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ARTICLE INFO ABSTRACT

Keywords: It is well recognized that the atmospheric deposition of iron (Fe) affects ocean productivity, atmospheric CO,
Atmosphere-ocean interaction uptake, ecosystem diversity, and overall climate. Despite significant advances in measurement techniques and
Iron biogeochemistry modeling efforts, discrepancies persist between observations and models that hinder accurate predictions of
Bioaccessible and bioavailable iron processes and their global effects. Here, we provide an assessment report on where the current state of
Atmospheric and oceanic models knowledge is and where future research emphasis would have the highest impact in furthering the field of Fe
atmosphere-ocean biogeochemical cycle. These results were determined through consensus reached by diverse
researchers from the oceanographic and atmospheric science communities with backgrounds in laboratory and
in situ measurements, modeling, and remote sensing. We discuss i) novel measurement methodologies and
instrumentation that allow detection and speciation of different forms and oxidation states of Fe in deliquesced
mineral aerosol, cloud/rainwater, and seawater; ii) oceanic models that treat Fe cycling with several external
sources and sinks, dissolved, colloidal, particulate, inorganic, and organic ligand-complexed forms of Fe, as well
as Fe in detritus and phytoplankton; and iii) atmospheric models that consider natural and anthropogenic
sources of Fe, mobilization of Fe in mineral aerosols due to the dissolution of Fe-oxides and Fe-substituted
aluminosilicates through proton-promoted, organic ligand-promoted, and photo-reductive mechanisms. In ad-
dition, the study identifies existing challenges and disconnects (both fundamental and methodological) such as i)
inconsistencies in Fe nomenclature and the definition of bioavailable Fe between oceanic and atmospheric
disciplines, and ii) the lack of characterization of the processes controlling Fe speciation and residence time at
the atmosphere-ocean interface. Such challenges are undoubtedly caused by extremely low concentrations, short
lifetime, and the myriad of physical, (photo)chemical, and biological processes affecting global biogeochemical
cycling of Fe. However, we also argue that the historical division (separate treatment of Fe biogeochemistry in
oceanic and atmospheric disciplines) and the classical funding structures (that often create obstacles for
transdisciplinary collaboration) are also hampering the advancement of knowledge in the field. Finally, the study
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provides some specific ideas and guidelines for laboratory studies, field measurements, and modeling research
required for improved characterization of global biogeochemical cycling of Fe in relationship with other trace
elements and essential nutrients. The report is intended to aid scientists in their work related to Fe bio-
geochemistry as well as program managers at the relevant funding agencies.

1. Introduction

Earth System Models (ESMs) now pay particular attention to in-
teractions between the atmosphere and the ocean ecosystems, in re-
sponse to the highlighted need for improved representation of climate
forcing and feedbacks (IPCC, 2013). These interactions have implica-
tions for trace gas exchange, the bidirectional fluxes of particulates, and
the overall global energy budget. The synthesis of in situ-observational
and iron fertilization studies (e.g., Boyd et al., 2007) has shown that, in
addition to nitrogen and phosphorus, iron (Fe) is one of the major
limiting nutrients that exerts a direct control on ocean productivity and
carbon export not only in the High Nutrient, Low Chlorophyll (HNLC)
regions but in many other regions globally (Moore et al., 2013). This
finding is also reproduced by global ocean biogeochemical models
(Fung et al., 2000; Moore and Doney, 2007). Atmospheric supply of Fe
(including mineral dust, volcanic, biomass burning, and anthropogenic
aerosols), is considered to be an important external Fe source for the
open ocean (Duce and Tindale, 1991; Jickells et al., 2005; Tagliabue
et al., 2017). Studies have shown, that in addition to the direct forcing
of climate through its impact on ocean productivity and atmospheric
CO,, uptake, the atmospheric deposition of Fe could affect ocean eco-
system diversity and, as a result, climate feedbacks (Moore et al., 2004;
Krishnamurthy et al., 2010).

All known forms of life require Fe in several physiological functions:
Iron is needed in electron transport around photosystems I and II
(Raven et al., 1999), in the enzymes nitrogenase and nitrate reductase,
which catalyze redox transformations of nitrogen (e.g., Raven, 1988),
and in the cytochrome P450 superfamily of proteins, which catalyzes a
large number of different reactions in organisms as diverse as archaea
and animals (Danielson, 2002). However, acquisition of Fe by aquatic
microorganisms is difficult, as the oxidizing environment of the oceans
limits concentrations of aqueous inorganic Fe to sub-picomolar levels,
orders of magnitude less than what is required to sustain oceanic bio-
mass and primary production (Liu and Millero, 2002; Johnson et al.,
1997). The solubility of inorganic iron in oxygenated seawater solutions
can be increased in the presence of organic ligands or chelators. It is
estimated that > 99% of bioavailable Fe (i.e., Fe that can be taken up
by the biota) is chelated by organic ligands (Rue and Bruland, 1995;
Gledhill and Buck, 2012). As the residence time of ligand-complexed Fe
is long (months to years, Hayes et al., 2018), oceans can maintain levels
of bioavailable Fe well above the concentration limits of aqueous in-
organic forms.

Characterization of the ocean's biogeochemical cycles requires
quantitative knowledge of atmospheric sources of bioavailable Fe (Fung
et al., 2000; Moore et al., 2004; Parekh et al., 2004; Moore and Doney,
2007; Krishnamurthy et al., 2010; Okin et al., 2011; Sholkovitz et al.,
2012; Mahowald et al., 2018). Over the past decades, significant pro-
gress has been made in treating atmospheric sources of Fe in both at-
mospheric and oceanic global biogeochemical models. However, due to
historical division, the global biogeochemical cycling of Fe has been
treated separately in oceanic and atmospheric disciplines. This division
has created several challenges that impede future progress. As a con-
sequence, our ability to explore the impact of atmospheric nutrient
deposition on phytoplankton abundance, productivity, and diversity is
still limited, hampering confident projections of human-induced effects
on the carbon cycle and climate.

In marine sciences, Fe species in seawater are operationally differ-
entiated using membrane filtration and can be present in two oxidation
states, namely ferrous (Fe(II)) and ferric (Fe(IIl)) iron. Particulate Fe

(PFe) is retained by a 0.2 um filter and is assumed to gravitationally
settle. Dissolved Fe (DFe) that passes through a 0.2 um filter, soluble Fe
(SFe) that passes through a 0.02 um filter, and colloidal Fe (CFe) that
passes through a 0.2 um but is retained by a 0.02 um filter, are all as-
sumed to be neutrally buoyant and be transported along water currents
and turbulent eddies. The DFe, CFe, and SFe forms of Fe are often as-
sumed to be ligand-bound and considered to be bioavailable for phy-
toplankton in ocean biogeochemistry models (Raiswell and Canfield,
2012). Using such operational definitions, ocean models can then ex-
plicitly consider Fe(II)/Fe(Ill) cycling with external sources (mineral
dust deposition, sediments, and hydrothermal), sinks (loss to the sedi-
ment, either as scavenged Fe on particles (Turekian, 1977), or as part of
the buried organic matter), different forms of Fe (dissolved vs. colloidal
or particulate, inorganic vs. organic), and Fe in detritus and phyto-
plankton (diazotrophs, large and small phytoplankton) (e.g., Parekh
et al., 2005; Dunne et al., 2012; Aumont et al., 2015). Most ocean
biogeochemical models use prescribed dust-deposition fluxes from at-
mospheric models as their atmospheric Fe input field, assuming both
the weight fraction of Fe in mineral dust and the bioavailability of dust-
deposited Fe to be constants. The concentration of Fe-binding ligands in
seawater in models is often a fixed value as well. Oceanic bio-
geochemistry models to some extent reproduce the observed mean
dissolved Fe concentrations in the surface ocean, albeit through the use
of tuned scavenging rates to balance the large range (0.08-1.68 Tg Fe
yr~1) in soluble Fe fluxes (Tagliabue et al., 2016). The sources and
sinks of DFe, which are generally colocated, cannot be inferred solely
from the geographical distribution of DFe (Pasquier and Holzer, 2017).
Some recent attempts have been made to include more processes-or-
iented mechanisms for the solubility of dust-deposited Fe, e.g., spatially
varying ligand concentrations, particulate material other than particu-
late organic carbon (Ye and Volker, 2017), and some of the first para-
meterizations of variable aerosol Fe solubility (Albani et al., 2016). The
spatiotemporal variability of ligands (modeled as one ligand class with
fixed binding strength) is either described prognostically (Volker and
Tagliabue, 2015) or related to apparent oxygen utilization and/or semi-
labile dissolved organic carbon (DOC) (Misumi et al., 2013). Prognostic
ligand models are more mechanistic but use highly uncertain assump-
tions on the biogenic sources of ligands and their breakdown processes.
Recent studies have also begun to question the idea that nearly all DFe
in surface oceans is ligand-complexed (Fitzsimmons et al., 2015a,
2015b) since nanoparticulates (defined here as inorganic forms of
amorphous-crystalline Fe matrices < 0.2um in diameter), are small
enough to fall into the dissolved size fraction. Bioavailability of Fe in
seawater is controlled by numerous additional factors including pro-
cesses mediated by the environment as well as controlled by microbes,
such as light, temperature, excretion of siderophores and varying mi-
crobial uptake mechanisms (Hudson and Morel, 1990; Wilhelm and
Trick, 1994; Maldonado and Price, 2001; Shaked and Lis, 2012;
Morrissey et al., 2015). The matter is further complicated by the fact
that SFe, CFe, and even PFe could be indirectly bioavailable to some
groups (Chen and Wang, 2001; Hassler et al., 2011a, 2011b; Kanna and
Nishioka, 2016). All these processes are hardly (if at all) resolved in
ocean biogeochemical models.

Since quantifying the bioavailability of Fe in aerosols is complex,
atmospheric models have largely focused on soluble forms of Fe in
deliquesced aerosol solution and cloud water. Atmospheric Fe bio-
geochemistry models now routinely consider mineralogy of wind-blown
dust and Fe emanating from anthropogenic (combustion, biomass
burning) aerosols. Atmospheric models also simulate the secondary
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formation of soluble Fe in the atmosphere due to the dissolution of Fe-
oxides and Fe-substituted aluminosilicates through proton-promoted,
organic  ligand-promoted, and photo-reductive = mechanisms
(Myriokefalitakis et al., 2018). Fe in atmospheric aerosols may be
present in different forms, i.e., crystalline and amorphous Fe-(oxy)hy-
droxides (e.g., hematite, goethite, and ferrihydrite), Fe-substituted into
aluminosilicate minerals, Fe-rich nanoparticles, and Fe-organic com-
plexes (Claquin et al., 1999; Nickovic et al., 2013; Shi et al., 2009;
Cheize et al., 2012) and either in the Fe(III) or Fe(Il) oxidation states
(Deguillaume et al., 2005; Bhattachan et al., 2016). Therefore, model-
to-model and model-to-surface observation comparisons of soluble Fe
remain hardelusive. To overcome this difficulty, Myriokefalitakis et al.
(2018) suggested using labile Fe (LFe) to represent the total soluble Fe
in simulated atmospheric aerosol. Current atmospheric models are able
to simulate the main features of atmospheric concentrations and de-
position fluxes of labile Fe with an estimated global mean LFe flux to
the ocean between 0.17 and 0.42 Tg Fe yr~! (Myriokefalitakis et al.,
2018), though large uncertainties remain in the absolute amount of LFe
flux to different ocean regions (Myriokefalitakis et al., 2018). The in-
troduction of LFe simplifies Fe representation in atmospheric models
and helps with model-to-model intercomparison. However, many
challenges and disconnects (both fundamental and methodological) still
remain. For example, models calculate LFe based on the chemical re-
actions with prescribed (commonly 0.45%) dissolved Fe fraction at the
source region, which are routinely compared to measurements that use
both 0.45 or 0.2 um filter sizes for separation of soluble and insoluble
fractions. Furthermore, aerosol-derived Fe in these sized particles (na-
noparticulate colloids) can be comprised of amorphous and crystalline
Fe-(oxyhydr)oxides, Fe-substituted alumino-silicates, and other Fe-rich
nanoparticles (von der Heyden et al., 2012) that may not be bioavail-
able in seawater (e.g., Rich and Morel, 1990).

Finally, neither atmospheric nor ocean biogeochemistry models
consider the processes that influence physicochemical speciation of Fe
at the atmosphere—ocean interface on the time scale of minutes to days
and at the spatial resolution of tens of meters (in vertical resolution) to
several kilometers (in horizontal). Considering that in several minutes
after deposition, a very small fraction (~ 10%) of atmospherically de-
livered inorganic soluble Fe can remain bioavailable in seawater devoid
of organics (e.g., Santana-Casiano et al., 2005; Gilbert et al., 2007), the
atmosphere-ocean interface remains one of the most uncertain com-
ponents of Fe biogeochemical modeling. In general, the ability of
aerosol LFe to influence the DFe budget of the oceans largely depends
on two factors: i) the amount of LFe delivered through atmospheric
pathways, and ii) the likelihood that LFe will become complexed by the
Fe-binding ligands in the ocean. Although ligand concentrations in the
ocean often exceed DFe (Boyd and Ellwood, 2010), only a small fraction
of LFe entering the ocean may remain as ligand-complexed DFe.
Aerosol LFe entering the ocean in Fe(Il) or Fe(Ill) inorganic forms
(Deguillaume et al., 2005; Bhattachan et al., 2016) will have a short
lifetime unless they become quickly complexed by marine organics
(Meskhidze et al., 2017). Within minutes Fe(II) is oxidized to Fe(III) in
seawater (Rose and Waite, 2003). The half-life of Fe(II) can extend to an
hour in cold (< 5°C) polar waters. Due to its low solubility, Fe(III)
rapidly forms nano-particulate colloids and/or gets scavenged by
oceanic particles. The half-life of 10-30h was calculated during an
artificial addition of LFe to surface ocean (e.g., Gordon et al., 1998). It
is true, that a high concentration of organic ligands can increase the
retention of atmospheric LFe as DFe in the ocean (Gordon et al., 1998;
Bowie et al., 2001). However, because depositions of large amounts of
aerosol LFe are highly episodic in nature, with 30 to 80% of the an-
nually averaged dust deposition occurring on ~5% of the days
(Mahowald et al., 2009), Fe entering the surface ocean during one such
event could easily consume all available ocean organic ligand, thereby
reducing the lifetime of LFe (Meskhidze et al., 2017).

Several reviews have covered the deposition of bioavailable iron
from dust and the processes important in determining its effect from
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different angles (Baker and Croot, 2010; Guieu et al., 2014; Baker et al.,
2016; Mahowald et al., 2018; Kanakidou et al., 2018), and we refer to
them where appropriate. In this article, we build on previous studies
and attempt to highlight the most critical open questions and propose
possible solutions regarding the aerosol Fe at the atmosphere—ocean
interface. We also attempt to clear-up the nomenclature used by
oceanic and atmospheric researchers and develop a list of priorities and
rank them based on their feasibility and impact.

2. Material and methods

Seventeen scientists from seven countries convened in Telluride, CO
on July 30-August 3, 2018 to present their experimental and modeling
studies related to atmospheric delivery of aerosol Fe and its contribu-
tion to the dissolved Fe inventory of the ocean. The workshop brought
together established scientists and young researchers (PhD students and
early career researchers who received their PhD within 8 years) to
provide opportunities for professional interactions in a focused and
productive forum. More than one-third of the invited researchers were
female scientists. The individual presentations were followed by two
breakout sessions and a summary session. Charges to working groups
were laid out and distributed to all participants ahead of time. Each
breakout session had a moderator/discussion leader and a rapporteur.
The discussions in the breakout sessions were structured by the the-
matics and were designed to identify the most critical open questions
concerning the sources, chemical forms, lifetime, and bioavailability of
atmospherically delivered Fe. These discussions are summarized as in-
dividual sections of the manuscript. The discussions in the summary
session were focused by topic and ubject (contributed by the partici-
pants ahead of the workshop) and classified into four categories sepa-
rated by (i) environmental domains (atmosphere vs. ocean) and (ii)
study approach (model vs. observation): Atmospheric Model
Representation, Ocean Model Representation, Atmospheric Measurement
Methodologies, and Ocean Measurement Methodologies. For each topic,
the following aspects were ranked through brainstorming: the current
level of understanding, the impact that a full understanding would have
in the field, and the resources that would be needed. Individual re-
sponses were collected, and ‘low’, ‘medium’, and ‘high’ level of under-
standing was assigned to each topic based on the consensus achieved by
the majority of workshop participants. The order of listing of topics
does not convey any indication of priority settings by the attendees. The
developed Science Prioritization Matrix (see Sec. 12) that identifies the
areas of investigation by the magnitude of their impact on proposed
science is meant to inform program managers as well as researchers
working in different fields.

3. Fe nomenclature and the fraction of bioavailable Fe of ocean-
deposited aerosols

Comprehensive characterization of the effects of atmospheric de-
position of Fe on surface ocean productivity requires knowledge of
aerosol-Fe bioavailability. However, the concept of Fe bioavailability in
seawater is extremely complex and poorly defined. The bioavailability
of Fe in seawater varies between different bacterial and phytoplankton
taxa or species within taxa, due to differences in the cellular surface
area (Lis et al., 2015) and the existence of a wide range of Fe uptake
mechanisms that are specialized for the transport of various chemical
forms of Fe (Morel et al., 2008; Maldonado and Price, 2001; Morrissey
et al., 2015; Wilhelm and Trick, 1994). These processes can also be
influenced by other trace metals (such as for copper-dependent surface
reductases, Semeniuk et al., 2016), solution pH, and carbonate ion
concentration (McQuaid et al., 2018). In addition, Fe bioavailability is
linked to post-depositional processes in the ocean influenced by the
physicochemical state of the ocean, Fe speciation, light, and microbial
interactions (Bréviére and the SOLAS Scientific Steering Committee,
2016). Since the main objective for improved characterization of
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biogeochemical cycling of Fe in the atmosphere is better quantification
of its effects on ocean biological productivity and carbon uptake, we
recommend adopting similar definitions that are based on operationally
determined forms of Fe in the atmospheric and oceanic science com-
munities, as summarized in Table 1. In terms of Fe contained in various
particle sizes, as measured through filtration, PFe, CFe, DFe, and SFe,
are the most appropriate definitions, while in terms of oxidation state,
Fe(II)/Fe(Ill) would be applicable. These operational definitions of
aerosol Fe could be applied to measurements of the deliquesced aerosol
solution, cloud/rainwater, and seawater. However, to highlight the
differences in chemical forms and biological uptake potential between
aerosol DFe and seawater DFe we suggest adapting definitions similar
to those suggested by Semple et al. (2004). By separating the “bioa-
vailable” compound, which is defined as the freely available Fe that can
cross an organism's cellular membrane within the medium that the
organism inhabits, from the “bioaccessible” compound, which is the Fe
that is potentially chemically accessible to cross an organism's cellular
membrane from the environment. DFe in the ocean can be viewed as
the bioavailable form of Fe. Once transfer across the membrane occurs,
further storage, transformation, assimilation, or degradation can take
place within the organism. It is important to note that bioavailability is
always specific to an organism, and not all DFe is bioavailable to every
organism.

Aerosol DFe should not be viewed as bioavailable for ocean biota,
because as stated above, the term “bioavailable” implies immediacy,
i.e., what is available at that time (Semple et al., 2004). Instead, we
suggest aerosol DFe be viewed as bioaccessible, i.e., a compound which
is in a form that is potentially bioavailable. Once it reaches the surface
ocean, bioaccessible Fe may: 1) be immediately available to cross the
organisms cellular membrane or get chelated with seawater organic
ligands and enter oceanic DFe pool, 2) be transitioned from dissolved to
(oxy)hydroxides, or scavenged into sinking particles and be physically
removed from the surface ocean, or 3) become available to the or-
ganism after a period of time, i.e., undergo some transformation before
it can be transported across the cell membrane, resulting in possible
kinetic impediments to uptake. We acknowledge that, due to the
complexity of different Fe uptake mechanisms by bacteria and eu-
karyotic phytoplankton, we do not have a complete understanding of
which operationally defined forms of Fe are bioaccessible and to which
groups of microbes. For example, further progress in the study of uptake
mechanisms may lead to a reevaluation of the concept of bioavailability
and the extension of the bioavailable fraction from the currently as-
sumed forms (inorganic and complexed by weak organic ligands) to
other forms such as small colloids. Nevertheless, we believe that the
introduction of a bioaccessible form of aerosol Fe will motivate future
studies involving genomics, transcriptomics, or similar techniques and
contribute to our understanding of the biogeochemical transformation
of Fe at the atmosphere-ocean interface. Studies may involve the un-
derstanding of the structure of the genome (through gene mapping,
DNA sequencing, RNA transcripts, molecular mechanisms for Fe as-
similation in a cell), the interplay of genetic and environmental factors
in algae and heterotrophic bacteria, and characterization of the con-
centrations and binding strengths of Fe-binding organic ligands. Given
that Fe cycles readily between the Fe(II) and Fe(IIl) oxidation states in
the atmosphere and the oceans, it will be essential to learn how each
redox form is affected by the processes listed above. When possible, we
recommend Fe(II) and Fe(III) to be reported separately in atmospheric
models and in situ measurement, as they together are considered the
redox-active pool of Fe. Finally, future laboratory and in situ studies
should clearly report the measurement conditions, the methodology
employed, and the instrumentation used in order to accurately define
which chemical form of Fe is appropriate for the terminology used.
Likewise, modeling results should clearly state which of the various
chemical forms of Fe are most comparable to their results.
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4. Standardization of aerosol Fe measurements

The standardization of aerosol Fe measurement methodologies for
atmospheric and oceanic disciplines is critical for improved re-
presentation of Fe biogeochemistry. Currently, different research
groups use a range of different leaching techniques (‘batch’ leaching,
‘flow-through’ leaching, and a combination of these two) with different
types of Fe extraction solutions (seawater or high-purity deionized (DI)
water), pH values of the solutions (from < 2 to > 8), extraction times
(from minutes to days), and (photo)reductant agents (oxalic, ascorbic,
glyoxalic, and pyruvic acids) leading to large discrepancies in SFeS
results (e.g., Sholkovitz et al., 2012). In addition to the range of dif-
ferent methods used for Fe extraction, different groups are using dif-
ferent operational definitions for fractional solubility of Fe in mineral
dust. The SFeS is defined as the material that passes through a 0.2 ym
pore diameter filters and commonly detected through Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), or High
Resolution Inductively Coupled Plasma-Mass Spectrometry (HR-ICP-
MS) (e.g., Lim and Jickells, 1990; Zhuang et al., 1990; Bonnet and
Guieu, 2004; Baker et al., 2006; Mackie et al., 2006; Wu et al., 2007;
Buck et al., 2006, 2010; Aguilar-Islas et al., 2010; Paris et al., 2011).
The determination of dissolved Fe also involves chelation/solvent ex-
traction methods (Landing and Bruland, 1987; Martin and Gordon,
1988), co-precipitation methods (Wu and Boyle, 1998), chelation/solid
phase partitioning (Wells and Bruland, 1998), voltammetric techniques
(Rue and Bruland, 1995; Gledhill and van den Berg, 1995), and the use
of chelating ion exchange resins (Elrod et al., 1991; Obata et al., 1993;
Measures et al., 1995; Bowie et al., 1998; Lohan et al., 2005). Here we
follow the recommendation of Baker et al. (2016) and suggest fine-
grained Arizona Test Dust (with particle diameter < 1 um representing
up to 90% of the particle volume, ISO -12,103-1) to be used by different
investigators to standardize the results of their leach techniques for
determining DFe from aerosols, because of its reproducibility and a
good imitation of long-range transported mineral dust over the open
ocean. To describe short-term (seconds to minutes) and long-term (days
to months) release of bioaccessible Fe from aerosol deposition to the
ocean, two sequential leaches of the sample-collection filters (see
Table 2) can be used. In the first one, the sample leaching is conducted
by quickly (~10s exposure time) passing Millipore Milli-Q
(> 18 MQ cm) ultrapure water through an aerosol filter by applying a
vacuum (Buck et al., 2006; Morton et al., 2013). This leaching tech-
nique is designed to yielding a measure of the “instantaneous” water-
soluble (“DI soluble”) Fe fraction and can be viewed as representative of
lower bound on aerosol solubility. In the second one, the sample is in
the contact with a leach solution for 2h (with a heating step), 25%
acetic acid (HAc), and 0.02M hydroxylamine hydrochloride solution
are added to the vial as described in Berger et al. (2008). The “Berger-
leached” Fe sets the higher bound on solubility. Both of these leaching
solutions will yield a fraction of the bioaccessible Fe that can enter the
oceanic DFe pool. However, the DI soluble will correspond to the
fraction of aerosol Fe that is immediately available for the uptake, while
the Berger-leached aerosol Fe may become bioavailable with some ki-
netic impediments to uptake i.e., after being processed through an
acidic, reducing zooplankton or protozoan gut, mobilized from parti-
culate forms through interactions with siderophores, or from redox

Table 1
Suggested operational definitions of Fe to be used in deliquesced aerosol so-
lution, cloud/rainwater, and seawater.

Form Oxidation state  Symbol  Definition

Particulate  Fe(II)/Fe(III) PFe Retained by 0.2 pm membrane filter

Colloidal CFe Passes through a 0.2 ym but is retained
by a 0.02 pm filter

Dissolved DFe Passes through 0.2 pym filter

Soluble SFe Passes through a 0.02 um filter
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Table 2

Suggested measurement standards: leaching methods for atmospheric dust samples.
Leach type Definition
DI soluble Low-solubility limit: measured by vacuum-suction of 100 mL of ultra-high purity (UHP) water through the filter within ~10s
Berger High-solubility limit: measured by addition of 4.4 M acetic acid (HAc) with 0.02M hydroxylamine hydrochloride solution

cycling (both photo-induced and associated with reducing micro-en-
vironments in fecal pellets and organic aggregates). Even though such
descriptions are highly simplistic and may not be appropriate to fully
characterize the bioavailable fraction of aerosol Fe in the ocean (Shaked
and Lis, 2012), they can be used by modelers to prescribe a range of
bioaccessibility to atmospheric Fe (Mackey et al., 2015).

We recommend the sample collection and seawater DFe speciation
analysis be followed as outlined in the GEOTRACES Cruise and Methods
Manual (Cutter, 2018). The complete details of DFe analyses can be
found in Rijkenberg et al. (2014) and Sedwick et al. (2015). Briefly,
samples for DFe should be separately collected from speciation samples
in acid-cleaned low-density polyethylene bottles. These samples should
then be filtered through < 0.2 um filters. Samples should be acidified to
0.024 M hydrochloric acid (HCI) with high purity HCl (Johnson et al.,
2007). Dissolved Fe(II) can be determined by flow injection analysis
with in-line preconcentration and chemiluminescence detection. DFe
can be determined by flow injection analysis with in-line pre-
concentration on chelating resin followed by analysis using colorimetric
technique or IC-PMS (Biller and Bruland, 2012; Rijkenberg et al., 2014;
Sedwick et al., 2015; Buck et al., 2016; Wuttig et al., 2019).

5. Constraining depositional fluxes

Constraining depositional fluxes of aerosols is one of the major
problems in the global biogeochemical cycling of atmospheric Fe.
Particle removal by wet deposition processes (including both con-
vective updraft rainout/in-cloud wet scavenging and washout from
large-scale precipitation) is the major source (~ 80%) of aerosol Fe to
the surface of the open ocean (Fan et al., 2006). Both the magnitude of
total depositional value and spatiotemporal variability of atmospheric
fluxes of Fe remain unconstrained in global models because rainwater
samples are difficult to collect on a routine basis, particularly over re-
mote ocean areas. Similarly, the magnitude and distribution of DFe
input to the ocean cannot be constrained by the observed distributions
of marine DFe alone using global marine biogeochemistry models be-
cause of the colocation of the compensating DFe deposition and
scavenging rates (Pasquier and Holzer, 2017).

Deriving the atmospheric flux of radionuclide beryllium-7 (“Be)
from its ocean inventory may provide the means to link atmospheric
concentrations and fluxes of DFe (Baker et al., 2016). The “Be isotope
(53.3-day half-life) is produced by cosmic-ray spallation and is de-
posited to the ocean surface primarily by precipitation. Under steady-
state conditions in the open ocean, the removal rate of “Be from the
upper ocean due to decay should be equal to its atmospheric deposition
rate which is in turn equal to the aerosol “Be concentration multiplied
by a bulk deposition velocity that accounts for both wet and dry de-
position processes. Kadko et al. (2015) used bulk deposition velocities
derived in this way to calculate fluxes of other aerosol species, such as
total and soluble Fe in mineral dust, producing flux estimates that were
within 40-50% of direct measurements. The “Be method is advanta-
geous, as it can provide fluxes for atmospherically delivered bioacces-
sible DFe.

Application of the “Be method may be limited to areas where wet
deposition dominates. Additional aspects to consider are the interaction
of rainwater with the ocean surface microlayer (SML), the variability in
size-dependent wet removal efficiency for particles in the accumulation
mode (with particle diameters within 0.1-1 pm; such as for anthro-
pogenic particles), and the strong seasonal variability in atmospheric

aerosol concentrations relative to that of “Be. Suggested future studies
should explore the application of the “Be-tracer technique to aerosol
dry deposition fluxes. The “Be method needs to be tested in different
ocean basins characterized by a wide range of precipitation rates to
obtain Fe fluxes that could be used to constrain global models of Fe
deposition. Examples of possible study locations include sites of long-
term time series which have available facilities, e.g., Cape Verde
Islands, Bermuda, Hawaii, or in the Mediterranean. Other suggestions
for reducing the uncertainty in aerosol fluxes were to run an offline “Be
atmospheric model (Liu et al., 2001) and compare the data with ocean
measurements, deploying automated rain collectors on ships of op-
portunity, collecting atmospheric black carbon concentration and size
distribution data concurrently with rainwater samples, and collecting
particle-size spectra in the water column. Future activities should focus
on capturing representative fluxes of aerosols to the ocean on a seasonal
basis, not just during the extremes (which is often the case for mineral
dust deposition). Fe isotopes present an additional way to constrain the
source (lithogenic vs. anthropogenic) of iron in deposition (Waeles
et al., 2007; Conway and John, 2014; Conway et al., 2019) and should
be considered further.

6. Anthropogenic and biomass burning aerosols: Fe solubility and
behavior

Over the open ocean, the global deposition flux of DFe from mineral
dust is considerably higher than the flux of Fe from anthropogenic
(largely combustion) and biomass-burning aerosols (Myriokefalitakis
et al., 2018). However, due to their spatiotemporal distribution and
higher fractional Fe solubility (Chuang et al., 2005; Guieu et al., 2005;
Sedwick et al., 2007; Sholkovitz et al., 2009), combustion aerosols may
play an important role in influencing the fluxes of DFe over oceanic
regions with little dust input, downwind from industrialized regions,
and/or near major shipping routes (Ito et al., 2019a). Furthermore, an
ocean biogeochemistry model suggests that pyrogenic Fe-containing
aerosols stimulate the marine productivity more efficiently than litho-
genic aerosols, especially in the Pacific and Southern Ocean (Ito et al.,
2019). Because anthropogenic aerosols are small in size (i.e., < 1 pm)
and found predominantly within the accumulation mode, the total
amount collected on the filters is also small, complicating efforts to
characterize the oxidation forms and mineralogy of aerosol Fe. Due to
their small size and chemical composition, the latter of which controls
particle hygroscopicity, dry and wet removal rates of anthropogenic
aerosols could be very different from those of mineral dust. In-situ
studies on the effects of anthropogenic aerosols are difficult to carry out
because even at relatively high concentration, anthropogenic aerosols
might not deposit sufficient quantities of DFe to relieve Fe limitation
and support visible, large-scale phytoplankton blooms (Meskhidze
et al., 2005; Solmon et al., 2009).

There is a need for improved characterization of the source-specific
solubility in various types of combustion-sourced aerosols, and an as-
sessment of the global mean and spatiotemporal fluxes of combustion-
related DFe. To that end, other anthropogenic tracers, like nitrogen (N)
or aerosol trace-metals, such as vanadium (V) or nickel (Ni) can be used
for constraining anthropogenic sources of Fe. Synchrotron-based X-ray
microspectroscopy techniques also provide a useful tool to characterize
atmospheric concentration and oxidations states of Fe (Fe(II) or Fe(III))
and trace metals in anthropogenic aerosols in sub-micron size ranges
(Oakes et al.,, 2012; Ingall et al., 2018). Improved assessments of



N. Meskhidze, et al.

bioaccessible Fe fluxes from biomass-burning aerosols also require ac-
curate estimates of the amount of biomass consumed during forest fires,
the location of the fires relative to the availability of fuels, the timing of
the fires during the burning season, and the aerosol transport from
forest fire emissions (including the plume injection height and the
vertical distribution of smoke) (Ito, 2011).

7. The importance of the surface microlayer

The SML represents a thin (~50-150 um thick) gelatinous boundary
between the atmosphere and ocean consisting of hydrophobic surfac-
tants (e.g., fatty acids), hydrophilic surfactants (e.g., lipopolysacchar-
ides), and complex assemblages of different microorganisms (Henrichs
and Williams, 1985; Kuznetsova and Lee, 2002; Aller et al., 2005;
Hawkins and Russell, 2010; Cunliffe et al., 2013). The importance of
the SML for Fe biogeochemistry has been recognized since the early
1970s. Studies suggest that aerosols, deposited through wet or dry de-
position, often become trapped, leading to a considerable enrichment in
the SML of estuarine, coastal, and open ocean areas (Duce et al., 1972;
Piotrowicz et al., 1972; Cunliffe et al., 2013; Tovar-Sanchez et al., 2014;
Wurl et al., 2017). The SML is a dynamic physicochemical barrier
which is characterized by chemical properties very different from the
bulk seawater (Liss and Duce, 2005; Zhang et al., 2003) and populated
by large amounts of bacteria (Cunliffe et al., 2013). The SML could
modify particle aggregation properties after both wet and dry deposi-
tion of mineral dust and influence the speciation and residence time of
Fe in the surface ocean. Residence times for DFe and PFe in the SML are
potentially long enough (minutes to hours) for Fe to undergo (photo)
chemical and biological alterations within the microlayer (Ebling and
Landing, 2017). Therefore, the SML is a potentially significant con-
tributor to air-sea exchange processes affecting atmospherically deliv-
ered Fe and should be included in future modeling studies. However,
modelers lack the necessary information to allow parameterization of
ocean SML processes in global models. Future studies should aim at
better characterizing the chemical composition and structure of organic
matter found in the SML and explore the role of the SML in affecting the
dissolution, speciation, and initial microbial interactions for atmo-
spherically delivered DFe in the surface ocean. Organics in the SML
could mobilize aerosol Fe from mineral dust through photochemical
and heterogeneous reactions in the microlayer as well as chelate
aerosol-derived DFe and lead to stable Fe-ligand complexes which are
not prone to adsorption, aggregation and subsequent sinking. Fe mo-
bilized from the oxides can then re-enter the Fe cycle through biotic
reductive, organic ligand-promoted, and/or photoreductive dissolution
(Schwertmann, 1991). Studies should also be carried out to better
characterize the residence time of DFe and PFe delivered through at-
mospheric pathways and identify oceanic regions where the SML is
expected to play important roles in Fe biogeochemistry (Ebling and
Landing, 2017). Finally, SML-sourced material may become entrained
in sea spray aerosols generated by bubble-bursting processes and could
potentially serve as an oceanic source of DFe and PFe in marine aero-
sols.

8. Atmospheric and oceanic organic ligands

Organic ligands control the conversion of bioaccessible Fe to bioa-
vailable Fe in seawater by chelation which protects DFe from scaven-
ging onto sinking particles. Past ocean studies have mostly focused on
strong “L;” and weaker “L,” ligands based on their conditional binding
strengths. Ligand strengths are operationally defined by their stability
constants, determined from voltammetric studies (Gledhill and Buck,
2012). Although ligands play a central role in the global biogeochem-
ical cycling of Fe, the sources and sinks of ligands and the mechanisms
involved in the cycling of ligands are still poorly quantified. There is
some evidence for stronger ligands being present in deliquesced aerosol
solution (Kieber et al., 2001; Kieber et al., 2005; Willey et al., 2008) and
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cloud/rainwater (Cheize et al., 2012; Vinatier et al., 2016). These li-
gands could contribute to the stabilization of aerosol DFe in seawater,
though strong ligands in seawater are usually assumed to have an
oceanic origin (Hunter and Boyd, 2007). Electrochemical titration
studies, used for the operational definition of the ligand concentrations,
show that strong ligand concentrations are typically low in the open
ocean (~0.44nM or lower; concentrations of true siderophores as de-
termined by LC-MS can even be at the 1 pM level, Mawji et al., 2008),
though weaker ligand concentrations are slightly higher (~1.5nM)
(Gledhill and van den Berg, 1994; Rue and Bruland, 1995; Vraspir and
Butler, 2009; Gledhill and Gerringa, 2017). Thus, atmospherically de-
livered DFe deposition events at the surface of the ocean can quickly
deplete the number of available “excess” L; and L, ligands. Therefore,
part of the discussion was focused on improved understanding of
“super-weak” ligands (e.g., L3 and L, ligands, with conditional stability
constants log Kper ™ < 11, see Gledhill and Buck, 2012) of both
atmospheric and marine origin (Bundy et al., 2015). Increasing evi-
dence shows that super-weak ligands like hydroxy-polyacids, poly-
saccharides, and humic-like substances play a role in oceanic Fe com-
plexation (Laglera and van den Berg, 2009; Laglera et al., 2011; Hassler
et al.,, 2011a, 2011b). Besides being a component of the bulk dissolved
organic matter in seawater, such organics are commonly found at high
concentrations (~pM) in aerosols (Kawamura, 1993; Rohrl and
Lammel, 2002; Graham, 2002; Willey et al., 2008; Fu et al., 2011; Paris
and Desboeufs, 2013; Gantt and Meskhidze, 2013), cloud/rainwater
(Cheize et al., 2012; Vinatier et al., 2016), and the SML (Henrichs and
Williams, 1985; Kuznetsova and Lee, 2002; Aller et al., 2005; Hawkins
and Russell, 2010; Cunliffe et al., 2013) over different parts of the
oceans and coastal regions. These organics are either directly emitted to
the atmosphere by fossil fuel combustion and biomass burning or pro-
duced in the atmosphere by secondary photochemical oxidations of
anthropogenic and natural volatile organic compounds (VOC)
(Goldstein and Galbally, 2007, Al-Abadleh, 2015. Moreover, it was
suggested that the presence of a dimethylsulfide (DMS) oxidation pro-
ducts (e.g., sulfur dioxide (SOs), sulfuric acid (H,SO,4), and methane-
sulfinic acid (CH3SO,H)), can increase release of soluble Fe(II) in at-
mospheric aerosols, providing an efficient mechanism by which
phytoplankton can actively enhance the dissolution of iron within
acidic aerosol particles in the marine atmosphere (Zhuang et al., 1992;
Johansen and Key, 2006). Super-weak organic ligands could chelate
atmospherically delivered DFe in the aqueous aerosol phase and form
complexes which prevent aggregation and/or adsorption onto larger
than 0.45 pm sized particles. By extending the lifetime of DFe in sea-
water from hours to days, these super-weak organic ligands allow suf-
ficient time for L; or L, ligands to be replenished in the dust-affected
region through vertical mixing or biological production and release,
considerably increasing the probability of DFe in the ocean en-
countering L; or L, ligands (Croot and Heller, 2012; Meskhidze et al.,
2017). Understanding the kinetics of how this heterogeneous mix of
compounds with different binding strength complexes atmospherically
delivered DFe, and how this is affected by other factors, such as pH
(Avendano et al., 2016) will be important to constrain in future studies.

9. A conceptual model for the roles of particle size, residence
time, and speciation

Particle size distribution can have a significant effect on the amount
of bioaccessible Fe in atmospheric aerosols. Aerosol size can have a
direct effect on the chemical composition of Fe containing minerals
(Claquin et al., 1999; Nickovic et al., 2013; Shi et al., 2009). Particle
size also has an indirect effect on DFe content through chemical pro-
cessing (e.g., Zhu et al., 1992; Spokes and Jickells, 1996; Meskhidze
et al., 2003, 2005; Ito and Feng, 2010; Johnson and Meskhidze, 2013)
and, to lesser extent, through physical size sorting during the atmo-
spheric transport (Shi et al., 2011a, 2011b, 2011c). Despite its im-
portance, in situ measurements report a wide range in mineral aerosol
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size distribution (see Fig. 1 in Meskhidze et al., 2016). Such variability
in size can lead to significant differences in atmospheric model-pre-
dicted concentrations of aerosol DFe and subsequent fluxes of bioac-
cessible Fe to the oceans (Meskhidze et al., 2016). Moreover, wetting of
mineral dust particles through rainout or washout, or even during the
leaching of the dust-laden filters can cause changes in particle physical
size distribution through the breakage of dust grains and dissolution of
salts (Dudhaiya and Santos, 2018). As a result of such changes, Fe-
containing nanoparticles (particles < 0.1 pm in diameter) attached to
the dust particles can be released into solution, thereby increasing DFe
concentration. The opposite could happen when DFe in aerosol/rain-
water solution gets deposited to the surface ocean. In such a case, DFe
can aggregate and form nano- to micron-sized (oxyhydr)oxide (FeOOH)
particles, leading to a decrease in DFe concentration. Although several
theoretical models (e.g., classical Derjaguin-Landau-Verwey-Overbeek
theory of colloidal behavior, Derjaguin et al., 1987; Verwey, 1947) have
been proposed in colloid science to describe cluster formation as col-
loids possessing “sticky hard sphere” characteristics, colloids that in-
teract only through short-range repulsive interaction, and for colloids
possessing significant long-range repulsive interactions, presently there
is a poor understanding of phase changes for mineral particles and its
effect on DFe. These processes are further complicated by the presence/
absence of atmospheric and oceanic organic ligands. Today it is clear
that aerosols should not be treated as single particles (with either sur-
rounding aqueous phase or submerged in raindrops), but as more dy-
namic and complex organic-inorganic aggregates. Such aggregates can
both increase or decrease the DFe concentration in surface ocean water
depending on (i) concentrations and complexing capacities of strong
ligands that help set the solubility limit for Fe (Wagener et al., 2008; Ye
et al., 2011; Fishwick et al., 2014; Chien et al., 2016), (ii) concentration
of the weaker and super-weaker ligands that affect the cycling between
soluble, colloidal, and particulate phases of Fe (e.g., Willey et al.,
2008), (iii) photochemistry, driven by the production of superoxide
through interaction of light with colored dissolved organic matter, or
organic ligands (e.g., Voelker and Sedlak, 1995; Croot et al., 2008), (iv)
the presence of SML components that may increase accumulation of
aerosols at the ocean surface, such as adhesion to the polysaccharidic
gelatinous phase (e.g., Wurl et al., 2017), (v) interaction with bacteria
such as Trichodesmium colonies that can retain mineral dust and ac-
tively promote Fe mobilization (Rubin et al., 2011; Basu and Shaked,
2018), and (vi) the size distribution of deposited particles because of
aggregation of small particles to faster sinking larger particles (Ternon
et al., 2010; Bressac et al., 2012, 2014; Ohnemus and Lam, 2015; Louis
et al., 2017). It is well understood that these processes are crucial for an
accurate representation of both the changes in the particle size dis-
tribution in the mixed layer and the residence times of mineral dust
particles in the surface ocean. However, not all of the studies mentioned
above have attempted to describe the processes mechanistically in the
form of rate laws. Further laboratory measurements should, therefore,
be carried out to elucidate atmospheric particle size changes as a result
of both dry and wet deposition of particles, in the presence and absence
of the SML. Furthermore, such studies should be carried out in seawater
with varying bacterial abundance as well as DFe, colloidal particles,
and ligand concentrations. Laboratory and field studies have demon-
strated the crucial role played by the dissolved organic matter pool in
the aerosol post-depositional processes (i.e., bioaccessibility, scaven-
ging, and aggregation of DFe, Wagener et al., 2008, 2010; Wuttig et al.,
2013; Bressac and Guieu, 2013). Detailed modeling studies are also
needed to test the sensitivity of the system to key processes affecting
residence time and speciation of aerosol Fe after deposition to the
ocean. Such laboratory studies and model simulations should lead to a
process-level understanding of atmospheric aerosol Fe biogeochemistry
in the ocean at different spatiotemporal scales and help identify key
processes that will improve the predictive power of ESMs.
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10. Using other trace elements for improved understanding of Fe
biogeochemistry

Lithogenic Fe and other dust-derived elements have similar delivery
pathways to the ocean. However, several trace metals are characterized
by unique biogeochemical cycling patterns in the surface ocean.
Therefore, multiple trace metals can be used to constrain the inputs of
Fe. Leveraging measurements of a set of trace elements to create ad-
ditional holistic understanding is at the heart of the GEOTRACES sci-
ence plan (www.geotraces.org/science/science-plan). There are several
elements that share some—but not all—of the Fe cycling mechanisms,
potentially allowing us to disentangle some of the compensating me-
chanisms (sources and sinks). Aluminum (Al) has traditionally been
used to estimate Fe input (Measures and Vink, 2000). Aluminum (and
titanium, Ti) has a predominantly crustal origin in seawater, and has no
known biological function, meaning that its dissolved concentration is
not strongly affected by biological activity. Resuspension of particles in
nepheloid layers and along coastal shelves (Puig et al., 2008; Durrieu de
Madron et al., 2017) is also a source that can be indistinguishable from
aerosols in some locations. Al and Fe have similar (and variable) frac-
tional solubilities, while that of Ti is significantly lower. Both dissolved
Al and Ti have a longer residence time in seawater (with respect to
scavenging) than Fe and can be used as a measure of integrated Fe input
into the ocean over seasonal timescales (Dammshiuser and Croot,
2012). On the contrary, the distribution of DFe with its shorter re-
sidence time often correlates with particulate forms of Al from recent
dust deposition events (Jickells, 1999; Schiiller et al., 2005). Particu-
late Al and particulate Ti can also be used to estimate lithogenic particle
mass and seem less affected by scavenging of Al and Ti from the dis-
solved phase. Another advantage of using Al is that its distribution and
cycling has been implemented in an ocean general circulation model
(van Hulten et al., 2013). Thorium isotopes could also be used to
quantify scavenging onto particles and re-dissolution rates (Wang et al.,
2016).

Other elements, such as vanadium (V), chromium (Cr), manganese
(Mn), and lead (Pb) are enriched in anthropogenic aerosols from power
plants or biomass burning and thus can be used to relate changes in Fe
solubility to aerosol composition (Herut et al., 2016). The cycling of Mn
shares many of the complexities of Fe cycling (biological function, more
than one redox state, organic complexation), and is also delivered
mostly by dust to open-ocean waters. Its fractional solubility also seems
to be strongly affected by the aerosol source (Buck et al., 2013). Other
trace metals from mineral dust, such as gallium (Ga) or thorium (Th),
can also be used to derive indirect estimates of dust deposition using the
dissolved distribution of these metals in seawater (Baker et al., 2016).

11. Regional and global modeling
11.1. Oceanic models

Ocean Fe biogeochemical models are still highly simplistic and
generic in their description of Fe input from aerosol deposition, and in
the role of Fe speciation in it, especially when compared to the level of
detail now found in atmospheric chemistry models. Most ocean models
still assume a constant weight fraction of Fe in mineral dust and a
constant dissolved Fe fraction in aerosols (Parekh et al., 2004; Dunne
et al., 2013; Aumont et al., 2015) but a prescribed variable solubility is
becoming applied as well (Albani et al., 2016Ito et al., 2019). Photo-
chemistry has only been modeled in a few regional studies (Weber
et al., 2005; Ye et al., 2009), or in a simplified manner globally
(Tagliabue and Volker, 2011). The properties of organic ligands for Fe
in the ocean are less well constrained than for Fe in the aerosols. Most
models use a fixed concentration of one generic Fe-binding ligand
(Tagliabue et al., 2016) and only a few models describe the spatio-
temporal variability of ligands either prognostically (Volker and
Tagliabue, 2015) or through diagnostic relations to apparent oxygen
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utilization and dissolved organic carbon (Misumi et al., 2013).

For a better description of the bioaccessible Fe input into the ocean
from aerosol deposition in future modeling studies, it will be prudent to
investigate the roles of (i) colloidal/nanoparticulate Fe vs. that of DFe;
(ii) photochemically produced Fe(II) and the photochemical breakdown
of ligands; (iii) the conversion of bioaccessible Fe into bioavailable Fe
within the SML; and (iv) super-weak ligands (e.g., L3 and Ly4), such as
organic ligands deposited with atmospheric particles, and ligands in the
SML and the upper ocean such as humic acids, and polysaccharides
(Bundy et al., 2015) and (v) the timescales and variable/reversible
scavenging rates of DFe (Tagliabue et al., 2016). To gain some under-
standing of the possible roles and sensitivities for several of these
processes, a useful strategy could be one-dimensional modeling of less-
well-known processes prior to inclusion into global biogeochemical
models.

Many of the suggested areas for improvement of ocean modeling
require kinetic information from carefully designed and implemented
laboratory studies that can yield a methodological description of in-
dividual processes. The experimental community can improve the
mathematical formalism of future publications by including the de-
scriptive equations of the mechanisms being studied. The bio-
geosciences literature is often lacking in mathematical formalism
leading to misinterpretation, miscommunication, and confusion. By
explicitly describing the assumed mathematical equations of specific
biogeochemical mechanisms in future publications, authors will im-
prove reproducibility and testability. In turn, modelers can use the data
from experimentalists as intended and experimentalists can see how
modelers use their data. To give an example: Iron biogeochemical
models often describe the scavenging loss of DFe as the product of the
inorganic fraction of dissolved iron concentration (encompassing the
inorganic forms of both Fe(II) and Fe(Ill)), multiplied by a concentra-
tion of the scavenging phase (e.g., organic detritus) in mass units (i.e.,
mass per volume), and a specific scavenging rate (Tagliabue et al.,
2016). Experimentalists might find it more reasonable to use the par-
ticle surface area instead of its mass when describing scavenging in an
experiment. For modelers, it would then be extremely helpful to have
some indication of the specific surface processes for the scavenging
phase.

11.2. Atmospheric models

Mineral dust and other Fe-containing particles are injected in the
atmosphere at the source regions (desert soils, biomass burning, an-
thropogenic). Models prescribe size distribution and mineralogy (for
aeolian dust) and various initial Fe solubilities (for different combustion
sectors) at the source regions. Iron solubility is typically defined as the
ratio of DFe over total Fe. Fe in atmospheric mineral dust is primarily in
the form of Fe-(oxyhydr)oxides, such as hematite (a-Fe,03), goethite
(a-FeO(OH)), and ferrihydrite (Fe;030.5H,0) and as ferric iron (Fe
(II)) substituted into aluminosilicate clay minerals (Dedik et al., 1992;
Hoffmann et al., 1996; Arimoto et al., 2002). In addition to Fe-con-
taining minerals, atmospheric models now prescribe detailed miner-
alogy of wind-blown dust from the major desert regions. Mineralogical
composition has been shown to play a critical role in atmospheric
transport and transformation of mineral dust particles (Meskhidze
et al., 2005; Solmon et al., 2009; Journet et al., 2008; Johnson and
Meskhidze, 2013; Perlwitz et al., 2015; Scanza et al., 2015; Raiswell
et al., 2017). The average Fe content of 3.5% is typically prescribed for
mineral dust (e.g., Duce et al., 1991), though it has been shown that this
value can vary considerably in upper crustal minerals depending on the
underlying mineralogy (and geography) of the dust source (Journet
et al., 2014; Nickovic et al., 2013). To characterize so-called readily
released Fe (Mackie et al., 2006) associated with ultra-fine, poorly
crystalline Fe (oxyhydr)oxides (Shi et al., 2011a, 2011b, 2011c) pro-
duced through sand-blasting (the dominant process in producing fine
dust aerosols during saltation Gillette, 1978; Kok, 2011), atmospheric
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models prescribe an initial dust Fe solubility between 0.1 and 0.45%
(Myriokefalitakis et al., 2018). The variable (4.3% on kaolinite and 3%
on feldspars) initial solubility of the emitted Fe-containing dust parti-
cles has also been used (Ito and Xu, 2014). The initial Fe solubility for
combustion aerosols ranges from 4 to 80% (Myriokefalitakis et al.,
2018). The majority of Fe mass found in the atmosphere is contained
within mineral dust aerosols emitted from continental sources. How-
ever, due to their spatiotemporal distribution and higher Fe solubility,
aerosols originated from wildfires and biomass burning (Guieu et al.,
2005; Oakes et al., 2012; Paris et al., 2010) and anthropogenic com-
bustion processes, such as coal and oil fly ash (Chung et al., 2005; Chen
et al., 2006; Sedwick et al., 2007; Luo et al., 2008), including ship oil
combustion (Ito, 2013) have also been included in atmospheric models
(Matsui et al., 2018; Ito et al., 2019a). During atmospheric transport,
coating of Fe-containing dust particles by acidic compounds (e.g., sulfur
and nitrogen, compounds) and organic species (e.g., DOC) increases the
hygroscopicity of dust particles, allowing them to be engaged in com-
plex physical and photo(chemical) interactions (Duce and Tindale,
1991; Zhuang et al., 1992; Meskhidze et al., 2003, 2005). The resulting
solid-, aqueous-, and gas-phase reactions make aerosols more acidic and
increase Fe mobilization (Johnson and Meskhidze, 2013; Ito and Shi,
2016). Atmospheric Fe biogeochemistry models now routinely consider
the three main mechanisms of Fe dissolution from atmospheric aerosol
(i.e., proton-promoted, organic ligand-promoted, and photoreductive)
with photochemical redox cycling between Fe(Ill) and Fe(II)
(Myriokefalitakis et al., 2018).

However, some potentially important processes are currently
missing from atmospheric models. Future models should include at-
mospheric organic ligands, incorporate some novel pathway initiated
by gaseous uptake of hydroperoxyl radical (HO,) and followed by
Cu—Fe redox coupling (Mao et al., 2013), account for new pathways for
efficient formation of secondary organic polymeric particles catalyzed
by Fe, and better represent larger (> 10 pm in diameter) dust particles.
These suggestions are based on some of the recent studies that have
shown that atmospheric DOC species are capable of extending the
lifetime of atmospherically delivered DFe in the ocean (Meskhidze
et al., 2017). The Cu—Fe redox coupling that has been incorporated in
aqueous aerosol and cloud chemistry models (Herrmann et al., 2000)
should be reevaluated as a mechanism to sustain nighttime Fe(II) and
dominate Fe(III) reduction in the absence of Fe(IlI)-organic complexes
(Mao et al., 2017). Recent studies have also shown that oxidative
polymerization of polyphenols and metal-catalyzed polymerization of
dicarboxylic acid could be important sources of Fe-complexing atmo-
spheric organic ligands (Slikboer et al., 2015; Tran et al., 2017). Finally,
“giant” sand-sized (> 63 um in diameter) particles, often found thou-
sands of kilometers away from the source (Stuut and Prins, 2014; van
der Does et al., 2018), could influence Fe biogeochemistry by both in-
creasing atmospheric fluxes of Fe and scavenging of DFe from the
surface ocean. Other sources of Fe from atmospheric aerosols which are
attributed to volcanic eruptions (van der Does et al., 2018); (Duggen
et al.,, 2010; Langmann et al., 2010; Lindenthal et al., 2013) and to a
lesser extent meteors (Johnson, 2001) have also been identified, but are
not included in current atmospheric models.

Currently, there are two different approaches to parameterize Fe
dissolution rates. In a top-down approach, Fe dissolution rates for Fe-
containing aerosols used in the models are tuned with the data from
field measurements. As most of the field measurements are carried out
in the Northern Hemisphere, such studies often lead to an overestimate
of aerosol Fe solubility in the Southern Hemisphere. In a bottom-up
approach, Fe dissolution rates for Fe-containing aerosols are fit to the
data from laboratory experiments, often using mineral dust samples
from arid regions. Such studies generally lead to an underestimate of
aerosol Fe solubility in both the Northern and the Southern
Hemispheres. In the Northern Hemisphere, high Fe solubility at low
concentration can be reproduced by mixing the mineral dust with
combustion aerosols of higher Fe solubility (Ito, 2013). Today the vast



N. Meskhidze, et al.

majority of ambient data that can be used for model comparison of
aerosol Fe comes from research cruise measurements (see Fig. 6 in
Wang et al., 2015). While cruise measurements significantly help ad-
vance our understanding of Fe biogeochemistry (both in the atmo-
sphere and in the ocean), they provide limited information on the
spatiotemporal distribution of bioaccessible Fe in atmospheric aerosols.

All participants agreed that detailed long-term in situ measurements
that can monitor both atmosphere and ocean properties are also ne-
cessary. Long-term observations that can link atmospheric material
transport and marine biogeochemistry would facilitate both commu-
nications between groups working in different areas and development
of universal parameterizations for implementation in numerical models
(Bréviere et al., 2015). The temporal resolution of sampling at the sites
should be sufficient to resolve variability in both atmospheric deposi-
tion and ecosystem responses. In such case, the time series sites could
become focal points for detailed in-depth experiments and process-level
studies that can address wet and dry deposition processes, cycling of
different Fe phases within the SML and the photic zone, and the kinetics
for aerosol-derived bioaccessible Fe transformation into bioavailable/
colloidal/particulate forms in seawater. Participants agreed that the
priority could be given to a few island sites, where long-term records
from island sampling sites exist (e.g., Bermuda, Barbados, Miami).
However, building new stations that monitor both atmosphere and
ocean properties is also necessary. New long-term observing programs
should be promoted downwind from dust source areas in the Southern
Hemisphere (South America, Australia, South Africa), where observa-
tions are very sparse, and the ocean ecosystem is expected to be most
sensitive to Fe inputs. For future locations of long term in situ mea-
surements, we follow the recommendations of the Group of Experts on
Scientific Aspects of Marine Environmental Protection (GESAMP)
Working Group 38 (Duce and Liss, 2011). Stations in the North Atlantic
(e.g., Barbados, Bermuda, Miami, Izafia, French Guiana, Iceland) will
play an important role by making measurements of aerosols and de-
position which will serve as the critical test-bed data for the further
development of dust transport models. The station in the Falkland (or
Las Malvinas) Islands could be ideal for measuring Fe transport from
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the sources in southern South America (Gassé and Stein, 2007; Johnson
et al., 2011), which is believed to be one of the major sources of aerosol
Fe to the Southern Oceans. Due to difficult logistics and little dust, there
are not too many other good options in the Southern Ocean. Never-
theless, the Cape Grim Baseline Air Pollution Station, located in remote
northwestern Tasmania, Reunion Island, Marion Island, and Prince
Edward could also be considered. In the North Pacific, Midway island is
ideally situated to monitor the transport of mineral dust and anthro-
pogenic sources of Fe from the Asian continent. Norfolk and Chatham
Islands in South Pacific are well suited to monitor Australian sources,
that are believed to be the major source of dust for the South Pacific and
the Southern Ocean. The Maldive Islands in the Indian Ocean receives
great quantities of dust and pollution largely transported from the In-
dian subcontinent during the Northeast Monsoon.

One way to evaluate the skill of atmospheric models has been to test
their ability to reproduce the observed log-log plots of the dissolved Fe
fraction (%DFe = DFe/Fer X 100) versus total Fe (Fer) loading. The
linear dependency detected for individual datasets plotted as the log-
log plots is often interpreted as a combination of two endmembers
corresponding to a low iron solubility (for Fe from mineral dust) and a
high solubility (for Fe from combustion). It is generally accepted that
the linear dependence (on the log-log plots) holds despite using i) a
range of different leaching techniques, ii) types of Fe extraction solu-
tions, iii) pH values of the solution, iv) extraction times, v) (photo)
reductant agents, vi) operational definitions for fractional solubility of
Fe in mineral dust, and vii) Fe measuring instruments. However, the
linear dependency in the log-log space may also be an artifact of plot-
ting two variables against each other that are not independent.
Expressed as a function of Fer, %DFe is inversely related to Fer. This
forces an asymptotic curve in linear space and a linear dependency in
log-log space. To visualize this artifact, 1000 random numbers were
chosen between 0 and 100 for Fer and between 0 and 3 for DFe, while
not allowing for numbers of DFe > Fer. The DFe and %DFe was cal-
culated and plotted vs. Fer in Figs. 1a, b and log(%DFe) was plotted vs.
log(Fer) in Fig. 1c. An analogous web-based animated figure (https://
zzqvaay3twhzlhnmvpvdvqg-on.drv.tw/Web/Fe_Function.html)  allows

25 fx)=-0.97 x +2.00
2

Py R® = 0.44 o
-3 L I
0 1 2
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Fig. 1. (a) Random set of Dissolved Fe and total Fe values, (b) dissolved Fe fraction vs. total iron loading, and (c) logarithm of dissolved Fe fraction vs. logarithm of
Fer. The solid red line shows a linear trend with a slope of —0.97 and the intercept of 2.00 and x = log;o(Fer). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)


https://zzqvaay3twhzlhnmvpvdvq-on.drv.tw/Web/Fe_Function.html
https://zzqvaay3twhzlhnmvpvdvq-on.drv.tw/Web/Fe_Function.html

N. Meskhidze, et al.

custom changes in both DFe and Fer that are displayed in three plots:
DFe vs. Fer (showing the randomness), %DFe vs. Fer (showing the
asymptotic relationship), and log(%DFe) vs. log(Fer) (showing the
linear relationship). The asymptotic nature of the %DFe vs. Fer and the
linear dependency of the log-log plots are thus generated regardless of
the data that is randomly chosen. Furthermore, the linear curve in the
log-log plot has a slope of close to —1 as is expected when taking the
logarithm of an inverse function. These values are somewhat different
from log(%DFe) vs. log(Fer) relationship reported by Myriokefalitakis
et al. (2018) (—0.34, 1.10, and 0.30 for the slope, intercept, and R*
value, respectively). Nevertheless Fig. 1 suggests that the interpretation
of the %DFe vs. Fer relationship as a combination of two endmember
aerosol types should be accompanied by other parameters that can be
used to evaluate the contribution from combustion aerosols (e.g.,
Srinivas et al., 2012), mapping organic coatings and characterization of
single-particle oxidation state of Fe-containing atmospheric particles
(e.g., Takahama et al., 2008) or characterization of atmospheric aging
and chemical weathering of mineral dust (e.g., Shi et al., 2011a, 2011b,
2011c).

12. Prioritization matrix

Table 3 shows a science prioritization matrix of a number of Fe-
biogeochemistry research areas from four broad categories: Atmo-
spheric Model Representation, Ocean Model Representation, Atmo-
spheric Measurement Methodologies, and Ocean Measurement Meth-
odologies. On the modeling side, a number of topics with the lowest
level of understanding and the highest impact if achieved include
parameterization of bulk aerosol deposition fluxes (both wet and dry),
aerosol size-resolved mineralogy, Fe(II)/Fe(III) partitioning and pho-
tochemical cycling, and distribution/characterization of Fe complexing
organic ligands. On the measurement side, they are: a characterization
of individual particle acidity, Fe(I) content, and the bioavailable
fraction of aerosol Fe. Nearly all of these topics affect the residence time
and concentration of DFe in the ocean, are related to the atmospheric
fluxes of aerosols, and Fe(II)/Fe(IIl) interaction with organic ligands
both in the atmosphere and seawater.

Table 3
Science Prioritization Matrix
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Within the Atmospheric Model Representation category, topics
pertaining to size-resolved properties were mostly classified as having a
lower level of understanding and higher impact if achieved compared
to bulk aerosol properties. Topics such as aerosol size-resolved Fe(II)/Fe
(III) partitioning and Fe-complexing organic ligands in the atmosphere
were ranked at a low level of understanding but were assigned high
impact if achieved. Most of the topics in the Ocean Model
Representation category were evaluated as low understanding but at a
medium or high impact if achieved because of their importance in de-
termining the surface concentration and residence time of DFe. Several
topics in Atmospheric and Oceanic Measurement Methodologies had
low levels of understanding because of the difficulty in making ambient
measurements and/or relating laboratory results to the ambient en-
vironment, i.e., aerosol acidity, bioavailable Fe, Fe speciation in the
ocean and kinetic measurements (e.g., ligand degradation and scaven-
ging).

Nine topics were identified as high difficulty and/or high cost, and
eight of these were also ranked as low understanding and high impact if
achieved: Aerosol size-resolved Fe(II)/Fe(Ill) partitioning, wet/dry re-
moval of aerosols, Fe complexing organic ligands, surface microlayer
and its chemical composition, aerosol acidity, bioavailable Fe, Fe spe-
ciation within the particulate and dissolved phases, and kinetic mea-
surements of ligand transformations in seawater. Broadly, these are the
areas where concerted efforts such as large-scale field campaigns and
joint multidisciplinary laboratory studies could lead to more cost-ef-
fective ways to collectively address these topics. Nine topics, such as
aerosol bulk mass fluxes, giant aerosol particles, aerosol bulk Fe(II)/Fe
(IlI) partitioning, atmospheric processing of aerosol, Fe complexing
organic ligands, size/phase-resolved residence time, vertical distribu-
tion of Fe, and DFe(II) were ranked as low-med scientific under-
standing, high impact if achieved, and medium difficulty, and thus are
worth targeting in the near future.

13. Conclusions and suggestions for future work

Improved understanding of processes controlling Fe speciation and
residence time at the atmosphere-ocean interface requires additional

Parameter

Current understanding

Impact if achieved Difficulty/resources needed

Atmospheric model representation

Aerosol bulk mass concentration Med High Med
Aerosol bulk mass fluxes Low High Med
Aerosol particle size distribution in the marine boundary layer Med High Med
Giant aerosol particles Low High Med
Aerosol bulk mineralogy/phase Med Med Med
Aerosol size-resolved mineralogy/phase Med High High
Aerosol bulk Fe(II)/Fe(III) partitioning Low-Med High Med
Aerosol size-resolved Fe(II)/Fe(Ill) partitioning Low High High
Atmospheric processing of aerosol Low-Med High Med
Wet/dry removal of aerosols Low High High
Fe complexing organic ligands Low High Med
Ocean model representation
Surface microlayer and its chemical composition Low Med-High High
Fe(II)/Fe(1II) photochemical cycling Low High Med-High
Fe(I) ligand distribution (if any) Low Low-Med Med
Fe(III) ligand distribution Med High High
Size/phase-resolved residence time and vertical distribution of Fe Low-Med High Med
Size/phase-resolved particle flux Low-Med High Med
Atmospheric measurement methodologies
Ambient aerosol collection coupled with the gas phase measurement Low Med Med
Aerosol acidity Low High High
DFe(II) Low High Med
Operationally defined DFe(III) Med High Med
Bioavailable Fe Low High High
Ocean measurement methodologies
Fe speciation from particles to truly dissolved Low High High
Kinetic measurements (ligand degradation, scavenging) Low High High
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laboratory studies, field measurements, and modeling research. Several
specific ideas are summarized below:

13.1. Laboratory experiments and in situ field measurements

Laboratory studies are needed on model systems containing Fe-
chelating organic compounds found in both the atmosphere and ocean,
while field measurements are crucial for understanding the in-situ
transformations of Fe resulting from aerosol deposition to the surface
ocean. New studies need to be conducted on natural and anthropogenic
aerosols of variable size distribution, chemical composition, and mi-
neralogy. The experiments should be carried out at different tempera-
ture, relative humidity, acidity, and concentrations of organic com-
pounds to mimic atmospheric photo(chemical) reactions occurring in
the bulk phase and the surface of the particles. Future laboratory and
field measurements should focus on:

e Standardizing Fe measurement methodologies for both aerosols and
seawater.

e Developing a mechanistic understanding of issues related to bioa-
vailability of different forms of Fe found in the atmosphere and in
the ocean.

e Improving characterization of aerosol water content and acidity and
their collective impact on Fe dissolution.

e Examining atmospheric and oceanic weak ligands such as di-
carboxylic acids, hydroxy-polyacids, polysaccharides, and humic-
like substances and their role in Fe complexation in the ocean.

e Using large, trace-metal-clean mesocosms to investigate dust-related
processes in the surface ocean.

o Studying the role of the SML for both mobilization of total aerosol Fe
to DFe and the transformation of bioaccessible Fe into bioavailable
DFe in seawater.

e Analyzing the scavenging of aerosol Fe after deposition to seawater
and examining the phase changes (from dissolved to (oxy)hydro-
xides) during Fe precipitation in seawater with variable particulate
matter and DFe concentrations.

e Analyzing the morphology, size, mineralogy, and Fe oxidation state
of individual aerosol particles in the samples collected in multiple
locations over the oceans using a combination of synchrotron total
reflection X-ray fluorescence (SR-TXRF) and the angle-dependent
measurements and/or X-ray absorption near-edge structure
(XANES) spectroscopy.

® Chemical and biochemical analysis of ocean SML and rainwater
samples using standard test dust and real aerosol samples for un-
derstanding the Fe-complexing potential of key organic ligands.
Studies that use genetically tractable model marine bacteria strains
for probing bioavailability of microlayer/Fe solutions would be
particularly useful.

e In-situ speciation of Fe(II) and Fe(IIl) in seawater, including the
physical speciation (particulate, colloidal, and dissolved) as well as
the chemical speciation (e.g., inorganic Fe, ligand-bound Fe, and
nano-particulate Fe). Special attention should be paid to the orga-
nically bound Fe fraction in seawater, as organic molecules can
greatly affect the bioaccessible forms of Fe in atmospheric aerosols.
Studies that characterize the Fe-binding ligands using a combination
of voltammetry techniques and liquid-chromatography coupled to
mass spectrometry will be particularly helpful in advancing our
knowledge of organic Fe-binding ligands both in deliquesced aero-
sols and seawater. How these compounds are partitioned into the
truly dissolved and colloidal phases will also shed additional insight
into the physicochemical speciation of Fe.

e Studying the kinetics of aerosol-derived bioaccessible Fe transfor-
mation into bioavailable/colloidal/particulate forms of Fe in sea-
water to elucidate the role of in-situ speciation on the Fe bio-
geochemistry. These measurements will likely involve the
integration of knowledge, methods, and expertise in atmospheric
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chemistry, dust/aerosol geochemistry, organometallic geochem-
istry, photochemistry, aquatic geochemistry, molecular biology, and
chemical and biological oceanography.

13.2. Models

Global 3-D chemistry-transport (CTMs) and general circulation
(GCMs) models predict the mean global atmospheric deposition fluxes
of Fer and DFe into the ocean in the range of 10-30 Tg Fe yr~! and
0.2-0.4 Tg Fe yr~?, respectively (Myriokefalitakis et al., 2018). The
global ocean biogeochemical models use atmospheric fluxes of DFe in a
range of 0.08-1.8 Tg DFe yr~ ' (Tagliabue et al., 2016). Future im-
provements to model representation of Fe biogeochemistry should in-
clude:

e Fe speciation/phases for DFe (Fe(II) and Fe(IIl)) for atmospheric and
(PFe, DFe, CFe) in the oceanic models.

e A more clearly defined and detailed Fe deposition and dissolution
mechanism (along with the nomenclature).

® Detailed kinetics of aerosol bioaccessible Fe transformation into
bioavailable/colloidal/ particulate forms of Fe in seawater.

o The details of reversible scavenging: Formulation of the adsorption/
desorption rates (Oth order, 1st order, or 2nd order kinetics), par-
ticle types, sizes, and sinking speeds.

o Inclusion of other (e.g., Cu, Al, etc.) trace elements in addition to Fe.

e Ligand modeling and ligand-Fe complex formation with the impact
on bioavailability.

® Model accessibility (e.g., A Working Environment for Simulating
Ocean Movement and Elemental Cycling (AWESOME OCIM) in-
itiative, http://www.mtel.rocks/mtel/awesomeOCIM.html), which
is focused on global distributions and long time-scales. This concept
could be amended for short time-scales and specific experiments by
a 1-dimensional community model with an interface to include or
exclude specific processes. (Additional features can be directly
suggested on the AWESOME OCIM github repository: github.com/
hengdiliang/AWESOME-OCIM-v1.1).

e Increase openness - Developing open-source models that are avail-
able online and published along with the modeling publications to
improve testability and reproducibility, through the use of tools like
GitHub, BitBucket, or GitLab (e.g., the DOE E3SM model github.
com/E3SM-Project).
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