a moderate endemism model (Bass, Richards, Matthai,
Marsh, & Cavalier-Smith, 2007; Bates et al., 2013; Coleman, 2001).
Under a less dogmatic perspective, plankton communities may ac-
tually consist of both widespread species and those with a smaller
range (Bik et al., 2012; Coleman, 2001; Foissner, 2008; Zerdoner
Calasan, Kretschmann, Filipowicz, et al., 2019), and occurrences for
such species remain to be identified individually.

A limitation that still precludes a comprehensive knowledge of
protist distribution is the taxonomic confusion that exists due to
complex determination procedures (Wheeler, 2008). To take full ad-
vantage of environmental sequencing, curated reference collections
are necessary, linking the molecular data with scientific binominals.
Much progress has been made in the past years to build such DNA-
barcoding databases, not only for animals and plants (Hollingsworth,
2011; Vernooy et al., 2010), but also for various microorgan-
isms (Quast et al., 2013) such as fungi, diatoms, and dinophytes
(Del Campo et al., 2018; Fourtanier & Kociolek, 2009; Mordret
et al.,, 2018; Persoh, 2015; Schoch et al., 2012; Stern et al., 2012).
These databases are continuously updated and curated (Rigden,

Fernandez-Suarez, & Galperin, 2016), preferably based on informa-
tion from type material (Pawlowski et al., 2012). However, the avail-
ability of reference data for environmental sequencing studies is still
highly unbalanced across various taxonomic protist lineages.

A prerequisite to any assessment of the microbial biodiversity
found in a given ecosystem is the confident placement of resulting
molecular operational taxonomic units (OTUs) within particular lin-
eages in the Tree of Life. Due to a huge number of reads, and the di-
versity of organisms captured by HTS of environmental DNA, initial
OTU annotation using reference databases usually allows for confi-
dent taxonomic classifications only up to coarser taxonomic ranks
(such as phylum, class, or order: Quast et al., 2013). A complemen-
tary approach, which enables finer levels of taxonomic assignments
(i.e. family, genus, or species), is the phylogenetic placement of reads
in reference trees, which also offers the advantage of estimating
statistical support values for annotations, regardless of the read's
length (Dunthorn et al., 2014). This method has been recently used
in barcoding and biomonitoring projects of protists (Elferink et al.,
2017; Keck, Vasselon, Rimet, Bouchez, & Kahlert, 2018; Medinger
et al., 2010; Vergin et al., 2013).

In comparison to those living in marine environments, the
freshwater dinophytes are relatively well understood. Currently,
350 species are listed based on morphology (Mertens, Rengefors,
Moestrup, & Ellegaard, 2012; Moestrup & Calado, 2018), and
continuous efforts to revise them taxonomically have been
made in the past years (Moestrup, Lindberg, & Daugbjerg,
2009; Craveiro, Pandeirada, Daugbjerg, Moestrup, & Calado,
2013; Takano, Yamaguchi, Inouye, Moestrup, & Horiguchi, 2014,
Kretschmann, Filipowicz, Owsianny, ZinBmeister, & Gottschling,
2015; Kretschmann, Owsianny, Zerdoner Calasan, & Gottschling,
2018, to mention only a few studies). This also includes the gen-
eration of reference DNA sequence information being available
for a considerable portion of the species. Nevertheless, there is
still a significant portion of freshwater dinophyte flora that is nei-
ther taxonomically revised nor molecularly investigated. As such,
it hinders the transparent research in this field and calls all newly
obtained data into question. Moreover, the phenomenon of cryp-
tic speciation (i.e. molecular diversification without morphological
differentiation), which is taxonomically challenging in a number of
marine dinophytes (Hariganeya et al., 2013; Séhner, ZinBmeister,
Kirsch, & Gottschling, 2012; Toebe, Alpermann, et al., 2013), ap-
pears rare (or understudied) in the freshwater habitat. From the
phylogenetic perspective, freshwater dinophytes are a heteroge-
neous group and have colonised their habitats from the marine
environment several times independently (Logares et al., 2007;
Zerdoner Calasan, Kretschmann, & Gottschling, 2019). Dinophyte
development is complex and frequently includes at least two eco-
logically differentiated stages of life-history, namely a motile theca
(vegetative cell) and an immotile, coccoid cell (colloquially termed
cyst: von Stosch, 1973; Pfiester & Anderson, 1987).

In Germany, a number of dinophyte species have been originally
described from the Bavarian region (Baumeister, 1957; Lindemann,
1920; Schrank, 1802) also being the focus of the present study.
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However, most algae inhabiting Bavarian waters are presumably
wider-ranging, with type localities outside of that region. Mauch,
Schmedtje, Maetze, and Fischer (2003) reports 62 dinophyte spe-
cies (online table available at www.gewaesser-bewertung.de/files/
taxaliste.pdf), but this checklist does not provide any source refer-
ences, is taxonomically not rigorous and also includes species from
the marine environment (e.g. Heterocapsa rotundata, which is un-
likely to be present in Bavarian freshwater habitats). Morphology
based records of Bavarian dinophytes are otherwise rather sporadic,
and only a few species have been reported so far including common
Ceratium hirundinella, Gyrodinium (= Gymnodinium) helveticum, and
Peridinium willei (Raeder, 1990; Schaumburg, 1996; Siebeck, 1982),
as well as rarer species such as Cystodinium cornifax and Gloeodinium
montanum (Holl, 1928). The true number of dinophyte species in
Bavaria, and their spatial occurrences, is thus unknown at present,
and more thorough biodiversity assessments of these key protists
will benefit from the application of contemporary, high-throughput
molecular methods.

In the present study, we provide an initial attempt to apply en-
vironmental amplicon sequences with the principal aim to uncover
the yet unexplored dinophyte diversity in Bavarian lakes as an exem-
plary system. We determine their species by placing the ribotypes
in phylogenetic reference trees (i.e. rRNA sequence comparison of
multiple sequences including GenBank vouchers collected all around
the world). Bavarian freshwater environments range from deep nu-
trient-poor mountain lakes to shallow nutrient-rich lakes and ponds
(basic information is available at www.Ifu.bayern.de/). These are
characterised by a broad range of environmental conditions and
resource levels and represent potential habitats for phytoplank-
ton communities. We expect the dinophyte communities in those
lakes to be composed of species with different ecological require-
ments and potentials for dispersal (Zerdoner Calasan, Kretschmann,
Filipowicz, et al., 2019), resulting in different effects on their distri-
bution. Our results will lay the basis for a better knowledge of eco-
system functioning and evolutionary dynamics of protists such as
freshwater dinophytes.

2 | METHODS

Surface plankton tow samples were collected from piers at 13 locali-
ties in Upper Bavaria (Germany) in April 2017 using a plankton net
(mesh size 20 pm). The localities included 10 lakes (two lakes were
sampled at two sites) and one subsidiary river, to cover standing and
flowing bodies of water as well (Table 1, Figure 1). Geographic co-
ordinates were recorded for all sites using a standard GPS Garmin
Ltd device. Cells were observed, documented, and measured under a
CKX41 inverted microscope (Olympus; Hamburg, Germany) equipped
with a phase-contrast option and a DP73 digital camera (Olympus).
Environmental DNA was extracted using the Genomic DNA from
Soil kit (Machery-Nagel; Diren, Germany) following the manufactur-
er's protocol. The small subunit (SSU or 18S) of the ribosomal RNA
(rRNA) operon V4 region (c. 410 bp) was the amplification target.

Freshwater Biology %Y LEYJ—3

Due to polymerase chain reaction (PCR) biases or PCR errors that
may artificially increase diversity, each PCR was performed in trip-
licates (Acinas, Sarma-Rupavtarm, Klepac-Ceraj, & Polz, 2005).
Forward and reverse primers were those used by Xiao, Wu, Liu, Xu,
and Chi (2017). Amplification of DNA (PCR) for subsequent amplicon
sequencing (lllumina) was carried out using 5 ng/ul template DNA,
1 uM of each primer and 2x KAPA Hifi HotStart Ready Mix (Roche;
Penzberg, Germany). Resulting PCR products were visualised in
1% agarose gels and purified using AMPure XP Beads (Beckman
Coulter). Dual indices and lllumina sequence adapters were attached
by means of an Index PCR using the Nextera XT Index Kit (Illumina),
and final PCR products were again purified using AMPure XP
Beads. The library was validated using an Agilent 2100 Bioanalyzer
Software and a DNA 1000 Chip (Agilent Technologies) to verify the
size of the resulting fragments. The final DNA libraries were equimo-
larly pooled and run in a MiSeq System (lllumina) after combining the
denatured PhiX control library (15%) and the denatured amplicon li-
brary. Some 6.5 million 2 x 300 bp paired-end reads were produced
and demultiplexed into 13 samples.

Using Trimmomatic (v0.38; Bolger, Lohse, & Usadel, 2014), 3'-
ends of the reads were trimmed based on read quality information.
PEAR (v0.9.10; Zhang, Kobert, Flouri, & Stamatakis, 2014) with de-
fault settings was used to merge the paired-end reads. Sequences
that could not be merged were discarded. Primer-matching se-
qguence segments were truncated from the amplicons by cutadapt
(v1.9; Martin, 2011) and amplicons were only kept in the sequence
pool if both the segments of the forward and of the reverse primer
could be found. Remaining sequences were filtered for further
quality features by vsearch (v2.3.0; Rognes, Flouri, Nichols, Quince,
& Mahé, 2016). Sequences were discarded if they were outside
a 50 bp radius above or below the median length of the primer-
truncated amplicon (c. 387 bp), if they carried any ambiguity, or
if the expected number of miscalled bases of a sequence (sum of
all base error probabilities of a sequence) was >1. Chimera were
predicted also by vsearch utilising the UCHIME algorithm (Edgar,
Haas, Clemente, Quince, & Knight, 2011) with default settings in
de novo mode for each sample separately and removed from the
sample files. About 4 million sequences passed all filtering steps
and were used as input for the OTU-clustering, which was done
using the tool Swarm (v2.1.8; Mahé, Rognes, Quince, De Vargas,
& Dunthorn, 2015) with default settings. The most abundant am-
plicon of each OTU-cluster was used as an OTU representative.
These sequences were annotated by the RDP classifier (Wang,
Garrity, Tiedje, & Cole, 2007) implemented in mothur (v1.38.1;
Schloss et al., 2009) using the Ref_NR99 version of release 128 of
the SILVA SSU sequence set (Quast et al., 2013) using a reference
with a confidence cut-off of 90. The annotation of each represen-
tative sequence was used as annotation of the OTU-cluster as well
and added to the corresponding line of the OTU table.

Operational taxonomic units classified as Dinoflagellata as
search strings and with an abundance of 210 were classified more
accurately by phylogenetic placement onto a reference tree based
on concatenated rRNA alignments. Full voucher information of this
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FIGURE 1 Selected Bavarian lakes under investigation. Collection sites are indicated by red dots, GPS coordinates are given in Table 1.
The map was made using geographic data for the inland waters in Germany, which are freely available at the DIVA-GIS website (http://
www.diva-gis.org/gdata, accessed 12 April, 2019) and the free software QGIS, Free Open Source Geographic Information System (QGIS

Development Team, 2019)

systematically representative set comprising 241 dinophytes (plus
10 outgroup accessions) are provided in Table S1. To further ex-
plore dinophyte identities based on DNA sequences, we performed
BLAST searches (Altschul, Gish, Miller, Myers, & Lipman, 1990).
For alighment constitution, separate matrices of the rRNA op-
eron (i.e. SSU, ITS, LSU) were constructed, aligned using "MAFFT"
v6.502a (Katoh & Standley, 2013) and concatenated afterwards.
The aligned matrices are available as *.nex files upon request.
Dinophyte phylogenetic analyses were carried out using maximum
likelihood (ML) and Bayesian approaches, as described in detail
previously (Gottschling et al., 2012) using the resources available
from the CIPRES Science Gateway (Miller, Pfeiffer, & Schwartz,

2010). The Bayesian analysis was performed using "MrBayes" v3.2.6
(Ronquist et al., 2012, freely available at http://mrbayes.sourc
eforge.net/download.php) under the GTR+I" substitution model
and the random-addition-sequence method with 10 replicates. We
ran two independent analyses of four chains (one cold and three
heated) with 20,000,000 generations, sampled every 1,000th cycle,
with an appropriate burn-in (10%) as inferred from the evaluation
of the trace files using Tracer v1.5 (http://tree.bio.ed.ac.uk/softw
are/ tracer/). For the ML calculation, the MPI version of "RAxML"
v8.2.4 (Stamatakis, 2014, freely available at http://www.exelixis-
lab.org/) was applied using the GTR+T substitution model under the
CAT approximation. We determined the best-scoring ML tree and
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performed 1,000 non-parametric bootstrap replicates (rapid anal-
ysis) in a single step. Statistical support values (LBS: ML bootstrap
support, BPP: Bayesian posterior probabilities) were drawn on the
resulting, best-scoring tree. To assess whether certain amplicons
are nested in other freshwater clades, or belong to yet unidentified
lineages deriving from marine clades, we focussed on phylogenetic
context of reads with <95% similarity to known species.

3 | RESULTS

In the plankton tow samples analysed using light microscopy, we
observed a considerable morphological diversity of dinophytes
(Figures 2 and 3), comprising about 10 different species and 2-3

(a) (b)

easily distinguishable species per locality. It included photoauto-
troph taxa such as the relatively easy recognisable Apocalathium
(Figure 2f,g), Ceratium (Figure 3), and Peridinium (Figure 2d,h-n), but
also heterotroph taxa such as a Pfiesteria-like dinophytes (Figure 2e).
Occasionally, coccoid developmental stages of dinophytes were also
observed (Figure 2b-d).

The rRNA alignment of dinophytes was
1,857 +1,670+3,745bplongand wascomposed of 965+839 + 1,963

parsimony-informative sites (51.8%, mean of 15.0 per terminal

reference

taxon) and 5,308 distinct RAXML alignment patterns. Figure 4
shows the best-scoring ML tree (-In = 232,502.267554), with the
internal topology not fully resolved. However, Dinophyceae were
monophyletic (99LBS), many nodes were statistically well if not

maximally supported, and a number of lineages at high taxonomic

FIGURE 2 Morphological diversity of dinophytes from Bavarian lakes. (a) Theca of unidentified dinophyte (Ammersee [Herrsching]).

(b) Developmental stage of unidentified dinophyte (Lech at Apfeldorf). (c) Developmental stage of unidentified dinophyte (Lech at
Apfeldorf). (d) Developmental stage of Peridinium cinctum (Lake Kochel). (e) Theca of Pfiesteria-like dinophyte (Riegsee). (f) Empty theca of
Apocalathium aciculiferum. (g) Theca of Apocalathium aciculiferum. (h) Theca of Peridinium cinctum (dorsal view; Starnberg). (j) Empty theca

of Peridinium willei showing epitheca conformation and areolate surface (Lake Wérth, where high abundance of the species is confirmed by
amplicon sequences). (k) Theca of Peridinium cinctum (interior ventral view; Lake Kochel). (I) Theca of Peridinium bipes (Oster See, where high
abundance of the species is confirmed by amplicon sequences). (m) Empty theca of Peridinium bipes showing areolate surface (interior ventral
view; Hardtbach, where high abundance of the species is confirmed by amplicon sequences). (n) Theca of Peridinium bipes (Riegsee). Image
adjustments (such as scaling, cropping, white-balancing, colour management; I-n mirrored) were carried out in Photoshop® and lllustrator®
(Adobe Systems; Munich, Germany) and images were arranged in QuarkXPress® (Quark Software; Hamburg, Germany)
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FIGURE 3 Morphological diversity
of Ceratium from Bavarian lakes. (a)
Theca (Ammersee [Diessen], where high
abundance of Ceratium sp. is confirmed
by amplicon sequences). (b) Theca
(Starnberger See, where high abundance
of Ceratium sp. is confirmed by amplicon
sequences). (c) Theca (Lake Kochel). (d)
Theca (Riegsee, where high abundance
of Ceratium sp. is confirmed by amplicon
sequences)

()

20 ym

level such as Dinophysales (100LBS, 1.00BPP), Gonyaulacales,
Gymnodiniales (75LBS, 1.00BPP), Peridiniales, Prorocentrales and
Suessiales (91LBS, 1.00BPP), but also Amphidomataceae (95LBS,
1.00BPP), Brachidiniaceae (97LBS), and Tovelliaceae (82LBS,
1.00BPP) were recognised. Only 13 of 241 dinophytes (5.4%) were
not assigned to any of such lineages. At least 21 distantly related
lineages of freshwater dinophytes were scattered over the refer-
ence tree, showing a polyphyletic pattern.

In total, we obtained 1,155 OTUs classified as dinophytes, most of
which were singletons, doubletons, or occurred in frequencies of <10
(data available upon request). All subsequent work was performed with
those 186 dinophyte OTUs with an abundance of 210. The vast major-
ity of environmental OTUs were assigned to the photoautotrophic di-
nophytes and were placed mostly in the freshwater lineages (Figure 5).
Large amounts of OTUs were determined as Apocalathium (16.1%),
Ceratium (45.2%), or Peridinium (17.7%). However, 18 OTUs (9.7%) were
assigned to so far marine taxa including, for example, Blastodinium,
TCalcicarpinum (both Peridiniales), Dinophysis (Dinophysales), and
Tripos (Gonyaulacales). A number of OTUs exhibited considerable phy-
logenetic distance to known vouchered sequences. These were found
among Blastodiniaceae, Borghiellaceae, Gonyaulacaceae and particu-
larly Pfiesteria-like dinophytes (Thoracosphaeraceae; not shown).

Figure 6 shows a phylogeny, as a cut-off from the reference tree
plus the environmental OTUs, including Peridinium with considerable
sequence variation. All respective OTUs were placed in one of the
established species Peridinium bipes, Peridinium cinctum, Peridinium
gatunense, or Peridinium willei, each based on statistical support val-
ues = 75LBS and .92BPP, respectively. Twenty-one OTUs (11.3%)
were (almost) identical to known (reference) sequences, and were
therefore reliably assigned to, for example, Naiadinium polonicum
and Theleodinium calcisporum from the Thoracosphaeraceae as well
as Palatinus apiculatus from the Peridiniopsidaceae (Figure 6) and
Biecheleria brevisulcata from the Suessiaceae (the latter three species
are linked to type material: Table S1). Five OTUs identical to vouchered

Biology VMBS

(b) () (d)

sequences were assigned to the marine species "Alexandrium" hiranoi,
Lingulodinium polyedra (both Gonyaulacales), Phalacroma rotundatum
(Dinophysales), Pelagodinium bei, and Polarella glacialis (both Suessiales).

Reliable species determinations of our study are summarised in Table 2.

4 | DISCUSSION

Reliable determination of organisms is a necessary prerequisite to
explore their spatial and temporal occurrence and to rigorously test
hypotheses on their diversification, ecology, and dispersal. Flowering
plants, insects, and larger animals are well represented in extensive
collections (Krupnick & Kress, 2005; Mayer et al., 2013; Rocha et al.,
2014; Steinicke, 2014). In numerous cases, these have also been dig-
itised over the course of the past decade, providing enduring and
exact publicly available occurrence data (e.g. GBIF, GBOL, JSTOR,
Tropicos®). Such powerful and continuously curated databases are
scarce for protists, which are too small for direct observation and
need microscopic expertise for examination. However, the problem
is recognised, and considerable efforts have been made to build
curated sequence databases and reference phylogenetic trees for
dinophytes (Del Campo et al., 2018; Elferink et al., 2017; Mordret
et al., 2018; Quast et al., 2013) and other microbial taxa.

Our reference tree comprising the known dinophycean sequence
diversity is largely in agreement with previous rRNA approaches
(Gu et al., 2013) as well as those based on excessive transcrip-
tome sequence data (although using a much smaller taxon sample:
Janouskovec et al., 2017; Price & Bhattacharya, 2017). The tree
reflects traditional taxonomic concepts based on morphology bet-
ter than previous (frequently single-locus) approaches, and we are
able to recognise major monophyletic lineages of dinophytes. Trees
such as that obtained in this study serve as a taxonomic scaffold
for the systematic placement of newly generated dinophyte se-

quences, even if they are short as it is in the case of next-generation
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FIGURE 4 A molecular reference tree recognising major groups of
representative dinophyte sequences (with strain number information)

dinophytes. Maximum likelihood (ML) tree of 241 systematically
as inferred from a rRNA nucleotide alignment (3,767 parsimony-

informative positions). Numbers on branches are ML bootstrap (above) and Bayesian support values (below) for the clusters (asterisks
indicate maximal support values, values under 50 and 0.90, respectively, are not shown). Colour coding: black, marine OTU; red, freshwater

OoTuU

sequencing amplicons. Our approach to determine dinophyte spe-
cies using reference trees as inferred from multi-locus rRNA align-
ments is proven successful to a certain degree, at least for samples
from the freshwater environment (providing also some new dino-
phyte records for Bavaria: Table 2), but also from the marine realm

(Elferink et al., 2017; Wohlrab et al., 2018). Only if taxonomically
curated and kept up to date can the rRNA alignments also serve as
a tool for placing other unknown protist environmental sequences
into the Tree of Life. However, such rRNA-based reference data-
bases are still in their infancy for most other protist lineages.



GOTTSCHLING T AL.

| — [
Q S 5 2 > &
& & &€ & EO &
& & N d o @ 5@
X9 o R \ & &
Q N » ) S O X
i\ & & & N ¥
%??’ & 02/‘ & N g
& & S & &
& IS &F & WV
S <8 <& &
¥ & &
3 &

100%
90%
80%
70%
60%
50%
40%
30% ]
20% ‘ ‘ I
10% %

Freshwater Biolog EITESNE

" GON-Ceratium cf. hirundinella
PER-Apocalathium sp.
PER-Peridinium gatunense

" PER-Peridinium willei

" PER-Peridinium bipes

B PER-Pfiesteria-like dinophyte

B PER-Blastodinium sp.

® PER-Chimonodinium lomnickii

W GYM-Spiniferodinium sp.

W PER-Peridinium cinctum

B SUE-Biecheleria brevisulcata

" GYM-Gymnodiniaceae sp.

m SUE-Asulcocephalium miricentonis
SUE-Borghiellaceae sp.

" GON-Lingulodinium polyedrum

w PER-Unruhdinium penardii

W PER-Naiadinium polonicum

W GON-Impagidinium sp.

W SUE-Polarella glacialis

B GON-“Alexandrium” hiranoi

W PER-Palatinus apiculatus

B GON-Ceratium cf. furcoides

W PER-*Calcicarpinum sp.

W GON-Tripos sp.

W PER-Peridiniopsidaceae sp.

1 PER-Theleodinium calcisporum

" GON-Alexandrium sp.

W PER-Scrippsiella sp.

W SUE-Pelagodinium bei

(3 Q
qez \@e (-90
) Q@J &>
& X0 ) e;
& #
& N
®

FIGURE 5 Variation in dinophyte abundances in Bavarian lakes. Abundance of environmental OTUs in the different collection sites, with
names based on phylogenetic placement. GON, Gonyaulacales; GYM, Gymnodiniales; PER, Peridiniales; SUE, Suessiales

The most frequently encountered taxa correspond to those that
are known from morphological surveys in Bavaria, which comprise
Apocalathium (Mauch et al., 2003; Mischke, Riedmdiller, Hoehn,
Deneke, & Nixdorf, 2015; Schaumburg, 1996), Ceratium (Mauch
et al., 2003; Raeder, 1990; Schaumburg, 1996; Schaumburg & Hehl,
2001), and Peridinium (Frobrich, Mangelsdorf, Schauer, Streil, &
Wachter, 1977; Mauch et al., 2003; Mischke et al., 2015; Raeder,
1990; Schaumburg, 1996), summing-up to almost 80% of all identi-
fied OTUs. Our sequence-based findings seem to support our own
morphological confirmations in the samples that we have investi-
gated, and such combinatorial approaches are needed (Medinger
et al., 2010; Rimet, Vasselon, A-Keszte, & Bouchez, 2018; Mora
et al., 2019), as long as the taxonomic impediment and uncertainty
with taxon determination continue to exist. However, when com-
paring morphological and genetic species diversity assessments,
one has to take into account the morphological variation and the
cryptic speciation. On a broader spectrum, these might namely ei-
ther seemingly corroborate or contradict each other. Thus, having
a broad knowledge on the biology of investigated microbiota is of

great importance, as for the example given below.

The Peridiniaceae are one of the most important groups of
freshwater dinophytes and may comprise about a dozen species
(Gottschling, Kretschmann, & Zerdoner Calasan, 2017; Moestrup
& Calado, 2018), half of which are already known from molecular
DNA sequences (Table S1). In rRNA sequences, they show a consid-
erable variation even within species (Izquierdo Lopez, Kretschmann,
Zerdoner Calasan, & Gottschling, 2018) leading to long branches in
phylogenetic trees (Gu et al., 2013). This intraspecific variability, in
combination with a reliable taxonomy at the species level, makes the
Peridiniaceae a good example of how species determination can be
effective using environmental amplicon sequences. We are able to
assign all peridiniacean OTUs gained in this study to an established
species of Peridinium (at least as long as no cryptic speciation has
been documented in this lineage). Peridinium bipes exhibits a distinct
morphology, but our approach allows for efficient differentiation
between, for example, P. cinctum and P. willei that are challenging to
tell apart using just light microscopy in monitoring studies. However,
sequence variation might be lower (and closely related species may
exhibit identical SSU sequences) in other groups such as Scrippsiella,

and it is therefore not always possible to differentiate between
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FIGURE 6 Reliable placement of selected Bavarian dinophycean OTUs on a phylogenetic reference tree. Maximum likelihood (ML) tree
of 241 systematically representative dinophyte sequences plus 186 environmental OTU sequences (cut out of freshwater Peridiniaceae as
well as Scrippsiella s.l. and Peridiniopsidaceae; black: marine, blue: freshwater). Numbers on branches are ML bootstrap (above) and Bayesian
support values (below) for the clusters (asterisks indicate maximal support values, values under 50 and .90, respectively, are not shown).
Colour/font coding: black, marine OTU; red, freshwater OTU; green, environmental OTU; bold, OTU represented by type material. Localities
of environmental OTUs are indicated: Apd, Lech at Apfeldorf; Die, Ammersee (Diessen); Eib, Eitzenberger Weiher; Har, Hardtbach near
Haarsee; Her, Ammersee (Herrsching); Koc, Lake Kochel; Ost, Oster See; Pil, Pilsensee; Rie, Riegsee; Stb, Starnberger See; Stf, Staffelsee;
Wor, Lake Worth; Zel, Zellsee. Note that species of Peridinium show intraspecific variability regarding rRNA sequences (Izquierdo Lépez

et al., 2018) and that all species, to which OTUs are assigned (i.e. Peridinium bipes, Peridinium cinctum, Peridinium gatunense, Peridinium willei),
show high LBS statistical support = 80. Further note that we found OTUs being identical to known sequences of, for example, Naiadinium
polonicum, Palatinus apiculatus, and Theleodinium calcisporum (the latter two represented by type material)

species based on one particular molecular locus (S6hner et al., 2012;
2019). Because
of the large heterogeneity of evolutionary rates in the rRNA op-

Zerdoner Calasan, Kretschmann, Filipowicz, et al.,

eron (Gu et al., 2013; Saldarriaga Echavarria, Taylor, Cavalier-Smith,
Menden-Deuerd, & Keeling, 2004; Stern et al., 2012; Zerdoner
Calasan, Kretschmann, & Gottschling, 2019), there is no such thing
as an universal DNA barcode for all constituting lineages, and other
loci including ITS or LSU may prove better suited for reliable species

determination of such organism sets using HTS.

The potential identification of few marine taxa in the freshwater
environment based on sequences comes as a surprise. Contamination
due to the applied methods is very unlikely, as these species are not
cultivated in our laboratories, but the incomplete assessment of
freshwater dinophytes in DNA reference databases may account
for the ostensible detection of marine taxa in our samples. However,
some dinophytes have colonised freshwater from marine habitats
relatively recently (Zerdoner Calasan, Kretschmann, & Gottschling,
2019). Furthermore, different rates of the rRNA operon evolution
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may impact the phylogenetic position of certain reads. For instance,
Gonyaulax clevei has been reported from German lakes (Hickel &
Pollhinger, 1986), but has never been sequenced. It is possible that
those sequences once gained will group with marine taxa such as
species of Lingulodinium. Moreover, a few organisms are physiologi-
cally able to successfully overcome the physiological barrier between
the oceans and freshwater habitats (Pokorny, 2009) and establish
new populations. As living models, species such as Huia caspica and
Kolkwitziella acuta might be a key in this respect, as they are found
in both marine and freshwater habitats (Gu, Mertens, & Liu, 2016;
Mertens et al., 2015). By any means, the precise biological role, and
the overall biological activity, has to be worked out for marine taxa
in freshwater environments. Future research should rigorously use
physical specimens and preferably living strains. Moreover, dino-
phyte species richness in Bavarian lakes may be greater than that
previously reported in the literature based on our genetic analysis.
Particularly, the considerable number of so far unknown Pfiesteria-
like sequences (Burkholder & Marshall, 2012; Calado, Craveiro,
Daugbjerg, & Moestrup, 2009; Litaker et al., 2005) is impressive. A
targeted search in future will assess this diversity and address ques-
tions, such as whether these are already accepted species without
hitherto known DNA sequence information or even new species.

In the microbial world, the importance of DNA sequences
linked to type material cannot be overestimated. In this respect,
our approach to place OTUs on a reference tree using curated
and vouchered representatives has been proven successful with
the documentation of sequences identical to Biecheleria brevisul-
cata (Suessiaceae), Palatinus apiculatus (Peridiniopsidaceae), and
Theleodinium calcisporum (Thoracosphaeraceae). The first and latter
species have been described only a few years ago (Craveiro et al.,
2013; Takahashi, Sarai, & Iwataki, 2014), but Palatinus apiculatus re-
fers to a historical name from the 19 century (Ehrenberg, 1838).
Usually, such names are not linked to DNA sequence information,
but the application of epitypification has made the determination
of such species unambiguous (Kretschmann, Zerdoner Calasan,
Kusber, & Gottschling, 2018). This strategy has not—to the best of
our knowledge—been applied for the species of Ceratium, which
makes the determination of numerous OTUs gained in this study at
the species level vague. Once identified, strategic taxonomic clar-
ifications of target organisms are possible and may refer to names
such as Ceratium macroceras and Ceratium tetraceros, both being
described from Bavaria (Schrank, 1793, 1802). However, as the po-
tential intraspecific and interspecific variability together with possi-
ble cryptic speciation and morphological variability of Ceratium are
currently unknown, the taxonomic clarification must be performed
with a great caution, taking all such aspects into account. The taxo-
nomic tool of epitypification provided by the International Code of
Nomenclature for algae, fungi, and plants (Turland et al., 2018) is still
not regularly used in phycology, despite being of great importance
for stable taxonomy. Such approaches must be carried out, because
the resolution power of all available HTS methods, as exemplified
in this study, always comes down to the basic necessity of a reliable
application of names.

Curated contemporary reference databases leave further room
for improvements. For example, a number of the OTU sequences
obtained in this study were assigned to Scrippsiella by the SILVA
(Quast et al., 2013) reference, which is a predominantly marine di-
nophyte lineage. Such entries misleadingly refer to it as "Scrippsiella"
hangoei, which is a name being classified today under Apocalathium.
Therefore, the correct species name for the OTUs is (probably) fresh-
water Apocalathium aciculiferum. It might be only a matter of time until
this particular taxonomic confusion is corrected for future releases
of the SILVA databases, as this error has been already corrected in
the piNoRrer database (Mordret et al., 2018). The latter, in turn, relies
on SSU reference sequence data only and is therefore unable to
place environmental OTUs of studies using LSU (Elferink et al., 2017)
and/or ITS sequences (Lutz, McCutcheon, McQuaid, & Benning,
2018). Concomitantly, taxa such as Peridiniella, Sphaerodinium and
Tyrannodinium, of which only LSU sequences are known at present,
are subsequently undetectable using biNorer (however, tLeonella and
tTPosoniella are also missing, although SSU reference sequences are al-
ready available). The variety of sequencing approaches thus requires
a database that assures both, provision of extensive rRNA sequence
information and taxonomic reliability. In this respect, the indication
of sequences that have been gained from type material is also im-
portant (Pawlowski et al., 2012) and needs to be added in DINOREF.
Moreover, curation of the piNorer database has not prevented the use
of names such as 'Goniodomataceae', which have been nomenclatur-
ally rejected (Elbrachter & Gottschling, 2015; Prud'homme Van Reine,
2017).

Our approach to detect dinophytes in Bavarian lakes is power-
ful and will lay the basis for solid information on which species are
widely distributed and abundant, and which species are rarer and
represent rather endemic entities with narrower distributions. If oc-
currences of dinophyte species correlate with environmental traits,
then improved species circumscriptions also taking their ecological
niche into account are possible. With our project, we may start to
understand not only that a certain species occurs in a given freshwa-
ter habitat, but also why. Our example of field mapping, and the pur-
sued predictability of freshwater dinophyte occurrences, has thus a
great potential to serve as a model for other taxonomic groups and /
or the investigation of similar and alternative environments in other

parts of the world.
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