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Abstract

Diarrheic Shellfish Poisoning toxins (DST) are a severe health risk to shellfish consumers

and can be a major problem for the shellfish industry. Bivalve molluscs can accumulate DST

via ingestion of toxic dinoflagellates like Dinophysis spp., which are the most prominent pro-

ducers of DST. The effects of DST-containing dinoflagellate Dinophysis acuta on bivalve

clearance and respiration rate were investigated in the blue mussel (Mytilus edulis) exposed

to different algal densities in a controlled laboratory study. Results showed that M. edulis

exposed to D. acuta displayed a reduced clearance rate compared to M. edulis exposed to

equivalent bio-volumes of the non-toxic cryptophyte Rhodomonas salina. Furthermore, M.

edulis ceased to feed on D. acuta after 1 to 4 h, depending on D. acuta densities. The quick-

est response was observed at the highest densities of D. acuta. The estimated total amount

of DST accumulated in the M. edulis exceeded the regulatory limit for human consumption

and furthermore, intoxication of the M. edulis seemed to occur faster at high cell toxicity

rather than at high cell density. However, respiration rates were, similar, irrespective of

whether M. edulis were fed single diets of R. salina, D. acuta or a mixed diet of both algal

species. In conclusion, the DST-containing D. acuta had a severe negative effect on the

clearance of M. edulis, which can affect the conditions of the M. edulis negatively. Hence,

DST may cause low quality M. edulis, due to reduced feeding when exposed to DST-con-

taining D. acuta.

Introduction

Diarrhetic shellfish poisoning (DSP) is a gastrointestinal illness caused by human consump-

tion of shellfish that have accumulated Diarrhetic Shellfish Toxins (DSTs). Diarrhetic Shellfish

Toxins are acquired by shellfish by ingestion of DST producing microalgae. This is a major

problem for the shellfish industry in most parts of the world [1]. Presence of DST-containing

mussels may, if the regulatory limit of 0.160 μg okadaic acid-equivalents g-1 meat is exceeded,
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result in long-time closure of shellfish production areas, which can lead to severe economic

consequences for the shellfish industry [2].

Known DST-producers include several planktonic dinoflagellate species of the genus Dino-
physis and a few epibenthic Prorocentrum species [1,3]. Pelagic Dinophysis spp. have been asso-

ciated with DSP events in most cases. Okadaic acid (OA) together with its variants

dinophysistoxins (DTX) and pectenotoxins (PTX) have all been identified in species of Dino-
physis, and to accumulate in filter-feeding bivalves e.g. reviews by [4–6]. Mussels accumulate

DST and PTX primarily in the digestive gland [7] and a number of studies have shown that

DST undergo molecular transformations when ingested by bivalves. OA and DTX are esteri-

fied to a range of different fatty acid ester derivatives [6,8–10]. PTX are also esterified but can

be further transformed to PTX seco acids and seco acid esters [6,10,11]. The molecular trans-

formation into fatty acid esters and seco acids has been suggested to be part of a detoxification

and depuration process [12]. However, [6] showed that depuration was achieved through

excreting rather than metabolizing the toxins. The different types of DST have different mech-

anisms of action. In mussels, OA and DTX inhibit protein phosphatases [13], whereas to our

knowledge, the effects of PTX on mussels still remain to be elucidated. However, PTX have

been shown to affect the cytoskeleton in human cells and have hepatotoxic effects in mice [14]

and references therein.

The effects of DST and PTX on bivalve physiology and survival are hitherto poorly under-

stood [15]. Only a few studies on the direct effects of DST and PTX on bivalve feeding exist

[16–18]. The majority of studies on bivalves and DST and PTX are focused on depuration pro-

cesses [6,17,19–24] or physiological effects [25,26]. The physiological effects on bivalves of

other harmful algal toxins have received far more attention [27–36]. Reduced clearance rates

have been observed in M. edulis exposed for one hour to the toxic dinoflagellate Karenia miki-
motoi (= Gyrodinium aureolum,> 600 cells ml-1) [27]. Presence of the karmitoxin producing

dinoflagellate Karlodinium armiger has been shown to cause immediately cessation of clear-

ance in M. edulis and to kill eggs, embryos and adult individuals of M. edulis [36]. The effects

of the PST producing dinoflagellate, Alexandrium catenella (= Protogonyaulax tamarensis) on

seven different bivalve species have been shown to be species dependent [28]. The responses

included shell-valve closure and/or siphon retraction (Mya arenaria, M. edulis and Geukensia
demissa), reduced clearance rate (M. arenaria, G. desmissa), increased clearance rate (Ostrea
edulis), mucus production (M. edulis, Placopecten magellanicus and G. demissa) and no

response (Modiolus modiolus and Spisula solidissma).

Further, the geographical area from which the mussel have been collected also plays a role

[28]. Specimens of M. edulis from three different locations were exposed to Alexandrium cate-
nella (formerly described as P. tamarensis). Mytilus edulis from two of the localities reacted

with shell-valve closure and mucus production and mortality. Mytilus edulis collected from the

third locality readily ingested PST containing alga and no mortalities were observed. This led

[28] to suggest that the differences in response of M. edulis reflect that specimens from the

locality periodically exposed to dinoflagellate blooms may have evolved mechanisms permit-

ting them to exploit the toxic organisms as food with no ill effects [28]. The above clearly

shows that the physiological effects of toxic algae on bivalves are not uniform but highly spe-

cies-dependent and even varies with geographical location.

Except for the study by [6], the few studies on the effect of DST and PTX on bivalve physiol-

ogy made at controlled laboratory conditions all used the epibenthic dinoflagellate Prorocen-
trum lima as DST source [16,18]. Reduced clearance rates in M. edulis and Argopecten
irradians were found when fed P. lima at densities above 1� 103 and 200 cells ml-1, respectively

[16,18]. When fed the non-toxic algal, Thalassiosira weissflogii, in bio-volumes equivalent to

the experiments with P. lima, A. irradians showed no reduction in clearance rate and [18]
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concluded P. lima to have a direct toxic effect on A. irradians. Although re-suspended P. lima
in nature will be available for suspension feeders the most likely source of in situ DST contami-

nation of suspension feeding bivalves are Dinophysis spp.

The lack of knowledge on the effects of DST and PTX-containing Dinophysis species on

bivalve physiology is due to the earlier incapability to cultivate Dinophysis species. Currently,

techniques for cultivation of Dinophysis species have been developed [37] and the physiological

effects of DST and PTX -containing Dinophysis sp. on bivalve physiology can now be studied

in detail. Clearance and respiration rates represent key variables in the physiology and growth

of suspension feeding bivalves and are most likely to reflect any toxic effects caused by toxic

algae [28,38].

In the present study, clearance and respiration rates of the blue mussel M. edulis were stud-

ied at different densities of the mixotrophic, DST and PTX-producing dinoflagellate, Dinophy-
sis acuta and compared to equivalent bio-volumes of the non-toxic cryptophyte alga

Rhodomonas salina. The research questions were: 1) Does M. edulis reduce the clearance rate

when exposed to D. acuta? 2) If there is a reduction in clearance rate, is it caused by D. acuta
toxicity or saturation of the alimentary canal? 3) Will ingestion ofD. acuta increase the M. edu-
lis respiration rate, possibly as a consequence of depuration costs?

Materials and methods

Sampling and maintenance of Mytilus edulis
Blue mussels, M. edulis, were collected in April 2012 at a mussel farm in the Limfjorden, Den-

mark (56˚47’15.54”N; 8˚54’57.12”E), and transported to the Marine Biological Laboratory,

Helsingør, Denmark. The M. edulis were placed in four 13-litre maintenance tanks (50 M. edu-
lis per tank) with flowing, fully aerated seawater from the laboratory water system (tempera-

ture 10–13˚C and salinity ~30). The M. edulis were allowed to acclimate to temperature and

salinity for at least three weeks prior to experiments. During this period, the M. edulis were fed

three to four times a week with suspensions of Rhodomonas salina. At each feeding, 2–3 litres

of algal suspension (106 cells ml-1) were added to each maintenance tank and the water supply

was turned off for 1–2 h. The day after feeding, the maintenance tanks were cleaned for faeces.

Cultivation and bio-volume of algae

Four different protist cultures were used in the present study: The cryptophytes R. salina (K-

0294, NORCCA) and Teleaulax amphioxeia (K-0434, NORCCA), a ciliate Mesodinium
rubrum (MBL-DK2009), and the dinoflagellate Dinophysis acuta (DANA-2010). All protist

cultures were grown in F/2 medium based on autoclaved natural seawater with a salinity of

32 ± 1 and pH 8.0 ± 0.1. All cultures were kept in a temperature-controlled room at 15 ± 1˚C

and exposed to an irradiance of 130 μmol photons m-2 s-1 (PAR) in a light:dark cycle of 16:8 h

[39], except for R. salina that was grown under continuous light [40] and with aeration.

The cultures of D. acuta were fed twice a week with a culture of the ciliate M. rubrum (pred-

ator:prey ratio: 1:10), while the cultures of M. rubrum was fed twice a week with a culture of

the cryptophyte T. amphioxeia (predator:prey ratio: 1:10). The bio-volume of R. salina was cal-

culated as a prolate spheroid with circular cross-section (p
6
� d2 � h, where d = diameter and

h = height) and the bio-volume of D. acuta as a prolate spheroid with elliptic cross section

(p
6
� a � b � h, where a = apical height, b = transapical axis and h = height) [41]. Using the above

equations, the bio-volume of R. salina and D. acuta was calculated to 105 μm3 p

6
� 52 � 8

� �
and

29.5�103 μm3 p

6
� 35 � 23 � 70

� �
, respectively. Accordingly, the bio-volume of one D. acuta cell

was equivalent to approximately 280 R. salina cells.
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Preliminary experiments

First, we tested if D. acuta had a detrimental effect on R. salina when kept together. An experi-

ment with six replicate 65-ml bottles containing a mixture of 28 D. acuta cells ml-1 and 3.4 �

103 R. salina cells ml-1 and six replicate 65-ml bottles with only 3.4 � 103 R. salina cells ml-1

were prepared by adding the algal cultures to autoclaved seawater (salinity 32 ± 1). The bottles

were kept in a temperature-controlled room at 15 ± 1˚C and mixed by inversion of the bottles

every five to ten minutes. After incubation for 2 h, the algal densities were determined by cell

counts (see below), and we did not observe any detrimental effect of D. acuta on R. salina (S1

Fig).

Finally, control experiments were carried out to determine the natural sedimentation of the

two algal species, R. salina and D. acuta, at the different densities (Table 1). Similar experimen-

tal conditions as in the clearance rate experiments (see below) were established but with no

presence of M. edulis. The first water sample was withdrawn after two minutes of mixing.

Additional water samples were withdrawn every 15 min for up to an hour. The algal densities

remained constant during the duration of the control experiments (1h; S2 Fig).

Clearance rate of Mytilus edulis exposed to Dinophysis acuta
Clearance rates of the M. edulis were studied at different algal densities (Table 1) of either the

non-toxic alga R. salina (4 � 103, 8 � 103 and 11.5 � 103 cells ml-1), the DST and PTX-containing

D. acuta (14, 28 and 40 cells ml-1) or a mixture of the two algal species (D. acuta: 28 cells ml-1

and R. salina: 3.4 � 103 cells ml-1). The different algal densities used in the clearance rate experi-

ments (see below) are listed in bio-volume and cell densities (Table 1). Rhodomonas salina
densities were selected based on the study by [42], in which clearance rate of M. edulis was

high and constant at R. salina (= R. baltica) densities of 2 � 103–6 � 103 cells ml-1 for at least

eight hours, whereas at>15 � 103 cells ml-1 a decrease in clearance with time was observed

[42]. The total bio-volume of the mixed R. salina and D. acuta diet were equal to the highest

bio-volume used in the single algal species experiments and had a potential equal amount of

DST and PTX as the intermediate density of D. acuta.

Nine randomly selected M. edulis were selected the day prior to the start of experiments

and positioned individually in the maintenance tank on nine glass plates where they embyssed.

This was done to avoid stress due to breakage of byssus [43], when transferring the M. edulis
from the maintenance tank to the experimental set-up. For each algal density (Table 1) two

experiments were made, each including three 12-litre experimental aquariums (in total n = 6).

The aquariums were placed in a temperature-controlled room (13 ± 1˚C) and 4 l of seawater

(salinity ~30) was added to each aquarium. The water in the aquariums was aerated and mixed

by small centrifugal pumps during the entire experimental period. At the start of experiment,

the appropriate volume of algal suspension was added to the aquariums and allowed two

Table 1. Algae densities of Rhodomonas salina and Dinophysis acuta.

D. acuta
(cells ml-1) / (μm3)

R. salina
(cells ml-1) / (μm3)

Mix of D. acuta + R. salina
(cells ml-1) / (μm3)

40 / 1.2 � 106 11.3 � 103 / 1.2 � 106 28 + 3.4 � 103 / (8.3 � 105 + 3.6 � 105) = 1.2� 106

28 / 8.3 � 105 8 � 103 / 8.4 � 105

14 / 4.1 � 105 4 � 103 / 4.2 � 105

Targeted algal densities (cells ml-1) and bio-volume (μm3) of Dinophysis acuta and Rhodomonas salina in each of the

experiments. Note that the algal densities of each species represent equivalent bio-volumes. The mixture of the D.

acuta and R. salina is equivalent to the highest algal densities in terms of bio-volume of cells.

https://doi.org/10.1371/journal.pone.0230176.t001
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minutes to become homogeneously mixed. Subsequently, three individual M. edulis on glass

plates were positioned randomly in each aquarium. Each clearance rate measurement was car-

ried out in one h cycles repeated for up to 5 h according to the standard method used by [44].

In each aquarium, the decrease in algal density was monitored every 15–20 minutes for 60

minutes by withdrawal of water samples (25 ml). After each cell count (see below) the remain-

ing water samples of�19 ml were transferred back to the respective aquarium. A new 60 min-

utes measure period was initiated by re-establishing the initial algal density by addition of algal

suspension after removal of equal water volumes to ensure a constant volume of 4 l. In the

experiments with mixture of R. salina and D. acuta, water samples were withdrawn every 40

minutes for two hours due to the extended analysis time (see below) before the initial algal

density was re-established. The clearance rate experiments were terminated if either the clear-

ance rate reached zero or the experimental period of 5 h was reached.

The density of R. salina and D. acuta in the water samples was measured in triplicates (1 ml

each) using an electronic particle counter (Coulter counter, Multisizer 3) equipped with a 100

or a 280 μm aperture tube for the measurement of R. salina and D. acuta, respectively. In the

mixed suspensions of R. salina and D. acuta, the density of R. salina was measured as above,

whereas the D. acuta was determined by manually counting triplicates of fixed samples (acidic

Lugol’s) using an Olympus CK2 inverted microscope at 40-200x and 1-ml Sedgewick-Rafter

sedimentation chambers. This was due to the fact that none of the two aperture sizes could

count both algal sizes at the same time.

The observed clearance rates (CRobs, l h-1 ind-1) were calculated using Eq 1. If M. edulis in

each aquarium cleared the water from algae at a constant rate during the experiments, the

decrease in algal density as a function of time will be linear in a semi-log plot (S3 Fig). Only

experiments with a slope significantly different from zero and with R2 > 0.80 (mean R2 =

0.89 ± 0.05 for measurements with and R2 > 0.80) were used to calculate the clearance rate.

CRobs ¼
v

t � n
� Ln

C0

Ct

� �

ð1Þ

Where V = water volume (l), t = time (hour), n = number of M. edulis (3) and C0 and Ct =

algal densities (cells l-1) at time 0 and t, respectively. All CRobs were corrected for the negligible

sedimentation effects in the control aquariums without presence of M. edulis (S2 Fig).

The CRobs were standardized to weight specific clearance rate (CRdw, l h-1 g-1) using Eq 2.

CRdw ¼
dws

dw0

� �0:66

� CRobs ð2Þ

Where dws = 1, dw0 = average soft tissue dry weight (g) of the three M. edulis in each aquar-

ium, 0.66 = the allometric exponent [45] and CRobs = the observed clearance rate (l h-1 ind-1).

Ingestion rate estimation

During experiments, visual inspection of the aquariums gave no indications of pseudofeces

production. In addition, after the experiments empty D. acuta thecae were found in both the

stomach-content (inverted-microscopy) and in fecal material (epifluorescence microscopy),

which imply that the M. edulis actually ingested and digested the DST and PTX-containing D.

acuta cells during the experiments. The retention efficiency of M. edulis when clearing R.

salina, D. acuta or a mixed diet of the two algae was set to 100%. Hence, the number of cells

ingested was calculated by multiplying the observed clearance rate (l h-1 ind-1) with the mean

algal density (cells l-1). The total bio-volume ingested (μm3) was calculated by multiplying the

number of ingested cells with the cell bio-volume of either D. acuta or R. salina.
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Oxygen consumption on individual Mytilus edulis exposed to Dinophysis
acuta
The oxygen consumption experiments were conducted immediately after termination of each

clearance rate experiment. The nine glass plates with individual M. edulis were gently moved

from the clearance rate set-up into nine individual small transparent glass respiration cham-

bers (60 ml). Because of the small chamber volume, the M. edulis themselves supplied the

stirring of the water during measurements. Whether the M. edulis could stir the water suffi-

ciently to allow oxygen consumption to be measured reliably was tested in a pilot study. In

the literature the oxygen consumption of M. edulis has been found in the range of 0.13–0.8 mg

O2 h-1 g-1 [46–50]. The oxygen consumption rates from literature can be standardized (expo-

nent as in Eq 2) to the weight of the M. edulis used in the present study and further expressed

as the concomitant decrease in oxygen saturation in a respiration chamber with the volume of

60 ml. Four representative examples of measured decreases in oxygen concentration obtained

in the pilot-study together with the range of decrease in oxygen concentration taken from the

literature are presented in Fig 1. Three of the M. edulis shown (Fig 1B–1D) stirred the water

sufficiently and the measured oxygen consumption rates were in full accordance with the liter-

ature. Likewise, an inactive M. edulis (Fig 1A), which did not stir the water to a sufficient

degree, could readily be identified. Hence, the pilot study verified that when active, the M. edu-
lis did stir the water sufficiently and the set-up was appropriate to measure reliable oxygen

consumptions. In the present experiments, the longest lasting measurement was 40 minutes,

which at the highest oxygen consumption found in literature correspond to a decrease in

chamber oxygen of 2 mg O2. Therefore, the lowest theoretical oxygen saturation at the end of

experiment can be estimated to approximately 77%, which is not considered critical for M.

edulis to respire fully aerobic.

Fig 1. Oxygen concentration in the respiration chamber. The decrease in oxygen concentration in the respiration

chambers as a function of time in four different Mytilus edulis oxygen consumption measurements (filled circles). A)

inactive mussel (no stirring), B-D) active mussels. Linear regression lines, regression equations and R2 are given on the

figure. The theoretical decrease in oxygen concentration in the respiration chamber (broken lines) calculated for the

highest oxygen consumption (0.8 mg O2 h-1 g-1) from literature ([49,50] and for the lowest (0.13 mg O2 h-1 g-1) [48].

https://doi.org/10.1371/journal.pone.0230176.g001
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The M. edulis were left undisturbed for 20 minutes after transfer to their individual respira-

tion chambers, before the chambers were closed with airtight lids and measurements done.

After closure of the chambers, the oxygen concentration in each chamber was measured every

10 minutes for 20–40 minutes. After the final oxygen measurement, M. edulis were gently

removed from the chambers and the oxygen consumption in the chambers was measured

without presence of M. edulis. The oxygen concentration in the chambers was measured from

the outside (minimal disturbance of the M. edulis) using a fiber-optic oxygen probe (Fibox 3,

Minisensor oxygen meter, Presens Precision Sensing GmbH, Germany) where the oxygen-

sensitive sensor spots were glued to the inside of the respiration chambers. To ensure repro-

ducible readings, each chamber was equipped with a guide for precise placement of the optical

fiber. Measurements where M. edulis were inactive resulted in no significant decrease in oxy-

gen concentration (e.g. Fig 1A) and these measurements were excluded from the calculations.

The decrease in oxygen concentration in the individual chambers was plotted against time

and a linear regression was made (only measurements with R2 > 0.80 [mean R2 of all measure-

ments was 0.95 ± 0.04] were used in calculations). The weight specific oxygen consumption

(MO2, mg O2 h-1 g-1) was calculated according to:

MO2 ¼
1

dw

� �0:7

� ðð� dO2 � VÞ � MO2blind
Þ ð3Þ

where dw = dry weight (g) of soft tissue, 0.7 = the allometric exponent [51], δO2 = the slope of

decrease in oxygen concentration (mg O2 l-1 h-1) during measurement, V = volume of cham-

ber (l) and MO2blind
¼ the oxygen uptake of the chamber without presence of a M:edulis:

Determination of shell length and dry weight of Mytilus edulis
At the end of the oxygen consumption measurements, the shell length of the individual M.

edulis was measured with a digital caliper (± 0.1 mm). The M. edulis tissue was separated from

the shells and dried at 80˚C until no further weight loss was recorded (� 3 d). The samples

were allowed to cool to room temperature in a desiccator and subsequently weighed to the

nearest mg.

Determination of DST and PTX in Dinophysis acuta
Three samples (0.5–2.5 ml) for toxin analysis were taken from each batch of D. acuta culture at

the day of experiments, because the toxicity of D. acuta varies with time [39]. The samples

were transferred to spin-filters and centrifuged at 400 g for two minutes. Filtrates were

removed and the spin-filters were stored at -18˚C until further analysis. The samples were ana-

lyzed for the toxin groups OA, DTX and PTX according to the procedure below.

The spin filter samples were extracted with 150 μl methanol (100%) and incubated for 1 h

before they were centrifuged at 800 g for two minutes. The extract was transferred to a 2-ml

glass HPLC vial with a 250 μl glass insert. Measurements were done on an SCIEX-4000 Q Trap

(Sciex, Darmstadt, Germany) triple quadrupole-linear ion trap hybrid mass spectrometer

equipped with a TurboSpray1 interface coupled to a model 1100 LC (Agilent, Waldbronn,

Germany). The LC equipment included a solvent reservoir, in-line de-gasser (G1379A), binary

pump (G1311A), refrigerated auto sampler (G1329A/G1330B) and temperature-controlled

column oven (G1316A). PTX were measured in the positive ionization mode as described by

[52], whereas OA and DTX-1b were measured in the negative ionization mode using large vol-

ume injection (50 μl). Further details of the method are described in [39]. It should be noted

that in the experiments with 14 D. acuta cells ml-1 all samples were re-analyzed, because the

analysis showed erroneously low concentrations of OA and DTX-1b (a factor 10 lower).
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However, due to reduced sample volumes available after the first measurements, it was not

possible to make a direct re-analysis of OA and DTX-1b. Consequently, the samples were only

re-analyzed for PTX-2 and afterwards the OA and DTX-1b concentrations were estimated

using the PTX-2:OA and PTX-2:DTX-1b ratio found in the first analysis and the re-analyzed

PTX-2 concentration. The calculated OA and DTX-1b concentrations seemed more reliable

(i.e., within the same range as the other experiments).

The total amount of each toxin group ingested by the M. edulis used in the experiments was

calculated as the average toxin amount (pg cell-1) multiplied with the number of cells ingested

(cells ind-1).

Statistical analysis

Statistical analysis was made using GraphPad Prism version 7.0e for Mac (GraphPad Software,

San Diego California USA, www.graphpad.com). Homogeneity of variances and normality

were tested for all data sets according to Bartlett’s test, D’Agostino and Pearson omnibus nor-

mality test before further statistical analysis. The algal densities for each algal species were

tested using One-way ANOVA followed by Tukey’s multiple comparison tests. The temporal

development of the weight specific clearance rates for a given algal density were analyzed with

repeated measures ANOVA. Repeated measures ANOVA followed by Sidak’s multiple com-

parisons test were used for comparison of weight specific clearance rates for experiments with

the same bio-volume of the different algal species (e.g. 11.3 � 103 R. salina cells ml-1 vs. 40 D.

acuta cells ml-1), whereas the Mann-Whitney U-test (equal variance test failed) were used for

pairwise comparison of weight specific clearance rates for each of the algal species in the

mixed diet experiment. Kruskal-Wallis H test followed by Dunn’s multiple comparison tests

(equal variance test failed) were used to analyse the total amount of cells ingested (cells ind-1),

the total amount of toxins ingested (μg ind-1) in the experiments with D. acuta and the respira-

tion rates of M. edulis feed the two algal species and the mixed diet. Average values are given

with ±1 SD or ±1 SE for weight specific clearance rate. The significance level for all tests was

set at α = 0.05.

Results

Clearance rate of Mytilus edulis
The M. edulis used in the experiments had an average shell length of 32.4 ± 1.7 mm and an

average tissue dry weight of 103 ± 32 mg (n = 126). The average densities of R. salina were 11.7

� 103 ± 1.37 � 103, 7.49 � 103 ± 758 and 4.73 � 103 ± 585 cells ml-1 and significantly different

(One-Way ANOVA; F(3,266) = 990.0, P<0.0001). The average densities of D. acuta were

38 ± 7, 28 ± 6 and 16 ± 3 cells ml-1, respectively and all densities were significantly different

(One-Way ANOVA; F(3,257) = 218.9, P<0.0001). In the experiments with the mixture of R.

salina and D. acuta the average density of each algal species was 3.22 � 103 ± 116 and 26 ± 4

cells ml-1, respectively. For simplicity, the experiments will be referred to as the algal densities

shown in Table 1 in the rest of the text.

The weight specific clearance rates (CRdw) of M. edulis fed D. acuta of different densities

(Fig 2A–2C) changed over time (Repeated Measures ANOVA; 40 cells ml-1 F(3,12) = 91.9,

P = 0.0016), 28 cells ml-1 F(2,8) = 38.1, P = 0.0224 and 14 cells ml-1, F(3,12) = 12.3,

P = 0.0070)). However, the CRdw of M. edulis fed different densities of R. salina (Fig 2D–2F),

only changed with time when fed 11.3 � 103 cells ml-1 (Repeated Measures ANOVA: 11.3 � 103

cells ml-1 F(5,15) = 27.14, P = 0.0016; 8 � 103 cells ml-1 F(5,15) = 2.74, P = 0.1329 and 4 � 103

cells ml-1, F(5,15) = 2.37, P = 0.0710). After the first hour of experiments (i.e., the first one

hour cycle), the CRdw of M. edulis had decreased by 25, 60, and 70% when exposed to 14, 28
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Fig 2. Weight specific clearance rate of Mytilus edulis exposed to Dinophysis acuta and Rhodomonas salina. The weight specific clearance rate (l h-1 g-1) for

groups of three Mytilus edulis as a function of time at different algal densities of DST and PTX-containing Dinophysis acuta (A-C) and non-toxic Rhodamonas
salina (D-F). Data points refer to average values and error bars to indicate ± 1 SE.

https://doi.org/10.1371/journal.pone.0230176.g002

Fig 3. Weight specific clearance rate of Mytilus edulis exposed to either equivalent bio-volumes of Rhodomonas salina or potential equal toxin amount

compared to a mixed diet. The weight specific clearance rate (l h-1 g-1) of Mytilus edulis within the first hour (A) and within the second hour (B) at different algal

densities (cells ml-1) of either the non-toxic R. salina (11.3 � 103 cell ml-1), the DST and PTX-containing D. acuta (28 cells ml-1) or a mixture of the two algae (R.

salina: 3.4 � 103 cells ml-1 and D. acuta: 28 cells ml-1). Different letters denote significant difference between treatments within the first or second hour. Bars

represents average values and are shown with SD.

https://doi.org/10.1371/journal.pone.0230176.g003
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and 40 D. acuta cells ml-1 as compared to M. edulis exposed to equivalent bio-volumes of non-

toxic R. salina (Fig 2A–2F).

The CRdw of M. edulis exposed to the two highest densities of D. acuta (Fig 2B and 2C) was

during all experiments significantly different from the CRdw ofM. edulis fed bio-volume equiv-

alent R. salina densities (Fig 2E and 2F) (Repeated Measures ANOVA; F(3,18) = 15.73,

P<0.0001 and F(3,12) = 7.61, P<0.005, respectively). Mytilus edulis ceased to clear D. acuta
after two and three hours when exposed to densities of 40 and 28 D. acuta cells ml-1, respec-

tively. The CRdw of M. edulis exposed to the lowest cell densities (14 D. acuta cells ml-1 and 4 �

103 R. salina cells ml-1, Fig 2A and 2D) was not significantly different during the first four

hours of the experiments (Repeated ANOVA; F(4, 24) = 6.47, P>0.05). However, after five

hours the CRdw of M. edulis exposed to the lowest densities of the two algal species differed sig-

nificantly (Repeated ANOVA; F(4,24) = 6.47, P = 0.00013).

The average CRdw of M. edulis fed 11.3 � 103 R. salina cells ml-1, 28 D. acuta cells ml-1 and

the mixture of D. acuta and R. salina (28 and 3.4 � 103 cells ml-1, respectively) were within the

first hour of experiment 8.4 ± 2.0, 4.0 ± 0.9 and 5.2 ± 1.9 l h-1 g-1, respectively (Fig 3A). Within

the first hour, the average CRdw of M. edulis fed 11.3� 103 R. salina cells ml-1 was significantly

different from the CRdw of M. edulis fed either 28 D. acuta cells ml-1 or the mixed diet

(Repeated Measures ANOVA; F(6,18) = 7.73, P<0.0001 and P = 0.0011, respectively). In con-

trast, no difference in CRdw was observed between M. edulis fed 28 D. acuta cells ml-1 or the

mixed diet (Repeated Measures ANOVA; F(6,18) = 7.73, P = 0.7336). Within the second hour

the CRdw (Fig 3B), was unchanged for M. edulis fed 11.3 � 103 R. salina cells ml-1 (Repeated

Measures ANOVA; F(6,18) = 7.73, P>0.9999). However, within the second hour the CRdw for

M. edulis fed 28 D. acuta cells ml-1 and the mixed diet were reduced to 2.2 and 0.2 l h-1 g-1,

respectively (Repeated Measures ANOVA; F(6,18) = 7.73, P = 0.0243 and P<0.0001). Further-

more, M. edulis fed 28 D. acuta cells ml-1 had a significantly different CRdw (Fig 3B) compared

to the mixed diet; even though the two diets had potential the same toxin content, when fed

density of 28 D. acuta cells ml-1 (Repeated Measures ANOVA; F(6,18) = 7.73, P = 0.046).

Within the first hour, the CRdw of M. edulis fed D. acuta and R. salina in mixture was, when

calculated separately for the two prey species, 5.5 ± 1.4 and 4.9 ± 2.4 l h-1 g-1, respectively, and

not significantly different (Mann Whitney U-test, U = 11, N1 = 6, N2 = 6, P = 0.3095) (Fig

3A). Therefore, the two prey species were retained by M. edulis with the same efficiency when

fed in mixture. Within the second hour the CRdw of both prey species offered in mixture were

close to zero (< 0.07 l h-1 g-1) and were not significantly different (Mann Whitney U-test,

U = 13, N1 = 6, N2 = 6, P = 0.4848) (Fig 3B).

The average observed clearance rates (l h-1 ind-1) for all one h cycles in each experiment

showed clearance rates of R. salina in the range of 1.8 ± 0.4–2.4 ± 0.2 l h-1 ind-1 and for D.

acuta in the range of 0.7 ± 0.1–1.9 ± 0.6 l h-1 ind-1 (Table 2). In general, the clearance rates

decreased with increasing D. acuta density. In the mixed diet experiment, the observed average

clearance rate (calculated as the average of both species) was 1.3 ± 0.6 l h-1 ind-1 (Table 2).

Total cell-volume ingested by Mytilus edulis
The total bio-volumes ingested in the experiments with different densities of R. salina and D.

acuta were in the range of 2.7 ± 0.9 to 4.5 ± 0.8 and 1.0 ± 0.1 to 2.2 ± 0.7 mm3, respectively

(Table 2). A comparison of the experiments in which M. edulis was fed the three diets with the

same bio-volume (i.e., 1.2 � 10−6 μm3) showed that the total bio-volume ingested (Table 2) by

M. edulis fed 11.3 � 103 R. salina cells ml-1 was significantly different from the bio-volume

ingested when fed 40 D. acuta cells ml-1 and the mixed diet (Kruskal-Wallis, followed by

Dunn’s multiple comparison test, H = 9.35, df = 3, P = 0.0067). A comparison of the two
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experiments in which M. edulis were fed diets with the same cell density of D. acuta, and

thereby potentially equal toxin amount (i.e., 28 D. acuta ml-1 and the mixed diet), revealed no

difference in ingested bio-volume (Kruskal-Wallis, followed by Dunn’s multiple comparison

test, H = 9.35, df = 3, P = 0.23).

The accumulated number of D. acuta cells ingested at the time M. edulis stopped clearing,

was independent of the D. acuta density regardless whether offered as a single prey or as a

mixed diet (Table 2, Kruskal-Wallis, followed by Dunn’s multiple comparison test, H = 9.25,

df = 4, P> 0.05). On average, M. edulis stopped clearing when 50.1� 103 ± 6.94 � 103 D. acuta
cells had been ingested, which corresponded to a bio-volume of 1.5 ± 0.2 mm3.

Toxin measurements and toxin ingestion by Mytilus edulis
The DST and PTX-2 content (pg cell-1) of the different batches of D. acuta varied between

experiments (Table 2). The experiments with density of 40 D. acuta cells ml-1 had the highest

content of all three toxins (OA, DTX-1b and PTX-2). Equal amounts of OA and DTX-1b were

observed in the experiment with 40 D. acuta cells ml-1 and the mixed diet. The content of both

OA and DTX-1b was lower in experiments with 14 and 28 D. acuta cells ml-1 compared to 40

D. acuta cells ml-1 (Table 2). The total amount of OA+DTX-1b+PTX-2 ingested by M. edulis
(Fig 4) was significantly higher in the 40 D. acuta cells ml-1 experiment with the highest toxin

content (Table 2) as compared to the other experiments (Kruskal-Wallis H test, followed by

Dunn’s multiple comparison test, H = 10.07, df = 3, P = 0.006). Thus, the highest toxin inges-

tion coincided with the most pronounced clearance rate reduction and the quickest cessation

of clearance activity (Fig 2C).

Respiration rate of Mytilus edulis
The average respiration rates of M. edulis when fed R. salina (11.3 � 103 cells ml-1), D. acuta (28

cells ml-1) or the mixture of D. acuta and R. salina (28 + 3.4 � 103 cells ml-1, respectively) were

not significantly different (Fig 5) (Kruskal-Wallis test followed by Dunn’s Multiple Compari-

son Test, H = 4.733, df = 2, P = 0.094). The overall average respiration rate of the three experi-

ments was 0.42 ± 0.15 mg O2 h-1 g-1. At the end of measurement, the oxygen saturation in the

respiration chambers had decreased to 83.0 ± 4.7%, which for M. edulis poses no problem for

aerobic respiration.

Table 2. Measured and calculated variables in the different clearance rate experiments conducted on Mytilus edulis fed different algal species and densities.

Algal species Density

(cells m-1)

n CR

(l h-1 ind-1)

Itot-cells

(x105 cells)

Itot-vol

(mm3 ind-1)

OA

(pg cell-1)

DTX-1b

(pg cell-1)

PTX-2

(pg cell-1)

R. salina 11.3 � 103 6 1.8 ± 0.4 429 ± 123 4.5 ± 0.8

8 � 103 6 2.1 ± 0.2 343 ± 96 3.6 ± 0.7

4 � 103 6 2.4 ± 0.2 253 ± 73 2.7 ± 0.9

D. acuta 40 4 0.7 ± 0.1 0.6 ± 0.06 1.9 ± 0.08 5.5 ± 2.5 6.6 ± 3.0 109 ± 46

28 3 1.0 ± 0.2 0.4 ± 0.1 1.0 ± 0.1 1.7 ± 0.6 2.1 ± 0.7 73 ± 8

14 4 1.7 ± 0.2 0.7 ± 0.2 2.2 ± 0.7 1.4 ± 0.6 1.7 ± 0.7 37 ± 16

D. acuta + 28 6 1.4 ± 0.3 0.3 ± 0.01 0.9 ± 0.3 5.1 ± 1.2 5.5 ± 1.4 29 ± 4

R. salina 3.4 � 103 6 1.2 ± 0.5 38 ± 14 0.5 ± 0.1

The algal species and initial algal density (cells ml-1), number of replicates (n), the clearance rate (CR, l h-1 ind-1), the number of cells ingested (Itot-cells, x105 cells) and

the total bio-volume ingested (Itot-vol, mm3 ind-1). In addition, the toxin content (pg cell-1) of okadaic acid (OA), dinophysistoxin (DTX-1b) and pectenotoxins (PTX-2)

in the D. acuta experiments are given. All average values presented with SD.

https://doi.org/10.1371/journal.pone.0230176.t002
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Discussion

Effects of Dinophysis acuta on Mytilus edulis clearance

Presence of the dinoflagellate D. acuta, which produces OA, DTX and PTX [39], affected the

feeding behaviour of the blue mussel, M. edulis. Clearance rates on D. acuta were lower than

on the control prey R. salina (Fig 2). Furthermore, we observed M. edulis to cease feeding on

D. acuta earlier with increasing D. acuta densities (Fig 2A–2C). These results indicate M. edulis
to be physiologically affected by the ingestion of DST and PTX containing D. acuta.

The present study supports an earlier study that found the daily increase of OA in M. edulis
is lower than what can be estimated from the theoretical clearance rate capacity of M. edulis
and the DST-cell quotas [19]. The authors suggested that different mechanisms could explain

the reduced rates (incl. reduced clearance, shell-valve closure, impeded absorptive capacity

and increased depuration), which all may contribute to the lower levels seen in M. edulis. Fur-

thermore, the authors also proposed shell-valve closure and reduced clearance rate to be more

pronounced when M. edulis encounter higher amounts of okadaic acid. This observation was

supported by our study, where the fastest reduction in clearance rate was found in the experi-

ment with the highest available OA+DTX-1b content. In addition, when exposed to the same

Fig 4. Toxin ingestion of Mytilus edulis exposed to Dinophysis acuta. The estimated total amount of OA+DTX-1b+PTX-2 ingested by

Mytilus edulis exposed to three different densities of the DST and PTX-containing D. acuta (14, 28 and 40 cells ml-1) and a mixed diet (R.

salina: 3.4 � 103 cells ml-1 andD. acuta 28 cells ml-1). � indicates significant difference from all other treatments (P < 0.01) and a indicates

significant differences (P = 0.035). Bars represent average values and are shown with SD.

https://doi.org/10.1371/journal.pone.0230176.g004
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D. acuta density but with different cell toxicity (i.e., 28 D. acuta cells ml-1 vs. the mixed diet),

we found significantly different clearance rates within two hours of feeding and the lowest

clearance rate was observed for the mixed diet (Fig 3B), which had the highest OA+DTX-1b

content compared to 28 D. acuta cells ml-1 (Table 2).

Effects of cell-volume and toxin ingested on Mytilus edulis clearance

Can we be sure that the reduced clearance rates observed are due to DST and/or PTX?

Reduced clearance rates have previously been shown for M. edulis exposed to high algal densi-

ties (e.g. [53–57]). The reduced filtration rates at high algal densities can be due to saturation

of the alimentary canal (i.e., “saturation reduction” [44]). Therefore, the reduced clearance

rates observed in M. edulis exposed to D. acuta observed in the present study may be caused by

saturation reduction. The gut capacity of M. edulis of the size used in the present study was

4–5 mm3 [42]. When exposed to the non-toxic R. salina we calculated the total ingested algal

volume at 4 � 103, 8 � 103 and 11.3 � 103 cells ml-1 to be 2.7, 3.6 and 4.5 mm3, respectively. In

terms of clearance rate, we only observed a reduction in M. edulis after four hours of exposure

to the highest R. salina density, which is in accordance with both the gut capacity and the con-

cept of saturation reduction [42,57]. However, when exposed to D. acuta a reduction in M.

edulis clearance rates were observed at all D. acuta densities as compared to the equivalent bio-

volume of R. salina. In all exposures to D. acuta, M. edulis stopped feeding on D. acuta within

3–5 hours and the total ingested algal volume was on an average calculated to 1.5 ± 0.2 mm3,

which is below half of the gut capacity. In addition, M. edulis ingested a total volume of cells of

1.4 mm3 (Table 2) when exposed to the mixed diet, which also was far below the gut capacity.

The observations of empty D. acuta thecae in both the stomach-content and faeces and the

absence of pseudofeces-production imply that the M. edulis actually ingested and digested the

DST and PTX-containing D. acuta cells during the experiments. Digestion of D. acuta has also

been observed in M. galloprovencialis, which seems to have a preference for Dinophysis spp.

and to digest them by opening the theca of the cells [58]. In the present study, M. edulis did

Fig 5. Respiration rate of Mytilus edulis exposed to Rhodomonas salina or Dinophysis acuta. The respiration rate of

Mytilus edulis exposed to either non-toxic Rhodomonas salina (11.3 � 103 cell ml-1), DST-containing Dinophysis acuta
(28 cells ml-1) or a mixture of the two algae (R. salina: 3.4 � 103 cells ml-1 and D. acuta: 28 cells ml-1). The R. salina and

the mixture of R. salina and D. acuta represent equal bio-volumes, whereas the D. acuta and the mixture of D. acuta +

R. salina represent equal toxin amounts (both 28 D. acuta ml-1). Bars represents average values and are shown with SD.

https://doi.org/10.1371/journal.pone.0230176.g005
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not display such preferential selection for D. acuta when offered in mixture with R. salina. In

conclusion, M. edulis exposed to D. acuta showed reduced clearance rates, which seems most

likely to be caused by the DST and/or PTX rather than saturation reduction.

Another factor, that might affect M. edulis feeding on DST and PTX-containing D. acuta,

could be extracellular toxins dissolved in the seawater, since released toxins from microalgae

have been shown to affect the feeding of bivalves (e.g., [59]). For DST and PTX, all three toxins

(OA, DTX-1b and PTX-2) are released to the surrounding seawater [39], and thus, potentially

could have caused the cessation of filtration. However, is has previously been shown that in the

absence of phytoplankton but with presence of OA in the water, even at high concentration,

did not induce toxicity in M. edulis [60]. Therefore, the observed effects on clearance rate seen

in the present study was most likely caused by the ingestion of toxic D. acuta, and not from

DST and PTX released to the water.

Total amount of toxin ingested by Mytilus edulis and implications for food

safety

Although toxin cell quotas in Dinophysis spp. are known to be highly variable, the toxin cell

quotas (Table 2) of D. acuta used in the present study were within the range of toxin cell quotas

measured in D. acuta cells collected in the field (e.g., [61–63]). Combined with the D. acuta
densities (cells ml-1) used in the present study, the amount of DST and PTX in the experiments

resembled observations of DST and PTX found in the field [62–67]. However, laboratory

experiments with unialgal cultures can in general be questionable because they do not resem-

ble natural conditions. In nature, Dinophysis blooms are rarely occurring in the absence of

other non-toxic phytoplankton species. In other words, most Dinophysis blooms usually repre-

sent only a small proportion of the total phytoplankton community [5,68]. In spite of this,

Dinophysis spp. even at low densities (< 10 cells ml-1) have been shown to result in mussels

exceeding the regulatory level of 0.160 μg OA equivalent (OA + DTX + PTX) g−1 of shellfish

meat (e.g. [5] and references therein).

No evidence of adverse acute or chronic health effects of PTX has been shown on humans

[69], and as a consequence some countries do not include PTX in the OA equivalents [70].

Thus, regions (e.g., the EU) that include PTX in their calculations of OA equivalents will suffer

from much longer harvesting bans and competition with production areas, where PTX have

been excluded from the calculation of OA equivalent [5]. Excluding the PTX, we estimated the

total accumulated amount of OA equivalents (OA+DTX-1b) to be 0.31, 0.18, 1.42 and 0.39 μg

OA-eq. g-1 meat, when M. edulis were exposed to 14, 28, 40 D. acuta cells ml-1 and the mixed

diet, respectively. These calculations were based on clearance rates, wet-weight of soft parts

and D. acuta cell quotas determined in this study. Furthermore, in the calculation we assumed

that i) the toxin accumulation efficiencies were 66 and 71% for OA and DTX-1b, respectively

[6], ii) DTX-1b is as toxic as DTX1 and iii) no depuration occurred during the experiments. In

conclusion, M. edulis in the present study accumulated toxins to above the regulatory limit

within a few hours of feeding on DST-containing D. acuta and within a wide range of toxin

cell quotas and cell densities. It has been shown that cells with high toxin cell quotas at low cell

densities may lead to the same accumulation of DST in mussels as ingestion of cells with low

toxin cell quotas at high cell densities [63]. Therefore, the authors concluded that the cell den-

sity multiplied with the associated toxin cell quota is decisive for the DST content of mussels

[63]. Accordingly, M. edulis exposed to 28 D. acuta cells ml-1 and the mixed diet (28 D. acuta
+ 3.4 � 103 R. salina cells ml-1) in the present study lead to similar amounts of OA+DTX-1b

ingested (Fig 4), even though the toxin cell quotas of D. acuta in the two exposures were
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different (Table 2). The above indicates that a threshold level for OA+DTX-1b exist because

M. edulis had ingested the same total amount of toxin during the incubations (Fig 3).

Effects of Dinophysis acuta on Mytilus edulis respiration

In the present study, the observed effects on clearance rate of M. edulis exposed to D. acuta did

not affect the rate of oxygen consumption (Fig 5). Similar observations have been made in pre-

vious experiments with five different juvenile bivalves (M. edulis, Mya arenaria, Geukensia
demissa, Placopecten magellanicus and Crassostrea virginnica) that have been exposed for one

hour to the PST producer Alexandrium catenella (reported as A. tamarense) [71]. Likewise, no

difference in oxygen consumption in two bivalve species (Ruditapes philippinarum and Perna
viridis) have been observed when exposed to A. catenella for six days [38]. However, the green

shell mussel Perna canaliculus has been shown to increase oxygen consumption after one hour

of exposure to A. catenella [72] and [29] observed variable respiration rates in several bivalves

species when exposed to toxic A. catenella (= Gonyaulax tamarensis) for five days. Thus, it can-

not be excluded that D. acuta could potentially influence the metabolism of M. edulis if

exposed for a longer period and further studies are required on the topic.

Conclusion

In conclusion, we have shown the clearance rate of M. edulis was reduced when fed the DST-

containing (OA and DTX) D. acuta as compared to when fed the non-toxic R. salina. In addi-

tion, M. edulis ceased active feeding within a few hours at all examined densities of D. acuta.

We argue that this effect was not caused by a saturation of the alimentary canal or extracellular

DST dissolved in the seawater, but rather caused by a direct toxic effect of DST in cells that

were ingested. Short-term exposure to DST-containing D. acuta did not have an effect on the

respiration rate. However, reduced clearance or other changes associated with toxin accumula-

tion (respiration, digestion and excretion) may affect the energy balance, which can affect the

conditions of the mussels negatively.

Supporting information

S1 Fig. Verification of no detrimental effect of Dinophysis acuta on Rhodomona salina.

Preliminary experiments to verify that D. acuta (28 D. acuta cells ml-1) in mixture with R.

salina (3.4 � 103 R. salina cells ml-1) had no detrimental effect on the latter.

(TIF)

S2 Fig. Control experiments without Mytilus edulis present. All algae densities of either Rho-
domonas salina or Dinophysis acuta remained constant during the duration of the control

experiments.

(TIF)

S3 Fig. Examples of semi-ln plot of clearance experiments with Mytilus edulis using 4�103

cells ml-1 of Rhodomonas salina. New algae suspensions were added five times to re-establish

initial algal density.

(TIF)
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60. Fux E, Biré R, Hess P. Comparative accumulation and composition of lipophilic marine biotoxins in pas-

sive samplers and in mussels (M. edulis) on the West Coast of Ireland. Harmful Algae. 2009; 8: 523–

537. https://doi.org/10.1016/j.hal.2008.10.007

61. Lee J-S, Igarashi T, Fraga S, Dahl E, Hovgaard P, Yasumoto T. Determination of diarrhetic shellfish tox-

ins in various dinoflagellate species. Journal of Applied Phycology. Kluwer Academic Publishers; 1989;

1: 147–152. https://doi.org/10.1007/BF00003877

62. Vale P. Differential dynamics of dinophysistoxins and pectenotoxins between blue mussel and common

cockle: a phenomenon originating from the complex toxin profile of Dinophysis acuta. Toxicon. 2004;

44: 123–134. https://doi.org/10.1016/j.toxicon.2004.04.002 PMID: 15246759

63. Lindahl O, Lundve B, Johansen M. Toxicity of Dinophysis spp. in relation to population density and envi-

ronmental conditions on the Swedish west coast. Harmful Algae. 2007; 6: 218–231. https://doi.org/10.

1016/j.hal.2006.08.007

64. Vale P, Sampayo M. Dinophysistoxin-2: a rare diarrhoeic toxin associated with Dinophysis acuta. Toxi-

con. 2000; 38: 1599–1606. https://doi.org/10.1016/s0041-0101(00)00079-9 PMID: 10775759

65. Godhe A, Svensson S, Rehnstam-Holm AS. Oceanographic settings explain fluctuations in Dinophysis

spp. and concentrations of diarrhetic shellfish toxin in the plankton community within a mussel farm

area on the Swedish west coast. Mar Ecol Prog Ser. 2002; 240: 71–83.

66. Lindegarth S, Torgersen T, Lundve B, Sandvik M. Differential Retention of Okadaic Acid (OA) Group

Toxins and Pectenotoxins (Ptx) in the Blue Mussel, Mytilus Edulis (L.), and European Flat Oyster,

Ostrea Edulis (L.). 2009; 28: 313–323.

67. Trainer V, Eberhart B, Moore L, Baught K, ORourke L, Borcherrt J, et al. Diarrhetic shellfish toxins in

Washington state: A new threat to the shellfish industry. 2012. p. 354.

68. Shultz D, Campbell L, Kudela RM. Trends in Dinophysis abundance and diarrhetic shellfish toxin levels

in California mussels (Mytilus californianus) from Monterey Bay, California. Harmful Algae. Elsevier;

2019; 88: 101641. https://doi.org/10.1016/j.hal.2019.101641 PMID: 31582160

69. Anonymous. Report of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in Bivalve Mol-

luscs. UNESCO. 2005;IOC/INF-1215.

70. Anonymous. Scientific opinion of the panel on contaminants in the food chain on a request from the

European Commission on marine biotoxins in shellfish–pectenotoxin group. EFSA Journal. 2009; 1109:

1–47.

71. Marsden ID, Shumway SE. The Effect of a Toxic Dinoflagellate (Alexandrium tamarense) on the Oxy-

gen-Uptake of Juvenile Filter-Feeding Bivalve Mollusks. Comparative Biochemistry and Physiology a-

Physiology. 1993; 106: 769–773. https://doi.org/10.1016/0300-9629(93)90395-K

72. Marsden ID, Shumway SE. Effects of the toxic dinoflagellate Alexxandrium tamarense on the greenshell

mussel Perna canaliculus. New Zealand Journal of Marine and Freshwater Research. 1992; 26: 371–

378.

PLOS ONE Dinophysis acuta effects on clearance and respiration of Mytilus edulis

PLOS ONE | https://doi.org/10.1371/journal.pone.0230176 March 9, 2020 19 / 19

https://doi.org/10.1155/2011/312459
https://doi.org/10.1016/j.hal.2008.10.007
https://doi.org/10.1007/BF00003877
https://doi.org/10.1016/j.toxicon.2004.04.002
http://www.ncbi.nlm.nih.gov/pubmed/15246759
https://doi.org/10.1016/j.hal.2006.08.007
https://doi.org/10.1016/j.hal.2006.08.007
https://doi.org/10.1016/s0041-0101(00)00079-9
http://www.ncbi.nlm.nih.gov/pubmed/10775759
https://doi.org/10.1016/j.hal.2019.101641
http://www.ncbi.nlm.nih.gov/pubmed/31582160
https://doi.org/10.1016/0300-9629(93)90395-K
https://doi.org/10.1371/journal.pone.0230176

