

Coupled Data Assimilation for Ocean-Biogeochemical Models

Lars Nerger, Himansu Pradhan, Michael Goodliff

Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Bremerhaven, Germany

ISDA 2019, Kobe, Japan, January 21 – 24, 2019

Coupled Ocean-Biogeochemical Models

Physics

Ocean Circulation Model

Ecosystem

Biogeochemical Model, ...

Finite-Element Sea Ice Ocean Model FESOM Regulated Ecosystem Model – Version 2 REcoM2

Biogeochemical Process Models

Example: REcoM-2

Regulated Ecosystem Model – Version 2 (Hauck et al., 2013)

Satellite Ocean Color Observations

This is not a photograph!

Spectral data at 5-8 wavelengths in visible part of spectrum

spectral bands in ESA OC-CCI data

- Satellite data is water leaving radiance or surface reflectance
 - → Data products are derived from this

Picture source:

Suomi-NPP/VIIRS, December 10, 2018 NASA (oceancolor.gsfc.nasa.gov)

Satellite Chlorophyll Data (the most common product)

Natural Color 3/16/2004

Chlorophyll Concentrations

Chlorophyll computed as

4th order polynomial of reflectance at two wavelengths:

$$log_{10}(CHL_a) = a_0 + \sum_{i=1}^{4} a_i \left(log_{10} \left(\frac{R(\lambda_{blue})}{R(\lambda_{green})} \right) \right)^i$$

or combined with linear three-wavelength dependence

(this is empirical! – derived from statistical analysis)

Figure: NASA "Visible Earth", Image: SeaWiFS Project, NASA/GSFC & Orbimage

Example: Chlorophyll-a (SeaWiFS)

Daily gridded SeaWiFS chlorophyll data

- gaps: satellite track, clouds, polar nights
- ➢ 30% to 50% data coverage
- irregular data availability

Data Assimilation Issues

Model

- Skill
- Complexity
- Observations
- Data gaps
- Data error level
- Empiric algorithms

Assimilation

- Approx. log-normal
- Diurnal variability
- Representation errors

Much higher error than in physics Only fraction of fields observed

- Fields are less constrained
- 15 30%
- → representation error
- Need to transform concentrations
- \rightarrow representation error
- Unknown, but expected to be high

Example 1

Assimilation of total chlorophyll

to constrain 2 phytoplankton groups

Example: Global Chlorophyll Assimilation

MITgcm

General ocean circulation model of MIT (*Marshall et al., 1997*).

Global configuration

80°N - 80°S, 30 layers

Resolution:

- lon: 2 deg
- lat :2 deg in Northup to 0.38 deg in South

REcoM-2

Regulated **Eco**system Model – Version **2** (Hauck et al., 2013)

Assimilate with PDAF (http://pdaf.awi.de)

Assimilation of Total Chlorophyll

Assimilated: Total chlorophyll from ESA OC-CCI

Assimilation:

- Assimilate satellite total chlorophyll (ESA Ocean color - climate change initiative): Chl_{TOT}= Chl_{DIA} + Chl_{PHY}
- Handle logarithmic concentrations log(Chl_{TOT}), log(Chl_{DIA}), log(Chl_{PHY})
- Multivariate update through, e.g. Cov(log(Chl_{TOT}), log(Chl_{DIA}))
- How are both phytoplankton groups influenced?
- Validate with satellite and in situ data

Assimilation of Total Chlorophyll

Verification: Phytoplankton group data SynSenPFT (Losa et al. 2018)

Effect on Chlorophyll in Phytoplankton Groups

- Assimilation improves groups individually through crosscovariances
- Stronger error-reductions for Diatoms
- In situ data comparison:

RMSe	Free	Assim.
Diatoms	1.3	0.91
Small Phyto.	0.53	0.45

(bias and correlation also improved)

Current work

 Asses impact of assimilating chlorophyll group data (much lower errors for diatoms)

Pradhan et al., J. Geophy. Res. Oceans, in press, doi:10.1029/2018JC014329

Ensemble-estimated Cross-correlations

- Significantly different correlations for small phytoplankton and diatoms
- Negative correlations exist (despite Chl_{TOT}= Chl_{DIA} + Chl_{PHY})

Pradhan et al., J. Geophy. Res. Oceans, in press, doi:10.1029/2018JC014329

Example 2

Weakly- and Strongly Coupled Assimilation

Constrain Biogeochemistry with Temperature Data

Example: weakly- and strongly coupled assimilation

HBM (Hiromb-BOOS Model) – operationally used at Germany Federal Maritime and Hydrographic Agency

Biogeochemical model: ERGOM

Observations – Sea Surface Temperature (SST)

- 12-hour composites
- Vastly varying data coverage (due to clouds)
- Effect on biogeochemistry?
- Assimilation using assimilation framework PDAF

Weakly & strongly coupled effect on biogeochemistry

- Changes up to 8% (slight error reductions)
- Larger in Baltic than North Sea

Weakly & strongly coupled effect on biogeochemistry

Using Logarithmic Concentrations

Summary

Parallel

- Biogeochemical model skill worse than physical
- Ocean-color observations
 - Most direct data: surface reflectance
 - Data products from empirical algorithms (chlorophyll, carbon, absorption, diffuse attenuation, ...)
- Strongly coupled DA of SST successful for linear concentrations
- Log-normal assumption might not be fully valid
 - Leads to stability issues
 - Vertical assimilation impact particularly problematic

Thank	you!
-------	------

