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Overview

- Ensemble data assimilation
* Importance of software
» Coupled data assimilation
 Challenges in two application examples

83
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Data assimilation

Model surface temperature Satellite surface temperature
Lo ’f_\\ N®™ T . . X T VI-‘~ LY D - ‘r‘?
65°N | N — 25
15.0 s
soon Lt 1253 o 125 %
F v T
o (&)
7 $ 56°N 3
2 100 g, -1o.o§n
SSON BN . o - S
52N
: 3 75
> );( D 48NS
50°N = ,} v/'/m’\ kSN
\L'\’\? B J,,\».L_:,H_.\.Ts |
O" 5°E 10°E 20°E 25°E 30°E 3.0 20°E 25°E 30°E 5.0

Combine both sources of information

quantitatively by computer algorithm

= Data Assimilation
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Data Assimilation

Methodology to combine model with real data

» Optimal estimation of system state:

* initial conditions (for weather/ocean forecasts, ...)

* state trajectory (temperature, concentrations, ...)
* parameters (ice strength, plankton growth, ...)
e fluxes (heat, primary production, ...)

« boundary conditions and ‘forcing’ (wind stress, ...)

= More advanced: Improvement of model formulation

» Detect systematic errors (bias)

* Revise parameterizations based on parameter estimates
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Ensemble Data Assimilation

PDAFParaIIeI

Data Assimilation

Framework
Ensemble Kalman Filters (EnKFs) & Particle Filters
- Use ensembles to represent probability distributions (uncertainty)
=> Use observations to update ensemble
- EnKFs are current ‘work horse’ There are
many
ensemble possible
&)recast choices!
Initial / What is
sampling optimal is part
: of our
smo?tr;mg // transformation] research
state |
estimate \_ | Different
observation choices in
diagnostics PDAF
time 0 time 1 time 2
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Data Assimilation Group @ AWI: Research Interests

 Ensemble-based data assimilation algorithms
« Understanding, improvement and development of algorithms
» In particular for high-dimensional and nonlinear systems

« Ensemble Kalman filters, particle filters, ensemble variational schemes

« Applicability of ensemble assimilation methods to complex models
= Software PDAF

« Applications of data assimilation
« Ocean physics, sea ice, biogeochemistry
* Coupled Earth system models

= Applications provide insight into skill of assimilation method
(cannot assessed purely mathematically)

o1
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PDAFParaIIeI

PDAF: A tool for data assimilation Data Assimilation

Framework

PDAF - Parallel Data Assimilation Framework

a program library for ensemble data assimilation
provides support for parallel ensemble forecasts

provides filters and smoothers - fully-implemented & parallelized
(EnKF, LETKF, LESTKF, NETF, PF ... easy to add more)

easily useable with (probably) any numerical model

run from laptops to supercomputers (Fortran, MP| & OpenMP)

Usable for real assimilation applications and to study assimilation methods
first public release in 2004; continued development

~400 registered users; community contributions

Open source:
Code, documentation, and tutorial available at

http://pdaf.awi.de
L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ AN/



3 Components of Assimilation System

PDAFParaIIeI

Data Assimilation
Framework

single
program Ensemble Filter
Initialization
analysis
state ensemble transformation
i
me Core of PDAF
Model
nitialization | | _ _ meshdata __ __
time integration
post processing
modify parallelization

state
observations

Observations
quality control
obs. vector
obs. operator
obs. error

<«——— Explicit interface
<« — —» |ndirect exchange (module/common)

Nerger, L., Hiller, W. Computers and Geosciences 55 (2013) 110-118

QI



Augmenting a Model for Data Assimilation

PDAFParaIIeI

Data Assimilation
Framework

Model

single or multiple
executables

coupler might be
separate program

| Initialize parallel. |
]
Initialize Model

Initialize coupler
Initialize grid & fields

|
—>CD0 =1, nsteps)—
!

Time stepper
in-compartment step
coupling

I
—

| Post-processing |

revised parallelization enables
ensemble forecast

| Initialize parallel. |
|

| Init_paraﬁeI_PDAF |
: 2

Initialize Model
Initialize coupler
Initialize grid & fields

v

[ it PDAF |

Time stepper
in-compartment step
coupling
| |

v
»( Do i=1 lnsteps)—

| Assimilate_PDAF |

v

| Post-processing |
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Extension for
data assimilation

plus:
Possible
model-specific
adaption

e.g. in NEMO:
treat leap-frog
time stepping
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Augmenting a Model for Data Assimilation PDAFrae

Framework

Couple PDAF with model

* Modify model to simulate ensemble of model states

* Insert correction step (analysis) to be executed at prescribed interval
* Run model as usual, but with more processors and additional options

Single program

Day 1
00:00h

Yo Observation
i Day 1

)
Q
<

RN
15

Forecast 1 Forecast 1

Forecast 2 Forecast 2

Forecast 40

Initialize =~ Ensemble Analysis step in Ensemble forecast ;
ensemble  forecast between time steps with changed fields @ NVI



Ensemble Filter Analysis Step

PDAFParaIIeI

Data Assimilation
Framework

case-specific Model | Ensemble of
call-back interface | state vectors
routines X

!

Observation
module

Analysis operates
on state vectors
(all fields in one

vector) assimilating observations

Filter analysis

update ensemble

For localization:

| Local ensemble

Local

_

Vector of
observations

y

I

Observation
operator

H(...)

v\Observations

Observation error
covariance matrix

R
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The Ensemble Kalman Filter (EnKF, Evensen 94)

Ensemble {X0 ) 1=1,.. ., N}
E bl al —F —\ T
nsemble f fa - f)  f
covariance matrix Py = N —1 Z ( ) (Xk Xk:)
=1
Ensemble mean a

(state estimate) Xp -

i

2|H

Analysis step:

Update each ensemble member

STRNTY )

—1

Kalman filter

r—> K, = P{H] (H,P{H] + Ry

Expensive to compute
(in practice we use a more efficient formulation)

If elements of x are observed:
« K contains

* observed rows
* unobserved rows

Unobserved variables updated
through cross-covariances in P

(linear regression)
QNI



PDAFParaIIeI

Current algorithms in PDAF Data Assimilation

Framework

PDAF originated from comparison studies of different filters

Filters and smoothers

All methods include (except PF)

EnKF (Evensen, 1994 + perturbed obs.) » Particle filter (PF)
(L)ETKF (Bishop et al., 2001) » Generate synthetic observations
SEIK filter (Pham et al., 1998)

ESTKF (Nerger et al., 2012) Not yet released:
NETF (Toedter & Ahrens, 2015) . serial EnSRF

. EWPF

global and localized versions

* smoothers

Model binding Not yet released:

. MITgcm « AWI-CM model binding
Toy models « NEMO model binding

Lorenz-96, Lorenz63 @-
Lars Nerger et al. — Ensemble DA with PDAF MI/



PDAFParaIIeI

PDAF Application Examples Data Assimilation
Framework
HBM-ERGOM: RMS error in surface temperature MITgcm-REcoM: Total chlorophyll concentration June 30, 2012
- ason ENEND ’%; 7 2.0 . P t— o —
Coastal %ﬁ‘. | global ocean color
assimilation of & S:“ e assimilation b i
SST, in situ and oo rofopmel < -1 U N g (Himansu Pradhan)  .hyg o~ geasaid
ocean color data e 2 Wi, SRR "L A i
(Svetlana Losa, o] N, LR [
Michael Goodliff) - AR
50°N¥/ \g’ Sl TS :
Different models — same assimilation software

AWI-CM: ECHAMG-FESOM coupled model

AWI-CM: — + external applications & users, like

coupled % \\§“ « MITgcm sea-ice assim (NMEFC Beijing)
/ Ao .

atmos.-ocean H + Geodynamo (IPGP Paris, A. Fournier)

assimilation _

(Qi Tang « TerrSysMP-PDAF (hydrology, FZ Juelich)

« CMEMS Baltic-MFC (operational, DMI/BSH/SMHI)
« CFSv2 (J. Liu, IAP-CAS Beijing)
« NEMO (U. Reading, P. J. van Leeuwen)

Lars Nerger et al. — Ensemble DA with PDAF @ MI
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Coupled Models and Coupled Data Assimilation PD éﬁ?&ﬁi‘?&

Atmosphere Ocean

?’(‘4 ‘ﬁ.\\ xS .
e,

Coupled models
» Several interconnected compartments, like

Resolution [km]

« Atmosphere and ocean

» Ocean physics and biogeochemistry
(carbon, plankton, etc.)

Coupled data assimilation
» Assimilation into coupled models
« Weakly coupled: separate assimilation in the compartments

« Strongly coupled: joint assimilation of the compartments

= Use cross-covariances between fields in compartments
» Plus various “in between” possibilities ...

aAWV/
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2 compartment system — strongly coupled DA

PDAFParaIIeI

Data Assimilation
Framework

might
be
separate
programs

Forecast

Model
- Comp. -
1 Task 1

¢

- Cpl. 1 -

-

Model

- Comp. -

2 Task 1
|

Model
- Comp. -
1 Task 1

3

- Cpl. 1 -

s

Model
- Comp. -

1 Task 1

Analysis

Strongly coupled

\ /

Filter

A 4
A 4

A 4

v

LI

Lars Nerger et al. — Ensemble DA with PDAF

Forecast

Model
- Comp. -
1 Task 1

¢

- Cpl. 1 -

=

Model

- Comp. -

2 Task 1
|

Model
- Comp. -
1 Task 1

L3

- Cpl. 1 -

s

Model
- Comp. -

1 Task 1

T~

Difficulties:
» Different assimilation
-  frequency

» Different time scales

 Which fields are
correlated?

* Do we have
(bi-)Gaussian
distributions?

/
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2 compartment system — weakly coupled DA

PDAFParaIIeI

Data Assimilation
Framework

Forecast

Model
- Comp. -
1 Task 1

¢

- Cpl. 1 -

=

Model

- Comp. -

2 Task 1
|

Model
- Comp. -
1 Task 2

L3

- Cpl. 2 -

S

Model
- Comp. -

2 Task 2

N

/

Analysis

Filter
Comp. 1

7

Filter
Comp. 2

\

Forecast

Model
- Comp. -
1 Task 1

s

- Cpl. 1 -

-

Model

- Comp. -

2 Task 1
|

Model
- Comp. -
1 Task 2

<

- Cpl. 2 -

s

Model
- Comp.2-

Task 2
|
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« Simpler setup than
strongly coupled

» Different DA methods
possible

 But:
Fields in different
compartments can be
inconsistent

/
QpNV/



Example 1

Assimilation into the coupled

atmosphere-ocean model AWI|-CM

(Qi Tang)

Project:. ESM — Advanced Earth System Modeling Capacity

o1
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Assimilation into coupled model: AWI-CM

Atmosphere Ocean

e

7Y ‘c\‘ﬂ,‘s )
af ; & J.\:\
k, “ ‘ :E“\:
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V.
OASIS3-MCT

fluxes

)
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&Y.
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e <
i oceanl/ice state

~
@

a
o

[
3]

Atmosphere Coupler library Ocean
« ECHAMG6 « OASIS3-MCT « FESOM
« JSBACH land * includes sea ice

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for
cross-domain assimilation (“strongly-coupled”)

ssESM
NP7 Grihsystemtoseing - AWI-CM: Sidorenko et al., Clim Dyn 44 (2015) 757

Capacity

Resolution [km]
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Data Assimilation Experiments

Model setup FESOM mesh resolution
* Global model =

&
3

e S
« ECHAMG: T63L47 % }o&
e  FESOM: resolution 30-160km

n
o

Resolution [km]

~
a

Data assimilation experiments

* Observations
» Satellite SST
* Profiles temperature & salinity

o
o

N
a

* Updated: ocean state (SSH, T, S, u, v, w)

* Assimilation method: Ensemble Kalman Filter (LESTKF)

* Ensemble size: 46

* Simulation period: year 2016, daily assimilation update

* Runtime: 5.5h, fully parallelized using 12,000 processor cores
s:ESM

W O I Advanced . m,
Earth System Modell Q S‘
D\ | / gt Lars Nerger et al. — Ensemble DA with PDAF



Offline coupling - Efficiency

Offline-coupling is simple to implement
but can be very inefficent

Example:
Timing from atmosphere-ocean
coupled model (AWI-CM)

with daily analysis step:

Model startup: 95 s\
Integrate 1 day: 28 s / overhead
Model postprocessing: 14 s

Analysis step: 1s

Restarting this model is ~3.5 times
more expensive than integrating 1 day

= avoid this for data assimilation

Initialize Model
generate mesh

Initialize fields

Do i=1, nsteps

Time stepper

consider BC

Consider forcing

| Post-processing |

Lars Nerger et al. — Ensemble DA with PDAF

Assimilation
program

| read ensemble files I

| analysis step I

write model
restart files

aAWV/



Execution times (weakly-coupled,

DA only into ocean)

MPI-tasks
« ECHAM: 72
« FESOM: 192

* Increasing integration time with growing
ensemble size (11%; more parallel
communication; worse placement)

« some variability in integration time over
ensemble tasks

Important factors for good performance

Execution times per model day

»
— ——forecast
g 20 ——couple
= - — forecast-couple
15 —— analysis
—o— prepoststep
10F
5F J
— AAN
0 rXe— Y >4 > - Ty 24 v
0 10 20 30 40 50
T ensemble size T
528 12,144
processor processor

cores cores

* Need optimal distribution of programs over compute
nodes/racks (here set up as ocean/atmosphere pairs)

* Avoid conflicts in 10 (Best performance when each AWI-

CM task runs in separate directory)

Lars Nerger et al. — Ensemble DA with PDAF
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Assimilate sea surface temperature (SST)

SST on Jan 1%, 2016 * Satellite sea surface temperature
,%? S (level 3, EU Copernicus)

* Daily data

e Data gaps due to clouds

* QObservation error: 0.8 °C

* Localization radius: 1000 km

-4 0 4 8 12 16 20
Temperature, °C

SST difference: observations-model

Large initial SST deviation due to
using a coupled model: up to 10°C

DA with such a coupled model is unstable!

r

omit SST observations where
|SSTobs' SSTens_meanl > 1.6°C

(30% initially, <5% later) .

Lars Nerger et al. — Ensemble DA with PDAF @ MI,




SST assimilation: Effect on the ocean

SST difference (obs-model): strong decrease of deviation

Freevrun 4/30/2016 A55|m|Iat|on
AT Day 120 = ="88d = ¢

Subsurface temperature difference (obs-model); all the model layers at profile locations

Free run_ A55|m|Iat|on

4/30/2016
Day 120

#zESM

e <4 . AN
Earth System Modellin
" Capacity y ing -5 -4 -3 =2 -1 0 1

Temperature, °C




Assimilate subsurface observations: Profiles

Temperature and Salinity

e EN4 data from UK MetOffice
e Daily data

e Subsurface down to 5000m

Profile locations on Jan 15t, 2016 o

e About 1000 profiles per day
e Observation errors

— Temperature profiles: 0.8 °C
— Salinity profiles: 0.5 psu
e Localization radius: 1000 km

#zESM

Ty —— S AN/
“" Conchy, T . Lars Nerger et al. — Ensemble DA with PDAF



SST assimilation: Effect on the ocean

SST difference (obs-model)

Free run_ 4/30/2016 A55|m|Iat|on
=i 2 A Day 120 ey 2
larger deviations
than for SST
assimilation

Subsurface temperature difference (obs-model); all the model layers at profile locations

Free run_ 4/30/2016 55|m|Iat|n
' Day 120 N
smaller deviations
than for SST
assimilation

¥
. a AV
Temperature, °C



Assimilation effect: RMS errors

3,00
2,50
2,00
1,50
1,00
0,50
0,00

RMSE(SST) RMSE(proT) RMSE(proS)
mFree run mDA _SST = DA proTS m DA all

Lars Nerger et al. — Ensemble DA with PDAF

Overall lowest errors with
combined assimilation

« But partly a compromise

SWAVAY))



Mean increments

Mean increments (analysis — forecast) for days 61-366 (after spinup)
=> non-zero values indicate regions with possible biases

Surface Temperature at
temperature 100m depth

-

-0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16

Temperature, °C
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Assimilation Effect on the Atmosphere

Difference between assimilation runs and the free run

Temperature at 2m Sea surface temperature
e '—;"‘; ," €T =, —

Atmosphere reacts quickly on the changed ocean state

Does it make the atmosphere more realistic?

Lars Nerger et al. — Ensemble DA with PDAF @ MI



Effect on Atmospheric State (annual mean)

2-meter temperature

o o . - —
4 < , =
&5 <Y - 3
2 R

10 meter zonal wind velocity

Free run Assimilation

£ -, — iR T P -

-

L3

%".."‘\\)\ Next step: strongly coupled assimilation

g% 7\ @: =¥ assimilate ocean SST into the atmosphere
? - technically rather simple — in practice?

Lars Nerger et al. — Ensemble DA with PDAF

Relevant is
Assimilation ocean surface
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Strongly coupled: Parallelization of analysis step

State vector distribute d
x applyH
O Proc. 0 We need innovation: d = Hx -y
)
L
g:' Observation operator links different
£ compartments
<
Hx 1. Compute part of d on process
—> ‘owning’ the observation
.

- Comm. 2. Communicate d to processes for
3 which observation is within
S localization radius

Proc. k 5

Lars Nerger et al. — Ensemble DA with PDAF @ MI



Example 2

Weakly- and Strongly Coupled Assimilation to

Constrain Biogeochemistry with Temperature Data

(MERAMO — Mike Goodliff)

Cooperation with German Hydrographic Agency (BSH)
(Ina Lorkowski, Xin Li, Anja Lindenthal, Thoger Brining)

o1
Lars Nerger et al. — Ensemble DA with PDAF @ MI/



Coastal Model Domain

HBM (Hiromb-BOOS Model) — operationally used at German
Federal Maritime and Hydrographic Agency (BSH)

55

16.2017

17.5

15.0

w0
12.5-2
3
g Grid with higher
1008 resolution in
................................ German coastal
region
17.5
N ]
24 SN 5 15.0
e e
E 3
1252
\ TS °
7 10.0 §,
100 110 o
: A iy °
\ ; "z \ 7.5
1 900m 5

P o 10 TUF D TE TE 3.0 @m,
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Biogeochemical model: ERGOM

Atmosphere

Zooplankton

Sediment

Lars Nerger et al. — Ensemble DA with PDAF




Observations — Sea Surface Temperature (SST)

NOAA/AVHRR Satellite data

10 April 2012 25 May 2012
: V}_ ST . 10 " Vj- t_,r% 20
65°N R 65°N R "
8 16
60°N %‘-“f % 16 60°N f
& ¥ {12
5 ¢ 0
7 SR
55°NEi \\ SSONE \\ A 8
M’M J-\‘i'*’_ = Q 4
50°N [AH#:. 50°N
"?"( > . o -_E\Nf
0° 5°E  10°E  15°E  20°E  25°E  30°E 0°

* 12-hour composites on both model grids
» Vastly varying data coverage (due to clouds)
» Effect on biogeochemistry?

Lars Nerger et al. — Ensemble DA with PDAF @ MI



Comparison with assimilated SST data (4-12/2012)

« RMS deviation from SST
observations up to ~0.4 °C

Coarse grid:
« Increasing error-reductions

compared to free ensemble run

Fine grid:
« much stronger variability

o Forecast errors sometimes
errors of free ensemble run

RMS errors (deg. C)

Free Forec.
Coarse 0.95 0.68
Fine 0.83 0.70

reach

Ana.

0.63
0.63

Temperature RMSD

SST RMS error during April to Dec. 2012 on coarse grid
— Analysi 1
nalysis coarse grid

1.6f| — Forecast
— Free

1.8

1.4¢

1.2f

@
210f
o
0.8}
0.6

0.4}

O'Kpr. M‘ay Juln. JL‘J|. AL‘Jg. Sép. O&t. Ntl)v. Déc. Jan.

SST RMS error during April to Dec. 2012 on fine grid

2.0 .
— foeiss|  fine grid
— Free

1.5¢

2 1l \

" { ‘)l

‘./

==
—
—
=
— —
——

.‘ ‘V, | | W A i“,v!“A~ Mﬂ,\;hf'ﬁ

O'Rpr. M‘ay Juln. JL‘I|. ALljg. Sép. O&t. Ncl)v. Déc. Jan.
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Influence of Assimilation on Surface Temperature

Change of Temperature (Oct. 2017) Change of Oxygen concentration
DAL 3 o7 1.0 DAL NP .
65°N /g’ ‘r_.\\ : m* - 65°N )g')\:\ i " H “f{i >0
AN AN K
TR 0.5 RSO N

60°N

Degree Celsius
mmol O/m3

? Lz\{t{\;*‘\x\j\‘& R,

55°N

&

=

-

2 ways of influence:

-0.5

50°N

-1.0

* Indirect - weakly-coupled assimilation
model dynamics react on change in physics

» Direct — strongly-coupled assimilation
use cross-covariances between surface temperature and biogeochemistry

ts3
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Weakly & strongly coupled effect on biogeochemical model

Oxygen mean for May 2012 (as mmol O / m3)

Free run ASS|m|Iat|on WEAK o Free ASS|m|Iat|on WEAK
D i ’ 77 - < 20
400 10
Bt £
350% 7# o 2
g 2 g
€ €
300 :(1 \1 -10
= ?r%
J,\,..aw
i = : - -ﬁxf :
0° 5°E 10°E 15°E 20°E 25°E 30° 0° 5°E 10°E 15°E 20°E 25°E 30°E 250 0° 5°E 10°E 15°E 20°E 25°E 30°E -20
ASS|m|Iat|on STRONG . Free — ASS|m|Iat|on STRONG
Strongly coupled
« slightly larger changes 00
. Strongl}/ coupled DA 350g £
further improves g g
oxygen
300
MN# 250 *

d° 5°E 10°E 15°E 20°E 25°E 30°E

Goodliff et al., Ocean Dynamics, 2019, doi:10.1007/s10236-019-01299-7 @ NV,



Choice of variable in strongly coupled assimilation

» Chlorophyll is lognormally distributed
« Ensemble Kalman filter
« Optimality for normal distributions
 Linear regression between observed and unobserved variables

= Apply strongly-coupled DA with logarithm on concentrations?

Kalman filter X =x." + Ky ( (1) _ HkX]J;(l)>
~1
K, = P{H] (Hk:Png — Rk)
—1
Ky, = X}, (H;X})" (HP{H] + Ry

Y ||
model observations

Lars Nerger et al. — Ensemble DA with PDAF
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Choice of variable in strongly coupled assimilation

Strongly coupled Chlorophyll concentrations Strongly coupled
logarithmic 1 May 2012 linear
—15 -15
65°N 65°N
112 -12
60°N |- E 60°N |-F . L9 fVE')
5 5
g 6 £
1o5d 1] —— 55°N Lyper
L . o 3
50°N A ‘ . 50°N R |
- [ ; - Nwas
0° 5°E 10°E 15°E 20°E 25°E 30°E 0°

locally unrealistically high and low
concentrations

=> Linear regression with lognormal

concentration not general solution

= - 0
5°E 10°E 15°E 20°E 25°E 30°E

Larger effect — in particular in North Sea

« Too high in Gulf of Finland

Lars Nerger et al. — Ensemble DA with PDAF

aAWV/



Summary

* Coupled data assimilation:

» Weakly-coupled easy to apply
* But changing one part can disturb the other

« Strongly-coupled depends on cross-covariances
* EnKF uses linear regression — variables not well defined

» Unified software helps to bring new developments into usage

* PDAF — Open source available at http://pdaf.awi.de

Lars.Nerger@awi.de @ AN/
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