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RADAR SYSTEM

Since 2016 the German Alfred Wegener
Institute (AWI) has been operating a
multi-channel ultra-wideband (UWB)
Figure 4: AWI's Polar6 aircraft in Antarctica 2019 with the UWB air—borne radar Sounde]_‘ and image]_‘ f()r
antenna mounted underneath the fuselage (Image: Steven Franke). . . . . . X
sounding ice thickness, imaging internal
layering and the ice-bedrock interface of
polar ice sheets. The radar system is

installed on the AWI Polar6 Basler BT -
67 aircraft (Figure 4).

INTRODUCTION

The Greenland ice sheet is a key
area for rapid ice mass changes and
future implications for ice sheet
mass balance and sea level

contribution (Tapley and others,
2019; Masson-Delmotte and
others, 2018; Kjer and others,
2013). A prominent feature of the
Greenland ice sheet is the North
East Greenland Ice Stream

(NEGIS, Figure 1). This 600- km-

long ice stream drains 12% of the
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Figure 1: Map of the velocity profile of the Greenland Ice Sheet reflectors < 2500 m Elght pOW@I’ ampllﬁer S el’lable d
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well as an anti-aliasing band-pass filter

(Hale and others, 2016). The radar

(Larsen and others, 2018).
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Figure 5: Schematic illustration of the waveform transmission. Three

Fi 2: Ice sheet velocity field (Joughin and others2018) of the su f; - 1 B . . . . . 1
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of EGRIP drill site (Figure 2). The
computation of a detailed bedrock - —— —
elevation model for the region 5000
allows us to study flow related 1750 M ETH O DS
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W u W ata aqu s.o ayer Detectio . Modelling &
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The bedrock reflection is sometimes masked by
internal reflections, representing basal
entrainments and by steep dipping reflectors. .

We derived the ice thickness and 770
created a bedrock model nested into

the bedrock topography of
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2. A hlll that 1S not pl‘ esent 1in our 76°24' 0.0 >0 1Otc))istance [krlnS]IO 20.0 250 systems could be identified: (1) bedrock topography related marked as a, (2) shear
: : in related featu ked as b. Sl dcu derived f; h
data) but a fOIded Ir eglon Wlth d 6°18" Figure 9: Echogram from a profile along the point of our highest deviation in ice thickness chrglcnl;%ﬁ sufgcerZier\ila?ltEoi ni(s)del (lg)(ljft:? ancd Zit;r: ;V()ei;).enve rom the

(Number 2 in Figure 8 a and b). The dashed red line represents the bedrock elevation as
used in BedMachine v3 (Morlighem and others, 2017). The high peak at 12 km distance of
the profile and 6 750 m elevation correlates with a high energy reflector located in a folded
area. Underneath that undulation a fainter coherent reflection with a lower amplitude is
visible, which we interpret as the bedrock reflection.

CONCLUSIONS

strong internal reflection
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3. A ridge in the central northern
part that of the survey area

4. Next to the ridge, we find a
trough with steep slopes

5. Isolated bedrock undulations
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- ° For future sea level projections it is important to Our detailed bedrock topography shows new and
Furthermore, surface elevation Vel project . p _ ! pography shx
Chan es Correlate With bedrock Figure 8: Bedrock topography of BedMachine v3 (Morlighem and others (2017), a) and bedrock derived from our ice under Stand the 1C€C dynamlcs Of 1ce streams llke morcec detalled structures W]_th potentlal
g thickness data (b). A close up for the area upstream of the EGRIP drill site for both models is shown on the two upper NEGI S One impor tant key fe ature iS to implica tions fOI' basal water routing a5 Well as
1 1 images marked with a blue outline (c and d). Two locations with strong elevation differences are marked with a blue .
fe atures in I‘CSp ect to 1ce ﬂOW arrow. In the zoom section ¢ and d we show the location of feature 3-5.

understand ice flow properties and the effect of traces of current and past ice dynamics.

direction and to the position of the EEE
bedrock topography in this context.

shear margin (Figure 10).
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