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Abstract
Variations of the global sea level pressure (SLP) field reflect atmospheric and oceanic influences and have a profound 
influence on temperature, precipitation and the global carbon cycle. The impact of various forcing factors on this field was 
investigated mainly based on numerical simulations. Alternatively, here we identify and quantify the influences of various 
forcing factors on observational, reanalysis and simulated SLP fields. By applying canonical correlation analysis (CCA) 
on the aforementioned data sets, we separated and quantified the impact of increase CO2 concentration, El Niño–Southern 
Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO) and solar forcing on the global SLP 
field, based on their associations with known footprints on the sea surface temperature (SST). Together, their corresponding 
SLP spatial structures explain ~ 60% of the observed variance. Whereas the atmospheric CO2 concentration has the most 
prominent impact on the global SLP field, explaining 28% of variance, ENSO and AO account for 9% each. The solar forcing 
and AMO explain 7%, respectively 6% of global SLP variance. Similar spatial structures corresponding to the same forcing 
factors are identified based on the reanalysis SLP data. CCA applied on simulated SLP fields derived from six CMIP5 model 
simulations captures only the spatial structures of atmospheric CO2 concentration, ENSO, AAO and AO. Such a decomposi-
tion of the global pressure field based on a linear combination of coupled SST-SLP pairs provide a reference against which 
one could validate the performance of general circulation models in simulating the lower atmosphere dynamics.
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1  Introduction

One of the definitory property of the climate system is its 
significant complexity, resulting, for example, from the 
interactions between its components (e.g. atmosphere, 
ocean, land), which are characterized by very different 
characteristics. Consequently, the understanding of physical 

mechanisms generating climate variability relies on simpli-
fying assumptions about its dynamics. One of these hypoth-
eses is that climate variations result from a combination of 
fluctuation induced by external causes and internal factors 
generated by interactions between components of the cli-
mate system. Whereas the former type of causes includes, 
for example, anthropogenic greenhouse gases, changes in 
solar irradiance, volcano eruptions, the internal fluctua-
tions could be related to the El Niño–Southern Oscillation 
(ENSO) phenomenon, the Atlantic Multidecadal Oscillation 
(AMO) and other climate modes of variability. The iden-
tification of the footprints of such forcing factors (which 
could be of external or internal origin) on global fields and 
a quantification of their associated contributions to climate 
variations could significantly improve the understanding of 
atmosphere/ocean dynamics.

One key component to analyze the large-scale atmos-
pheric circulation is sea level pressure (SLP). It encapsu-
lates important information about atmospheric dynamics, 
but it is also under the influence of surface ocean conditions. 
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Furthermore, it reflects the atmospheric conditions at the 
Earth surface, in which the human activity is embedded.

Annular modes are the dominant structures of atmos-
pheric variability in the extratropics, being associated with 
zonally symmetric negative (positive) pressure anomalies 
over the poles and positive (negative) ones at mid-latitudes 
(Thompson et al. 2000). Their representations in climate 
models are associated with some divergence, especially at 
high latitudes (Deser et al. 2012).

The Arctic Oscillation (AO; Lorenz 1951; Thompson 
and Wallace 1998) or the Northern Annular Mode (NAM) 
(Thompson et al. 2000) has a profound impact on tempera-
ture and precipitation in North America and Europe, as well 
as on sea ice distribution in the Arctic region (e.g.: Deser 
et al. 2000). The regional manifestations of AO in the North 
Pacific and in the North Atlantic boreal winter are known as 
the North Pacific Oscillation (Linkin and Nigam 2008) and 
the North Atlantic Oscillation (NAO) (Exner 1913; Hurrell 
1995), respectively. Although there are differences between 
the spatial patterns of AO and NAO, it was proposed that 
these two modes are closely linked, so that they represent 
manifestations of the same mode of atmospheric variability 
(Hurrell and Deser 2009).

The dominant structure of the largescale atmospheric 
circulation of the Southern Hemisphere (SH), the Antarctic 
Oscillation (AAO) (Rogers and van Loon 1982; Gong and 
Wang 1999) or the Southern Annular Mode (SAM) (Thomp-
son et al. 2000) defined in the geopotential height, is associ-
ated with the poleward contraction and strengthening of the 
SH westerly wind jet. It generates more rainfall and lower 
temperatures in the high latitudes and less rainfall and higher 
temperatures in the midlatitudes (Gillett et al. 2006; Mar-
shall 2007). The physical mechanisms associated to SAM 
could be understood in terms of a positive feedback between 
the zonal wind and fluxes of transient eddy momentum (Lor-
enz and Hartmann 2001).

In the tropical Pacific, the Southern Oscillation (SO) 
modulates the behavior of the atmosphere on interannual 
timescales and is characterized by a dipole of opposing sign 
pressure anomalies located in the eastern and in the west-
ern parts of this basin (Trenberth and Caron 2000). The SO 
could be linked to tropical ocean–atmosphere interactions 
associated with the El Niño–Southern Oscillation phenom-
enon (ENSO; Philander 1990; Deser et al. 2010).

The variability of the annular modes can be influenced by 
both, internal and external forcing factors. Previous studies 
based on observed and simulated data have linked changes 
in the evolution of the annular modes with the increase in 
greenhouse gases (GHG) emissions (Fyfe et al. 1999; Gillett 
and Thompson 2003; Gillett and Fyfe 2013), with the deple-
tion of stratospheric polar ozone (Solomon 1999; Thomp-
son et al. 2011; Gillett et al. 2013), with volcanic erup-
tions (Stenchikov et al. 2002; Christiansen 2008; McGraw 

et al. 2016), with changes in solar irradiation (Kuroda and 
Kodera 2005; Huth et al. 2007; Roscoe and Haigh 2007; 
Hood et al. 2013) or with natural variability (Ruprich-Robert 
et al. 2017). It was proposed that changes in solar irradi-
ance and in mean temperature over the Northern Hemisphere 
played an important role in modulating the SO over the last 
2000 years (Yan et al. 2011). However, there is no consensus 
about the relative contributions of these forcing factors to the 
annular modes in a changing climate (IPCC 2013).

The evolution of the SLP field has long been linked with 
changes in sea surface temperature (SST) over both the 
Pacific and the Atlantic basins (e.g.: Bjerknes 1969; Zorita 
et al. 1992). The goal of this study is to identify and quantify 
the contributions of main forcing factors to the global SLP 
field. Section 2 includes a presentation of the data and of the 
statistical methods used in this study. In Sect. 3, we analyze 
the coupled global SST-SLP patters and attribute them to 
forcing factors. The conclusions are formulated in Sect. 4.

2 � Data and methods

2.1 � Data

Observational SLP and SST fields used here were down-
loaded from the Met Office Hadley Centre’s (HadSLP2—
Allan and Ansell 2006; HadISST—Rayner et al. 2003). 
The HadSLP2 data (5° × 5° grid) was developed using 
marine observations from International Comprehensive 
Ocean–Atmosphere Data Set (ICOADS) and land obser-
vations from 2228 stations all over the globe (Allan and 
Ansell 2006). The HadISST (1° × 1°) fields are reconstructed 
using a two-stage reduced-space optimal interpolation pro-
cedure, followed by superposition of quality improved grid-
ded observations onto the reconstructions, to restore local 
detail. For comparison, we used the version 5 of the ERSST 
(2° × 2°) data set (Huang et al. 2017).

The instrumental AAO Index, the AO Index, the Niňo3 
Index, the AMO Index, the SO Index, the 10.7 cm Solar 
Flux Index and the CO2 concentration recorded at Mauna 
Lua Observatory are obtained from the National Oceanic 
and Atmospheric Administration (http://www.esrl.noaa.gov/
psd/data/clima​teind​ices/list/). Please see Table S1 for more 
information about the climate indexes used here.

We used also the NCEP/NCAR Reanalysis SLP and SAT 
data from the National Centre for Atmospheric Research 
(NCAR) and the National Centre for Environmental Pre-
diction (NCEP), (Kalnay et al. 1996). The NCEP/NCAR 
Reanalysis project is using a state-of-the-art analysis/fore-
cast system to perform data assimilation using past data 
from 1948 to the present. Assimilation of surface, satellite, 
radiosonde and other observations of pressure, temperature, 

http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.esrl.noaa.gov/psd/data/climateindices/list/
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humidity and other variables are used to create fields distrib-
uted on a 2.5° × 2.5° grid.

Modeled SST and SLP data used here are from “His-
torical” CMIP5 simulations, distributed on a 1° × 1° grid. 
The simulations extend over the 1850–2005 period and 
are performed with observed forcing agents like anthropo-
genic CO2 emissions, volcanic aerosols and solar forcing 
(Taylor et al. 2012). We used a mean of six CMIP5 mod-
els (BCC_CSM1.1 (m), CNRM-CM5, GFDLCM3, INM-
CM4.0, IPSL-CM5A-MR, MPI-ESM-P) which were used 
in previous studies to investigate internal variability (Gillett 
and Fyfe 2013; Ham and Kug 2014; Han et al. 2016). Output 
data is downloaded from https​://clime​xp.knmi.nl/selec​tfiel​
d_cmip5​.cgi. For more information about the CMIP5 models 
used in this study are included in Table S2.

The analyses are performed based on annual values of 
SST and SLP. If monthly values are used, the results are 
qualitatively the same. Anomalies from the annual cycle 
were calculated for all datasets, as a preliminary operation.

2.2 � Methods

We used the Empirical Orthogonal Functions (EOF) method 
(Lorenz 1956) to identify the dominant modes of global 
atmospheric variability. The EOF analysis is used to identify 
spatial patterns of variability (EOF’s) in association with a 
principal component (PC) time series. It can be used to iden-
tify dominant patterns and to increase the signal-to-noise 
ratio in the analyzed field.

Coupled patterns are identified here through Canonical 
Correlation Analysis (CCA; von Storch and Zwiers 1999), 
in a similar manner as in Zorita et al. (1992). CCA is a mul-
tivariate statistical technique which is applied to two data 
sets in order to identify pairs of spatial structures associated 
with maximum correlated temporal evolutions. The main 
criteria for ranking the resulting pairs is the correlation coef-
ficient between the pairs of patterns (vectors), unlike similar 
statistical methods which maximize the variance/covariance. 
The CCA procedure includes several steps: (i) a prefiltering 
of the two initial fields by decomposing the initial fields 
through EOF analysis and the reconstructing it back based 
on a reduced number of modes, (ii) normalizationthe PCs 
and construction of a covariance matrix based only on a 
subset of them, which accounts for most of the variance; 
(iii) identification of the correlation coefficients by apply-
ing the Singular Value Decomposition (SVD) method to the 
covariance matrix of the PCs. In our study we used CCA 
to identify coupled SST-SLP modes and their associated 
time components. The combined explained variance of the 
selected EOFs is over 70% for HadSLP2/HadISST (the first 
10 EOFs), NCEP/NCAR data (the first 14 EOFs) and CMIP5 
data (the first 6 EOFs).

The statistical significance of correlations is estimated 
through a two-tailed t test. The number of degrees of free-
dom is computed based on the lag-1 autocorrelation of the 
two-time series (Bretherton et al. 1999).

Observed, reanalysis and CMIP5 SLP and SST data are 
used in a complementary way. The effects of imperfections 
and possible biases in the observational data are reduced 
by using multivariate statistical methods which are effi-
cient in increasing the signal-to-noise ratio. Except for 
removing the annual cycle, no pre-filter of the data was 
performed before EOF analyzes.

The decrease in signal in SLP and SST observations 
prior to 1950 has been well documented (Deser et  al. 
2010). In order to better compare the results derived from 
observations with the ones from numerical simulation, we 
performed the CCA’s for the 1950–2005 period using the 
HadSLP2 and CMIP5 SLP data. Over this time interval 
(1950–2005) the atmospheric CO2 concentration shows 
a prominent growing trend, whereas the solar forcing is 
marked by a slight decreasing trend. These different evo-
lutions are increasing the chances to separate the impact 
of anthropogenic from that of the solar forcing. Similar 
results are also obtained if ErSSTv5 data are used (not 
shown).

2.3 � Strategy

The EOF method separates orthogonal spatial patterns in a 
given field. As each mode could be excited by several dif-
ferent forcing factors, although such decomposition could 
significantly reduce the number of degrees of freedom, it 
does not necessarily isolate the footprint of a specific forc-
ing on climate.

The CCA is applied to two fields in order to identified 
pairs of patterns whose associated time series are maximum 
correlated. Therefore, whereas EOF is based on the distinc-
tion between patterns (they are orthogonal), CCA is based 
on the distinction between time evolutions of spatial struc-
tures (time series of consecutive pairs are uncorrelated). If 
one assumes that distinct forcing factors are characterized by 
different temporal evolutions, which is a reasonable hypoth-
esis for sufficiently long time intervals, then CCA appears 
as a method which could be used to separate the footprint of 
forcing factors on a given field. Here we apply this method 
on SST and SLP data in order to identify the footprints of 
various potential causes of large-scale climate variability on 
this last global field. The attribution to a specific forcing of a 
SLP pattern provided by CCA (as part of a coupled SST-SLP 
pair), is established based on two criteria:

1.	 the corresponding SST pattern should be similar with 
that of the assumed forcing factor.

https://climexp.knmi.nl/selectfield_cmip5.cgi
https://climexp.knmi.nl/selectfield_cmip5.cgi
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2.	 The temporal shape of the associated time series should 
be significantly correlated with that of the assumed forc-
ing factor.

3 � Results

3.1 � Dominant global atmospheric modes

The first tree modes of global sea level pressure variability, 
derived through EOF analysis of the observed annual SLP 
anomalies over the 1950–2005 period, NCEP/NCAR rea-
nalysis and CMIP5 data, are shown in Fig. 1. The cumulated 
explained variance of these tree modes is over 70% in obser-
vation/reanalysis data and 67% in CMIP5 fields.

The spatial structures of the dominant mode (EOF1) 
identified in observations (Fig. 1a), NCEP/NCAR (Fig. 1d) 
and CMIP5 (Fig. 1g) include the largest values in the SH. 
The spatial structure of the EOF1 derived from observa-
tions (Fig. 1a) is dominated by negative pressure anomalies 
located over Antarctica, surrounded by positive pressure 
anomalies at mid-latitudes, which are characteristic for a 
positive AAO phase (Gong and Wang 1999). These fea-
tures can be easily identified in the EOF1 patterns obtained 
using the reanalysis (Fig. 1d) and CMIP5 (Fig. 1g) data. 
Minor differences between the three spatial structures can 
be identified around the North Pole. The EOF1 pattern from 
the reanalysis (Fig. 1d) is qualitatively similar with the 
observed (Fig. 1a) and simulated (Fig. 1g) EOF1 patterns, 
but the loadings are slightly overestimated, especially over 
the continents, in mid-latitudes. The spatial structure of the 
EOF1 derived from CMIP5 data (Fig. 1g) has the maxium 
meridional SLP gradient located slightly southward and a 
more zonally distributed pattern in the SH compared to both, 
observations and reanalysis. In the NH it resembles more the 
pattern from the reanalysis (Fig. 1d). An AAO signal has 
been previously identified in the CMIP5 data, although there 
are some differences between models for the spatial pattern 
(e.g.: Raphael and Holland 2006). The associated PC’s of the 
dominant modes (Fig. 1j) are strongly correlated with AAO 
Index (Table 1) and show a slightly increasing trend, in good 
agreement with previous studies (Marshall 2003), further 
indicating that this mode reflects mainly AAO variations.

The spatial structures of the second EOF derived from 
observed, reanalysis and CMIP5 SLP data is shown Fig. 1b, 
e and h respectively. In the NH, the three spatial structures 
are qualitatively similar and resemble a positive phase of 
the AO, with negative anomalies at high latitudes and two 
centers of positive anomalies in the North Atlantic and 
North Pacific basin (Thompson et al. 2000). Compared to 
observations, there is a small tendency to overestimate SLP 
anomalies in the NCEP/NCAR data (Fig. 1e) and a more 
prominent center of positive anomalies in the North Pacific 

basin for the CMIP5 data. The PC’s of the observed and 
NCEP/NCAR EOF1 are strongly correlated between them 
and with the AO Index (Table 1) and show an increasing 
trend over the 1965–1995 period, which is not captured in 
the CMIP5 PC (Fig. 1k). In synthesis, this mode reflects 
mainly AO variations.

The two spatial structures of the third EOF identified 
in observations (Fig. 1c) and in the NCEP/NCAR fields 
(Fig. 1f) are qualitatively similar and include a zonal see-
saw of SLP anomalies in the Tropical Pacific basin, between 
Darwin and Tahiti and successions of centers of alternating 
signs emerging from western tropical Pacific and extend-
ing poleward and eastward in both hemispheres, resembling 
Rossby waves propagations. These atmospheric features are 
consistent with a tropical forcing and are associated with the 
SO (Trenberth and Caron, 2000) and are less prominent in 
CMIP5 EOF3 (Fig. 1i). This association is also supported 
by the correlation between the PC’s of this mode and the SO 
Index (Table 1).

Although both the AAO and the AO are active all year 
around, their impact is more pronounced in the cold season. 
To further investigate the association of EOF1 and EOF2 
with AAO and AO, we compared the global structures 
with the ones derived from regional seasonal EOF analyses 
(Supp. Figure 2). In the SH, for June–July–August (JJA), 
we found a dominant structure (EOF1, Supp. Figure 2c, d) 
which is similar with the one described in association with 
AAO (Fig. 1a, d). Also, the correlation coefficients between 
the PC’s of the EOF1 derived from the global SLP field 
and the PC of the EOF1 derived from NH JJA anomalies 
are close to 0.9 (statistically significant at > 99% confidence 
level) for HadSLP2 and NCEP/NCAR data. In the NH, for 
December–January–February (DJF), the dominant spa-
tial structure (EOF1) is similar with the global structure, 
derived from observed and NCEP/NCAR data, associated 
to AO (Fig. 1b, e). The correlation coefficients between the 
associated time series from EOF1 NH DJF (Supp. Figure 2g, 
h) and from EOF2 global (Fig. 1k) are strongly correlated 
(r > 0.85, > 99% confidence level).

In summary, the three dominant global modes are quali-
tatively similar in observations, reanalysis and simulated 
data. A tendency to overestimate SLP anomalies is noted 
in the NCEP/NCAR data, especially over the continents. 
The association of the global EOF patterns to known 
atmospheric annular modes is supported by the strong cor-
relation between the PC’s and the corresponding indexes 
(Table 1) and by the similarities with the results obtained 
from regional/seasonal EOF analyses (Supp. Figure 2).

3.2 � Observed coupled global SST‑SLP pairs

In order to identify global coupled SST-SLP pairs, CCA was 
performed between the corresponding annual fields from the 
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Fig. 1   Observed, reanalysis and simulated global modes of sea level 
pressure variability. Top row: The leading empirical orthogonal func-
tion (EOF) of the global sea level pressure anomalies (hPa) extending 
over the 1950–2005 period, based on HadSLP2 (a), NCEP/NCAR (b) 
and CMIP5 (c) data sets. Second row: The second empirical orthogo-
nal function (EOF) of the global sea level pressure anomalies (hPa) 
extending over the 1950–2005 period, based on HadSLP2 (d), NCEP/

NCAR (e) and CMIP5 (f) data sets. Third row: The third EOF of the 
global sea level pressure anomalies (hPa) extending over the 1950–
2005 period, based on HadSLP2 (g), NCEP/NCAR (h), CMIP5 (i) 
data sets. Bottom row: the time components associated to the EOF1 
(j), EOF2 (k) and EOF3 (l) derived from HadSLP2 (black line), 
20CR (blue line) and CMIP5 (red line) data sets
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HadISST and HadSLP2 datasets, for the 1950–2005 period, 
with the results shown in Fig. 2 and Table 2. 

The SST spatial structure of the first SST-SLP pair 
(Fig. 2a) is dominated by positive anomalies extending all 
over the globe, suggesting an association with the green-
house effect induced by the atmospheric CO2, which is also 
supported by the corresponding increasing trend which 
dominates its time component (Fig. 2b). The global SLP 
spatial structure (Fig. 2c,) is dominated by negative anoma-
lies over the polar regions, extending also over North Pacific 
and Eurasia and by a zonal band of positive values located 
between 50° S and 50° N. A similar structure was associ-
ated with human influence (mostly emissions of greenhouse 
gases (GHGs) and tropospheric sulphate aerosols) in a previ-
ous numerical study (Gillett et al. 2003). In the North Atlan-
tic, a pattern similar to the positive NAO phase is observed, 
which was simulated in response to increased anthropogenic 
greenhouse gases (Kuzmina et al. 2005; Stephenson et al. 
2006). In the Southern Hemisphere, a prominent posi-
tive AAO-like structure appears in both the observed and 
reanalysis spatial structures, which also was simulated in 
response to increasing GHGs (Fyfe et al. 1999; Arblaster and 
Meehl 2006). CMIP5 models also project with high confi-
dence a trend in the AAO over the 21st century, as a result 
of increasing GHGs (Gillett and Fyfe 2013). The centers of 
negative SST anomalies located south-east from Greenland 
and in North Pacific appear to be generated by southeast-
ward cold air advection, in association with the relatively 
strong wind inferred from the corresponding SLP pattern 
(Fig. 2c). The SST anomalies around Antarctica appear 
also to be induced by the anomalous winds related to the 
maximum SLP gradient in this area. These features provide 
mutual physical consistency to this coupled SST-SLP pair. 
The quasi-uniform positive SST anomalies dominating the 
global structure (Fig. 2a, d), the structure of the SLP pattern 
(Fig. 2c, f) in combination with previous observational and 
numerical studies, but also the trend of the corresponding 
time components (Fig. 2b), indicate in a convergent way that 

this pair is associated with the atmospheric CO2 increase. 
The atmospheric structure of this pair explains 28% of vari-
ance in the global SLP field and projects (Table 2) on EOF1 
(Fig. 1a) and EOF2 (Fig. 1b).

The SST spatial structure of the second pair (Fig. 2d) is 
dominated by pronounced SST anomalies in the tropical 
Pacific, with a band of warm SST starting from the west 
coast of Peru, surrounded by negative loadings off the coast 
of Australia, New Zealand and Japan. This SST spatial pat-
tern has the characteristics of the ENSO phenomenon, the 
main source of interannual variability in the climate system 
(e.g.: Philander 1990; Deser et al. 2010). The temporal evo-
lution of the SST/SLP structures (Fig. 2e) are dominated by 
interannual variability and are significantly correlated with 
the Niño3 index (r = 0.74, > 95% significance level), further 
supporting the association of this pair with ENSO. The SLP 
spatial structure (Fig. 2f) includes a dipole in the tropical 
Pacific, with low SLP in the Eastern Pacific and positive 
values in the Western sector of this basin. In the high lati-
tudes, in the SH we find a strong projection of ENSO onto 
Amundsen Sea low (ASL; Turner et al. 2013) and in the NH 
onto AO, through Rossby waves excited by deep convection 
associated to El-Niño events (e.g.: Trenberth et al. 1998; 
Ciasto et al. 2015). The SLP pattern from this pair reflects 
ENSO variations, it explain 9% of variance in the global 
field and it projects strongly (Table 2) on EOF3 (Fig. 1c).

The SST pattern of the third pair (Fig. 2g) has the maxi-
mum anomalies over the subpolar gyre and is characterized 
by uniform positive anomalies in North Atlantic, loadings of 
opposite sign in the South Atlantic and negative anomalies 
in the Eastern Tropical Pacific. These features are repre-
sentative for the Atlantic Multidecadal Oscillation (AMO; 
Kerr 2000). The AMO is linked to fluctuations in the Atlan-
tic Meridional Overturning Circulation (AMOC; Latif et al. 
2004; Knight et al. 2005; Gulev et al. 2013; Ionita et al. 
2016) and has a global influence on climate (Sutton and 
Hodson 2005; Dima and Lohmann 2007; Ruprich-Robert 
et al. 2017; Vaideanu et al. 2018). The time series associated 

Table 1   Correlation coefficients 
(r) between the PCs of the EOFs 
derived from OBS, NCEP and 
CMIP SLP, over the 1950–2005 
period, and AAO, AO and SO 
Index

Correlation 
with OBS

Correlation 
with NCEP

Correlation 
with CMIP5

Correlation 
with AAO 
Index

Correlation 
with AO 
Index

Correlation 
with SO Index

PC 1 (OBS) 1 0.71 0.28 0.78 0.26 0.15
PC 1 (NCEP) 0.71 1 0.56 0.71 0.31 0.11
PC 1 (CMIP5) 0.42 0.56 1 0.45 0.22 0.19
PC 2 (OBS) 1 0.90 0.29 0.21 0.90 0.13
PC 2 (NCEP) 0.90 1 0.26 0.23 0.88 0.12
PC 2 (CMIP5) 0.29 0.26 1 0.18 0.24 0.15
PC 3 (OBS) 1 0.78 0.25 0.15 0.08 0.69
PC 3 (NCEP) 0.78 1 0.22 0.14 0.13 0.76
PC 3 (CMIP5) 0.25 0.22 1 0.12 0.07 0.27
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to the coupled patterns (Fig. 2h) are significantly correlated 
with the AMO index (r = 0.63, > 95% significance level). The 
associated SLP spatial structure (Fig. 2i) includes negative 
anomalies over the North Atlantic, Europe and North Africa, 
and positive loadings over the poles and in the North Pacific. 
The negative AO-like structure identified in the North 
Atlantic has been previously linked with the positive AMO 
phase (Dima et al. 2001; Omrani et al. 2014; Gastineau 
and Frankignoul 2015), with the atmosphere reflecting a 
local thermal influence from the ocean below. In the North 
Pacific, the weakening of the Aleutian low (Fig. 2i) appears 
to generate the positive SST anomalies off the cost of Japan 
through weak westerlies, reduced cold atmospheric advec-
tion and weak mixing in the ocean surface layers, consist-
ent with previous studies witch show that the AMO has a 
strong influence on Pacific decadal variability (Dima and 
Lohmann 2007; Zhang and Delworth 2007; Zanchettin et al. 
2016). In the high latitudes of the SH a AAO-like structure is 
observed, which is in good agreement with previous studies 
using numerical simulations investigating the impact of the 
AMO over this region (Li et al. 2014; Ruprich-Robert et al. 
2017). The predominantly cold SST anomalies do not appear 
to be induced by the atmospheric circulation above them. 
The time series (Fig. 3h), significantly correlated with the 
AMO index, together with the SST structure (Fig. 3g), char-
acteristic for AMO, indicate that this coupled pair reflects 
the AMO footprint on these two fields. The associated SLP 
structure explains 6% of variance in the global SLP field and 
projects (Table 2) on EOF1 (Fig. 1a) and EOF 2 (Fig. 1b).

The SST field from the fourth pair (Fig. 2k) is char-
acterized by a tripole of maximum SST anomalies in the 
North Atlantic, with positive values in the subpolar gyre, 
negative loadings in the western sub-tropical North Atlantic 
and warm anomalies between the equator and 30° N. This 
oceanic response is generated by the AO mainly through 
changes in the turbulent energy flux (Cayan 1992; Dima 
et al. 2001; Marshall et al. 2001; Deser et al. 2010). A simi-
lar atmosphere–ocean relation is observed in North Pacific 
region, but not around Antarctica. The corresponding time 
components (Fig. 2l) are significantly negatively correlated 
with AO Index. (r = − 0.67, > 95% significance level). The 
associated SLP spatial structure (Fig. 2m) has the most 
intense values in the NH, with positive loadings over the 
North Pole and negative anomalies in the North Atlantic and 
North Pacific basins, similar to the negative phase of AO. 
This SLP structure explains 9% in the global SLP field and 
projects strongly (Table 2) on EOF2 (Fig. 1b).

The SST structure of the fifth pair derived through CCA 
(Fig. 2n) includes tilted bands of alternating sign in the 
Pacific basin, starting with negative anomalies West of South 
America and ending with a band of positive values westward 
from North America. In North Atlantic it includes a center 
of negative values. These were associated with solar forcing 

in previous studies (White et al. 1997; Lohmann et al. 2004; 
Dima et al. 2005; Meehl et al. 2008; Hood et al. 2013; Gray 
et al. 2013; Dima and Voiculescu 2016). The corresponding 
time components (Fig. 2o) are significantly correlated with 
the solar irradiance (r = 0.43 for the SLP time series, statis-
tically significant at 90% confidence level), with a 4 years’ 
lag, consistent with a causal relationship between this natu-
ral forcing and the North Atlantic response (van Loon and 
Meehl 2014). The SLP spatial structure (Fig. 2p) includes 
the North Pacific Oscillation (NPO) pattern, which was also 
linked to solar variability (Roy and Haigh 2010; Hood et al. 
2013; van Loon and Meehl 2014; Dima and Voiculescu 
2016). These Pacific SST and SLP configurations indicate 
an atmospheric influence on the ocean surface thermal 
conditions in the Northern Hemisphere. The SLP center of 
negative anomalies located in the north-east Asia was also 
associated with the solar forcing (Hood et al. 2013). In the 
North Atlantic, a negative NAO-like structure is observed. 
In the SH, the SLP pattern projects strongly on AAO. This 
response was linked to the solar forcing using proxy records 
(Abram et al. 2014), observational data (Kuroda and Kodera, 
2005; Kuroda 2018) and simulations with climate models 
(Hood et al. 2013; Gillett and Fyfe 2013). The SLP pat-
tern of this pair explains 6% in the global field and projects 
(Table 2) on EOF1 (Fig. 1a).

In order to test the robustness of the results on a dif-
ferent SLP dataset and time frame, we performed another 
CCA using the NCEP/NCAR Reanalysis SLP data, over the 
1950–2018 period (Supp. Figure 4). All the pairs derived 
from reanalysis data are similar with the ones obtained from 
observation (Fig. 2). The NCEP/NCAR reanalysis appear to 
capture slightly better the coupled SST/SLP patterns asso-
ciated with AO, but separates less precisely the AMO and 
the 11-year solar influence. The footprints of anthropogenic 
climate change and ENSO are quasi-identical to observa-
tions. The close similarity between the SST/SLP structures 
derived in observations and reanalysis indicates that these 
results are relevant for the global SLP variability.

In order to test the association to specific forcing fac-
tors of the SST-SLP pairs identified through CCA, we 
regressed the surface air temperature (SAT) field on the 
time components associated to the SST-SLP pairs from 
Fig. 2. The regression maps of SAT on the time series of 
the PC from the CCA pairs associated to ENSO (Supp. 
Figure 3a) and NAO- (Supp. Figure 3c) are in very good 
agreement with previous studies (McPhaden et al. 2006; 
Deser et al. 2010). The regression map of SAT on the 
PC of the SST-SLP pair associated to AMO (Supp. Fig-
ure  3b) includes positive temperature anomalies over 
North America and most of the Arctic, which have been 
previously linked with the positive AMO phase (Ruprich-
Robert et al. 2017). The regression map of SAT obtained 
using the PC from the CCA pair linked to solar influence 
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is characterized by positive values over the poles, more 
pronounced in the NH. An increase in SAT over the poles 
and a preference to warm the continents vs. the oceans as a 
result of solar influence has also been previously reported 
(Camp and Tung 2007; Tung and Camp 2008). They also 
find the solar link with these areas to be statistically sig-
nificant, further supporting the association of the 5th pair 
derived from CCA to solar forcing.

The observed projections of the dominant EOFs on the 
SLP patterns derived through CCA (Table 2), indicate that 
the footprint of the increase in atmospheric CO2 concen-
tration and of the AMO on the global SLP field (Fig. 2c) 
results largely from a combination of EOF1 (AAO) and 
EOF2 (AO). Unlike this, the ENSO contribution to the 
global SLP variability (Fig. 2f) and the SLP global struc-
ture from the 4th pair (Fig.  2m) are generated almost 
entirely by EOF3 (SO) respectively by EOF2 (AO). The 
solar impact on the global SLP field is generated mainly 
through EOF1 (AAO). One notes that AAO appears to be 
linked to the atmospheric CO2 concentrations, to AMO 
and to the solar irradiance variations, all these forcing fac-
tors projecting on the structure of this mode (Fig. 2c, i, 
p). Similar results regarding such projections are obtained 
using NCEP/NCAR SLP data (Supp. Table 3).

In summary, through a CCA applied on observational 
annual data, we identify coupled SST-SLP pairs of spatial 
structures which were attributed to distinct forcing factors, 
based on their spatial and temporal properties. Together, 
the five global SST/SLP spatial patterns explain more than 
51%/59% (Table 2) of variance in these fields. The identi-
fication of all five footprints in the same analysis provides 
quantitative estimations of the contributions of important 
forcing factors to the variability of the global SLP field.

3.3 � CMIP5 coupled global SST‑SLP pairs

In order to investigate (by comparing with observations) 
the ability of the CMIP5 models to simulate the observed 
coupled SST-SLP pair, CCA’s were performed also on SST 
and SLP data from a mean of six CMIP5 models “Histori-
cal” simulations (Table S2), over the same (1950–2005) 
period.

The SST spatial structure (Fig. 3a) of the most coupled 
SST-SLP pair captures the response of the ocean tempera-
ture to an increase in CO2 concentrations (IPCC 2013) and 
is similar with the SST response from observations (Fig. 2a). 
The temporal evolution of the two structures (Fig. 3b) is 
marked by an increasing trend. The associated SLP structure 
(Fig. 3c) shows a strong positive AAO response in the SH 
similar with previous investigations (Gillett and Fyfe 2013) 
and with observations (Fig. 2c). In the NH the response 
includes negative anomalies over most of Europe, North 
Africa and North Pacific, which is in contrast with both 
observations (Fig. 2c) and previous projections which show 
a weak but positive AO like response (Fyfe et al. 1999). 
However, other studies, find trends of both signs (Gillett 
et al. 2003; Morgenstern et al. 2010) or even a negative shift 
in AO in response to GHG’s, mostly due to changes in Arctic 
sea ice (Jaiser et al. 2012; Cattiaux and Cassou 2013). The 
SLP pattern of this pair explains 21% in the global field and 
projects (Table 3) on EOF1 from CMIP5 data (Fig. 1g).

Because the simulated response to increased atmospheric 
CO2 concentrations dominates the CMIP5 SST data (Supp. 
Figure 5) due to the finite number of physical processes con-
sidered in the numerical simulations and to the model imper-
fections, in order to facilitate the identification of the climate 
modes which have spatially heterogeneous patterns, before a 
second CCA, the trend was removed from the simulated SST 
data by subtracting from each grid point the annual global 
average. Similar results are obtained if we remove EOF1 
from both the SST and SLP data (not shown). The first cou-
pled simulated SST-SLP pair, obtained through this second 
CCA, after the trend was removed, is shown in Fig. 3d–f. 
The SST pattern (Fig. 3d) is dominated by a band of posi-
tive anomalies in the Eastern tropical Pacific and is similar 
with the observed SST pattern associated to ENSO (Fig. 3d), 
except the Indian Ocean. However, the correlation between 
the associated time series and the Niño3 Index is much lower 
than in observations (r = 0.31 vs r = 0.76) in good agree-
ment with previous studies indicating that consensus in 
the CMIP5 models regarding how ENSO will respond to 
21st century climate change has not been reached (Achuta-
Rao and Sperber 2006; Collins et al. 2011; Stevenson et al. 
2012). The associated SLP structure has a zonal seesaw of 
SLP anomalies in the tropical Pacific and a weakening of the 
ASL in the SH, similar with the observed pattern reflecting 
the ENSO phenomenon (Fig. 2d). This SLP pattern explains 

Fig. 2   Coupled SST-SLP pairs derived through CCA between the 
corresponding HadISST and HadSLP2 fields over the 1950-2005 
period. Top row: The 1st most coupled CCA pair: The SST pattern 
(a) explaining 21% of variance and the SLP structure (c), explaining 
28% of variance. Their temporal evolution (b) has a correlation coef-
ficient of 0.98. Second row: The 2nd most coupled CCA pair: The 
SST pattern (d) explaining 11% of variance and the SLP structure (f), 
explaining 9% of variance. Their temporal evolution (e) has a corre-
lation coefficient of 0.97. Their correlation with the Niño3 index (e, 
red line) is 0.76. Third row: The 3rd most coupled CCA pair: The 
SST pattern (g) explaining 8% of variance and the SLP structure (i), 
explaining 5% of variance. Their temporal evolution (h) has a corre-
lation coefficient of 0.93. Their correlation with the AMO index (h, 
red line) is 0.63. Fourth row: The 4th most coupled CCA pair: The 
SST pattern (k) explaining 5% of variance and the SLP structure (m), 
explaining 9% of variance. Their temporal evolution (l) has a correla-
tion coefficient of 0.9. Their correlation with the negative AO index 
(l, red line) is 0.68. Fifth row: The 5th most coupled CCA pair: The 
SST pattern (n) explaining 6% of variance and the SLP structure (p), 
explaining 8% of variance. Their temporal evolution (o) has a correla-
tion coefficient of 0.88. Their correlation with the 10 cm Solar Flux 
Index (o, red line, plotted with a 4 year lag) is 0.43 (with lag 4)

◂
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11% of variance in the global field and projects (Table 3) on 
EOF3 from CMIP5 data (Fig. 1i).

The SST spatial structure of the second simulated 
pair obtained through CCA, after the trend was removed 
(Fig. 3g), includes a tripole of SST anomalies in the North 
Atlantic, similar with the response of the SST to AO iden-
tified in observations (Fig. 2k). The temporal evolution 
(Fig.  3h) has a much lower correlation with AO Index 
(r < − 0.3), compared to observations. It has been argued that 
future projections regarding the evolution of AO are depend-
ent on the way models simulate troposphere-stratosphere 
interactions (Sigmond and Scinocca 2010; Karpechko and 
Manzini 2012). The associated SLP structure, has the most 
intense values in the NH and is similar with the observed 
global SLP pattern associated with AO (Fig. 2m) and with 
previous studies investigating the representation of AO pat-
tern in CMIP models (Miller et al. 2006). This SLP structure 
explains 7% in the global SLP field and projects (Table 3) on 
EOF2 from CMIP5 data (Fig. 1h).

Although an AMO-like structure has been identified in 
the SST data (Supp. Figure 5c) we were not able to associate 
a SST-SLP pair to this climate mode trough CCA, indicating 
that the CMIP5 models analyzed here do not simulate the 
atmospheric teleconnections related to this climate mode. 
This is not totally unexpected, since not much progress has 
been made between CMIP3 and CMIP5 simulations regard-
ing the AMO (Ruiz-Barradas et al. 2013). Solar influence on 
SST-SLP (Fig. 2n–p) was also not detected trough CCA on 
CMIP5 SST and SLP data.

Compared to observations, the six CMIP5 models used 
here simulate well the spatial patterns of the coupled SST-
SLP pairs associated to increased GHG’s, ENSO and AO. 
However, they do not reproduce the temporal evolution of 
the associated indexes (Table 3) making difficult the inter-
pretation of the 21st century projections regarding these 
climate phenomena.

To summarize the results, trough EOF analysis we iden-
tified the dominant modes of SLP variability in observed, 
reanalysis and CMIP5 SLP data. Through CCAs we separate 

the contributions of five forcing factors to the global SST/
SLP fields. Furthermore, by projecting the dominant EOFs 
on the SLP structures identified through CCA we estimate 
the contributions of the dominant eigenmodes to the foot-
print of each forcing factor on the SLP field.

4 � Discussion and conclusions

Trough EOF analysis on observed, reanalysis and CMIP5 
SLP data, we have shown that 60% the global SLP variabil-
ity over the 1950–2005 period is explained by the dominant 
three modes of atmospheric variability. This implies that the 
mechanisms through which different forcing factors affect 
the lower atmosphere dynamics are likely to be related to the 
physics of these three modes.

The first EOF on all three SLP data sets shows that since 
1950, the AAO presents an increasing trend. As numerical 
simulations show, an increase in the greenhouse gas con-
centration is reflected in a warming of the troposphere and 
a cooling of the stratosphere and results in an increase of 
the meridional temperature gradient in the atmosphere. This 
drives an acceleration and a poleward shift of the SH tropo-
spheric jet, resulting in the positive AAO trend (Fyfe et al. 
1999; Arblaster and Meehl 2006; Miller et al. 2006; Gillett 
et al. 2013). However, the amplitude of the increase is dif-
ferent from observations (Gillett et al. 2003). Fluctuations 
in the solar forcing changes also the latitudinal gradient of 
radiative heating in the upper stratosphere, due to changes 
in UV absorption and ozone production and could have an 
impact on SAM (Kodera and Kuroda 2002; Kuroda 2018). 
Trough propagation of Rossby waves, the tropical and North 
Atlantic also have an impact on the SH atmospheric circula-
tion changes (Li et al. 2014).

Over the last part of the 20th century, as shown in the 
second EOF (Fig. 1), AO has an increasing trend (Hurrell 
and Deser 2009) which was linked to human influence (Fyfe 
et al. 1999; Gillett et al. 2003). However, more recent stud-
ies show that increase in GHG’s can also lead to a negative 

Table 2   The variances explained by each pattern and the correlation coefficients between the CCA’s time series from Fig. 2 extending over the 
1950–2005 period

HadISST vs 
HadSLP2 
1950 -2005

SST
Explained 
variance 
(global) (%)

SLP
Explained 
variance 
(global) (%)

Correlation 
coefficient

Forcing Correlation 
with the asso-
ciated index

Projection 
on EOF1 
(Fig. 1a) max. 
value = 1

Projection 
on EOF2 
(Fig. 1b) max. 
value = 1

Projection on 
EOF3 (Fig. 1c) 
max. value = 1

1st CCA pair 21 28 0.98 CO2 increase – 0.64 0.41 0.17
2nd CCA pair 11 9 0.97 ENSO 0.76 0.11 0.28 0.91
3rd CCA pair 8 6 0.93 AMO 0.63 0.39 0.40 0.18
4th CCA pair 5 9 0.89 AO 0.68 0.11 0.73 0.26
5th CCA pair 6 7 0.85 Solar irradi-

ance
0.43 0.52 0.12 0.15
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phase of AO through sea ice loss (Jaiser et al. 2012; Catti-
aux and Cassou 2013). Solar influence on the North Atlan-
tic is not asymmetric relative to the phase of the forcing 
and that the structure of the response in this sector changes 
over a solar cycle (Ineson et al. 2011; van Loon and Meehl 
2014). The AO is affected also by the Eurasian snow cover 
(Cohen and Jones 2011), Arctic sea ice (Li and Wang 2013) 
or ENSO (Mathieu et al. 2004).

Through a single CCA analysis based on observations, 
we quantified the contributions of five forcing factors to 

the global SLP variability: atmospheric CO2 concentration 
(28%), ENSO (9%), AO (7%), AMO (6%) and changes in 
total solar irradiance (7%). Furthermore, we estimate how 
much contributes each of the dominant three EOFs to the 
impact of each forcing factor on the global SLP field. The 
SLP spatial structures associated to changes in CO2 con-
centration and AMO result from a combination of EOF1 
(AAO) and EOF2 (AO), the footprint of ENSO is generated 
mainly by EOF3 (SO), the SLP global structure associated 
to Atlantic tripole results almost entirely from EOF2 (AO) 

Fig. 3   Coupled pairs derived through CCA between the correspond-
ing CMIP5 SST/SLP fields over the 1950–2005 period. Top row: The 
1st most coupled CCA pair: The SST pattern (a) explaining 29% of 
variance and the SLP structure (c), explaining 21% of variance. Their 
temporal evolution (b) has a correlation coefficient of 0.92. Sec-
ond row: The 1nd most coupled CCA pair, after the climate change 
impact was removed: The SST pattern (d) explaining 13% of variance 
and the SLP structure (f), explaining 11% of variance. Their temporal 

evolution (e) has a correlation coefficient of 0.91. Their correlation 
with Niño3 Index (red line) is 0.31. Third row: The 2nd most coupled 
CCA pair after the climate change impact was removed: The SST pat-
tern (g) explaining 6% of variance and the SLP structure (i), explain-
ing 7% of variance. Their temporal evolution (h) has a correlation 
coefficient of 0.88. Their correlation with the AO index (h, red line) 
is 0.29
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and the solar impact on the global SLP field is generated 
mainly through EOF1 (AAO). The CCA analysis based on 
the reanalysis field reproduces all five pairs and the contribu-
tion of the five forcing factors to the three dominant modes 
identified in observations. The coupled analysis based on 
SLP fields from CMIP5 coupled simulations identifies three 
out of five pairs derived through observations, with the SLP 
patterns showing more similarity to observations than do 
the associated time series. In the Northern Hemisphere, the 
SLP pattern associated with global warming in CMIP5 data 
includes anomalies of opposite signs than those shown in 
observations.

Our results indicate a pronounced impact of the human 
influence, solar irradiation and AMO onto the evolution of 
AAO, but over the analyzed period the only forcing that has 
a steady trend is the atmospheric CO2 concentration, mak-
ing the increase in gaseous component a likely candidate 
responsible for the observed trend in the AAO since 1950. 
However, previous investigations have shown that, since 
1980 the stratospheric ozone depletion plays a dominant 
role in the modulation of the AAO (Gillett and Thompson 
2003; Thompson et al. 2011). Because the effects of the 
stratospheric ozone depletion are restricted to the Antarc-
tic region, there are virtually no significant coherent effects 
on the other parts of the globe surface, making difficult the 
association of a pair derived through a global CCA with 
this forcing. In the NH, the decreasing slope of the growing 
trend in the AO since late 1990, indicate that other forcing 
factors might be involved. Our results suggest that AMO 
plays almost as an important role as the CO2 in the evolution 
of AO. As AMO has been in the positive phase since 2000, 
which generates negative AO (Gastineau and Frankignoul 
2015), it is possible that this mode contributes to the shift 
in AO.

Such a decomposition of the global pressure field based 
on a linear combination of coupled SST-SLP pairs (as 
derived through CCA) and of eigenmodes (derived through 
EOF analysis) provides a reference against which one could 
validate the performance of general circulation models in 

simulating the lower atmosphere dynamics, in terms of 
structure, temporal evolutions and quantified contribution 
of important forcing factors.
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Table S1. Regional climate indices used in this study 

 

 

 

 

 

 

Index Reference Calculated as Period Source 

Niňo3 Rayner et al. (2003)  The area averaged SST from 5S-

5N and 150W-90W. 

1870 -

2018 

www.esrl.noaa.gov/psd/data/climatei

ndices/list/  

AMO Enfield et al. (2001) SST average over the North 

Atlantic (0º-70ºN) 

1870-

2018 

www.esrl.noaa.gov/psd/data/climatei

ndices/list/ 

Solar flux National Research 

Council of Canada 

10.7cm Solar Flux monthly data 1948-

2017 

http://www.spaceweather.ca/solarflu

x/sx-4-eng.php. 

AAO Marshall, 2003 Zonal pressure difference 

between the latitudes of 40S and 

65S 

1957-

2018 

https://climatedataguide.ucar.edu/cli

mate-data/marshall-southern-annular-

mode-sam-index-station-based 

AO Zhou and Kim, 2001 Projecting the AO loading pattern 

to the daily anomaly 1000 

millibar height field over 20°N-

90°N latitude. 

1950 - 

2018 

https://www.cpc.ncep.noaa.gov/prod

ucts/precip/CWlink/daily_ao_index/a

o.shtml 

SOI  Allan et al., 1991 Stand Tahiti - Stand Darwin Sea 

Level Pressure 

1866- 

2018 

www.esrl.noaa.gov/psd/data/climatei

ndices/list/ 

CO2 Keeling et al., 1976 CO2 concentration recorded at 

Mauna Lua Observatory 

1956- 

2018 

www.esrl.noaa.gov/psd/data/climatei

ndices/list/ 

NAO 

(winter 

Obs) 

Hurrell, 1995 Difference of normalized sea 

level pressure (SLP) between 

Lisbon, Portugal and 

Stykkisholmur/Reykjavik, Iceland 

since 1864. 

1864 - 

2018 

https://climatedataguide.ucar.edu/cli

mate-data 

NAM Zhou et al., 2001 The first leading mode from the 

EOF analysis of monthly mean 

height anomalies at 1000-hPa 

(NH)  

1950 - 

2018 

www.esrl.noaa.gov/psd/data/climatei

ndices/list/ 

SAM Marshall, 2007 station-based SAM index, uses 

records from six stations at 

roughly 65S and six stations at 

roughly 40S 

1857-

2018 

https://climatedataguide.ucar.edu/cli

mate-data/marshall-southern-annular-

mode-sam-index-station-based 
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Table S2. Detailed information about the six CMIP5 models “Historical” simulation used in this study 

 

Model Model Developer Simulation/p

eriod 

Ensemble 

number 

Resoluti

on 

Analyzed 

period 

BCC 

CSM1.1(m) 

Beijing Climate Center, China Historical 

1850 - 2005 

3 1º x 1º 1950 - 

2005 

CNRM-CM5 Meteo-France/Centre National de Recherches 

Meteorologiques, France 

Historical 

1850 - 2005 

10 1º x 1º 1950 - 

2005 

GFDLCM3 U.S. Department of Commerce/National Oceanic 

andAtmospheric Administration /Geophysical Fluid 

Dynamics Laboratory  USA 

Historical 

1850 - 2005 

5 1º x 1º  1950 - 

2005 

INM-CM 4.0 Institute for Numerical Mathematics, Russia Historical 

1850 - 2005 

1 1º x 1º 1950 - 

2005 

IPSL-CM5A-

MR 

Institute Pierre Simon Laplace, France Historical 

1850 - 2005 

3 1º x 1º 1950 - 

2005 

MPI-ESM-P Max Planck Institute for Meteorology, Germany Historical 

1850 - 2005 

2 1º x 1º 1950 - 

2005 

 

 

In this our analyses, we used a mean (average) of the six CMIP5 “Historical” SST/SLP data over 1950 – 2005 

period. The data are downloaded from https://climexp.knmi.nl/. 

 

 
 

 

Supp.Fig.1 | Evolution of the NAO Index in DJF (blue line), the NAM Index (blue line) and the AO Index (red line) 

recorded over 1950 – 2005 period. The correlation coefficients between them are ~ 0.9, significance level > 99%. 

Similar correlations are obtained between the AAO and SAM Index (not shown). 

 

With this figure, we support the utilization of the term AO, to describe AO, NAM or NAO, unless further distinction 

is required. Similar correlation is obtained between the AAO and SAM Index (not shown). 

https://climexp.knmi.nl/


  Supp.Fig.2| Hemispheric 

seasonal EOF analysis based on 

HadSLP2 (left hand size) and 

NCEP/NCAR (right hand size) 

data extending over the 1950-

2005. The temporal evolution (a, 

dark line) of the leading EOF (c) 

of SLP anomalies (hPa) in SH 

JJA using HadSLP2 data and  the 

temporal evolution (b, dark line) 

of the leading EOF (d) of SLP 

anomalies (hPa) in SH JJA using 

NCEP/NCAR data.  

(e) The spatial structure of the 

first EOF in NH DJF using 

HadSLP2 data and the associated 

time series (g); The spatial 

structure of the first EOF in NH 

DJF using NCEP/NCAR data and 

the associated time series (h) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With this figure we support the attribution of the global SLP structures in Fig. 1 to the annular modes. The SH JJA 

EOF1 patterns (Fig. S1c, d) are similar with the global pattern associated of the EOF1 (Fig. 1a, d) while the DFJ NH 

patterns are similar with the global patterns of EOF2 (Fig.2, b, e). The associated PC’s (a, b, g, h) are strongly 

correlated with the PC’s from Fig. 1 and to the associated time indexes. 



 

Supp.Fig.3 | Regression maps of NCEP/NCAR surface air temperature (SAT) fields on the time series of SST/SLP 

pairs pair derived through CCA in Fig.3 over 1950 – 2005 period. (a) Regression maps of SAT (std.dev/°C) fields 

on the time series of the CCA coupled SST/SLP pair associated to ENSO (Fig. 2e). (b) Regression maps of SAT 

(std.dev/°C) fields on the time series of the CCA coupled SST/SLP pair associated to AMO (Fig. 2h);  (c) 

Regression maps of SAT (std.dev/°C) fields on the time series of the CCA coupled SST/SLP pair associated to AO 

(Fig. 2l) and (d) Regression maps of SAT (std.dev/°C) fields on the time series of the CCA coupled SST/SLP pair 

associated to 11year Solar influence (Fig. 2o) 

 

With this figure we support the attribution of the coupled SST/SLP pairs in Fig. 2 to internal and external forcing 

factors, especially to solar influence. An increase in SAT over the poles and a preference to warm the continents vs. 

the oceans as a result of solar influence has also been previously reported (Camp and Tung; Tung and Camp, 2008). 

Positive temperature anomalies over North America and most of the Arctic have been previously associated with a 

positive AMO phase (e.g: Ruprich-Robert et al., 2016). The regression maps of SAT on the time series associated to 

ENSO and NAO- are also in very good accordance with previous studies (e.g.: McPhaden et al., 2006; Deser et al., 

2010). 

 



Figure S4  

 

 

 



 

Supp.Fig.4 | Coupled SST-SLP pairs derived through CCA between the corresponding HadISST and NCEP/NCAR 

fields over 1950-2018 period  

Top row: The 1st most coupled CCA pair: The SST pattern (a) explaining 16% of variance and the SLP structure 

(c), explaining 29% of variance. Their temporal evolution (b) has a correlation coefficient of 0.98. Second row: The 

2nd most coupled CCA pair: The SST pattern (d) explaining 10% of variance and the SLP structure (f), explaining 

8% of variance. Their temporal evolution (e) has a correlation coefficient of 0.95. Their correlation with the Niño3 

index (e, red line) is 0.74. Third row: The 3rd most coupled CCA pair: The SST pattern (g) explaining 7% of 

variance and the SLP structure (i), explaining 6% of variance. Their temporal evolution (h) has a correlation 

coefficient of 0.91. Their correlation with the AMO index (h, red line) is 0.66. Fourth row: The 4th most coupled 

CCA pair: The SST pattern (k) explaining 4% of variance and the SLP structure (m), explaining 6 % of variance. 

Their temporal evolution (l) has a correlation coefficient of 0.89. Their correlation with the negative AO index (l, 

red line) is 0.75. Fifth row: The 5th most coupled CCA pair: The SST pattern (n) explaining 5 % of variance and the 

SLP structure (p), explaining 5 % of variance. Their temporal evolution (o) has a correlation coefficient of 0.84. 

Their correlation with the 10cm Solar Flux Index (o, red line, plotted with a 4year lag) is 0.39 (with lag 4). 

 

Reanalysis global coupled SST-SLP pairs 

In order to test the robustness of the results on different SLP data we performed another CCA using the 

NCEP/NCAR Reanalysis SLP data, for the 1950 – 2018 period, with the results shown in Fig.S4 and Table S3.  

The SST structure of the first pair (Fig. 4a) has the typical global warming footprint. The associated time series (Fig. 

4b) has a strong increasing trend until 2000 and a slightly decrease between 2000 and 2010, when a slowdown in 

global warming has been reported (Fyfe et al. 2016). The SLP pattern (Fig. 4c) is dominated by negative anomalies 

around the poles and positive values at mid-latitudes, similar with the pair associated to anthropogenic forcing in 

observations (Fig. 2c) but slightly overestimated, especially over the continents. This SLP spatial structure explains 

29% of global variance and projects (Table S4) on EOF1 (Fig. 1d) and EOF2 (Fig. 1e) from NCEP/NCAR SLP data. 

The 2nd pair shown in Fig. 4 resemble the footprint of the ENSO phenomenon with positive SST in the Eastern 

tropical Pacific (Fig. 4d) and a dipole of SLP in the central Pacific (Fig. 4c), similar with the SST/SLP structures of 

the pair derived from observations (Fig. 2a, c) and CMIP5 data (Fig. 3d, f). The associated time series (Fig. 4e) 

follow closely the Niño3 index. The SLP pattern explains 8% of variance in the global field and projects strongly 

(Table 4) on EOF3 (Fig. 1f) from NCEP/NCAR SLP data. 

The SST structure of the 3rd coupled pair (Fig. 4g) includes a SST dipole in the Atlantic basin with intense positive 

loadings in the North Atlantic, a structure typical for AMO. In the tropical Pacific, an El-Niño like structure is 

observed, which has opposite sign than the La-Nina like structure identified in observations (Fig. 2g). The time 

series associated to the coupled patterns (Fig. 4h) are significantly correlated with the AMO index (r=-0.66, >95% 

significance level). The coupled SLP pattern (Fig. 4i) includes a negative AO like structure in the NH and positive 

anomalies in the SH high latitudes, in very good agreement with the SLP pattern associated to AMO using 

observational data (Fig. 2i) and previous studies using numerical simulations (Ruprich-Robert et al., 2017). This 

pattern explains 6% of the global SLP variance and projects (Table 4) on EOF1 and EOF2 from NCEP/NCAR SLP 

data. 

The SST spatial pattern of the 4th coupled pair (Fig. 4k) resembles very well the response of the North Atlantic SST 

to a negative AO identified in observations (Fig. 2k) and in CMIP5 data (Fig. 3g). The associated time series (Fig.5, 

l) have a peak in 2009-2010, when a strong negative AO was recorded (Cattiaux et al., 2010; L’Heureux et al., 2010) 

and are significantly correlated with the AO index (r=-0.75, >95% significance level). The associated SLP structure 

(Fig. 4m) is dominated by positive anomalies over the North Pole and negative anomalies in the North Atlantic and 

North Pacific, similar with the structures identified in observations (Fig. 2m) and CMIP5 data (Fig. 3i). The SLP 

spatial structure explains 6% of the global SLP variance and projects (Table 4) strongly on EOF2 from 

NCEP/NCAR (Fig. 1e). 

The SST pattern of the fifth most coupled pair (Fig. 4n) is characterized by bands of alternating signs in the Pacific 

basin, similar with the observed SST structure associated with solar forcing (Fig. 2n). The SLP structure (Fig. 4p) 

includes a weakening of Aleutian low in the North Pacific and a positive AAO-like structure in the SH. These 

features are similar with the ones associated with the 11-year solar cycle in observations (Fig. 2p) excepting the 

North Atlantic basin. In this sector, the response of the SLP to solar forcing changes over a solar cycle (Ineson et al., 



2011; van Loon and Meehl, 2014). The SLP pattern explains 5% of variance in the global SLP field and projects 

(Table S4) on EOF1 (Fig. 1d) derived from the NCEP/NCAR SLP data. 

 

 

Table S4 | The variances explained by each pattern and the correlation coefficients between the CCA time series from Fig. S4 

over 1950 – 2018 period 

 

 

 

 

Figure S5 | EOF analysis based on CMIP5 SST data extending over the 1950-2005. The leading EOF (a) of SST 

anomalies (°C) and the associated time index (d); (b) The second EOF and the associated time series (e) and the 

third EOF (c) with the associated time series (f). CO2 Index (d), Niño 3 Index (e) and AMO Index (f) are shown 

with red line. 
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