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Figure 27: A: The changing CEST effect in vivo, over time, evaluated for 1 ppm and 2.8 

ppm. Every datapoint represents the mean value of three CEST 
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Zusammenfassung 

Durch Kohlenstoffdioxid (CO2), das sich in der Atmosphäre akkumuliert, verändert sich unser 

Klima, was zum globalen Klimawandel führt. Das CO2 löst sich zudem im Ozean, wo es den pH-

Wert des Wassers reduziert und zu einer Ozeanversauerung (OA) führt. Lange wurde davon 

ausgegangen, dass Fische von dieser Versauerung nicht betroffen wären, da sie über eine 

effektive Säure-Base Regulation verfügen. In den letzten Jahren wiesen jedoch verschiedene 

Studien darauf hin, dass eine Reduktion des pH-Werts Verhaltensänderungen und 

Veränderungen in neurologischen Prozessen herbeiführen kann. Um die Säure-Base Regulation 

im Gehirn des Polardorschs (Boreogadus saida) zu untersuchen, wurden in dieser Studie zwei 

Methoden, die auf dem Phänomen der Nuklearen Magnetischen Resonanz (NMR) beruhen, 

kombiniert. Mit nicht-lokalisierter 31P-NMR Spektroskopie konnte die Konzentration 

verschiedener Phosphormetabolite bestimmt werden. Mithilfe von 31P-NMR Spektroskopie 

können kurzzeitige Änderungen der Konzentrationen der Phosphormetabolite und damit 

kurzzeitige Änderungen des intrazellulären pH (pHi) bestimmt werden. Der pHi wurde aus der 

chemischen Verschiebung des Signals von anorganischem Phosphat zu Phosphorkreatin 

bestimmt. Da nicht-lokalisierte 31P-NMR Spektroskopie allerdings nicht den pH in einem Areal 

von der Größe eines Fischhirns bestimmen kann, sollten über den Sättigungstransfer einer 

chemischen Verschiebung (chemical exchange saturation transfer (CEST)) ortsaufgelöst pH-

Änderungen verfolgt werden. CEST ist eine Bildgebungsmethode, die den Austausch zwischen 

den Protonen des Wassers mit austauschbaren Protonen von Metaboliten detektiert, wie zum 

Beispiel Taurin (TauCEST) im Gehirn von B. saida. Der CEST Effekt ist unter anderem pH 

abhängig und kann somit Änderungen im pHi ortsaufgelöst über das Gehirn aufzeigen. 

Zusätzlich zu pH Änderungen wurde der Energiestoffwechsel von B. saida unter akuter 

Versauerung mittels 31P-NMR Spektroskopie analysiert. 31P-NMR Spektroskopie misst die 

Konzentration von anorganischem Phosphat, Phosphorkreatin und den drei ATP 

Untereinheiten α-, β- und γ-ATP. Nach 20 Stunden Akklimatisierung unter Kontrollbedingungen 

wurden die Fische für vier Stunden einer CO2 Konzentration von 3500 ppm (Hyperkapnie) und 

einem Wasser pH von 6.92 ± 0.2 ausgesetzt. Danach wurden die Fische wieder unter 

Kontrollbedingungen untersucht (pH 7.96 ± 0.3). Nach Umschalten auf Hyperkapnie sank der 

pHi im Mittel um 0.5 ± 0.2 pH-Einheiten. Bei zwei Fischen lag die maximale Reduktion des pHi 

bei 0.17 pH-Einheiten. Signifikante Veränderungen im Energiestoffwechsel konnte bei keinem 

Tier festgestellt werden. 
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Abstract 

A consequence of accumulating carbon dioxide (CO2) in the atmosphere is global climate 

change. CO2 also dissolves in the ocean and reduces the water pH, resulting in ocean 

acidification (OA). Fish were long thought to be relatively resistant to pH changes in the water, 

because they possess an efficient acid-base regulation. However, recent findings indicate 

altered behaviour and changes in neurological processes in fish. To investigate the acid-base 

regulation in the brain of the polar cod (Boreogadus saida), a combination of two methods, 

based on the nuclear magnetic resonance (NMR) phenomenon, was used in this study. Non-

localized 31P-NMR spectroscopy was used to measure the concentration of 

phosphometabolites. The intracellular pH (pHi) was calculated from the chemical shift of the 

NMR signal of inorganic phosphate in relation to the phosphocreatine signal. 31P-NMR 

spectroscopy is used to detect short-term changes in the concentration of different 

phosphometabolites and hence short-term changes in the pH. However, the determination of 

the pH value in a specific region as small as the fish brain is not possible with non-localized 31P-

NMR spectroscopy. To verify the results of the measurements the chemical exchange 

saturation transfer (CEST) between taurine and water (TauCEST) was determined in a specific 

region in the brain of B. saida. Because CEST is pH dependant, changes in the CEST effect can 

give evidence on any pH changes with a higher spatial resolution than non-localized 31P-NMR 

spectroscopy. Additionally to pH changes, energy metabolism can be analysed with 31P-NMR 

spectroscopy by measuring the concentration of phosphometabolites such as inorganic 

phosphate, phosphocreatine or the three ATP subunits α-, β- and γ-ATP. After 20 hours of 

acclimatisation under control conditions, the animals were exposed to a CO2 concentration of 

3500 ppm and a water pH of 6.92 ± 0.2 for four hours (hypercapnia). Then, the animals were 

tested again in water without elevated CO2 concentrations (pH 7.96 ± 0.3). The pHi decreased 

rapidly after switching to hypercapnia by a mean of 0.05 ± 0.2 and started to reach control 

values again after two hours. The maximum decrease in pHi was 0.17 and occurred in fish 2 and 

4. Throughout the whole time of the experiment, there were no significant changes in the 

energy values. 
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1 Introduction 

1.1 Climate change in the Arctic ocean 

The ocean plays a major role in regulating the Earth’s climate, since it absorbs over 25% of the 

atmospheric carbon dioxide (CO2) and 90% of the heat that accumulates in the atmosphere 

(Gattuso 2015). Through anthropogenic effects and the Industrial Revolution, atmospheric 

partial pressure of CO2 (pCO2) rose from 280 ppm before the Industrial Revolution to a 

maximum of 413.9 ppm in 2019, leading to a global climate change (Bijma & Burhop 2010, 

https://www.co2.earth/daily-co2). Atmospheric CO2 levels are predicted to rise to 750 – 1000 

ppm by the end of the century (Pörtner 2008, Meinshausen et al. 2011). Three major stressors 

are associated with climate change: warming, deoxygenation and acidification, all affecting 

marine ecosystems and their productivity (Bopp et al. 2013, Popova et al. 2016). As 

temperature in the oceans rises, marine ecosystems suffer from many negative impacts, 

including mass mortality of marine invertebrates due to heat stress, shifts in the distribution of 

marine species and associated structural changes in marine communities (Oliver et al. 2017, 

2018). Rising temperature in Arctic environments leads to melting sea ice, posing a problem for 

many marine organisms, who depend on the sea ice (Chambault et al. 2018). Temperature 

strongly affects exothermic organisms, including fish (Boscolo-Galazzo et al. 2018).  

Another aspect of global climate change is ocean deoxygenation (Gómez1 et al. 2018, Junium 

et al. 2018). Global warming decreases the solubility of gases in the seawater leading to less 

dissolved oxygen in the open ocean (Gilbert & Rabalais 2010, Popova et al. 2016). With oxygen 

levels below 2 mll-1 the ecosystem is defined as hypoxic (Diaz & Rosenberg 1995). Benthic 

organisms evolved tolerance mechanisms to hypoxia, but fish are more sensitive to decreasing 

oxygen concentrations and mass mortality has been reported (Diaz & Rosenberg 1995).  

Besides ocean warming and expanding hypoxia, global climate change leads to another 

problem, referred to as ocean acidification (OA) ( Caldeira & Wickett 2003, Melzner et al. 2009, 

Bozinovic & Pörtner 2015). The atmospheric CO2 dissolves in the ocean and when it dissociates, 

hydrogen ions are being released (according to the following formula), which results in a lower 

pH (Orr et al. 2005, Bijma & Burhop 2010).  

CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3
- ↔ 2H+ +CO3

2- 

The current pH in the seawater surface is around 8.05, but by absorbing the atmospheric CO2, 

the pH of the seawater decreases as it has already by 0.1 units compared to pre-industrial times 

[1] 
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(Orr et al. 2005, Gruber et al. 2012, Wermter et al. 2018). Moreover, it is expected to decrease 

up to 0.77 units by 2300 due to global climate change (Caldeira & Wickett 2003, Heuer & Grosell 

2018).  

To which extent global climate change will affect these processes depends on emission 

scenarios (Caldeira &Wickett 2005). There are six different scenarios of future CO2 emissions, 

as well as other greenhouse gas emissions estimated by the intergovernmental panel on 

climate change (IPCC). Three scenarios belong to the A1 storyline and estimate very rapid 

economic growth, a peak in global population development in the mid-century and are 

distinguished by different technologies used in the energy system. The A2 storyline describes a 

continuously increasing global population, slower changes in technologies and primarily 

regional economic development. This scenario shows the highest long-term greenhouse gas 

emissions and is the one closest to reality at the moment (IPCC 2014). The technology changes 

in the B2 scenario are more diverse and sustainable than in all the other scenarios. Global 

population growth is also continuously increasing but not as fast as in the A2 scenario (IPCC 

2000). The least long-term greenhouse gas emissions are estimated in the B1 scenario that 

Figure 1: Global Greenhouse gas (GHG) emissions (in GtCO2-equivalent per year) in the absence of 
additional climate policies: the special report on emission scenarios (SRES) A1B, A1Fl, A1T, A2, B1 and 
B2 (coloured lines) and 80th percentile range of recent scenarios published since SRES (post-SRES) (grey 
shaded area). Dashed lines show the full range of post-SRES scenarios. The GHG emissions include CO2, 
CH4, N2O and F-gases. www.ipcc.ch AR4 Report 
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describes a rapid change in energy technologies towards clean and sustainable methods and 

the same population growth as described in the A1 scenario. All six emission rate scenarios are 

illustrated in figure 1. Estimated changes in the future ocean pH at the Bay of California 

according to the high-emission A2 scenario are shown in figure 2 by Gruber et al. (2012). 

Biastoch et al. (2014) predict a pH decrease of 0.25 units in the Arctic ocean within the next 

100 years. Not only does the ocean pH decrease with rising CO2 concentrations in the 

atmosphere, but also the concentrations of carbonate (CO3
2–) in the ocean decreases as 

CO2[aq] increases, according to formula 1 (Orr et al. 2005, Kroeker et al. 2013). This makes it 

difficult for marine calcifying organisms like corals or bivalves to form biogenic calcium 

carbonate (CaCO3), which results in deformed shells or lowered calcification rates (Kroeker et 

al. 2013, Liu et al. 2018). Therefore, many studies have been done on the effects of OA on 

calcifying organisms (Orr et al. 2005, Kroeker et al. 2013, Boch et al. 2018, Zittier et al. 2018).  

Temperature and pH changes occur faster in polar regions than in other environments (Field et 

al. 2018, Zittier et al. 2018). As seen in figure 4, the mean bottom water temperature in the 

Barents Sea is between 2 - 5°C (Fall et al. 2018, Petrini et al. 2018). It has already increased by 

about 3°C compared to 1985, whereas the global average temperature has only increased by 

1°C (Hassol 2004). It is predicted that Arctic sea surface temperatures will rise by about three 

times the global average (Praetorius et al. 2018). This so called Arctic amplification is a result of 

weather events like clouds, surface albedo and poleward oceanic and atmospheric heat 

transport (Praetorius et al. 2018). Global warming and ocean acidification affect all marine 

habitats, but since organisms in the polar oceans are adapted to a narrow temperature range, 

both processes pose an especially great threat to these habitats and their inhabitants (Kroeker 

Figure 2:  Evolution of the water pH off the coast of California from 1750 until 2050. C shows the predicted decrease in 
ocean pH for the A2 IPCC scenario (Gruber et al. 2012).  
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et al. 2013, Gattuso et al. 2018, Wermter et al. 2018). Moreover, marine populations are 

projected to move poleward, leading to the occurrence of invasive species in higher latitudes 

(Turingan & Sloan 2016, Wilson et al. 2016, Monllor-Hurtado et al. 2017). 

1.2 Polar cod, Boreogadus saida  

The polar cod (Boreogadus saida; Lepechin, 1774 (fig. 5)), a pelagic, schooling fish, one of the 

most abundant fish species in the Arctic and subarctic waters, is an important polar organism, 

because it links several trophic levels (Welch et al. 1992). It reaches a size of up to 46 cm (see 

Hop & Gjøsæter 2013 for review) while the mean size is 30 cm with a weight of 33 g (Scott & 

Scott 1988, Welch et al. 1992). The maximum age is found to be seven years, but rarely exceeds 

the age of five (Bradstreet et al. 1986, Hop et al. 1997, Ajiad et al. 2011). Schools of adult polar 

cods have been found under the sea ice as well as in the open water during summer (Crawford 

& Jorgenson 1990, Hop et al. 1997). The polar cod feeds on copepods living directly under the 

sea ice surface and hence lives in close association with the sea ice (Lønne & Gulliksen 1989). 

The polar cod itself is an important prey for seabirds and marine mammals, such as the white 

whale (Delphinapterus leucas, Pallas, 1776), the narwhal (Monodon monoceros, Linnaeus, 

1758) and the ringed seal (Pusa hispida, Schreber, 1775) because of its high lipid/energy 

Figure 3:  (a) Map of average bottom water temperature between 1985 and 2004 in the arctic ocean and (b) a trend in the next 
100 years under CO2 increase. Acronyms mark the Arctic Ocean (AO), European Nordic Seas (ENS), Barents Sea (BS) and the 
Laptev Sea (LS)  

BS 

BS 

(Biastoch et al. 2014). 
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content (Welch et al. 1992, Kühn et al. 2018, Landry et al. 2018). Therefore, B. saida is 

responsible for a major part of the energy transfer from primary and secondary production to 

higher trophic levels in the arctic ecosystem (Welch et al. 1992, Hop & Gjøsæter 2013). B. saida 

lives in water temperatures that range from -2°C in winter up to 8°C in summer (Drost et al. 

2014). However, its temperature preference has been determined experimentally to be at 3 – 

4°C (Christiansen et al. 1996). The distribution in water temperature below the thermal 

optimum is most likely due to reduced competition as well as special adaptations (Hop & 

Gjøsæter 2013). As part of the arctic ecosystem B. saida is adjusted to constant low 

temperatures and as an example has antifreeze glycoproteins (Zhuang et al. 2012). Cattano et 

al. (2018) discovered that pelagic species, like B. saida, are more likely to die from high CO2 

levels than benthic species. This may be due to more stable CO2 concentrations in the open 

ocean, whereas at the ocean bottom CO2-levels naturally fluctuate (Hofmann et al. 2011, 

Munday et al. 2011, Murray et al. 2014). Therefore, it is crucial to investigate any effects of OA 

and global warming on B. saida to gain knowledge and make predictions on the whole Arctic 

ecosystem concerning global warming (Kühn et al. 2018, Landry et al. 2018). 

 

 

 

 

 

1.3 Polar fish in a changing environment 

Temperature is a driver in species distribution and population structures (Pörtner et al. 2008). 

Rising temperatures are predicted to shift species distributions towards the poles (Perry et al. 

2005). With climate change the distribution and abundance of B. saida is declining in the 

Barents Sea, whereas its boreal relative, the Atlantic cod (Gadus morhua, Linnaeus, 1758), 

shifted its distribution poleward (Decamps et al. 2017). Diet content is considered to differ 

between the two species hence no evidence for prey competition was found (Renaud et al. 

2012). However, a possible predation of G. morhua on B. saida has been suggested (Renaud et 

al. 2012). A major impact climate change has on the Arctic ecosystem, namely B. saida, is the 

decreasing sea ice. Since spawning for B. saida is reported during winter under the sea ice, this 

Figure 4:A picture of Boreogadus saida taken by Hauke Flores 
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threatens its reproduction (Craig et al. 1982). Kunz et al. (2016) investigated different 

parameters such as growth rate and thermal optimum for both B. saida and G. morhua under 

climate change conditions. Their findings suggest a slower growth rate of 0.39% d-1 for B. saida 

than for G. morhua, which showed a growth rate of 0.82% d-1. G. morhua also showed a higher 

tolerance to projected future pCO2 values than B. saida (Kunz et al. 2016).  

The current temperature trend goes hand in hand with a decreasing ocean pH and OA (Pörtner 

et al. 2004). Additionally, OA also results in a reduction of the surface water oxygen level, which 

may affect the degree of sensitivity of an organism to other environmental factors (Pörtner et 

al. 2005). Organisms living in an environment with elevated CO2 levels have elevated energy 

costs (Ishimatsu et al. 2008). However, costs for energy-dependent metabolic processes can be 

minimalised by specialising on a narrow temperature range as appearing in polar regions 

(Pörtner 2006). During acute respiratory acidosis from OA, reductions in extracellular blood pH 

(pHe) and intracellular pH (pHi) have been observed (Pörtner et al. 2005, Shartau et al. 2016). 

Influences on the energy budget affect physiology, development and behaviour (Nilsson et al. 

2012, Heuer & Grosell 2016, 2018).  

1.4 pH regulation in fish 

Fish were long thought not to be as sensitive to elevated CO2 levels and pH changes as marine 

invertebrates, because of their effective acid-base regulation and the higher regulatory 

capacity of ion exchange (Claiborne et al. 2002, Melzner et al. 2009, Pörtner et al. 2011, Cattano 

et al. 2018). As well as controlling their pHi through active ion transport, fish have epithelia 

which limit ion losses, because ions can only pass the membrane through specific channels 

(Pörtner et al. 2005). However, they react to elevated CO2 partial pressure (pCO2) (hypercapnia) 

by increasing their ventilation rate (Pörtner et al. 2005), reducing protein synthesis 

(Langenbuch & Pörtner 2017), behavioural disturbances (Schmidt 2019), metabolic depression 

(Pörtner et al. 2004) and eventually cardiac failure (Ishimatsu et al. 2004). Even higher mortality 

was discovered in fish that have been exposed to long term elevated CO2 concentration, but 

the exact reasons remain unknown (Ishimatsu et al. 2008). When the intracellular pH drops, 

fish excrete H+ ions across the gills, kidney and intestine as a countermeasure (Ishimatsu et al. 

2008, Heisler 1986). The gill epithelium is the first regulatory site, therefore being the main 

epithelium for acid-base transfer to the water (Claiborne et al. 2002). The pH homeostasis in 

the brain is provided by transporting or buffering of acid equivalents (Sinning & Hübner 2013). 
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With acid-base relevant ions like chloride (Cl-) or bicarbonate (HCO3
-

 ), fish regulate and 

maintain their tissue pH (Chung et al. 2014). However, during hypercapnia the CO2 equilibrium 

is shifted, according to formula 1, towards HCO3
- and H+ (Shartau et al. 2016). This equilibrium 

shift lowers the internal pH and results in acidosis (Shartau et al. 2016). Previous studies 

showed that a decreasing pH in the brain leads to a decrease in the rate of synaptic vesicle 

release which ultimately results in a limited excitability of the brain (Sinning & Hübner 2013, 

Wermter et al. 2018). Brain pH changes indicate neurological as well as behavioural disorders 

through disturbances in the acid-base balance of the organism (Wermter et al. 2018, Schmidt 

2019). The gamma-aminobutyric acid type A receptor (GABAAR) is a Cl- and HCO3
- channel, 

activated by the neurotransmitter GABA (gamma amino butyric acid) (see for instance Schmidt 

et al. 2018). After GABA binding, the channel allows Cl- and HCO3
- to pass the cell membrane, 

resulting in a hyperpolarization and causing less neuronal activity (Chung et al. 2014). 

Therefore, a decreasing pH leads to a decreasing neuronal activity, whereas an increasing pH 

leads to an increasing neuronal activity (Sinning & Hübner 2013). During high CO2 exposure the 

membrane gradients of Cl- and HCO3
-, and therefore, the GABAAR function, is disturbed (Chung 

et al. 2014). This disturbance leads to a slower reaction of the animal (Chung et al. 2014). In 

addition to this, Chivers et al. (2014) found that fish cannot process sensory information during 

CO2 exposure. This matches the results of Ferrari et al. (2012), suggesting that the visual system 

is affected by high CO2 concentrations. Therefore, pHi regulation in the brain is very important. 

When exposed to CO2 and then treated with the GABAAR blocker gabazine, the effects of CO2 

can be neutralized as shown in figure 5 (Nilsson et al. 2012, Chung et al. 2014, Munday et al. 

2016).  
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1.5 Magnetic resonance imaging (MRI) and NMR spectroscopy 

Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) spectroscopy can 

give insight into the neurological processes in the brain of an animal (Schmidt et al. 2014). These 

techniques are non-invasive and do not use harmful radiation, but radio frequency (RF) and 

are, therefore, a useful method for repeatedly gaining information about the intact, living 

organism (Lee et al. 2010). Metabolism and stress responses can be followed directly in various 

tissues (Van den Thillart et al. 1989, Lee et al. 2010). Both techniques are based on the physical 

phenomenon of NMR (Bloch 1946, Purcell et al. 1946). An object in the magnetic resonance 

tomograph (MRT) is exposed to a very strong magnetic field leading, to a polarisation of the 

nuclei (Schild 1990). This polarisation is referred to as longitudinal magnetisation along the 

external magnetic field (Schild 1990). The nuclei commonly used for MRI and MRS are either 

protons (1H) or other nuclei, such as phosphorous (31P) or carbon (13C) (Lee et al. 2010, Pritchard 

& Flemming Hansen 2019). Then, the RF is applied and absorbed by the nuclei, causing the 

nuclei to point in one direction, the transverse direction (Schild 1990). The RF decreases 

longitudinal magnetisation and builds up transversal magnetisation (Schild 1990). Depending 

on the choice of nuclei, the RF needs to be adjusted, because different nuclei absorb different 

RF (Schild 1990). When the RF is switched off, the system returns to its relaxed state and 

resonance frequency is emitted during this relaxation (Schild 1990). Nuclei in different tissues 

vary in relaxation time which leads to different contrasts in the MRI (Schild 1990). NMR 

spectroscopy determines the chemical shift that occurs when the nucleus emits modulated 

Figure 5:  Model of the GABAAR to show hypercapnia-induced changes published by Nilsson et al. 2012. Normally functioning 
GABAAR (left) leading to a hyperpolarisation of the cell by an Cl-/ HCO3

- inflow after GABA binding. A GABAAR in a gabazine 
treatment (right) leading to a depolarisation of the cell by a Cl-/ HCO3

- outflow. 
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resonance frequency in a changed chemical surrounding (Lee et al. 2010). The obtained 

spectrum provides information about the concentration of different metabolites in a chosen 

tissue (Lee et al. 2010). 31P-NMR spectroscopy can be used to investigate acid-base regulation 

as well as energy metabolism (Van der Linden et al. 2004). However, alongside the mentioned 

applications in energy metabolism and acid-base regulation, there is a variety of applications 

for NMR technologies. After establishing a clinical method of MRI of the head, also cardiac 

imaging was possible to evaluate cardiovascular disease (Hawkes et al. 1981, Herfkens et al. 

1983) as well as three-dimensional anatomical images (Matthaei et al. 1986). MRI is a useful 

method for identifying different regions in a tissue or organ (Van der Linden et al. 2004, Miraux 

et al. 2008). Different regions of the brain of B. saida have been recorded from the MRI scans 

and identified after Ou & Yamamoto 

(2016) who worked on Trachurus 

japonicus (Temminck & Schlegel, 1844). 

An anatomical drawing of T. japonicus is 

shown in figure 6 (Ou & Yamamoto 

2016). Anatomical MR images of 

B. saida in a coronal, sagittal and axial 

plane are displayed in figure 7 with a 

description of different regions in the 

brain.  

 

Figure 7: Brain regions of polar cod on MRI scans with OB, Tec, Tel, C, CC, eminentia granularis (EG), Corpus division of the 
Cerebellum (CCb), Mesencephalon (M), Diencephalon (Di), Pons (P) and Medula oblongata (MO) 

Coronal    Sagittal              Axial 

Figure 6: Technical drawing of the brain of B. saida with the 
olfactory tract (olt), olfactory bulb (OB), telencephalon (Tel), optic 
tectum (Tec), Cerebellum (C), cerebellar crest of the 
rhombencephalon (CC)  and spinal cord (SC). Identification of the 
brain regions according to Ou & Yamamoto 2016 and Kawaguchi 
et al. 2019 
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Performing MR technology on marine animals is especially challenging (Van der Linden et al. 

2004, Lee et al. 2010). Working with aquatic animals is challenging alone but seawater implies 

even more obstacles due to the high salt concentration. The animal inside the MRT needs a 

constant flow of aerated water (Van der Linden et al. 2004). But water motion can lead to 

artefacts in the MRI and it is crucial that the water does not come in contact with the gradient 

(Van der Linden et al. 2004). Therefore, different ways have been developed to overcome these 

obstacles. To guarantee a constant water flow without flooding the MRT, a metal free chamber 

can be used to place the fish inside the MRT, connected to water pools outside the MRT. 

Different RF antenna have been evolved which can be placed in the water free space outside 

the chamber on top of the measured region (Van der Linden et al. 2004).  

1.6 Chemical exchange saturation transfer 

Recently, Ward et al. (2000) introduced a MRI technique that uses the exchange of protons (1H) 

as a contrast agent. This technique is called chemical exchange saturation transfer (CEST). Its 

principle is illustrated in figure 8. Exchangeable protons get excited by a set frequency and 

thereby selectively saturated which reduces magnetisation, ultimately leading to zero 

magnetisation. The saturated protons of the solute then exchange with the unsaturated 

protons in the tissue water with a 

defined exchange rate. The saturated 

protons accumulate in the tissue 

water leading to a reduced signal 

intensity of the water proportional to 

the solute concentration (Kogan et al. 

2013). While the saturation frequency 

is applied and water magnetisation 

decreases, longitudinal relaxation 

brings the saturated protons back to 

their thermal equilibrium state 

(Kogan et al. 2013). The chemical shift 

between both resonance frequencies 

of the water and the solute protons is 

then measured in parts per million 

(ppm). The CEST effect is displayed in 

Figure 8: The principle of CEST is illustrated above. Protons of a solute 
being saturated by a specific RF. Saturated protons of the solute then 
exchange with water protons, thereby decreasing the water signal 
proportional to the solute concentration. Modified illustration by Wermter 
(2017) 
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Saturationfrequency [ppm] 

RF 

1
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the form of the z-spectrum (fig. 15) by plotting the water signal as a function of the saturation 

frequency and given in percent depending on the amount of exchanging protons (Kogan et al. 

2013). The intensity of the CEST effect is pH and temperature dependant (Ward & Balaban 

2000, Wermter et al. 2018) 

CEST was tested with many different amino acids, such as alanine, glutamine or taurine as well 

as other solutes (Walker-Samuel et al. 2017). Taurine is important for neuronal activity and 

osmoregulation (Ripps & Shen 2012). Due to its osmoregulatory function, taurine is one of the 

most abundant amino acids in the brain of marine vertebrates and therefore easily detectable 

by the CEST application performed at low temperatures (Ripps & Shen 2012, Wermter et al. 

2018). With the chemical exchange saturation transfer from taurine to water (TauCEST), it is 

possible to detect changes in the acid-base regulation of ectothermic animals, especially those 

living in a cold environment, like B. saida (Wermter et al. 2018). Wermter et al. (2018) were the 

first to investigate the TauCEST effect on the brain of the polar cod at high CO2 levels. The 

chemical shift between the amine protons of taurine and the water protons is assumed to be 

2.8 ppm (Wermter et al. 2018). TauCEST is a non-invasive, in vivo method to detect even small 

changes in the pH under high CO2 exposure with high resolution (Wermter et al. 2018). By using 

1H-NMR spectroscopy Wermter et al. (2018) could proof that the TauCEST in the brain of 

B. saida was not due to changes in the taurine concentration. In contrast to other in vivo 

methods this method gives the opportunity to see anatomical images of an unanaesthetised 

and ventilating fish, without the need for dissection (Wermter et al. 2018). 

1.7 Hypotheses  

The aim of this study will be to investigate pHi changes in the brain of B. saida caused by rising 

CO2 concentrations in the seawater. As previously mentioned, the polar cod is an important 

organism in Arctic waters as it links different trophic levels. Thus, it is of major interest to study 

its ecology and physiology in respect to a changing pHi as a result of OA.  

Most studies that investigated the effects on pHi changes in the brain of marine animals so far 

have either been invasive, in vitro or they haven’t been conducted on polar fish species (Mark 

et al. 2002, Munday et al. 2011, Murray et al. 2014, Wermter et al. 2018). In order to investigate 

these changes, a combination of pHi determination with 31P-NMR spectroscopy and CEST will 

be applied and the following hypotheses are going to be tested: 
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• Hypercapnia induced acid-base regulation starts right after B. saida is exposed to 

environmental acidification and helps the cell to maintain pHi in hypercapnic conditions. 

• B. saida is able to compensate the hypercapnia induced decrease in pHi over time 

• pHi decreases during hypercapnia by up to 0.2 pH units 

• The drop in pHe leads to metabolic depression in B. saida, effecting the cellular energy 

demand. 

2 Material and Methods 

2.1 Collection of the experimental animals 

The animals used in this study were caught on the research vessel Heincke during the cruise HE 

519 in October 2018. The animals were collected in a depth of 130 - 190 m, in a temperature 

of -1 - -1.5 °C in the Billefjord of Svalbard (78°59’N 16°50’E). The animals were captivated in a 

seawater aquarium at the Alfred-Wegener-Institute, Helmholtz Zentrum für Polar- und 

Meeresforschung (AWI) in Bremerhaven with a water temperature of 1 °C, a pH of 8 in 

normocapnia, a salinity of 32 PSU and were fed once a week. 

2.2 Experimental setup 

For each MR experiment, an individual fish was placed in a Perspex flow‐through chamber (V = 

350 ml; fig. 9 A). Dental wax was added to the chamber and modulated for each fish individually 

positioning the fish at the frontal part of the chamber. All animals had enough space to move 

their fins and gills. Moreover, the seawater circulating system consisted of two heater tanks 

(ECO RE630, LAUDA GmbH & CO KG, Königshofen, Germany) which kept the water temperature 

in the chamber at around 

0.5°C. Temperature 

confirmation measurements 

were performed inside the 

tanks with a high-precision 

temperature-measuring 

instrument (testo 112, 

testo, Lenzkirch, Germany) 

and at the outflow of the 

chamber with a fibre‐optical 

thermometer (OPTOCON 

a 

b 

Figure 9: A: Testing chamber with the experimental animal inside and tubes with water 
inflow (a) and outflow (b). Dental wax helps to position the fish at the frontal part of 
the chamber. B: Schematic design of the experimental setup with the header tanks H1 
(normocapnia) and H2 (hypercapnia), water inflow (A), water outflow (B) in an isolated 
tube (D), the experimental camber (E) and the MRT (F). 

A 

B 
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AG, Optical Sensors and Systems, Dresden, Germany). As displayed in figure 9 B each header 

tank was used for one sea water reservoirs (H1 and H2). H1 with control conditions bubbled 

with air; and H2 with elevated CO2 bubbled with an air/CO2 mixture from a gas‐mixing pump 

(PR 4000, MKS Instruments, Munich, Germany). The water reservoirs were changed once a 

week. 

The pH of the water reservoirs was measured with a conventional pocket meter (pH 3310, 

WTW, Weilheim, Germany). Water pCO2 was determined from the gas phase of the sea water 

by a carbon dioxide sensor filter (CARBOCAP GMP343, Vaisala, Helsinki, Finland). Salinity was 

measured with a WTW LF 197 multimeter (WTW). Total alkalinity (TA) was measured in an 

external laboratory (Krisitina Beck, PhD Candidate, Bentho-Pelagic Processes, AWI, 

Bremerhaven). Since TA was measured only once, no standard deviation (SD) can be given. 

Dissolved inorganic carbon (DIC) was measured via the continuous flow analysis method with 

Seal Analysis SFA QuAAtro (AACE 6.07, Seal Analytical, Wisconsin, USA). Bicarbonate (HCO3
-)w was 

calculated via CO2Sys macro for Microsoft Excel (v2.1, Pierrot et al. 2006), with values for K1 

and K2 from Millero (2010), KSO4 from Dickson (1990) and [B]T from Uppström (1974). A 

summary of water chemistry is given in Table 1. All tests were performed on a 9,4 T NMR-

tomograph (BioSpec 94/30 USR, AVANCE III, Bruker BioSpin, Ettlingen, Germany). The in vivo 

31P-NMR spectra were obtained by using a 2 cm diameter 1H/31P-NMR surface coil. The spectra 

were plotted and stacked with XWinPlot (Bruker BioSpin MRI GmbH, Ettlingen, Germany). The 

in vivo CEST measurements were performed on a 1H/13C resonator with an inner diameter of 

72 mm.  

All fish have been placed in the experimental chamber for at least 20 hours to acclimatise 

before switching to hypercapnia. Three hours prior to the hypercapnic treatment, control 

measurements were performed, followed by four hours of measurements under hypercapnia. 

Afterwards, 2 more hours of normocapnia were recorded. The experimental protocol was the 

same for all in vivo MRI and NMR spectroscopy measurements.  

All procedures were approved in accordance with the regulations for the welfare of 

experimental animals issued by the Federal Government of Germany (§11 Abs. Ziff. 1 a+b), 

Bremen AZ: 0515_2040_15. 
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Table 1:Seawater chemistry of the control (H1) and the hypercapnic (H2) water reservoirs. Temperature, salinity, pCO2, pHw, 
Total alkalinity and dissolved inorganic carbon were measured and HCO3

- was calculated via CO2Sys macro for Microsoft excel 
(v2.1). 

 

2.3 In vivo 31P-NMR spectroscopy 

In vivo 31P-NMR spectroscopy was used to measure energy values and to determine the 

intracellular pH (pHi) in the brain of the fish (Lurman et al. 2007, Bock et al. 2008). The spectra 

were obtained by using a 2 cm diameter 1H-31P-NMR surface coil placed in the water free space 

outside the Perspex chamber above the head of the animal (fig. 10), to determine the chemical 

shift (δ) of the inorganic phosphate (Pi) signal relative to the Phosphocreatine (PCr) signal. δ 

was then used to calculate pHi by the following formula after Kost (1990) and modified after 

Bock et al. (2001).  

𝑝𝐻𝑖 = 6.8788 + 𝐿𝑜𝑔10
(𝑃𝑖 − 2.8) − 0.67 + 0.003579 ∗ 0.5

(3.2 + 0.001888 ∗ 0.5 − (𝑃𝑖 − 2.8)
 

PCr was used as an internal standard for spectra calibration and set to 0ppm. Furthermore, the 

intracellular energy values of tissue can be determined using 31P-NMR spectroscopy by 

calculating e.g. the ratio of Pi/PCr concentrations. The energy values were calculated as in the 

following formula.  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑖 𝑠𝑖𝑔𝑛𝑎𝑙

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑟 𝑠𝑖𝑔𝑛𝑎𝑙
 

Paravison 6.1 Software was used for all NMR measurements. 31P-NMR spectroscopy scans were 

obtained with a flip angle of 65°, a repetition time TR = 1200 ms and 256 averages. Acquisition 

bandwidth was 10 000 Hz and reference power was 2.714 W. All scan properties are given in 

table 3 in the appendix.  

Group T [°C]  S [PSU] P (CO2)w 

[ppm] 

(HCO3
-)w 

[mM] 

pHw TA 

[mM] 

DIC [mM] 

Control 0.3 ± 0.2 30.5 ± 0.4 506 ± 24 1.96 7.96 ± 0.3 2.11 2.13 ± 0.06 

Hypercapnia 0.7 ± 0.4 30.5 ± 0.5 3518 ± 110 2.15 6.92 ± 0.2 2.49 2.56 ± 0.1 
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2.4 CEST measurements 

2.4.1 In vitro CEST measurements 

Before the CEST in vivo experiments, a phantom 

study was performed to investigate the influence of 

the water parameters pH and temperature as well as 

the solute concentration of different metabolites 

found in the fish brain on the CEST effect. The in vitro 

measurements were based on a study by Wermter et 

al. (2018). The phantoms for the in vitro 

measurements consist of six NMR-tubes (Ø 5 mm) 

filled with different solutions bedded in a 50 ml 

Falcon Tube (Fisher Scientific GmbH, Schwerte, 

Germany) filled with a 3% Agarose solution. The agarose was mixed with deionized water and 

heated in a microwave until clear. After filling the agarose solution into the 

Falcon tube, the NMR tubes were inserted (fig. 11). The solutions filled in the 

NMR-tubes are based on a phosphate buffer. The chemicals were obtained 

from Sigma Aldrich (St. Louis, USA). A summary of the in vitro phantom 

solutions is given in table 2. All solutions are adjusted to pH values of 6.5; 6.8; 

7.0; 7.2, 7.5 and 7.8. All approaches were tested at seven different 

temperatures between 1 – 37°C.  

In order to test the phantoms at different temperatures, a water hose (EHEIM 

GmbH & Co KG, Deizisau, Germany) was wrapped around the Falcon tube, 

isolated with isolating tape (ArmaFlex, armacell GmbH, Münster, Germany) 

and connected to a Thermostat (FP30 MH, JULABO GmbH, Seelbach, 

Germany). The phantom tubes were attached to a positioning aid to push them 

into the magnet. The object to be tested has to be in the centre of the magnet 

to get the best possible image.  

CEST images were obtained by pre-saturated FISP (fast imaging with steady 

state precession) scans with a field of view (FOV) 30 x 30 mm2, a matrix size of 

64 x 64, a slice thickness of 2 mm, a flip angle of 9°, a repetition time TR = 3.2 

ms and an echo time TE = 1.6 ms. Before measuring the CEST effect, B0 

Figure 10: in vivo MR image of the head of B. saida 
obtained with a 1H/13C resonator with an inner 
diameter of 72 mm. The yellow circle marks the area 
sensitive to the 31P-NMR-surface coil. 

Figure 11: Phantom 
tube with different 
pH values of the 
same solution in the 
NMR tubes for the 
in vitro CEST study. 
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homogeneity was optimized to a line width of 10 Hz or less. Z‐spectra were obtained using 50 

frequency offsets between −20 000 and 20 000 Hz with respect to the water signal. The 

experimental design for the in vitro study is shown in figure 12. All scan properties are given in 

table 3 in the appendix.  

Table 2:  Three different approaches for the in vitro CEST measurement. One negative control only consisting of PBS. One 
solution with PBS and BSA [10 mM] and one solution with PBS and TMAO [10mM]. Chemicals with the used concentrations to 
produce PBS are listed below. All solutions were adjusted to the following pH values: 6.5; 6.8; 7.0; 7.2, 7.5 and 7.8 and tested at 
seven different temperatures. 

Approach Solute Concentration 

[mM] 

Temperature 

[C°] 

Negative control - Phosphate 

buffered saline (PBS) 

NaCl 137.0 1, 5, 10, 15, 

20, 25, 37 

 KCl 2.7  

 Na2HPO4 * 2H2O 10.0  

 KH2PO4 1.8  

PBS + Bovine serum albumin 

(BSA) 

PBS 

BSA 

 

10 

1, 5, 10, 15, 

20, 25, 37 

PBS + Trimethylamine N-oxide 

(TMAO) 

PBS 

TMAO 

 

10 

1, 5, 10, 15, 

20, 25, 37 
 

  

All scan images with different excitation frequencies were stacked to a hyperstack. In every 

hyperstack the different regions of interest (ROI) in the NMR tubes were selected (fig. 13) and 

evaluated in Fiji image J (Schindelin et al. 2012, Rueden et al. 2017). The data gained from Fiji 

Figure 12: Experimental design of the in vitro 
study with A: header tank; B: water hose; C: 
isolation; D: NMR tubes with the testing solution; 
E: magnet resonance tomograph. On the left the 
realistic proportions are shown. 
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image J was loaded into MATLAB (Version R2019a, The MathWorks Inc., Natick, USA). Z-Spectra 

(exepmlary shown in fig. 14) were generated in MATLAB.  

The CEST effect for a chemical shift at 1 ppm and 2.8 ppm were evaluated (fig. 15). TMAO shows 

a mean CEST effect for a pH value of 6.5 of 

15% ± 20% (15°C) and 27% ± 19% (10°C) as 

well as a CEST effect of 11% ± 15% for a pH 

value of 7.5 at 37°C and a chemical shift of 1 

ppm. BSA does not show any CEST effect 

higher than 6% ± 4%, also at a chemical shift 

of 1 ppm. The CEST effect is much higher for 

a chemical shift of 1 ppm than for a chemical 

shift of 2.8 ppm. A graph with a smaller scale 

for a chemical shift of 2.8 ppm is shown in the 

appendix 

 

 

1 
3 2 

4 5 6 

Figure 13:MR image of a phantom with a different pH 
value (6.5; 6.8; 7.0; 7.2; 7.5; 7.8) in each tube. The yellow 
circles show the chosen ROI that was evaluated first in Fiji 
image J and then in MATLAB. 

Figure 14: Z-spectra showing the CEST effect in percent for a chemical shift of 1 ppm and 2.8 ppm. In A with a high 
CEST effect and in B no CEST effect. A shows the CEST effect for TMAO at 15 °C at a pH of 7. B shows the CEST effect 
for BSA at 5°C at a pH of 7.5. 

A                B 
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2.4.2 In vivo CEST measurements 

Pilot and RARE scans (Rapid acquisition with 

relaxation enhancement) were conducted 

before the in vivo CEST measurements, were 

performed to detect an optimal slice of the 

brain. A MRI slice which displays a preferably 

large area of the brain was chosen for CEST. 

Measurements were performed in triplets 

alternating with RARE scans to control the 

position of the fish. The chosen slice with the 

ROI is shown in figure 16.  

 

 

 

Figure 16: Testing slice for the in vivo CEST measurements 
with the chosen ROI in the yellow box. The MRI scan was 
obtained with a 1H/13C resonator with an inner diameter of 
72 mm. 

Figure 15: The CEST effect for a chemical shift of 1 ppm in A (BSA) and C (TMAO) and for a chemical shift of 2.8 ppm in B (BSA) 
and D (TMAO). TMAO shows a CEST effect for δ 1ppm at a pH of 6.5 and a temperature of 10°C and 15°C.  
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2.5 Statistical analysis 

For any significance analysis ANOVA with post-hoc tests were performed in GraphPad Prism 

(Prism Version 8.1.2., GraphPad Software, Inc., San Diego, USA). All graphs were plotted in 

GraphPad Prism. ANOVA tests were conducted with the pHi values of three hours before 

switching to hypercapnia. The pHi values under hypercapnia as well as the pH i values under 

normocapnia were evaluated against the mean of the pHi values under control conditions.  

3 Results 

3.1 In vivo 31P-NMR spectroscopy 

With in vivo 31P-NMR spectroscopy it is possible to visualise the abundance and the 

concentration of phosphometabolites such as sugar phosphates (sP), cyclic 

adenosinmonophosphate (cAMP), inorganic phosphate (Pi), phosphodiester (Pd), 

phosphocreatine (PCr) and three different adenosinetriphophate (ATP) subunits α-, β- and γ 

γ,Figure 17 presents such a spectrum obtained by in vivo 31P-NMR spectroscopy under control 

conditions. All the phosphometabolites mentioned above could be detected. Figure 18 displays 

the effect of different pH values on the position of Pi and its chemical shift δ to PCr.  

 

PCr 

ATP 

Pi  Pd 

sP 

 cAMP 

Figure 17: Typical in vivo 31P-NMR spectrum showing relative concentrations of phosphometabolites in a brain cell of 
B. saida. Phosphometabolites in the brain are sP = sugar Phosphates; cAMP = cyclic AMP; Pi = inorganic Phosphate; PCr = 
Phosphor creatine and the three phosphate groups γ-, α- and β-ATP. The PCr peak was set to 0 ppm. The other metabolites 
have a chemical shift in ppm in relation to PCr. 

δ 

γ               α            β 
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Figure 19 A shows a stack plot of in vivo 31P-NMR spectra two hours of control conditions prior 

to hypercapnic conditions. The signal intensity of the ATP signals is relatively stable before 

switching to hypercapnia, while the PCr and Pi signals show some fluctuations. The first two 

hours under hypercapnic conditions are displayed in figure 19 B. The signal intensity of PCr is 

diminished after switching to hypercapnia but increases again over time. The acquisition of 

each spectrum takes five minutes. As shown in figure 19 C the PCr signal intensity decreases 

after switching back to normocapnia but also increases again after one hour. All stacked spectra 

are exemplarily shown for fish 3.  

 

Figure 18: Two 31P-NMR spectra showing a different chemical shift of Pi in relation to PCr. The 
difference in δ between the two displayed spectra is 0.11 ppm. 

δ 
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Figure 19: Stacked 31P-NMR spectra of A: two hours of control conditions before switching to 
hypercapnia. B: the first two hours of hypercapnic conditions and C: the recovery time under 
normocapnic conditions after hypercapnia. The stacked spectra show the fluctuations in the signal 
intensity of the phosphometabolites. The acquisition of every spectrum takes five minutes. The 
displayed spectra were acquired in experiments with Fish 3. 
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3.2 Energy values 

Fish 1 was showing a much higher Pi/PCr ratio during the whole experiment than the other 

three fish (fig. 20 A). The values for fish 1 in hypercapnic conditions are significantly higher than 

the values in control conditions. This is not the case for any of the other three fish (fig. 20 B-D). 

The Pi/PCr ratio of all four fish is displayed in figure 20 A-D. The energy values stay relatively 

stable during the complete time of the experiment for fish 2, 3 and 4 (fig. 20 B-D). The values 

of Pi/PCr ratio are in an expected range (0.05 - 0.6 ru) when compared to Kushmerick et al. 

(1992), Burgard (2004) and Bock et al. (2019). A relation of the Pi/PCr ratio of all four fish is 

shown in figure 20 E. 

Figure 20:The energy values of every fish indicated by the Pi/PCr ratio, given in relative units [ru], and displayed in A-D. A comparison 
of all fish is shown in E. Time 0 is 3 hours before switching to hypercapnia. 
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3.3 pHi regulation 

Diagrams for all fish start with a three hour control before switching to hypercapnia, then four 

hours of hypercapnic conditions and then two hours of normocapnic conditions, except for fish 

1 where only one hour of normocapnia could be performed. Every datapoint is 15 minutes 

apart from the following and represents the mean value of three 31P-NMR spectroscopy 

measurements.  

3.3.1 Fish 1 

The mean pHi of fish 1 during control is 7.46 ± 0.08 and decreases during hypercapnia by 0.6 

pH units to a minimum of 6.87 ± 0.02. The mean pHi during hypercapnia is 7.18 ± 0.08. After 

the hypercapnic treatment fish 1 shows an overshooting pHi of the mean normocapnic value 

of 0.13 pH units to a pHi of 7.59 ± 0.24 compared to the mean control and a maximum 

overshoot of 0.3 pH units (fig. 21). The pHi as well as the pHw were much lower for fish 1 

compared to fish 2, 3 and 4. Nevertheless fish 1 survived and was still alive five weeks after the 

experiment. However, the energy values as well as the pHi and pHw of fish 1 indicate an altered 

experimental setup which is why fish 1 will not be taken into account for further statistical tests 

and will be discussed on its own. All figures showing mean values of all fish, show mean values 

of fish 2;3 and 4. Stacked spectra of fish 1 can be seen in the appendix (fig. 32-35).  

Figure 21: pHi and pHw of fish 1 during the experiment. Since pHw was especially low on this experiment day it is plotted 
separately (red line). 

Control Hypercapnia Norm. 
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3.3.2 Fish 2 

The pHi of fish 2 decreases from a mean of 7.47 ± 0.03 under control to a minimum of 

7.30 ± 0.03 right after switching to hypercapnia (fig. 22). The mean pHi during hypercapnic 

conditions is 7.37 ± 0.03. After switching back to normocapnia the pHi decreases again by 0.07 

pH units. The pHi rises throughout normocapnia but the mean value for the two hours after the 

CO2 treatment is just 0.01 pH units higher than under hypercapnia. There is no overshoot during 

normocapnia in fish 2.  

 

3.3.3 Fish 3 

Fish 3 is very stable throughout the whole experiment and only shows a decreased pH i right 

after switching from control to hypercapnia (fig. 23). The pHi decreases by 0.1 pH units from a 

mean of 7.47 ± 0.01 during control to 7.37 ± 0.05 under hypercapnia. But the fish can restore 

its pHi quickly and the mean pHi value during hypercapnia is 7.42 ± 0.02. The pHi recovery is not 

affected by the switch back to normocapnia. The mean pHi in the last two hours of the 

experiment (during normocapnia) is 7.46 ± 0.01.  

 

 

Control Normocapnia Hypercapnia 

Figure 22: pHi and pHw of fish 2 during the experiment. 
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3.3.4 Fish 4 

Fish 4 has a rather stable pHi during control and a very instable pHi during hypercapnia (fig. 24). 

The mean pHi during control is 7.45 ± 0.02 and during hypercapnia 7.39 ± 0.02. The minimum 

pHi during hypercapnia is 7.28 ± 0.02. During normocapnia the mean pHi is 7.43 ± 0.01. Three 

Control Normocapnia Hypercapnia 

Figure 24: pHi and pHw of fish 4 during the experiment. 

Figure 23:pHi and pHw of fish 3 during the experiment. 

Control Normocapnia Hypercapnia 
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hours after switching to hypercapnia the pHi is again stable and also does not drop again after 

switching back to normocapnia. Fish 4 shows a slight overshoot which is regulated again quickly. 

3.3.5 Mean 

When looking at the mean values of all fish in figure 25 the pHi during control is 7.45 and it 

decreases during hypercapnia to a minimum of 7.37 and a mean value of 7.39. In the 

normocapnic treatment the mean pHi of all fish is 7.42. As 

shown in figure 26 the pHi values during hypercapnia differ 

significantly (p<0.0001) from the pHi values during control 

and normocapnia.  

 

 

 

 

 

 

 

Figure 25: pHw and a mean pHi of fish 2, 3 and 4 during the experiment. 

Control Normocapnia Hypercapnia 

**** 

Figure 26: Boxplots of all datapoints in the three 
different treatments with a significant difference 
(p-value < 0.001) of the datapoints during 
hypercapnia compared to the control and 
normocapnic datapoints. 
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3.4 In vivo CEST measurements 

The results of the CEST measurement also show a higher CEST effect during hypercapnia (fig. 

27 A-C). The CEST effect is depending on various parameters such as temperature, solute 

proton concentration and pH. The CO2 concentration, and therefore the water pH, is the only 

parameter that has been deliberately changed. Therefore, the higher CEST effect indicates an 

altered pHi or a changed solute proton concentration. Figure 27 A shows the percentage change 

of the CEST effect over time during the control and hypercapnia. The CEST effect has been 

evaluated for a chemical shift of 1 ppm as well as 2.8 ppm. Figure 27 B and C show the mean 

CEST effect values for a chemical shift of 1 ppm (fig. 27 B) and 2.8 ppm (fig. 27 C). 

 

4 Discussion 

The aim of this study was the direct observation of hypercapnia induced changes in the brain 

of B. saida under OA. The energy values as well as the pHi changes under hypercapnia were 

investigated with 31P-NMR spectroscopy and pHi results were verified with CEST 

measurements.  

4.1 Water chemistry 

Water parameters were tested regularly and the water was exchanged once a week but 

nevertheless there were fluctuations in the pH of 1 pH unit in H2 and 1.38 pH units in H1. Figure 

30 gives an overview of these fluctuations. During the experiments with fish 2, 3 and 4 pHw was 

close to the striven pHw of 8 in H1 and 7 in H2. Figure 30 also shows how low pHw was on the 

day of the experiment with fish 1 and confirms the decision to discuss fish 1 separately in 4.4. 
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Figure 27: A: The changing CEST effect in vivo, over time, evaluated for 1 ppm and 2.8 ppm. Every datapoint represents the 
mean value of three CEST measurements. The CEST results show a higher effect during hypercapnia for a chemical shit of 1 ppm 
as well as for 2.8 ppm. B: Mean values for the control (blue) as well as the hypercapnic (red) treatment evaluated for 1 ppm and 
in C: 2.8 ppm. Both graphs show a higher CEST effect during hypercapnia than during the control. 
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pCO2 was stable throughout the whole time of the experiment (fig. 31). Therefore, the 

fluctuations in pH could not be due to any fluctuations in pCO2. A possible explanation would 

be that the total alkalinity (TA) was higher than expected. Measured TA was in fact higher than 

calculated TA . Kim et al. (2006), Kim & Lee (2009) and Kawahata et al. (2019) proposed that 

dissolved organic matter or organic acid, such as uric acid, can have an influence on seawater 

alkalinity and enhances acidification. On the other hand, those studies deal with phytoplankton 

and bacteria. Also fish do not excrete uric acid but ammonia and urea (Randall & Wright 1987). 

Still, higher alkalinity is the best explanation for the decreased pHw.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: water pH of both H1 and H2 during the whole time of the experiment. Areas 
underlaid in red are actual experiment days were 31P-NMR scans on B. saida were 
performed. 

normocapnia 

hypercapnia 

mean normocapnia 

mean hypercapnia 

Experiment days 

Figure 29: pCO2 of both the normocapnic water reservoir and the hypercapnic water 
reservoir during the whole time of the experiment. The striven pCO2 values for the 
normocapnic tank was 500 ppm and for the hypercapnic tank 3500 ppm. 

hypercapnia 

normocapnia 
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4.2 pHi regulation 

Many studies investigated the importance of pHi regulation in the brain (Chesler & Kaila 1992, 

Chesler 2003, Chung et al. 2014). Larsen et al. (1997) stated that the pHi status is better 

regulated and more rapidly restored than pHe. A mean pHi of 7.45 ± 0.04 was observed under 

control conditions in all experimental animals over time. This is very well in the physiological 

range when looking at other studies on the big skate Raja ocellate (Mitchill, 1815) (Wood et al. 

1990), on the Antarctic Black rockcod Notothenia coriiceps (Richardson, 1844) (Schmidt 2012), 

on the Antarctic eelpout Pachycara brachycephalum (Pappenheim, 1912) and the temperate 

eelpout Zoarces viviparus (Linnaeus, 1758) (Van Dijk et al. 1999, Mark et al. 2002). The velocity 

of pH regulation during hypercapnia is tissue- and species-specific (Wood et al. 1990, Larsen et 

al. 1997, Bock et al. 2001, Burgard 2004, Baker & Brauner 2012, Schmidt 2012, Regan et al. 

2016, Wermter et al. 2018). However, in marine fish pH changes are compensated relatively 

fast because of the high ion concentration in the seawater and hence the amount of ions 

available for acid-base regulation and ionic exchange across the gills (Perry 1982, Heisler 1986). 

The pHi is lowest within the first two hours after switching to hypercapnia. Afterwards, it is 

increasing again, until it reaches control values. The decline in pHi starts immediately when 

switching to hypercapnia. The pHi value during hypercapnia is significantly lower than the 

control values (p<0.0001). Many studies state that pHi regulation is only completed after 24 

hours (Heisler 1978, Toews et al. 1983, Wood et al. 1990, Schmidt 2012, Schmidt et al. 2014). 

Since hypercapnia treatment only lasted four hours in this study and after two hours pH i values 

settled near control values, these results cannot be supported. After four hours pHi correction 

is completed. This leads to the conclusion that a pCO2 concentration of 3500 ppm does not 

pose a major threat to B. saida. 

Burgard (2004) observed a pHi drop under hypercapnic conditions (10 000 ppm) of 0.05 pH 

units in the muscle tissue of P. brachycephalum, using 31P-NMR spectroscopy. Wood et al. 

(1990) performed a study on R. ocellate using the DMO technique (5,5-dimethyl-2,4-

oxazolidinedione) technique by Waddell and Butler (1959). They observed a brain pHi of 0.3 

units lower during hypercapnia (pCO2 = 7.5 Torr) than under control conditions. The results of 

Wermter et al. (2018) in a previous study on the impact of OA on B. saida indicate a drop in the 

brain pHi of 0.2 pH units during hypercapnia (pCO2 = 3 300 ppm), using CEST. The results of the 

recent study show a maximum decrease in pHi of 0.17 in fish 2 and fish 4 and a mean decrease 

of 0.05 ± 0.02 in Fish 2,3 and 4 and therefore support the findings of the above-mentioned 
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studies. Fish 1 shows a maximum decrease of 0.9 units in the brain pHi and is, as previously 

mentioned, discussed in 4.4. 

4.2.1 in vivo CEST measurements 

The results for the CEST measurements match those of Wermter et al. (2018) with an increase 

by 2.1% (1 ppm) and 2.5% (2.8 ppm) in the CEST effect during hypercapnia. Therefore, it can 

be concluded that the calculated pH by the measured CEST effect reflects the pH measured 

with 31P-NMR spectroscopy. The evaluation for a chemical shift of 2.8 ppm displays the TauCEST 

effect. However, it is not yet clear which metabolite is responsible for a chemical shift of 1 ppm 

at low temperatures. Wermter et al. (2018) first detected a high CEST effect at low 

temperatures for a chemical shift of 1 ppm. The in vitro experiments were designed to find out 

which metabolite is responsible for this high CEST effect which is why phantoms were designed 

with BSA and TMAO, as these metabolites were not tested in the in vitro study of Wermter et 

al. (2018). BSA did not show any CEST effect higher than 6 % which is a lot less then what was 

found for δ at 1 ppm in the study by Wermter et al. (2018). Lee et al. (2016) investigated the 

CEST effect for BSA at 37°C and concluded that BSA absorbs at 2.8 ppm not 1 ppm. There is no 

literature about the CEST effect on TMAO. As observed in the in vitro experiments the CEST 

effect is very prominent for TMAO, but at higher temperatures than in the in vivo experiments. 

Therefore, it is very unlikely that either TMAO or BSA are responsible for the in vivo CEST effect 

of δ at 1 ppm at 1°C.  

4.2.2 Active ion transport as part of pH regulation 

The initial drop in intracellular pH and its increase with time indicates active acid-base 

regulation. pH regulation is accomplished by active mechanisms like transporters, ion channels 

and passive mechanisms. Fish ion homeostasis is mainly achieved by the ion transporter 

Na+/K+ ATPase as well as other active ion transporters such as H+ ATPase and Ca2+ ATPase (Lin 

and Randall 1991, Flik and Verbost 1993). These ion transporters are ATP, hence energy 

dependent. The Na+/K+ ATPase alone uses 10% of the total ATP turnover (Gibbs and Somero, 

1990). pH regulating ions are, amongst others, sodium (Na+), hydrogen (H+), chloride (Cl-) and 

bicarbonate (HCO3
-). Acid-base regulation seems to be more dependent on Cl- and HCO3

- rather 

than Na+ or H+ (Toews et al. 1983, Larsen et al. 1997). It is stated that the HCO3
- uptake is 

primarily responsible for the pHi regulation, namely the Cl-/ HCO3
- exchanger in the gills (Heisler 

1978, Toews et al. 1983, Wood et al. 1990, Larsen et al. 1997). Baker & Brauner (2012) even 
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stated in a study on the white sturgeon (Acipenser transmontanus; Richardson, 1836) that a 

decrease in HCO3
- during elevated pCO2 may be responsible for the mortality of the fish. The 

accumulated HCO3
- is gained from the environmental seawater, as Toews et al. (1983) could 

show in an experiment on the European conger Conger conger (Linnaeus, 1758). The HCO3
- 

concentration in the surrounding water decreases during hypercapnia and increases in the 

extracellular space. In the first half an hour HCO3
- is transferred from the intracellular to the 

extracellular space in the fish, but is regained afterwards from the environment (Toews et al. 

1983). HCO3
- uptake is postulated to slow down after four hours of hypercapnia (Toews et al. 

1983, Milligan & Wood 1986, Wood et al. 1990). However, the meaning of these findings is 

conflicting. Wood et al. (1990) observed a slowed down HCO3
- uptake and pHi that settled at 

70% of the control value, whereas Milligan & Wood (1986) showed that pHi adjustment is fully 

restored after four hours of hypercapnia. Since the hypercapnic treatment in this experiment 

only lasted four hours, no further course can be discussed, but the results of the pHi values 

indicate that after two hours pHi settled near control values. With the recent experimental 

design, it was only possible to draw conclusions on the short-term, acute acclimation of B. saida 

on OA.  

Fish 1, 3 and 4 show a slight overshoot of pHi values during the recovery in normocapnia 

compared to the control. This phenomenon was also observed by Milligan & Wood (1986) and 

Burgard (2004). When pHi is fully restored it is close to control values. There is no significant 

difference between pHi during control and during the recovery in normocapnia. It is stated that 

the HCO3
- concentration is responsible for this pHi overshoot during recovery from hypercapnia 

(Milligan & Wood 1986). 

4.2.3 Behavioural changes resulting from pH changes 

As previously discussed, the main regulating ion during hypercapnia is HCO3
-. A rising 

intracellular HCO3
- concentration interferes with the GABAAR leading to a depolarization in 

brain cells (Regan et al. 2016). An inversion of the GABAAR could result in a shifted usage of the 

brain hemispheres which results in a shifted laterality (Schmidt et al. 2017). Schmidt et al. 

(2017) found an effect of CO2 on the laterality of B. saida, which was shifted to the right during 

hypercapnia. Changed laterality can be a stress indicator as the left hemisphere is responsible 

for routine behaviour and the right hemisphere is responsible for escape and emergency 
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responses (Rogers 2010). Animals using primarily their right hemisphere are postulated to be 

stressed animals (Rogers 2010). A further stress response is discussed in paragraph 4.3. 

4.3 Energy-dependent stress response 

Acid-base regulation is an energy-dependent process (Riebesell et al. 2010, Maus et al. 2018). 

When an organism is exposed to increased pCO2 and pHw values, maintaining homeostasis is 

costly and puts the animal in a stressful situation (Claiborne et al. 2002, Popova et al. 2016). 

Maintaining pHi and pHe is costlier during hypercapnia than during normocapnia and thereby 

affects the whole organism energy budget (Michael et al. 2016). The Pi/PCr ratio gives a hint 

on the usage of energy compounds within the cell (Burgard 2004). At the beginning of 

hypercapnic treatment during this experiment, the PCr signal in the brain decreased, indicating 

reduced energy reserves in the cell to maintain ATP concentration. The Pi signal increases, 

indicating intracellular acidification (Bock et al. 2002). But after a maximum of 15 minutes, the 

PCr signal increased as well, which is why the ratio of both phosphometabolites remained 

largely unaffected. These results, however, are surprising as an increase of inorganic phosphate 

is usually accompanied by a reduction in the PCr or ATP (Kushmerick et al. 1992). Only the signal 

intensity of Pi increases during hypercapnia, but still not affecting the Pi/PCr or Pi/γ-ATP ratio.  

Even though acid-base regulation is an energy-dependant process, the time course of Pi/PCr 

ratio did not show any differences between hypercapnic and normocapnic treatment (except 

for fish 1, fig. 20 A). There were also no differences in PCr/γ-ATP ratio during hypercapnia and 

normocapnia (except for fish 1, data not shown) as well as Pi/γ-ATP ratio (data not shown). 

These results match those of Burgard (2004) and Schmidt (2012) who also found no difference 

in Pi/PCr ratio as well as PCr/γ-ATP (Burgard 2004), despite a significant drop in pHi during 

hypercapnia. The energy status of the brain of the animals in this study can only be discussed 

on the basis of the Pi/PCr, PCr/γ-ATP and Pi/γ-ATP ratio, because 31P-NMR spectroscopy failed 

to continuously detect a β-ATP signal. The same problem was present in a study by Schmidt 

(2012). Since the Pi signal intensity increased during hypercapnia and the PCr as well as the ATP 

signals remained the same throughout control and hypercapnia, phosphometabolites had to 

be generated from another tissue. In fish 3 PCr signal not only remained the same but even 

increased during hypercapnia. A possible explanation for this would be movement of the fish 

and hence, detection of a different tissue. Nevertheless, acid-base regulation is an energy-

dependant process and the used energy has to be restored somehow. A possible explanation 
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for these findings is the temporal energy buffering capacity of creatine phosphokinase 

(Wallimann et al. 1992). Tappan (1971) found a leakage in creatine phosphate in the muscle of 

the guinea pig into the blood during hypercapnia. Moreover, Watanabe et al. (2016) also found 

changes in the PCr signal intensity in the brain of mice during hypercapnia without changes in 

ADP or ATP concentration and pHi calculations were performed using the creatine 

phosphokinase equilibrium. There remains the question of the source of the increased Pi signal 

intensity. Hayder (1972) found a decreased signal intensity of Pi in the erythrocytes of guinea 

pigs during the first six hours of hypercapnia. The increased amount of Pi in the brain could thus 

originate from Pi of the erythrocytes.  

4.4 Fish 1 

Fish 1 was accidently exposed to a much lower pHw in comparison to the other experiments 

(see water chemistry). Therefore, the results of this experiment were not taken into account 

for any previously discussed statistical analysis and will be discussed separately in the following. 

Fish 1 is the only animal in this study that shows extremely high values for the Pi/PCr ratio as 

well as the PCr/γ-ATP ratio. Moreover, is the decrease in pHi during hypercapnia extreme and 

very different from the other fish in this study. Fish 1 is also the only fish that shows a difference 

in the Pi/PCr ratio during hypercapnia compared to normocapnia. Not surprisingly the pHi 

values during hypercapnia are significantly lower than during normocapnia and the control 

values. The values during normocapnia were 0.3 units higher during the control, but this 

difference was not significant. The lowest pHi value during hypercapnia was 0.9 units below the 

highest value during normocapnia. The biggest difference in all other fish in hypercapnia to 

normocapnia was 0.17 pH units. Baker & Brauner (2012) investigated the effects of hypercapnia 

on white muscle tissue, liver and blood of A. transmontanus (15 – 90 mmHg pCO2). It was 

observed that a drop in blood pH of 1.0 pH unit in A. transmontanus could not be compensated 

anymore. These results indicate that the decrease of 0.9 units in pHi in fish 1 was near lethal 

values. The observed pHi values as well as the Pi/PCr and PCr/γ-ATP ratios indicate severe 

physiological conditions, when compared to the literature, although the animal survived the 

experiment. This is another indicator for the tolerance of B. saida.  

4.5 Comparison of CEST and in vivo 31P-NMR spectroscopy 

31P-NMR spectroscopy as well as CEST measurements are non-invasive methods for 

intracellular pH determination. CEST MRI has a sensitivity advantage over 31P-NMR 
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spectroscopy and enables the preservation of localized NMR measurements (Ji et al. 2017). pH 

has a direct effect on the chemical exchange in metabolites, which makes CEST an ideal method 

to observe any changes in pH in vivo (Kogan et al. 2013). Limitations to the CEST method are 

the exact determination and quantification of pH values. Any movement of objects will hamper 

CEST MRI, which is challenging when working with unanaesthetised and unfixed animals. One 

advantage of in vivo 31P-NMR spectroscopy over CEST is the acquisition time. While the 

acquisition of non-localized 31P-NMR spectroscopy in this study only took five minutes, the 

acquisition of an in vivo CEST MRI took 45 minutes. Therefore, any short-term changes in pH 

are not visible in CEST measurements, but they are in 31P-NMR spectroscopy. CEST is sensitive 

to changes in the solute proton concentration, temperature and pH (Kogan et al. 2013, Pavuluri 

& McMahon 2017, Wermter et al. 2018). When temperature is stable, an increase in the solute 

proton concentration or a decreased pH can be responsible for the increased CEST effect. 

Non-localized 31P-NMR spectroscopy cannot determine the pH in an exact region as CEST 

measurements can, but it can provide a quantitative pH value after calibration. But also 

concerning the solution of exact pH values 31P-NMR spectroscopy is limited. The only method, 

so far, that can determine the exact pHi of an organism is the homogenate method (Pörtner et 

al. 1990). This method on the other hand only allows point measurements not a time course of 

acid-base regulation, as the organism has to be killed to conduct such measurements (Pörtner 

et al. 2010). Inaccuracy in evaluation of the spectrum can arise from movement of the fish, 

occurrence of two Pi peaks from different compartments such as muscle tissue or blood 

plasma, as well as the personal error. The latter can be minimised by only one person evaluating 

the spectra. A shift difference in Pi of 0.1 already leads to a difference in pH of 0.1 pH units. On 

the other hand, different Pi peaks from different compartments can also be advantageous, as 

one can evaluate and differentiate between different tissues (Schmidt 2012). Further 

discussion of the contribution of different tissues to the overall Pi peak follows. This exact 

determination of different peaks and the good signal to noise ratio is especially seen in a 9.4 T 

magnet (Schmidt 2012).  

Since non-localized 31P-NMR spectroscopy does not measure one explicitly selected region the 

question arises on how much each compartment adds to the overall Pi signal. Various studies 

postulated that muscle tissue (Sartoris et al. 2003), cardiac muscle (Schmidt 2012), and 

mitochondria (Van Waarde et al. 1990) do not add to the detected Pi signal in the brain. It is 
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stated that the Pi signal in these tissues is below detection limits. The only remaining tissue 

possibly adding to the overall Pi signal is the gill tissue. Van Waarde et al. (1990) found a 

detectable Pi signal of the gills with a determined pHi of 6.98 ± 0.07 under control conditions. 

This is much lower than the determined pHi of 7.45 ± 0.04 in the brain of B. saida in this study 

and thus can be excluded.  

The combination of CEST and 31P-NMR spectroscopy can prove the operability and accuracy of 

in vivo 31P-NMR spectroscopy. In this study combining CEST and 31P-NMR spectroscopy in one 

animal was not possible due to technical limitations. Comparing the results of both methods in 

the same experimental setup though, indicates that non-localized 31P-NMR spectroscopy either 

measures primarily the brain or that the surrounding tissues do not differ significantly from the 

pHi values in the brain. This hypothesis matches previously mentioned results from other 

studies and is supported by Schmidt (2012) and Bock et al. (2019). In both studies localized and 

non-localized 31P-NMR spectroscopy were compared. In the recent study the combination of 

CEST and 31P-NMR spectroscopy leads to the same conclusion that the primary compartment 

contributing to non-localized 31P-NMR spectroscopy is the brain. Another study, combining 31P-

NMR spectroscopy and CEST MRI, was performed by Schüre et al. (2019) coming to the same 

conclusion, that CEST MRI can prove the results obtained by in vivo 31P-NMR spectroscopy and 

vice versa. 

The acquisition of a localized 31P-NMR spectrum takes two hours and 55 minutes using a 4.7 T 

animal scanner (Schmidt 2012) which is even longer than it takes to acquire a CEST MRI. For 

this reason and the limitation in spatial resolution as well as lower sensitivity, CEST MRI is 

preferable to localized 31P-NMR spectroscopy. Recapturing previous discussions, 31P-NMR 

spectroscopy is the method of choice when acquiring a time-course of acid-base regulation in 

an organism and in combination with CEST MRI it can prove the results and can give better 

resolution of small pHi changes.  

4.6 Conclusions 

In the present study the impact of OA on B. saida and its adaptation was analysed. Using non-

localized 31P-NMR spectroscopy it was possible to show a significant decrease of brain pHi in 

B. saida after exposing the animal to 3500 ppm CO2. The mean reduction in pHi of fish 2, 3 and 

4 was calculated to be 0.05 ± 0.02 and a maximum reduction was found to be 0.17. After two 

hours of hypercapnic treatment, pHi started to rise again to control values and after four hours 
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control values were reached already. pHi under control around 7.45, as well as under 

hypercapnia around 7.39, was very well comparable to literature. With the recent experimental 

design of four hours of hypercapnic treatment it is not possible to draw conclusions on the 

adaptation of B. saida on ocean acidification but on its short-term acclimation on acutely 

elevated pCO2. CEST MRI could prove that the determined reduction in pHi was indeed detected 

in the brain and that the calculated pH by the measured CEST effect reflects the pH measured 

with 31P-NMR spectroscopy. The combination of CEST and non-localized 31P-NMR spectroscopy 

seems like the best method combination so far to gain information about the time course of 

acid-base regulation and the localization of pH changes in the brain with relatively high 

resolution. For the present study, it can be concluded that B. saida can acclimatise to high pCO2 

values over a limited period of time.  

However, the resolution of 31P-NMR spectroscopy is not sensitive enough to detect the small 

changes in the path of generating ATP to regulate acid-base status within the cell. Hence, ATP 

generation remains questionable.  

4.7 Perspectives 

For further studies it would be interesting to adjust the experimental setup so that both 

methods (non-localized 31P-NMR spectroscopy and CEST MRI) can be performed in the same 

organism. Wermter et al. (2018) could show that there is no learning effect in B. saida when 

exposed to hypercapnic water, so the experimental animal could be held in the chamber for 

several days first to acclimatise, then in hypercapnia measured with 31P-NMR spectroscopy and 

after some time to recover again in hypercapnia measured with CEST MRI. Simultaneous 

measurements of both methods would be even more interesting and better to compare or to 

proof one another. To draw conclusions on how OA affects populations of B. saida it would be 

interesting to see how long the animal can compensate such pCO2 values and how acid-base 

regulation works after not four or 24 hours of hypercapnia but after days. A similar experiment 

was performed by Burgard (2004) on P. brachycephalum. In this experiment CO2 concentrations 

of 10 000 ppm pCO2 were used that that were non-lethal for P. brachycephalum. However, 

these CO2 concentrations are higher than anything predicted in the near future. Further 

research on the energy metabolism of the brain of B. saida is needed to understand the 

mechanism behind the acid-base regulation.  
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Appendix 

Table 3:Scan properties of all performed NMR scans in this study (31P-NMR spectroscopy, in vitro CEST and in vivo CEST 
measurements). 

Scan properties 31P-NMR spectroscopy  In vitro CEST In vivo CEST 

method 31P-Singlepulse Pre-saturated FISP Pre-saturated FISP 

FOV  30 x 30 mm2 48 x 48 mm2 

Matrix size  64 64  

Slice thickness  2 mm 4 mm 

Flip angle 65° 9° 9 ° 

TR 1200 ms 3.2 ms 3 ms 

TE  1.6 ms 1.65 ms 

Frequency offset  −20 000, −10 000, −5000, −2250, −2125, 

−2000, −1875, −1750, −1625, −1500, 

−1375, −1250, −1125, −1000, −875, 

−750, −625, −500, −375, −250, −188, 

−125, −62, 0, 62, 125, 188, 250, 375, 

500, 625, 750, 875, 1000, 1125, 1250, 

1375, 1500, 1625, 1750, 1875, 2000, 

2125, 2250, 5000, 10 000 and 20 000, all 

in Hz 

Acquisition bandwidth 10 000 Hz   

Reference power 2.714 W   

Excitation pulse bp32   

Pulse length 0.2 ms   

Pulse power 16.9625 W   

Averages 256 4 4 
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Figure 30: Stacked 31P-NMR spectra of two hours of control conditions before switching to 
hypercapnia in the experiment in fish 1. 

Figure 31: Stacked 31P-NMR spectra of one hour of control and one hour of hypercapnia in 
the red box in the experiment with fish 1. 

Figure 32: Stacked 31P-NMR spectra of the first two hours of hypercapnic treatment in the 
experiment with fish 1. 
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Figure 33: Stacked 31P-NMR spectra of the last two hours of hypercapnic treatment in 
the red box and then the normocapnic treatment outside the red box for the experiment 
with fish 1. 

Figure 34: The CEST effect for BSA and TMAO evaluated at 2.8 ppm on a smaller scale. The CEST Effect is again higher for TMAO than for BSA.  
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Figure 35: Shown here are the first hours after placing the experimental animal in the testing chamber. A: Mean values for fish 1, 
2, 3 and 4. B: Mean value for fish 2, 3 and 4.C-F show the values for each fish alone. 
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