Ensemble Data Assimilation
for Coupled Models of the Earth System

Lars Nerger, Qi Tang, Longjiang Mu, Mike Goodliff

Alfred Wegener Institute
Helmholtz Center for Polar and Marine Research
Bremerhaven, Germany

Sun Yat-sen University, Zhuhai, China, November 5, 2019
Overview

- Ensemble data assimilation
- Importance of software
- Coupled data assimilation
 - Challenges in two application examples
Data assimilation

Model surface temperature

Satellite surface temperature

Combine both sources of information quantitatively by computer algorithm

→ Data Assimilation

Lars Nerger et al. – Ensemble DA with PDAF
Data Assimilation

Methodology to combine model with real data

- Optimal estimation of system state:
 - initial conditions (for weather/ocean forecasts, …)
 - state trajectory (temperature, concentrations, …)
 - parameters (ice strength, plankton growth, …)
 - fluxes (heat, primary production, …)
 - boundary conditions and ‘forcing’ (wind stress, …)

- More advanced: Improvement of model formulation
 - Detect systematic errors (bias)
 - Revise parameterizations based on parameter estimates
Ensemble Data Assimilation

Ensemble Kalman Filters (EnKFs) & Particle Filters

- Use ensembles to represent probability distributions (uncertainty)
- Use observations to update ensemble
- EnKFs are current ‘work horse’

There are many possible choices!

What is optimal is part of our research

Different choices in PDAF

Lars Nerger et al. – Ensemble DA with PDAF
Data Assimilation Group @ AWI: Research Interests

• Ensemble-based data assimilation algorithms
 • Understanding, improvement and development of algorithms
 • In particular for high-dimensional and nonlinear systems
 • Ensemble Kalman filters, particle filters, ensemble variational schemes

• Applicability of ensemble assimilation methods to complex models
 → Software PDAF

• Applications of data assimilation
 • Ocean physics, sea ice, biogeochemistry
 • Coupled Earth system models
 → Applications provide insight into skill of assimilation method (cannot assessed purely mathematically)
PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework

- a program library for ensemble data assimilation
- provides support for parallel ensemble forecasts
- provides filters and smoothers - fully-implemented & parallelized (EnKF, LETKF, LESTKF, NETF, PF … easy to add more)
- easily useable with (probably) any numerical model
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- Usable for real assimilation applications and to study assimilation methods
- first public release in 2004; continued development
- ~400 registered users; community contributions

Open source:
Code, documentation, and tutorial available at

http://pdaf.awi.de

3 Components of Assimilation System

- **Ensemble Filter**
 - Initialization
 - Analysis
 - Ensemble transformation

- **Model**
 - Initialization
 - Time integration
 - Post processing

- **Observations**
 - Quality control
 - Obs. vector
 - Obs. operator
 - Obs. error

- **Single program**
 - State
 - Time

- **Explicit interface**
- **Indirect exchange (module/common)**

PDAF Parallel Data Assimilation Framework

Augmenting a Model for Data Assimilation

Model
single or multiple executables
coupler might be separate program

revised parallelization enables ensemble forecast

Extension for data assimilation

plus:
Possible model-specific adaption
e.g. in NEMO: treat leap-frog time stepping

Lars Nerger et al. – Ensemble DA with PDAF
Augmenting a Model for Data Assimilation

Couple PDAF with model

- Modify model to simulate ensemble of model states
- Insert correction step (analysis) to be executed at prescribed interval
- Run model as usual, but with more processors and additional options

Diagram:

- Single program
- Observation
- Initialize ensemble
- Ensemble forecast
- Analysis step in between time steps
- Ensemble forecast with changed fields
Ensemble Filter Analysis Step

- **Model interface**
 - Ensemble of state vectors X

- **Filter analysis**
 - Update ensemble assimilating observations

- **Observation module**
 - For *localization*:
 - Local ensemble
 - Local observations

- **Case-specific call-back routines**
 - Analysis operates on state vectors (all fields in one vector)

- **Components**
 - Vector of observations y
 - Observation operator $H(...)$
 - Observation error covariance matrix R
The Ensemble Kalman Filter (EnKF, Evensen 94)

Ensemble \(\{x_0^{a(l)}, l = 1, \ldots, N \} \)

Ensemble covariance matrix
\[
P_k^f := \frac{1}{N - 1} \sum_{l=1}^{N} (x_k^{f(l)} - \bar{x}_k^f)(x_k^{f(l)} - \bar{x}_k^f)^T
\]

Ensemble mean (state estimate)
\[
x_k^a := \frac{1}{N} \sum_{l=1}^{N} x_k^{a(l)}
\]

Analysis step:
Update each ensemble member

Kalman filter
\[
x_k^{a(l)} = x_k^{f(l)} + K_k(y_k^{(l)} - H_kx_k^{f(l)})
\]
\[
K_k = P_k^fH_k^T \left(H_kP_k^fH_k^T + R_k \right)^{-1}
\]

Expensive to compute (in practice we use a more efficient formulation)

If elements of \(x \) are observed:
- \(K \) contains
 - observed rows
 - unobserved rows

Unobserved variables updated through cross-covariances in \(P \) (linear regression)
Current algorithms in PDAF

PDAF originated from comparison studies of different filters

Filters and smoothers
- EnKF (Evensen, 1994 + perturbed obs.)
- (L)ETKF (Bishop et al., 2001)
- SEIK filter (Pham et al., 1998)
- ESTKF (Nerger et al., 2012)
- NETF (Toedter & Ahrens, 2015)

All methods include (except PF)
- global and localized versions
- smoothers

Model binding
- MITgcm

Toy models
- Lorenz-96, Lorenz63

• Particle filter (PF)
• Generate synthetic observations

Not yet released:
- serial EnSRF
- EWPF

Not yet released:
- AWI-CM model binding
- NEMO model binding
HBM-ERGOM:
Coastal assimilation of SST, in situ and ocean color data (Svetlana Losa, Michael Goodliff)

MITgcm-REcoM:
Global ocean color assimilation (Himansu Pradhan)

AWI-CM:
Coupled atmos.-ocean assimilation (Qi Tang, Longjiang Mu)

Different models – same assimilation software

+ External applications & users, like
 - MITgcm sea-ice assim (NMEFC Beijing)
 - Geodynamo (IPGP Paris, A. Fournier)
 - TerrSysMP-PDAF (hydrology, FZ Juelich)
 - CMEMS Baltic-MFC (operational, DMI/BSH/SMHI)
 - CFSv2 (J. Liu, IAP-CAS Beijing)
 - NEMO (U. Reading, P. J. van Leeuwen)

Lars Nerger et al. – Ensemble DA with PDAF
Coupled Models and Coupled Data Assimilation

Coupled models
- Several interconnected compartments, like
 - Atmosphere and ocean
 - Ocean physics and biogeochemistry (carbon, plankton, etc.)

Coupled data assimilation
- Assimilation into coupled models
 - Weakly coupled: separate assimilation in the compartments
 - Strongly coupled: joint assimilation of the compartments
 → Use cross-covariances between fields in compartments
 - Plus various “in between” possibilities …

Lars Nerger et al. – Ensemble DA with PDAF
2 compartment system – strongly coupled DA

Difficulties:
• Different assimilation frequency
• Different time scales
• Which fields are correlated?
• Do we have (bi-)Gaussian distributions?

might be separate programs

Filter
2 compartment system – weakly coupled DA

- Simpler setup than strongly coupled
- Different DA methods possible
- But: Fields in different compartments can be inconsistent
Example 1

Assimilation into the coupled atmosphere-ocean model AWI-CM

(Qi Tang)

Project: ESM – Advanced Earth System Modeling Capacity
Assimilation into coupled model: AWI-CM

Atmosphere
- ECHAM6
- JSBACH land

Ocean
- FESOM
- includes sea ice

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for cross-domain assimilation ("strongly-coupled")

AWI-CM: Sidorenko et al., Clim Dyn 44 (2015) 757
Data Assimilation Experiments

Model setup

- Global model
- ECHAM6: T63L47
- FESOM: resolution 30-160km

Data assimilation experiments

- Observations
 - Satellite SST
 - Profiles temperature & salinity
- Updated: ocean state (SSH, T, S, u, v, w)
- Assimilation method: Ensemble Kalman Filter (LESTKF)
- Ensemble size: 46
- Simulation period: year 2016, daily assimilation update
- Run time: 5.5h, fully parallelized using 12,000 processor cores

Lars Nerger et al. – Ensemble DA with PDAF
Offline coupling - Efficiency

Offline-coupling is simple to implement but can be very inefficient.

Example:
Timing from atmosphere-ocean coupled model (AWI-CM) with daily analysis step:

- Model startup: 95 s
- Integrate 1 day: 28 s (overhead)
- Model postprocessing: 14 s
- Analysis step: 1 s

Restarting this model is ~3.5 times more expensive than integrating 1 day

→ avoid this for data assimilation
Execution times (weakly-coupled, DA only into ocean)

MPI-tasks
- ECHAM: 72
- FESOM: 192

- Increasing integration time with growing ensemble size (11%; more parallel communication; worse placement)
- some variability in integration time over ensemble tasks

Important factors for good performance
- Need optimal distribution of programs over compute nodes/racks (here set up as ocean/atmosphere pairs)
- Avoid conflicts in IO (Best performance when each AWI-CM task runs in separate directory)
Assimilate sea surface temperature (SST)

SST on Jan 1st, 2016

- Satellite sea surface temperature (level 3, EU Copernicus)
- Daily data
- Data gaps due to clouds
- Observation error: 0.8 °C
- Localization radius: 1000 km

SST difference: observations-model

Large initial SST deviation due to using a coupled model: up to 10 °C

DA with such a coupled model is unstable!

omit SST observations where

\[|SST_{\text{obs}} - SST_{\text{ens_mean}}| > 1.6 \, ^\circ\text{C}\]

(30% initially, <5% later)
SST assimilation: Effect on the ocean

SST difference (obs-model): strong decrease of deviation

Subsurface temperature difference (obs-model); all the model layers at profile locations
Assimilate subsurface observations: Profiles

Profile locations on Jan 1st, 2016

- Temperature and Salinity
- EN4 data from UK MetOffice
- Daily data
- Subsurface down to 5000m
- About 1000 profiles per day
- Observation errors
 - Temperature profiles: 0.8 °C
 - Salinity profiles: 0.5 psu
- Localization radius: 1000 km
SST assimilation: Effect on the ocean

SST difference (obs-model)

Free run

4/30/2016
Day 120

Assimilation

larger deviations than for SST assimilation

Subsurface temperature difference (obs-model); all the model layers at profile locations

Free run

4/30/2016
Day 120

Assimilation

smaller deviations than for SST assimilation
Assimilation effect: RMS errors

Overall lowest errors with combined assimilation

• But partly a compromise
Mean increments (analysis – forecast) for days 61-366 (after spinup)
→ non-zero values indicate regions with possible biases
Assimilation Effect on the Atmosphere

Difference between assimilation runs and the free run

Temperature at 2m

Sea surface temperature

Atmosphere reacts quickly on the changed ocean state

Does it make the atmosphere more realistic?

Lars Nerger et al. – Ensemble DA with PDAF
Effect on Atmospheric State (annual mean)

- 2-meter temperature
 - Free run
 - Assimilation
 - Relevant is ocean surface
- 10 meter zonal wind velocity
 - Free run
 - Assimilation

Next step: strongly coupled assimilation
- assimilate ocean SST into the atmosphere
- technically rather simple – in practice?

Lars Nerger et al. – Ensemble DA with PDAF
Strongly coupled: Parallelization of analysis step

We need innovation: $d = Hx - y$

Observation operator links different compartments

1. Compute part of d on process ‘owning’ the observation
2. Communicate d to processes for which observation is within localization radius
Example 2

Weakly- and Strongly Coupled Assimilation to
Constrain Biogeochemistry with Temperature Data

(MERAMO – Mike Goodliff)

Cooperation with German Hydrographic Agency (BSH)
(Ina Lorkowski, Xin Li, Anja Lindenthal, Thoger Brüning)
Coastal Model Domain

HBM (Hiromb-BOOS Model) – operationally used at German Federal Maritime and Hydrographic Agency (BSH)

Grid with higher resolution in German coastal region

Lars Nerger et al. – Ensemble DA with PDAF
Biogeochemical model: ERGOM

Atmosphere

Nutrients

- PO_4^{3-}
- NO_3^-
- NH_4^+
- Si

Ocean

Phytoplankton

- Cyanobacteria
- Flagellates
- Diatoms

Zooplankton

- Microzooplankton
- Mesozooplankton

Sediment

Detritus Si

Detritus N

Lars Nerger et al. – Ensemble DA with PDAF
Observations – Sea Surface Temperature (SST)

NOAA/AVHRR Satellite data

- 12-hour composites on both model grids
- Vastly varying data coverage (due to clouds)
- Effect on biogeochemistry?
Comparison with assimilated SST data (4-12/2012)

- RMS deviation from SST observations up to ~0.4 °C

Coarse grid:
- Increasing error-reductions compared to free ensemble run

Fine grid:
- much stronger variability
- Forecast errors sometimes reach errors of free ensemble run

RMS errors (deg. C)

<table>
<thead>
<tr>
<th></th>
<th>Free</th>
<th>Forec.</th>
<th>Ana.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>0.95</td>
<td>0.68</td>
<td>0.63</td>
</tr>
<tr>
<td>Fine</td>
<td>0.83</td>
<td>0.70</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Influence of Assimilation on Surface Temperature

2 ways of influence:

- **Indirect - weakly-coupled assimilation**
 model dynamics react on change in physics

- **Direct – strongly-coupled assimilation**
 use cross-covariances between surface temperature and biogeochemistry

Lars Nerger et al. – Ensemble DA with PDAF
Weakly & strongly coupled effect on biogeochemical model

Oxygen mean for May 2012 (as mmol O / m³)

- Free run
- Assimilation WEAK
- Free – Assimilation WEAK
- Assimilation STRONG
- Free – Assimilation STRONG

Strongly coupled
- slightly larger changes
- Strongly coupled DA further improves oxygen

Goodliff et al., Ocean Dynamics, 2019, doi:10.1007/s10236-019-01299-7
Choice of variable in strongly coupled assimilation

- Chlorophyll is lognormally distributed
- Ensemble Kalman filter
 - Optimality for normal distributions
 - Linear regression between observed and unobserved variables

→ Apply strongly-coupled DA with logarithm on concentrations?

Kalman filter

\[
x^{a(l)}_k = x^{f(l)}_k + K_k \left(y^{(l)}_k - H_k x^{f(l)}_k \right)
\]

\[
K_k = P^f_k H^T_k \left(H_k P^f_k H^T_k + R_k \right)^{-1}
\]

\[
K_k = X'_k \left(H_k X'_k \right)^T \left(H_k P^f_k H^T_k + R_k \right)^{-1}
\]

Lars Nerger et al. – Ensemble DA with PDAF
Choice of variable in strongly coupled assimilation

Strongly coupled logarithmic

Chlorophyll concentrations 1 May 2012

Strongly coupled linear

• Locally unrealistically high and low concentrations
 → Linear regression with lognormal concentration not general solution

• Larger effect – in particular in North Sea
• Too high in Gulf of Finland

Lars Nerger et al. – Ensemble DA with PDAF
Summary

• Coupled data assimilation:
 • Weakly-coupled easy to apply
 • But changing one part can disturb the other
 • Strongly-coupled depends on cross-covariances
 • EnKF uses linear regression – variables not well defined
• Unified software helps to bring new developments into usage
• PDAF – Open source available at http://pdaf.awi.de
References

- http://pdaf.awi.de