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Abstract

The effects of anthropogenic climate change are most drastic in the Arctic.

This amplification of climate change signals is strongly connected to the sea

ice in the Arctic Ocean. This thesis presents an analysis of the sea ice cover

in numerical ocean – sea ice models with a focus on two different parameter-

izations: an active ice thickness distribution and an ice strength parameter-

ization that is based on this additional thickness information. The research

questions are: (1) can the parameterizations improve the reproduction of

Arctic-wide sea ice observations? (2) Do the parameterizations actually re-

produce physically observed behavior? (3) How can the parameterizations

and their use in basin-scale models be improved further?

In a first step, model quality is assessed by a quantitative measure of

the reproduction of satellite observations of sea ice concentration, thickness

and drift. Including a full ice thickness distribution in each grid cell instead

of only two ice categories clearly improves the model results. At the same

time, a strength parameterization based on a two-category approach produces

better model results than a multi-category strength parameterization.

In a next step, the two parameterizations are evaluated in more detail.

The ice thickness distribution parameterization reproduces local observations

in the Arctic to a large degree and simulates faithfully regional and seasonal

differences found in observed distributions. The poor performance of the

multi-category ice strength parameterization is explained by the physical

assumptions that were made in its original derivation and that do not agree

with the current understanding of the ice cover.

In conclusion, using an ice thickness distribution improves model perfor-

mance, but a multi-category parameterization of the ice strength should be

avoided. In future work, a new ice strength parameterization could be de-

rived from the physical properties of the ice pack that are demonstrated in

this work.
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Zusammenfassung

Die stärksten Effekte des globalen Klimawandels werden in der Arktis be-

obachtet. Diese Arktische Verstärkung des Klimawandels is eng mit dem

Meereis im Arktischen Ozean verbunden. In dieser Dissertation wird die Be-

schreibung und Reproduktion von Meereis in numerischen Ozean – Meereis

Modellen analysiert, speziell der Einfluss von zwei physikalischen Paramete-

risierungen: einer aktive Eisdickenverteilung und einem Modell der Eisstärke,

das auf diesen zusätzlichen Informationen über die Eisdicke basiert. Die For-

schungsfragen sind: (1) Können die Parameterisierungen die Reproduktion

von Meereisbeobachtungen Arktis-weit verbessern? (2) Reproduzieren die

Parameterisierungen das physikalische Verhalten, welches sie eigentlich be-

schreiben sollen? (3) Wie können die Parameterisierungen und ihre Verwen-

dung in Ozean- und Klimamodellen weiter verbessert werden?

Als Maß der Qualität der Modelle wird die Übereinstimmung von Mo-

dellergebnissen und Satellitenbeobachtungen von Meereiskonzentration, -dicke

und -drift quantitativ gemessen. Eine Eisdickenverteilung in jeder einzelnen

Gitterzelle anstelle von nur zwei Kategorien für Eisdicke verbessern die Mo-

dellergebnisse deutlich. Allerdings führt eine Eisstärkenparameterisierung auf

Basis von zwei Kategorien zu besseren Ergebnissen als eine Mehr-Kategorien-

Eisstärke.

Als nächstes werden die beiden Parameterisierungen im Detail ausgewer-

tet. Örtliche Eisdickenverteilungen in arktischen Beobachtungen werden rea-

listisch wiedergegeben und das Modell reproduziert Unterschiede zwischen

den beobachteten Verteilungen aus verschiedenen Regionen oder Jahreszei-

ten. Die schlechten Ergebnisse der Mehr-Kategorien-Eisstärke können mit

den physikalischen Annahmen erklärt werden, die für die urspüngliche Her-

leitung aufgestellt wurden: nach heutigem Wissensstand sind diese unvoll-

ständig.

Als Fazit dieser Arbeit bleibt, dass eine Eisdickenverteilung in mehre-
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ren Kategorien zu einer Verbesserung von Meereismodellen führt, aber eine

Mehr-Kategorien-Eisstärke vermieden werden sollte. In Weiterführung die-

ser Arbeit könnte eine neue Eisstärkenparameterisierung auf Basis der hier

vorgestellten physikalischen Eigenschaften des Packeises hergeleitet werden.
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1. Introduction

Anthropogenic climate change can easily be seen as one of the largest chal-

lenges humanity ever had to face. As a short, introductory example, the

total heat uptake of the upper 2000m of the world ocean from 1955 – 2010

was 24± 1.9× 1022J (Levitus et al., 2012). To put these immense scales into

perspective, the total energy consumption of the European Union in the year

2015 was 4.5 × 1019J (Eurostat, 2017). So even if we wanted to reproduce

a change in the oceans similar to the one we caused unwillingly and spent

every effort of our whole society towards this goal, we would still need over

5, 000 years to produce a comparable amount of energy. Our task as climate

scientists is set on learning how the climate system works with all its com-

ponents, so we can understand and predict the changes that are happening

and that are yet to come. The most complete collection of this understand-

ing is collected and summarized in the reports of the International Panel on

Climate Change (2013).

One striking feature in this report are the changes observed and predicted

in the Arctic (Figure 1.1). The surface temperature in the Arctic increases

two times faster than the global average (Blunden & Arndt, 2017) and the

area covered by sea ice at the end of summer has reduced by 50% since the

beginning of reliable satellite data for sea ice concentration in 1979 (Wind-

nagel et al., 2016). With this rapid summer sea ice reduction, the Arctic

is estimated to be nearly ice free in summer before the second half of this

century (Overland & Wang, 2013).

Manabe & Stouffer (1980) found much stronger changes in the polar re-

gions than in lower latitudes in model simulations with increased greenhouse

gas forcing. This so-called “polar amplification” of climatic changes is the

combined result of many different factors. Pithan & Mauritsen (2014) found

the largest changes in Arctic surface temperature caused by a temperature

feedback loop in climate simulations. Further, decadal variability in the
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Figure 1.1: Average surface air temperature anomaly (compared to 1951-1980
mean) by year and latitude. Both global warming and the increased warming in
the Arctic are clearly visible. Figure taken from (Wendisch et al., 2017)

Pacific Ocean, changing circulation patterns in the Atlantic Ocean and high-

latitude atmospheric circulation patterns affect the drastic changes found in

observations of the Arctic (Screen & Francis, 2016; Polyakov et al., 2017; Ding

et al., 2017). But in addition to these individual factors, all these studies

identify the sea ice covering the Arctic Ocean as one of the most important

causes of the Arctic amplification.

1.1 Sea Ice in the Arctic

In this section I give a short overview of the different properties and aspects

of sea ice. A more detailed description and further sources are given by

Thomas & Dieckmann (2009).

The most obvious and defining processes that are relevant for the sea

ice are thermodynamic in nature: when it is cold enough, the water in the

ocean will freeze into sea ice, when it gets too warm, this sea ice will melt

again. When the surface ocean starts to freeze, small ice crystals form in the

water. As they get larger, these combine into small platelets, which in turn

can coagulate into small ice floes. If there are already ice floes floating on

the ocean, the water can freeze onto these floes at the bottom or the edges.

Similarly, ice floes do not melt uniformly. Deep reaching features like keels

2



1.1. SEA ICE IN THE ARCTIC

Figure 1.2: Sea Ice in the central Arctic late in the melting Season. (Picture:
M. Hoppmann)

and ridges are eroded more quickly by warm air or ocean currents. When

the surface of ice floes melts, the meltwater collects in small ponds on the

floe and changes the topography and the albedo.

In addition, the ice pack is in perpetual motion. Arctic sea ice is not a

single, uniform pack of ice, but consists of many different floes. While these

floes come in all sizes from smaller than a meter to multiple kilometers, they

are all floating on the ocean surface where they are pushed at by the wind, the

ocean currents, and by each other. Following the dominant wind patterns,

the ice travels over the whole Arctic.1

All this motion of the ice can lead to floes getting pushed against each

other in various angles. The stresses created in such situations are high

enough to break the ice. Depending on the thickness of the participating

floes, the ice can raft over each other or, if the ice is too thick, break into

pieces and pile up into pressure ridges. Similarly, if the stresses are divergent,

floes can break apart and create leads of open water in the ice, ranging from

small cracks to linear kinematic features spanning the whole Arctic basin.

The final aspect that needs mentioning are the many different scales that

are relevant when describing and researching sea ice behavior. The Arctic ice

pack measures thousands of kilometers horizontally, but is rarely thicker than

1As shown probably most impressively by Fridtjof Nansen in the year 1893, who, in
an effort to reach the North Pole, let his expedition ship freeze into the ice pack north of
the coast of Siberia and waited until the transpolar ice drift moved him closer to the pole.
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CHAPTER 1. INTRODUCTION

10m. Additionally, the properties of the ice can be very heterogeneous on the

meter scale (Figure 1.2). Ice that has grown without deforming in a similar

region has a more or less uniform thickness. But commonly, after only a few

weeks, this ice is covered with refrozen leads where the ice is substantially

thinner, or pressure ridges where it is much thicker. When moving through

the Arctic, ice floes of different source regions mix, so that neighboring floes

can have different thicknesses and ice types. And each year that an ice floe

survives in the Arctic leaves more scars on its surface from former melt ponds,

now maybe drained into empty pools, or old pressure ridges.

Sea ice can be studied from many different points of view. First, it plays

a large role in the biological net in the Arctic. It plays a key role in the

growth patterns of algae, or more general phytoplankton. These are the

foundation of the food web in the oceans and combined with the high amount

of nutrients in the Arctic Ocean, they provide food for the large amounts of

fish living in the cold waters. But sea ice also provides a habitat for large

marine mammals. Changes in the ice cover will not only impact the flora

and fauna in and around the ocean, but also the native communities living

in the Arctic. In their traditional lifestyle, a closed sea ice cover is important

for transportation and hunting (Meier et al., 2014).

Second, a reduction of the sea ice cover allows to develop new possibilities

for humans to live and work in the Arctic. Reduced amounts of sea ice

will open up new shipping routes with new risks for the Arctic in case of

accidents, but also the possibility to reduce the global fuel consumption by

shipping (Pizzolato et al., 2016). Similarly, there are new options for fishing

and natural resource extraction in the ocean that bring their own particular

risks and rewards (Meier et al., 2014).

And finally, the sea ice can be studied as a key factor in the global climate

system, which will be the main motivation in this thesis. As mentioned

above, it is crucial in the Arctic amplification of climate change. Additionally,

there is evidence that the reduction in sea ice can impact the large-scale

atmospheric pressure patterns and the amount of summer precipitation in

large parts of the northern hemisphere (Vihma, 2014). Extreme weather

events in the northern mid-latitudes are thought to be connected to changes

in the sea ice cover, although the exact dependence of these highly chaotic

events on single factors is still a matter of intense research (Overland et al.,

2016).
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1.2. SEA ICE MODELING

Multiple reasons make the sea ice so important for the climate in the

Arctic and beyond: (1) Sea ice is a highly effective insulator between the

atmosphere and the ocean. The drag of the Arctic winds on the surface

ocean, the sensible heat transfer between air and water and the radiative

exchanges between ocean and atmosphere are all drastically reduced when

an ice cover separates the two. (2) In summer, the ice not only changes the

distribution of the sunlight by reflecting it before it can reach the ocean,

but it also changes the total amount of sunlight that is taken up. Due to

the lighter surface of ice compared to the ocean, a larger amount of the

incoming radiation is finally reflected back into space (after some scattering

in the atmosphere) and does not heat any part of the earth. (3) All these

properties often interact and form feedback loops, the major reason for the

large effect sea ice has on climate change scenarios.

1.2 Sea Ice Modeling

I use computer models to investigate the properties of sea ice. There are

multiple arguments in favor of using models in sea ice research: (1) models

provide the sea ice state in every point of the model domain and during the

whole time of the model integration. This provides information also in those

areas and situations, where no observations are available. (2) Models allow

for experiments with globally unique systems like the global climate or the

polar cryosphere. (3) Models are not bound to real time, so simulations of

multiple decades can be calculated in mere hours or days.

Note however, that despite these advantages of models, observations of

the physical state of sea ice are the necessary basis of this research. Without

observations, it is impossible to say if a model describes sea ice realistically,

or if it has some specific biases, or if it describes some fantasy that has

almost nothing to do with the physical reality. Unfortunately, there are

far fewer reliable observations of sea ice than there are for example reliable

observations of the surface air temperature in central Germany. First of

all, expeditions into the Arctic are expensive and require large amounts of

time and preparation. Next, the harsh conditions in the Arctic make in-

situ observations difficult and pose large challenges in the development of

autonomous measuring devices. And finally, the different relevant scales in

sea ice make it necessary to cover large areas and resolve at the same time
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CHAPTER 1. INTRODUCTION

small details in observations.

For these reasons, I focus in my work on sea ice models as they are used

currently in many different ocean and climate models. Such models are used

in global or at least basin-wide simulations and need to cover large horizontal

areas. For the numerical description, the model areas are partitioned into

grids, where each grid cell is described by one datapoint in the model. Typical

grid spacings in climate models are between 100km and 10km, while high

resolution models today reach grid spacings of only few kilometers for the

whole Arctic (Stroeve et al., 2014; Wang et al., 2016). Note that there are

many different types of numerical models used in sea ice research, from one-

dimensional models of a column in the ice (e.g. Savage, 2008; Godlovitch

et al., 2012) over process models for individual ridging events (e.g. Hopkins,

1998; Herman, 2016) up to the basin-scale models used in climate simulations

(Stroeve et al., 2014). But for the remainder of this work, I will focus only

on the latter kind and use the words “sea ice model” to denote exclusively

this category.

Sea ice models using horizontal grids describe the integrated properties

of the ice pack over each grid cell. This information can differ from the

exact physical properties of an ice floe (Hibler, 1977). Usually, a single grid

cell contains multiple floes and a certain fraction of open water. So the

properties of the “ice” in the model like thickness, albedo or drift speed are

always approximations for the properties of the specific mixture of different

physical ice in the specific grid cell.

In climate simulations, sea ice models are often coupled to an ocean model

and possibly also an atmosphere model. In this coupled case, they need to

regulate the interaction between atmosphere and ocean additionally. The

exchange of momentum, energy and freshwater between the air and the sea

is a major driver for the global circulation patterns in both. If there is sea

ice present, these exchanges must be adapted and the adaptions must be

communicated to the respective model components. In such coupled models,

the design of the sea ice components is closely connected to the design of

ocean and atmosphere components or a possible coupler (Hunke et al., 2011).

In general, sea ice models solve two large systems of equations for these

tasks: (1) the dynamics of the ice pack are calculated as a result of different

forcing terms. Most important are the wind blowing over the ice, the ocean

currents flowing under it, and the ice pushing against itself. The results

determine the motion and the deformation of the ice in each point (Feltham,

6



1.2. SEA ICE MODELING

2008). (2) The thermodynamics are calculated for each grid cell individually.

The exact combination of incoming radiation, the temperatures of air and

ocean, and the thickness of ice and snow determine for each point if ice

melts or freezes and the amount of heat transferred between ocean, ice and

atmosphere (Fichefet & Morales Maqueda, 1997).

As a consequence of this approach, many crucial small-scale processes

can not be resolved in these models. Instead, their effects are included in

parameterizations. Ideally, the mean effect of the sub-grid processes can be

described as a simple function of the large-scale parameters that are available

in the model. When the first sea ice models were designed, these parameter-

izations described the effects of all processes taking place in a single grid cell

containing a huge amount of different floes. And even if current very-high

resolution models start to resolve the largest floes individually, features like

pressure ridges and leads are often only a few meters wide, so the need for

parameterizations still remains (Hunke et al., 2011).

The earliest parameterizations were concerned with the ice properties

most important for the ice itself and its impact on the Arctic climate. Com-

putationally simple schemes were developed to describe the effective albedo

of the ice pack, the distribution of different thicknesses in a given grid cell,

and the strength of the ice to resist deformation (Maykut & Untersteiner,

1971; Coon et al., 1974). Later, physical processes impacting the behavior

of the ice were described in increasing detail. For example, by now there are

individual parameterizations for melt ponds, the vertical salinity profile in

the ice or the form drag created by ridges, keels, and floe edges (Flocco et al.,

2010; Turner & Hunke, 2015; Tsamados et al., 2014).

Unfortunately, this increase in model complexity makes the evaluation of

sea ice models even more difficult. Even the most basic models today have a

large amount of free parameters that are supposed to adjust the conceptual

equations of the model to the situations found in reality. And with every

additional parameterization, more of these free parameters are added. Since

the effects of most of these parameterizations are closely connected, this

makes it difficult to correctly adjust the free parameters. On the one hand,

it is necessary to tune the models towards the available observations, that is,

to adjust the free parameters so that they best describe the known reality

(Hourdin et al., 2017). On the other hand, the complexity of current sea ice

models allows for similar adjustments to model behavior via different sets of

parameters and therefore allows also to reduce effects of one parameterization

7



CHAPTER 1. INTRODUCTION

by adjusting a different one (Hunke, 2010). In this way tuning can also hide

properties of new parameterizations that are both positive or negative for

the overall model.

This would be only a small problem, if the effects described by each pa-

rameterization were documented well. But as mentioned above, there is only

a relatively small amount of sea ice observations available in the Arctic. New

parameterizations are often based on only few observations of the specific

properties they are to represent (Hunke, 2014). And coinciding observations

of the described small-scale behavior and the matching large-scale properties

that are used for the parameterization are even less frequent. For this reason,

many parameterizations today are still evaluated only rudimentarily. This

means that for many parameterizations, the understanding of their effect on

the large-scale model variables, their representation of the physical processes

they ought to describe and their interaction with other model components is

still limited.

1.2.1 The Ice Thickness Distribution in Models

One of the oldest and at the same time one of the most commonly used

parameterizations is the active Ice Thickness Distribution (ITD) (Thorndike

et al., 1975). It describes the thickness of the ice in a given model grid cell by

a distribution in different thickness categories. For each of these categories,

it keeps track of the individual changes to ice thickness and the resulting

changes in the relative amounts of ice in each category. This thickness dis-

tribution allows then to calculate more precisely the many properties of the

ice that depend on the thin ice fraction or the amount of thick ice in pres-

sure ridges. Due to the high local variability of thickness in the ice and the

large impact of especially the thin ice fraction on both the amount of energy

transported vertically through the ice and the horizontal pressure necessary

to deform the ice, this parameterization was and is seen as crucial for a realis-

tic description of the large-scale properties of the ice pack (Massonnet et al.,

2011). A common alternative is to calculate only the total volume of the ice

in a grid cell and the relative amount of the area covered by thick ice (Hi-

bler, 1979). But while this variant is simpler and computationally cheaper,

it is obviously limited in the amount of thickness information available for

all other parameterizations.

Since the introduction of the ice thickness distribution parameterization,

8



1.3. SCOPE AND STRUCTURE OF THIS THESIS

it has been closely connected to the ice strength. The ice strength is de-

fined as the maximum pressure the ice can support before deforming per-

manently. Rothrock (1975) argued that the ice deforms in compression by

getting pushed into pressure ridges and calculated the ice strength from the

energy necessary to form those pressure ridges. With the assumption that

the thinnest ice will ridge most easily, his derivation depended heavily on the

ice thickness distribution of the ice in question. Therefore his parameteriza-

tion for the ice strength that is derived from first principles is only applicable

to sea ice models using the ice thickness distribution parameterization.

The strong physical arguments present in the derivation of the ice thick-

ness distribution parameterization make it still attractive for use in sea

ice models. While the numerical implementation of this parameterization

changed over the years (Hibler, 1980; Bitz et al., 2001; Lipscomb, 2001),

the underlying physical principles are still unchanged. Of the current cli-

mate models, a large part implements some version of it (Stroeve et al.,

2014). But as for so many other parameterizations, many questions about

this foundational parameterization are still unanswered.

Over the last decades, researchers have provided not only an increase

in model parameterizations and complexity, but also an increase in sea ice

observations. Motivated by the drastic changes in the Arctic, the new millen-

nium has seen an increase in sea ice observations with both established and

newly developed methods. Especially the amount of observations of thickness

distributions in specific Arctic regions has increased strongly. This allows to

revisit the ice thickness distribution and the ice strength, two cornerstones

of sea ice modeling, in more detail and finally untangle and answer some of

the open questions.

1.3 Scope and Structure of this Thesis

This thesis gives a detailed evaluation of sea ice physics based on a multicat-

egory thickness representation, especially the ice thickness parameterization

and the ice strength parameterization, in an Arctic sea ice model. The ef-

fects of the two parameterizations are disentangled and distinguished from

confounding effects of model tuning; and their advantages and disadvantages

are discussed. As a consequence of this evaluation, recommendations for best

practices and future development regarding these two parameterizations can

9



CHAPTER 1. INTRODUCTION

be given for climate models.

In a first step, I investigate if multicategory physics improve Arctic-wide

simulations of sea ice. Firstly, I present a precise and quantitative measure

of model quality for such an evaluation Secondly, the effects of multicategory

physics in general are split up into the individual contributions of the rep-

resentation of ITDs in single grid cells, of an ice strength parameterization

based on the thin ice fraction, and of the ability to tune these two parame-

terizations towards a given target. This investigation focuses on large-scale

model results and evaluates only the integrated effects of these parameteri-

zations on basin-wide sea ice properties.

In a second step, I investigate both parameterizations in more physical de-

tail. This means for one part to compare modeled ITDs to observations. The

model reproduces certain parts of individual observed distributions, while it

struggles with others. An analysis of these details allows to identify which

physical mechanisms are implemented in a satisfactory way and which phys-

ical mechanisms demand new numerical approximations. Then, the different

ice strength parameterizations are compared in more detail to find out ex-

actly which parameter choices, which numerical implementations and finally

which physical assumptions work best in the context of Arctic-wide sea ice

models.

The key research questions addressed in this thesis can be summarized in

the following way:

Key research questions

• Q1: Do physical parameterizations based on a multicategory

description of sea ice thickness help to improve sea ice models in

the Arctic?

• Q2: Which parts of the involved parameterizations work as they

are supposed to and which parts do not?

• Q3: How can the inaccurate parts of these parameterizations be

improved? Both in terms of model configuration and changes to

the parameterizations?

10



1.3. SCOPE AND STRUCTURE OF THIS THESIS

The thesis is structured as follows. I investigate in how far parameteri-

zations based on multicategory ice thickness can improve the reproduction

of large-scale observations of Arctic sea ice in chapter 2. I develop a clear

method to determine model quality in which an automated parameter opti-

mization is combined with a quantitative measure how well satellite observa-

tions of different sea ice properties in the Arctic are reproduced. Chapter 2

has been published in the Journal of Geophysical Research by Ungermann,

M., Tremblay, L. B., Martin, T., & Losch, M. (2017) under the title ’Impact

of the Ice Strength Formulation on the Performance of a Sea Ice Thickness

Distribution Model in the Arctic’.

I analyze the ITD parameterization and its ability to produce realistic

thickness distributions in more detail in chapter 3. Model results are com-

pared to a large amount of ITD observations in the Arctic with a focus on

regional, seasonal and decadal variability. For a thorough evaluation of the

parameterization, both the reproductions of regional mean distributions and

local distributions in single grid cells are evaluated and the most important

model parameters shaping the modeled ITDs are highlighted.

Then, I analyze the ice strength parameterization based on a thickness

distribution in chapter 4. The relevant equations are recast in the context of

a two-category thickness model to facilitate direct comparisons of different

ice strength parameterizations and clearly separate effects of different choices

of functional dependencies from the effects of different physical mechanisms

relevant to the parameterization. The resulting evaluation links shortcom-

ings in individual ice strength parameterizations to the physical assumptions

made in their original derivation.

Finally, I summarize the main results of this thesis, draw final conclusions,

and give an outlook over possible future work in chapter 5.

Remark Chapter 2 constitutes a published paper, while chapters 3 and 4 were

written as manuscripts ready for submission to scientific journals. For this reason,

each chapter is designed to be understandable on its own, even though this leads to

a few small repetitions, especially in the model descriptions. The respective roles of

my co-authors are noted in the beginning of chapter 2 and explain inconsistencies

regarding the use of the first person plural or singular in this thesis.
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2. Impact of the Ice Strength

Formulation on the Perfor-

mance of a Sea Ice Thick-

ness Distribution Model in

the Arctic 1

1The content of this chapter has been published in the journal Journal of Geophysical
Research by Ungermann et al. (2017) under the title ’Impact of the ice strength formulation
on the performance of a sea ice thickness distribution model in the Arctic’. The text of this
chapter is identical with the version published in Journal of Geophysical Research. For this
study, I implemented the optimization routine, performed the model simulations, evaluated
the results, created the figures and wrote the manuscript. T. Martin implemented the Ice
Thickness Distribution parameterization in the MITgcm, L.B. Tremblay and M. Losch
contributed to the evaluation and interpretation of the results.

13



CHAPTER 2. ICE STRENGTH IN AN ITD MODEL

Abstract The impact of a subgrid-scale ice thickness distribution (ITD) and two

standard ice strength formulations on simulated Arctic sea ice climate is investi-

gated. To this end different model configurations with and without an ITD were

tuned by minimizing the weighted mean error between the simulated and observed

sea ice concentration, thickness and drift speed with an semi-automatic parame-

ter optimization routine. The standard ITD and ice strength parameterization

lead to larger errors when compared to the simple single-category model with an

ice strength parameterization based on the mean ice thickness. Interestingly, the

simpler ice strength formulation, which depends linearly on the mean ice thick-

ness, also reduces the model-observation error when using an ITD. For the ice

strength parameterization that makes use of the ITD, the effective ice strength

depends strongly on the number of thickness categories, so that introducing more

categories can lead to overall thicker ice that is more easily deformed.

2.1 Introduction

Reliable sea ice models are an essential ingredient of climate models, but

also of accurate sea ice forecasts that are required by the increasing shipping

activities in the Arctic. The requirement of accuracy, together with advances

in computing power, has led to an increase in sea ice model complexity over

the last decades. With the rising amount of available observational data of

Arctic sea ice, many new physical processes have been included in additional

model parameterizations (Hunke et al., 2011). For the development of future

model systems a thorough scrutiny of each component of a sea ice model as

well as its interaction with other components seems necessary (e.g. Hunke,

2014).

One of the most commonly used parameterizations in current sea ice mod-

els employs a subgrid-scale ice thickness distribution (ITD) to describe the

ice thickness in each grid cell. Most implementations today are based on

Thorndike et al. (1975). There are two main reasons that motivated this

parameterization: First, the conductive heat flux through sea ice is domi-

nated by the contributions of thin ice and open water, even if they cover

only a small fraction of the total area. Second, most of the ice deformation

processes, especially of a thicker and stronger pack, are ridging of the thinner

ice fraction and shearing along leads (also characterized by thin or no ice).
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2.1. INTRODUCTION

Hence, an ITD is used in many sea ice models and many new parameteriza-

tions — such as an ice enthalpy distribution (Zhang & Rothrock, 2001) or

an anisotropic rheology of discrete failure regimes (Wilchinsky & Feltham,

2012) — are based on an ITD model. Although ITD models seem to be

well established, many questions about the exact mechanics of the involved

processes and about the ITD’s impact on model simulations remain.

Already when the ITD parameterization originally was developed, two

main problems were identified that are still the biggest sources of uncertainty

today: (1) the redistribution of ice between different ice thickness categories

by ridging processes (Thorndike et al., 1975) and (2) the assumption that the

deformation energy is either lost to friction or converted to potential energy

as ice floes ridge and raft (Rothrock, 1975). Both Thorndike et al. (1975)

and Rothrock (1975) make assumptions about the mechanical processes that

govern sea ice ridge formation, but Pritchard (1981) already showed that

they were missing important parts of the energy balance. At the time there

were only a few observations of thickness and ridge profiles available (see

e.g. Parmerter & Coon, 1972, and references therein), and dynamical mod-

eling studies provided the most reliable understanding of ridging processes

(Parmerter & Coon, 1973). The amount of available data has increased since.

After discrete element models of the ridging process (Hopkins, 1998), labo-

ratory experiments of ridging (Tuhkuri, 2002), and in-situ measurements

of stresses in ice floes (Tucker & Perovich, 1992; Richter-Menge & Elder,

1998), the analysis of ridging properties is still an important field of ongo-

ing research. Methods range from evaluating airborne observations (Herzfeld

et al., 2015) and basin-wide process-oriented model simulations (Hopkins &

Thorndike, 2006) to the analysis of conceptual models (Godlovitch et al.,

2011). A common notion is that the details of the physical processes during

ridging and their large-scale statistical properties, that is, the key features

in shaping an ITD and determining the amount of energy necessary for de-

formation, are still not sufficiently well understood.

To evaluate an ITD model in view of uncertain theory, one of the first

approaches was to compare the results to observed ice thickness. Such as-

sessments are impeded by the sparsity of observational data for ice thickness.

Still, Thorndike et al. (1975) could successfully simulate thickness distribu-

tions with a column ITD model that were similar to upward looking sonar

measurements from submarines sailing under the Arctic sea ice. Bitz et al.

(2001) reproduced this result in their global coupled model against a much
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larger set of similar upward looking sonar data. In spite of this partial suc-

cess, high uncertainties remain in ice thickness data both from models and

observations (Schweiger et al., 2011). Schweiger et al. (2011) also empha-

size the importance of model parameterizations such as an ITD or the ice

strength and the difficulty in evaluating their impact. One way forward is to

combine different datasets. For example, Lindsay & Schweiger (2015) used

ice thickness observations from different sources to reduce the uncertainty

in Arctic-wide trends; Stroeve et al. (2014) compared models of the Climate

Model Intercomparison Project Phase 5 (CMIP5) with a similar collection of

thickness data and showed that these models still cannot accurately repro-

duce statistics, regional distributions and trends of ice thickness; Chevallier

et al. (2016) reported that observed concentrations are modeled accurately

in global ocean reanalysis products, but that errors with respect to observed

drift speeds remain and that there were large differences between the models

in the regional ice thickness fields with no product standing out.

With the availability of data being a limiting factor, a common method

to assess the impact of an ITD parameterization on sea ice models is to

compare model configurations with and without this parameterization. Bitz

et al. (2001) found in a coupled global climate model that including an ITD

increases the mean ice thickness. This increase improved the fit to upward-

looking sonar observations for mainly thick, ridged ice in the central Arctic,

but deteriorated the fit in the peripheral seas. In addition, the interannual

variability of both the sea ice export through Fram Strait and the ocean

meridional overturning circulation increased with an ITD model. Feedback

mechanisms were found to have a stronger effect on the sea ice in climate

simulations with an ITD model (Holland et al., 2006). Komuro & Suzuki

(2013) show the positive impact of this parameterization on the reproduc-

tion of realistic heat fluxes through the pack ice. Maslowski & Lipscomb

(2003) compared two successive versions of a sea ice model and found that

the later version improved the reproduction of sea ice observations signifi-

cantly for which they stated the inclusion of an ITD parameterization into

the model as the main reason. Massonnet et al. (2011) compared NEMO-

LIM2 and NEMO-LIM3 model output to a much more exhaustive set of

observations, but arrived at the same conclusions that the inclusion of an

ITD parameterization into the model is one of the main reasons for a much

improved model performance. All studies clearly show the positive impact

of including an ITD model, but all evaluations are either limited by the lack
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of reliable observational data (again) or the simultaneous change of multiple

model components confounds the conclusions.

Here we attempt a systematic investigation of the impact of an ITD pa-

rameterization on the reproduction of different large-scale observations of

sea ice. We are supported by the ever increasing amount of available ob-

servational data. Our approach to systematic comparisons contains three

steps: (1) We construct a cost function with error-weighted satellite data

for sea ice concentration, thickness and drift as a robust measure of model

performance; (2) We use this cost function to systematically tune different

model configurations with and without an ITD model separately; that is, we

explicitly do not use the same model parameters when using an ITD or a

single-category model to avoid biases introduced by different parameteriza-

tions as much as possible. (3) We distinguish clearly between the effects of

changing the ice thickness representation and the effects of changing the ice

strength formulation.

The remainder of the paper is structured as follows: First we describe how

we evaluate the different model configurations in section 2.2. This section

contains an overview over the cost function, the optimization technique, the

most important model equations, and the approach to tuning the different

model configurations. The results of these comparisons are presented in

section 2.3. The results are discussed in section 2.4 and the most important

conclusions can be found in section 2.5.

2.2 Method

2.2.1 Cost Function

To evaluate our model results quantitatively we construct a cost function

from satellite observations as a measure for model quality. We follow Kauker

et al. (2015) and use four different datasets: (1) the reprocessed concentra-

tion dataset and error estimates from OSISAF (EUMETSAT Ocean and Sea

Ice Satellite Application Facility, 2011) (1979 - 2009); (2) the ICESat-JPL

thickness product (Kwok & Cunningham, 2008) with a local error estimated

as in Kauker et al. (2015) yet with an upper limit of 1m for the uncertainty

(March and October/November, 2003 - 2008); (3) the OSISAF sea ice drift

(Lavergne et al., 2010) (October to April, 2002 - 2006) and (4) the sea ice

drift of Kimura et al. (2013) (May to July, 2003 - 2007). All of the drift

17



CHAPTER 2. ICE STRENGTH IN AN ITD MODEL

data are derived from passive-microwave satellite data, with error estimates

provided by Sumata et al. (2014, 2015).

The cost function F is defined as

F =
N∑
i=1

(yi − xi)2

Nd(yi)ξ2
i

(2.1)

where yi is an observational data point with measurement uncertainty ξi, xi

the simulated value of the corresponding model variable, Nd(yi) the number

of data points in each of the four datasets, and N the total number of ob-

servations. In equation (2.1) each data point yi is weighted by 1/Nd in order

to give equal weight to all four datasets. For instance, if the error for each

data point (xi − yi) was exactly equal to the measurement uncertainty ξi,

the cost function for each dataset would be equal to one, summing up to a

total value of F = 4. Note that the cost function is an average misfit of all

included points, so that even for cost function values of less than four there

can (and indeed do) exist regions where further improvement is still possible

without overfitting.

2.2.2 Green’s Function Approach

For a meaningful comparison of two model configurations, both configura-

tions are tuned individually to minimize the differences between simulated

and observed concentration, thickness and drift fields from 1979 to 2009. We

use an semi-automatic optimization approach for a set of parameters with

large impact on the ITD. The adjoint capabilities of the MITgcm (e.g. He-

imbach et al., 2010) cannot be used to optimally estimate the parameters,

because our experiments span multiple decades. Instead we use Green’s func-

tions to linearize the problem and obtain a maximum likelihood estimate for

a set of optimal parameters. A detailed mathematical background for the

Green’s function approach can be found in textbooks (e.g. Menke, 2012),

while the short description below follows Menemenlis et al. (2005).

The relationship between the vector of observational data y and the model

can be expressed as

y = M(ν) +ϕ (2.2)

where the operator M combines the integration of the model and the sam-

pling of the output at the specific locations. The model depends on a set of
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control parameters, for which ν is a vector of perturbations around a refer-

ence ν0. ϕ is the remaining error due to non-perfect parameter choices and

systematic errors in the model. To get an optimal estimate of the control

parameters ν0 + ν, a cost function

F = ϕTR−1ϕ (2.3)

is minimized that measures a least-squares error weighted by a symmetric

matrix R−1. For the special cost function (2.1) in section 2.2.1, the error is

the model-data misfit ϕi = yi− xi and R−1 is diagonal with elements R−1
ii =

(Nd(yi)ξ
2
i )−1. Equation (2.3) is minimized after linearizing operator M with

a matrix M. M is constructed by writing the Green’s function for each of

the control parameters into a new column. This first order approximation

allows to write equation (2.2) as

∆y = y −M(0) = Mν +ϕ (2.4)

with the model data misfit ∆y. In this notation, M(0) is the sampled output

of a model integration with the reference set of control parameters ν0, that

is, the vector of perturbations is 0. Differentiating (2.3) with respect to the

control vector ν and equating the resulting gradient to zero, we obtain

∂F (νopt)

∂ν
= −MTR−12

(
∆y −Mνopt

)
= 0. (2.5)

Solving for the perturbation

νopt =
(
MTR−1M

)−1
MTR−1∆y (2.6)

gives a set of optimal control parameters ν0 + νopt. As a criterion for a

successful optimization, the linearization error by this approach should be

much smaller than the vector ξ consisting of the measurement uncertainties

ξi

‖M(νopt)−Mνopt‖ � ‖ξ‖. (2.7)

Because each of the Green’s functions is calculated by one sensitivity exper-

iment, the total computational effort necessary to construct M limits the

number of control parameters.
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2.2.3 Model Equations

Momentum Equations and Thermodynamics

For the dynamic part of the model we assume a viscous-plastic rheology

with an elliptical yield curve and a normal flow rule (Hibler, 1979). The ice

velocities are calculated from the momentum balance:

m
∂u

∂t
= mfCk× u + τa + τw −mĝ∆H +∇ · σ, (2.8)

where m = ρih is the ice mass per unit area, h is the ice thickness, ρi is the

ice density, u is the sea ice velocity vector, fC is the Coriolis parameter, k is

a unit vector pointing vertically upward, ∆H is the sea surface tilt, ĝ is the

gravitational acceleration and σ is the internal ice stress. The surface stress

τa and the water drag τw can be written as

τa = ρaCa|ua − u|Ra(ua − u) (2.9)

τo = ρoCo|uo − u|Ro(uo − u) (2.10)

where ua,uo are the surface velocities, ρa, ρo are the reference densities, Ca, Co

are the drag coefficients, and Ra,Ro are rotation matrices for atmosphere

(subscript a) and ocean (subscript o) (McPhee, 1975). Following Zhang &

Hibler (1997), the momentum balance (2.8) neglects the advection of momen-

tum. The resulting discretized equations are solved using a line successive

relaxation method (Zhang & Hibler, 1997).

The stress tensor σ is related to the deformation rate tensor ε̇ = 1
2

[
∇u + (∇u)T

]
by the constitutive relation

σ = 2ηε̇+

(
(ζ − η)ε̇I −

Pr
2

)
I (2.11)

where Pr is the replacement pressure, I is the Identity Matrix, η and ζ

are the shear and bulk viscosities, and ε̇I = ε̇11 + ε̇22 is the first strain

rate invariant (i.e. divergence). The bulk viscosity ζ = P/(2∆ε̇) and the

shear viscosity η = ζ/e2 in turn can be calculated from the ice strength P ,

the axis ratio e of the elliptical yield curve, and the deformation measure

∆ε̇ =
√
ε̇2
I + e−2ε̇2

II , where ε̇II =
√

(ε̇11 − ε̇22)2 + 4ε̇2
12 is the second strain

rate invariant (or maximum shear at a point). The replacement pressure

Pr = 2∆ε̇ζ is calculated after regularizing ζ with the smooth formulation of
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Lemieux & Tremblay (2009) to avoid spurious creep (Hibler & Ip, 1995).

The single-category model is based on the two continuity equations

∂A

∂t
= −∇ · (uA) + SA (2.12)

∂H

∂t
= −∇ · (uH) + SH (2.13)

for the prognostic variables ice concentration A and ice volume per grid cell

area H = Ah. The variables change with time according to advection by

the horizontal velocity u and the respective source terms SA and SH . The

thermodynamic fluxes are calculated using a 0-layer model (Semtner, 1976).

Note that Bitz et al. (2001) analyzed the impact such simple thermody-

namics have on an ITD model compared to more complex thermodynamics.

They found that ice concentration is almost indistinguishable from the one

simulated with more complex thermodynamics but there are non-negligible

changes in ice thickness and growth rates, which should be kept in mind for

the interpretation of the results presented below.

Ice Thickness Distribution

One main focus of our investigation is the subgrid-scale ice thickness distri-

bution g(h,x, t) (Thorndike et al., 1975), a probability density function for

thickness h following the evolution equation

∂g

∂t
= −∇ · (ug)− ∂

∂h
(fg) + Ψ, (2.14)

where f is the thermodynamic growth rate and Ψ a function describing the

mechanical redistribution of sea ice during ridging or lead opening.

The mechanical redistribution function Ψ creates open water when the

sea ice flow is divergent and ridges when the sea ice flow is convergent. The

function Ψ depends on the total strain rate and the ratio between shear and

divergent strain. In convergent motion, the ridging mode

ωr(h) =
n(h)− a(h)

N
(2.15)

gives the effective change of ice volume for thickness between h and h + dh

as the normalized difference between the ice n(h) generated by ridging and

the ice a(h) participating in ridging. Following Lipscomb et al. (2007), the
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participation function is a(h) = b(h)g(h), and the relative amount of ice of

thickness h is weighted by an exponential function

b(h) = b0 exp[−G(h)/a∗], (2.16)

where G(h) =
∫ h

0
g(h)dh is the cumulative thickness distribution function, b0

is a normalization factor, and a∗ determines the relative amount of thicker

and thinner ice that take part in ridging. The ice generated by ridging (from

an original thickness h1 to a new ice thickness h) is calculated as

n(h) =

∫ ∞
0

a(h1)γ(h1, h)dh1, (2.17)

where the density function γ(h1, h) can be written as:

γ(h1, h) =


1
kλ

exp
[
−(h−hmin)

λ

]
h ≥ hmin

0 h < hmin.
(2.18)

In this parameterization, the normalization factor k = hmin+λ
h1

, the e-folding

scale λ = µh
1/2
1 and the minimum ridge thickness hmin = min(2h1, h1 + hraft)

all depend on the original thickness h1. The maximal ice thickness allowed

to raft is constant hraft = 1m and µ is a tunable parameter.

In the numerical implementation these equations are discretized into a

set of thickness categories using the delta function scheme proposed by Bitz

et al. (2001). A smoother linear remapping scheme (Lipscomb, 2001) is

available but not used. Its effect will be discussed in section 2.4.1. For

each thickness category in an ITD configuration, the volume conservation law

equation (2.13) is evaluated as in the single-category model, but with the net

surface ice-atmosphere heat flux calculated from the values for ice and snow

thickness in the current category. There are no conceptual differences in the

thermodynamics between the single-category and ITD configurations. The

only difference is that in the ITD configuration, new ice of thickness H0 is

created only in the thinnest category; all other categories are limited to basal

growth. The conservation of ice area (2.12) is replaced by the discretized

evolution equation for the ITD (2.14). The thickness category limits of the

discretization in space are given in Table 2.1. The total ice concentration and

volume can then be calculated by summing up the values for each category.

In the single-category model ridge formation is treated implicitly by limit-
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Table 2.1: Bin limits for ITD configurations

# of categories bin limits in m
5 0.0 0.64 1.39 2.47 4.57
20 0.0 0.16 0.33 0.50 0.67 0.86 1.06 1.28 1.52 1.79
. . . 2.10 2.46 2.89 3.42 4.06 4.85 5.82 7.01 8.46 10.2

ing the ice concentration to a maximum of one (Hibler, 1979). In this simple

case (A = 1), the concentration can no longer increase and convergence leads

then to an increase in ice thickness (i.e. a “ridge”).

Ice Strength Parameterizations

Rothrock (1975) derived a parameterization for the ice strength P

P = CfCp

∫ ∞
0

h2ωr(h)dh (2.19)

from considerations of the amount of potential energy gained and frictional

energy dissipated during ridging. The physical constant Cp = ρi(ρw −
ρi)ĝ/(2ρw) is a combination of the gravitational acceleration ĝ and the den-

sities ρi, ρw of ice and water, and Cf is a scaling factor relating the work

against gravity to the work against friction during ridging.

Hibler (1979) proposed a simpler ice strength parameterization for a

single-category model that is still widely used today. In this model the ice

strength P is parameterized as

P = P ∗Ah e−C
∗(1−A) (2.20)

where P depends only on average ice concentration and thickness per grid

cell, the compressive ice strength parameter P ∗ and the ice concentration pa-

rameter C∗. In the following we will refer to the ice strength parameterization

of Hibler (1979) as H79 and that of Rothrock (1975) as R75.

Note that the parameterization R75 is a function of the ITD in each grid

cell, while H79 is applicable both for ITD and single-category models. In

contrast to H79, which builds on the plausible assumption that thick and

compact ice has more strength than thin and loosely drifting ice, the R75

parameterization clearly contains more physical assumptions about energy

conservation. For that reason R75 is often considered to be more physically

realistic than H79.
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2.2.4 Optimization Approach

Optimized Parameters

We define three groups of control parameters for our optimization that we

think are most important for adjusting the modeled sea ice to observations.

Group 1 contains parameters that are not directly related to the choice of

ITD parameterizations: the albedo of cold and melting snow and ice, the air

and water drag coefficients, the aspect ratio e of the elliptical yield curve,

and the thickness of newly formed ice H0. Group 2 contains parameters only

relevant to the H79 ice strength formulation: the ice compressive strength

parameter P ∗ and the ice concentration constant C∗. Finally group 3 contains

parameters of the R75 strength formulation: the ice strength parameter Cf ,

and the ice redistribution coefficients µ and a∗.

Optimization Runs

For our comparisons we have three goals in mind: (1) evaluate the differences

of model configurations with and without an ITD with respect to reproduc-

ing observed sea ice fields; (2) account for the influence of the number of ice

thickness categories; (3) account for the influence of the ice strength parame-

terization. The quality of each model configuration is measured by means of

a cost function. For an unbiased comparison of model quality, we first tune

each model configuration in order to minimize the total cost function F .

We use the MIT general circulation model (MITgcm), in a coupled ocean

/ sea-ice configuration, forced with prescribed atmospheric reanalysis data.

In this configuration, which is a coarser version of Nguyen et al. (2011), we

implemented the ITD model in the MITgcm sea ice model (Losch et al.,

2010). The model region is the Arctic face of a global cubed sphere con-

figuration with an average resolution of 36 km. Similar sea ice models are

currently being used in configurations with horizontal resolutions between

5 km for regional simulations (Dupont et al., 2015) and around 50 km for

global reanalysis (Chevallier et al., 2016). Our model is therefore represen-

tative of a broad group of medium resolution models. All model runs start

from a 5-year spinup with periodic forcing of the year 1979. The model is

then run from 1979 to 2009.

The initial choice of model parameters follows Nguyen et al. (2011), but

we use a more recent atmospheric forcing data set following the recommen-
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dations of Lindsay et al. (2014): The NCEP Climate System Forecast Re-

analysis (NCEP-CSFR Saha et al., 2010) produced the best results for our

configuration in a comparison of different reanalysis products (i.e. the small-

est model-data misfit prior to the formal optimization, not shown).

Starting from the tuned set of parameters of Nguyen et al. (2011), we

adjust the parameters of group 1 with one optimization step to account for

the differences in forcing, grid resolution and other model details. This setup

without ITD parameterization is referred to as the “Baseline” hereafter. Next

we tune a case with an ITD using five ice thickness categories, a number rec-

ommended by Bitz et al. (2001). In order to determine the parameters to

be adjusted when switching to an ITD, we perform three different optimiza-

tions with the non ITD specific parameters of group 1 (“ITD5-g1”), the ITD

and R75 specific parameters of group 3 (“ITD5-g3”) or both sets together

(“ITD5-g13”). Table 2.2 lists which parameters are modified in which ex-

periment. The best result (minimum cost function F ) is obtained when only

tuning the ITD specific parameters of group 3 (Table 2.3). Therefore we

continued from Baseline by tuning parameters of group 3 for two different

numbers of ice thickness categories (5 and 20) with the R75 ice strength

parameterization to arrive at the configurations ”ITD5R“ and ”ITD20R“.

Tuning the strength-specific parameters of group 2 yields the configu-

ration noITD with a single-category thickness representation. In order for

those optimizations to satisfy criterion (2.7), we require the linearization er-

ror to be smaller than 10% of the observation uncertainty on average. This

requirement was satisfied in one step for noITD and two steps for each of

ITD5R and ITD20R. This optimization approach decreases the cost function

values of the ITD configurations by 25%− 30% (Table 2.3).

To assess the role of the strength parameterization in the context of an

ITD model, we evaluated two additional model runs with an ITD and the

simpler H79 ice strength parameterization: ”ITD5H“ and ”ITD20H“. For

those runs we assume that the parameters, which have already been tuned

using our cost function, give sufficiently good results in this new combination.

Therefore we forego further optimization for the runs ITD5H and ITD20H

and instead use the parameters from the respective R75 runs with the values

P ∗ and C∗ from noITD.

This approach implies that the thickness of newly formed ice is H0 =

0.5649, the value resulting from the optimization of the Baseline configura-

tion, in all ITD configurations. Arguably, this high value may prevent the
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Table 2.2: Optimized parameters

Parameter starting values Baseline noITD ITD5R ITD20R

albedo dry ice αId 0.7000 0.71 - - -
albedo wet ice αIw 0.7060 0.7119 - - -
albedo dry snow αSd 0.8652 0.8556 - - -
albedo wet snow αSw 0.8085 0.7903 - - -
air drag cd,a 1.14e-3 1.657e-3 - - -
water drag cd,w 5.563e-3 6.647e-3 - - -
axis ratio e 2.0 1.523 - - -
lead opening H0 0.5 0.5649 - (0.3546) (0.3292)
ice strength (H79) P ∗ 2.264 - 2.299 - -
ice strength (H79) C∗ 20.0 - 15.92 - -
ice strength (R75) Cf 14.0 - - 13.926 14.07
ridging participation a∗ 0.04 - - 0.04058 0.04249
ridge shape µ 4.5 - - 3.029 3.104
a

’-’ means no change from the last column, values in bracket are from additional optimizations for H0

Table 2.3: Cost function values

ConcentrationThickness Winter
Drift

Summer
Drift

Total

Baseline 1.71 0.75 0.52 1.06 4.04
noITD 1.69 0.75 0.50 1.03 3.97
ITD5 no tuning 1.84 0.81 1.20 2.00 5.84
ITD5-g1 1.79 0.85 1.06 1.74 5.44
ITD5-g3 1.62 0.75 0.69 1.23 4.28
ITD5-g13 1.67 0.78 0.81 1.39 4.66
ITD5R 1.57 0.72 0.56 1.20 4.05
ITD5R-H0 1.49 0.79 0.54 1.22 4.03
ITD20 no tuning 1.91 1.17 0.88 1.56 5.53
ITD20R 1.71 0.90 0.45 1.09 4.15
ITD20R-H0 1.63 0.87 0.42 1.11 4.04
ITD5H 1.57 0.63 0.45 0.95 3.59
ITD20H 1.77 0.61 0.46 0.91 3.76
b Experiment names as defined in Table 2.4
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Table 2.4: Optimized Runs

initiated from optimized parameters
Baseline (Nguyen et al., 2011) group 1
ITD5-g1 Baseline group 1
ITD5-g3 Baseline group 3
ITD5-g13 Baseline group 1+3
noITD Baseline group 2
ITD5R Baseline group 3
ITD20R Baseline group 3
ITD5H ITD5R group 2 taken from noITD
ITD20H ITD20R group 2 taken from noITD
ITD5R-H0 ITD5R H0

ITD20R-H0 ITD20R H0

ITD model from representing the behavior of thin ice realistically, especially

since the thinnest category for ITD20 contains only ice thinner than 16 cm.

To investigate the effect of this artifact on our analysis, we additionally opti-

mize only H0 for the two configurations ITD5R and ITD20R. We find that it

is possible to further decrease the model-data misfit by tuning H0 as shown in

Table 2.3 for runs ”ITD5R-H0“ and ”ITD20R-H0“, but that our qualitative

results are not affected. Tuning of H0 also does not reduce the value of H0

to be within the limits of the thinnest category for ITD20R (see Table 2.2).

We thus conclude that it is not necessary to contain newly formed ice in the

thinnest thickness category in order to minimize model-data differences. An

overview of the different optimized runs is given in Table 2.4.

2.3 Results

Based on the cost function, both combinations of ITD and H79 give best

results and even the configuration noITD has a smaller cost function value

than the two configurations with ITD and R75. This result is described in

more detail in section 2.3.1. We then investigate separately the influence

of the ITD (section 2.3.2) and the strength parameterization (section 2.3.3)

on the quality and characteristics of the model results in order to explain

why the configurations with R75 have difficulties fitting the data. Especially

for the ice strength parameterization, we find a strong dependence on the

thickness resolution in the ITD. For this reason, we account for the different

number of thickness categories throughout this section.
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The simulated sea ice climate in our experiments is very close to the one

described by Nguyen et al. (2011). Due to our more specific tuning, we can

even improve the fit to sea ice observations compared to their already very

good model state, but still suffer from biases in thickness and concentration,

that are common to many comparable models (Chevallier et al., 2016). We

therefore assume that our model provides a good representation of Arctic

sea ice and we focus our analysis on the differences in the fit to observations,

as expressed by our cost function, that are caused by changes in the model

setup.

2.3.1 Cost function

The total error calculated from the cost function F is slightly larger for both

ITD5R and ITD20R when compared to noITD and significantly larger than

both model configurations ITD5H and ITD20H. An overview of the cost

function values can be found in Table 2.3.

To investigate the individual strengths and weaknesses of the different

model configurations in more detail, we split up the total cost function values

into four contributions for each of the individual datasets (Table 2.3). The

difference between the four different ITD configurations (ITD[5,20][R,H]) and

noITD are shown in Figure 2.1. The ITD configurations using R75 improve

the fit to some datasets, but this reduction in cost function is outweighed by

increases in differences in others. For instance, ITD5R has a clearly better

fit to concentration data than noITD and a slightly better fit to thickness,

but the fit to the drift data is much worse than in noITD. ITD20R, on the

other hand, has in total a comparable and in winter even a slightly better fit

to the drift data than noITD, but the fit to thickness and concentration is

much worse compared to ITD5R. Part of this behavior can also be observed

for ITD5H and ITD20H: In this case the fit to thickness and drift is similar,

but the fit to concentration is much better for ITD5H than for ITD20H.

These observations are a first hint of the strong influence of the number

of thickness categories on the simulated sea ice concentration for a general

ITD model, but also on all other sea ice characteristics for the R75 strength

parameterization.
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Figure 2.1: Difference in cost function values (ITD configuration - noITD) be-
tween different model configurations with an ITD and noITD. Shown are contri-
butions of single datasets and total values.

2.3.2 ITD

We isolate and assess the effect of the ITD model by first comparing the

configuration noITD with ITD5H and ITD20H, all of which use the same

strength parameterization H79.

The more complex ITD model reduces the misfit for ice concentration

especially in the marginal ice zone for the entire year, see Figure 2.2 for sum-

mer results; winter results are not shown. All model configurations generally

overestimate the concentration especially in the North Atlantic, where the

ice edge extends too far south and south east. While this overestimation is

found in many medium resolution models (Chevallier et al., 2016), the ITD

configurations largely reduce this misfit when compared to noITD. In con-

trast, the summer ice concentration in the central Arctic and in the straits of

the Canadian Arctic Archipelago is higher with an ITD model (Figure 2.2).

This is because most ice in the ITD model is in the thicker ice categories and

thicker ice takes longer to melt. In the noITD model, sea ice melt leads to sea

ice concentration changes even for thicker ice because a linear ice thickness

distribution between 0 and 2h is assumed so that there is always thin ice
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Figure 2.2: Mean difference in ice concentration (ITD5H - noITD) between an
ITD configuration using 5 thickness categories and noITD, both with the H79
strength formulation, in Summer (July to September)

available for fast melting.

The ice thickness generally increases with number of ice thickness cate-

gories, with much stronger tendencies in the straits of the Canadian Arctic

Archipelago. The difference in ice thickness between ITD5H - noITD is 0.11±
0.20 m (mean and standard deviation) for ice thinner than 4 m in ITD5H,

and the comparable difference between ITD20H - noITD is 0.17 ± 0.25 m.

These differences grow to 1.14 ± 1.67 m for ITD5H and 1.45 ± 1.49 m for

ITD20H, if only ice thicker than 4 m in the ITD run is taken into account.

Ice of this thickness is found mainly in the straits of the Canadian Arctic

Archipelago and north of Greenland.

We now explicitly compare the ITD5 and ITD20 configurations for both

strength parameterizations R75 and H79 in order to investigate the impact

of the number of thickness categories. For ITD20 we observe generally a

larger total ice volume compared to ITD5: First, if there is ice in an ITD5

configuration with a concentration of less than one, the concentration is in

almost all cases higher in the corresponding ITD20 run. Second, the higher
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Figure 2.3: Mean difference in ice thickness H (ITD20H - ITD5H) between ITD
configurations with 20 and 5 thickness categories, both using the H79 strength
formulation, in Winter (December to May)

thickness observed for an ITD model compared to noITD is further increased,

with the differences between ITD20 and ITD5 (Figure 2.3) showing a similar

pattern as the differences between an ITD5 configuration and noITD (not

shown).

The differences in ice drift are less clear. We find mostly higher drift

speeds in the configurations ITD20R than in ITD5R, while we find the exact

opposite for ITD20H and ITD5H. This ambiguous result can be explained

by the effect of ice thickness resolution on the ice strength parameterization

(see subsection 2.3.3, below).

2.3.3 Ice Strength

In this section, the effects of the different strength parameterizations on an

ITD model are compared in greater detail. In this context, the role of the

number of thickness categories is emphasized.

We find that the non-linearity in the R75 parameterization leads to higher

fluctuations in the ice strength on the near-grid scale. For both ITD5 and
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ITD20, the most prominent difference between the strength formulations is

found in the ice thickness of very thick ice north of Greenland and the Cana-

dian Archipelago. Ice exceeding four meters in thickness, which mainly exists

in those regions, is on average thicker by more than seventy centimeters in the

R75 runs when compared to H79; but ice thinner than two meters, especially

common in the peripheral regions of the Arctic, is slightly thinner on average

with R75 when compared to H79 (Figure 2.4). As a possible explanation for

these observations, we see generally larger ice strength gradients with R75

than with H79, with the most prominent differences north of Greenland and

Ellesmere Island (results not shown). The calculation of the ice strength fol-

lowing R75 depends non-linearly on the local distribution of ice into different

thickness categories, so that to some degree higher small-scale fluctuations

are expected. But the magnitude of those strength gradients can lead to

stronger gradients in the velocity fields, especially for otherwise immobile

ice. Due to this process we find in the runs using R75 higher convergence

rates for ice thicker than 3 m (Figure 2.5). This increased ridging especially

in regions of already thick ice dynamically creates peak ice thicknesses much

higher than observed.

The differences in concentration and drift between R75 and H79 are less

clear for all ITD configurations. The differences in sea ice concentration

for ITD5 and ITD20 for a climatological August are plotted in Figure 2.6;

the patterns are very similar throughout the year. The ice in the marginal

ice zone between Siberia and Svalbard, in winter and spring even down to

Iceland, is less compact for R75 than for H79. At the same time, the ice

concentration is larger for R75 in the other marginal seas, most notably in

the Beaufort and Chukchi Seas and in the Baffin Bay. In the central Arctic,

the differences in concentration depend on the number of thickness categories:

in the ITD5 configurations, the ice is more compact for R75 than H79; but

in the ITD20 configurations, the ice in summer is slightly less compact for

R75 compared to H79. The ice drift is slower for R75 in large parts of the

central and western Arctic and faster in the outflow of the transpolar drift

and in Fram Strait (not shown). In the remaining Arctic regions we find a

similar ambiguity as in the concentration fields: For R75, the ice tends to be

slightly slower in the ITD5 configurations and slightly faster in the ITD20

configurations when compared to H79. Those changes can be traced back to

similar patterns in the ice strength with the ice being weaker for R75 where

it is faster and vice versa (not shown).
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Figure 2.4: Mean difference in ice thickness (h(R75) - h(H79)) between ITD
configurations using R75 and H79 with the same number of thickness categories.
The data is binned for ice thickness in the R75 configurations. Purple for ITD5,
green for ITD20 with shaded range between 25th and 75th percentile.

Figure 2.5: Frequency distribution of absolute convergence rates for configura-
tions ITD5R, ITD20R, ITD5H, ITD20H, noITD; only accounting for ice thicker
than 3m.
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Figure 2.6: Mean change in August ice concentration (A(H79) - A(R75)) between
ITD configurations using H79 and R75 for (a) 5 thickness categories and (b) 20
thickness categories

We explain those differences by the effects of two different mechanisms.

On the one hand, the mean ice state with R75 is characterized over large

parts of the central and western Arctic by larger thicknesses and often also

slightly higher concentrations. Physically, those changes in the mean ice state

generally lead to higher ice strength and thereby slower drift. On the other

hand, the ice strength is a non-linear function of thickness distribution for

R75, which makes the differences to the linear H79 formulation not uniform.

To illustrate this we compare the strength values for both R75 and H79

computed from the ice states of model simulations using R75. For ice with

a compressive strength (R75) higher than 40, 000 Nm−2, the strength values

calculated by R75 are higher than those for H79, and the differences grow

linearly with the ice strength over a large range (Figure 2.7). In contrast, in

the range below 30, 000 Nm−2, the ice strength values calculated by R75 are

lower than those for H79.

Finally, the R75 ice strength depends more strongly on the actual distri-

bution of ice thicknesses than on the averaged characteristics of the sea ice.

Figure 2.8 shows the difference in ice strength together with the difference

in ice thickness between ITD5 and ITD20 simulations for both strength pa-

rameterizations. The ice thickness is mainly larger for the ITD20 model for

both H79 and R75. As expected following the simple relationship (2.20) and
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Figure 2.7: Mean difference in ice strength between R75 and H79 calculated for
the same ITD. Differences are evaluated for 5 (magenta) and 20 (green) thickness
categories, results are binned for ice strength after R75 with the shaded area
between the 25th and 75th percentile.

the physical understanding that thicker ice is more difficult to deform, H79

calculates higher ice strength for the thicker ice in ITD20 over most thick-

ness bins. The impact of the ice thickness on the ice strength reduces for ice

thicker than three meters, most likely because of the increasing effect of the

replacement pressure method (Hibler & Ip, 1995), which tends to reduce the

ice strength of thick, immobile pack ice. In contrast, while for R75 the mean

thickness is also mostly higher in the ITD20 configuration than in ITD5,

the average ice strength is lower. So for this ice strength formulation, finely

resolving the thin ice categories (and thereby weakening the ice pack) has a

larger impact on the ice strength than the physical property that thicker ice

should be more difficult to deform.

2.4 Discussion

The H79 ice strength formulation can be justly criticized because it is not

derived from first principles. Therefore, the option of using the physically

motivated R75 formulation is often thought of as a great advantage of an
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Figure 2.8: Average difference (ITD20 - ITD5) in ice strength (dashed) and ice
thickness (solid) between ITD configurations using 20 and 5 thickness categories
evaluated for H79 (cyan) and R75 (red). Differences are evaluated for different ice
thicknesses, binned into thickness bins of the ITD5 simulations, as described in
section 2.3.3
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ITD model. In contrast to that notion, our results suggest that simulating

realistic drift fields with medium-resolution sea ice models with R75 strength

is difficult. In particular, in our simulations the model performance did

not improve over a sufficiently tuned single-category set-up after including

an ITD parameterization together with the commonly used R75 strength

parameterization. Somewhat counter-intuitively, the model performance was

better for fewer thickness classes and the model especially improved when

the ITD was combined with the H79 strength formulation.

2.4.1 ITD

Our model overestimates the concentration along the ice edge almost every-

where in the North Atlantic and most of the time. In both ITD5 runs this

overestimation is greatly reduced. Bitz et al. (2001) described a similar ef-

fect and explained it by faster melting of thin categories in the ITD, which

leads to more open water, that is, lower ice concentration, especially during

the summer season. Somewhat in contrast, we find also higher summer ice

concentrations for the ITD configurations, mostly in the central ice pack. We

explain this also by the same effect of thin ice melting. The single-category

approach of Hibler (1979) assumes a uniform distribution of thickness be-

tween 0 and 2h for the creation of open water, so that there can be more

thin ice available in this configuration than in the ITD models, which may

not have any ice in the thinnest category.

In addition, the effect of an ITD model on the ice edge depends strongly

on the number of categories. Resolving the ice thickness distribution better

(ITD20 vs. ITD5 configurations) leads to higher ice concentrations in the

marginal ice zone with the consequence of a larger ice edge position error

than in the noITD model. We find that the increase in total ice volume

and the associated ice export with more thickness classes is too strong to be

balanced by the increased melting in the marginal ice zone that one would

expect when the thinner categories are better resolved.

The mean ice thickness increases with the number of thickness classes

(noITD < ITD5 < ITD20) (see also Holland et al., 2006; Komuro et al.,

2012). This result is consistent with the physical reasoning that a better res-

olution of thin ice in the pack allows for more ice growth, because heat fluxes

and deformation (ridging) increase. In contrast, Massonnet et al. (2011)

found in a comparison between model versions a decrease in ice thickness,
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which they attributed to the use of an ITD model. We argue, that their

analysis may have been confounded because in comparing different model

versions they changed multiple model components and parameters, includ-

ing a lower value for the thickness of new ice H0 in the model version with

the ITD, which also changes ice thickness and concentration fields.

We did not fully address the question of (numerical) convergence of the

ITD model with the number of thickness classes. A fine resolution of the thin

ice range was found to be necessary to reproduce observed heat fluxes (Bitz

et al., 2001) and a better resolution of the upper thickness range was required

to reproduce total ice volume (Hunke, 2014). Based on our experiments with

5, the minimum number recommended by Bitz et al. (2001), and 20 classes,

which were chosen to have a simulation with a nearly converged ITD model

(Lipscomb, 2001), we find that the better resolved solution does not lead to

the best model-data fit. More thickness classes increase the ice volume and

eventually lead to an overestimation of thickness, apparently introducing a

stronger bias in the solution than the effects of a coarse thickness resolution.

It is unclear in how far these effects can be moderated by more realistic

thermodynamics, as the thermodynamics can have a strong impact on ice

thickness (Bitz et al., 2001; Losch et al., 2010).

The delta function scheme (Bitz et al., 2001), which we use in our simu-

lations, was criticized to be prone to produce numerical discontinuities in the

ITD and to leave many thickness categories empty, thereby artificially reduc-

ing the thickness resolution (Lipscomb, 2001). A linear remapping scheme

was implemented to overcome these issues (Lipscomb, 2001). We observe

the same improvements in test simulations with the linear remapping scheme

(smoother thickness distributions with fewer gaps, not shown), but also on

average slightly thicker ice and higher ice concentration. The main results

of our study, however, remain intact: the quality of the model output, mea-

sured by the cost function, is higher for ITD configurations with H79 than for

noITD, which in turn is better than the combinations of ITD and R75; and

notably we observe the same dependency of the ice strength on the number

of thickness categories (not shown).

2.4.2 Ice Strength

Bitz et al. (2001) found that for R75 the ice is weaker if a given thickness

distribution is better resolved. This is probably so because the strength of the
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ice pack is determined mostly by the amount of thin ice and if the thin end of

the thickness distribution is better resolved, thinner ice can lead to smaller

ice strength. H79 misses this sensitivity to thin ice because of linearity. We

show that for R75 this effect can be strong enough in a realistic model set-up

to outweigh the opposing effect of thicker ice resulting from more thickness

categories (Figure 2.8). Although this behavior may be physical and could

be seen as an advantage of R75 over H79, it reduces the ability to reproduce

large-scale satellite observations in our experiments.

The differences in modeled ice drift patterns in our simulations are mostly

caused by the different ice strength formulations, because other drivers such

as the wind forcing were the same for all experiments. Because the number of

thickness categories has such a strong impact on the solutions with R75, we

cannot distinguish a clear change of drift patterns due to an ITD that would

be independent of the choice of strength parameterization. In a comparison of

different ocean-sea ice reanalysis products to satellite observations of ice drift

— unfortunately they used a different observational data set, which makes a

direct comparison of their results to ours difficult — Chevallier et al. (2016)

identified the choice of atmospheric forcing and differences in drag coefficients

as the most important model parameters and confirmed the strong role of the

wind stress in determining the drift patterns of sea ice (Hunke et al., 2011).

Our results indicate that when those leading-order effects are held constant,

changing the formulation of ice strength is a powerful way of affecting the

model-data misfit for sea ice drift.

Holland et al. (2006) attributed the increased ice thickness with an ITD

model to the larger ice growth rates generally produced by an ITD. We can

now distinguish the effects of the strength parameterization from the choice

of thickness representation in the model to show that while an ITD leads

to a general increase in the overall thickness, the choice of R75 is mainly

responsible for excessively large maximal thicknesses north of Greenland and

Ellesmere Island. These are caused by the strong small-scale gradients in the

ice strength for R75 that allow higher deformation rates in very thick ice,

so that already thick ice can be ridged further, eventually leading to much

higher maximal thickness values than observed.

Although the derivation of R75 is arguably more physical than that of

H79, it leads to a poorer model-data misfit. In the following we speculate

about the reasons for this counter-intuitive result: Rothrock (1975) already

mentioned two issues with known energy sinks in his derivation of the work
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necessary for ridge formation: (1) fracturing of ice was neglected following an

argument of Parmerter & Coon (1973) and (2) frictional loss in shearing was

neglected and assumed to be at most of the order of frictional losses in com-

pression based on the notion of a Coulomb friction model. To estimate the

work against friction in compression, Rothrock (1975) made strong assump-

tions about complicated processes of ice interaction without having enough

data available to constrain them. He arrived at approximately similar con-

tributions by gravitational and frictional work. This lead to a scaling factor

Cf = 2, but later Flato & Hibler (1995) estimated this factor to be Cf = 17

based on a model comparison to observed buoy drift patterns. This large

difference in Cf between estimates by theory and numerical model compar-

isons together with a re-evaluation of energy dissipation in shear (Pritchard,

1981) suggest to us that important physical effects are not properly included

in the approach of R75.

Fundamental questions about the form of a new ice strength parameteri-

zation are unclear. For example, Hopkins (1998) found in model simulations

of ridging processes that pressure ridge formation leads to a scaling of the ice

strength proportional to h3/2. Hibler (1980) also supports a scaling with h3/2

by physical reasoning, but in the absence of sufficient observational data his

theory is based in important parts on physical intuition. Note, however, that

Hopkins (1998) considers only ice breaking in flexure, not in crushing. The

load that ice can withstand before it is crushed grows linear in h (Rothrock,

1975). Further, ice strength scaling with h2 was found in numerical simula-

tion of ridge formation with a different experimental set-up (Hopkins et al.,

1991). The R75 ice strength scales with h3/2, while the ice strength after

H79 is linear in the mean thickness h (Lipscomb et al., 2007), but neither

appear to cover all observational evidence. We emphasize that there still

exists great uncertainty in the exact nature of such a scaling. Our results

indicate that the linear relationship (Hibler, 1979) might be better suited to

represent Arctic-wide averages.

2.4.3 Qualitative Assessment of Our Results

Measuring the quality of our model results with the cost function (2.1) allows

us to assess the overall performance of a given configuration in a detailed and

quantifiable way. To this end, we evaluate the reproduction of large-scale sea

ice features, such as sea ice extent, thickness and drift — as opposed to the
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details of the ocean state. Three of the four data products (thickness and

both drift products) are limited to certain seasons in a few years, and two of

them (thickness and drift from Kimura et al. (2013)) are also limited to the

central Arctic. Still the combination of the four products allows a year-round

coverage of the whole Arctic in those years. In our analysis, we implicitly

assume that large errors in one sea ice property (e.g. thickness) would affect

other sea ice properties (e.g. drift and concentration) in a detectable manner.

Additionally, the availability of the concentration data for the entire thirty-

year simulation period provides some measure against overfitting the model

to the short period 2002 - 2008 covered by the other satellite products.

Are the results presented in section 2.3 sensitive to the exact choice of

observations included in the cost function? We tested this by evaluating

the cost function for any combination of three (out of four) sets of observa-

tions and found that the main conclusion of the paper is robust to the exact

choice of observations. In all cases, the ITD configurations together with the

strength parameterization H79 lead to a better fit to the observations than

the single-category configuration noITD with the strength parameterization

H79. The noITD case in turn leads to a better fit than the ITD with the ice

strength parameterization R75 (Table 2.3).

Our modeling approach is based on a simple single-category ice model

(in fact, it is a two-category model: ice and no-ice (Hibler, 1979)) without

internal heat capacity (linear internal temperature profile) and without con-

sidering a brine parameterization (Bitz & Lipscomb, 1999). Both of these

omissions will lead to a larger seasonal amplitude in ice thickness and to the

absence of a lag between the net surface heat fluxes and the seasonal cycle

of ice thickness. When we minimize the cost function (2.1), the biases in ice

thickness will be compensated by adjustments in the optimal choice of sur-

face albedo for sea ice and snow. While it is true that we are compensating

for a winter bias in ice growth (induced by the lack of thermal inertia) by

including another bias in summer melt (via the albedo), the fact that we are

mainly interested in the ice strength parameterization — something that is

important only during one season (mid to late winter) when the ice inter-

actions are significant (Steele et al., 1997; Richter-Menge, 1997) — suggests

that our conclusions are not sensitive to the presence or absence of sea ice

thermal inertia. Moreover, the absence of a lag between surface atmospheric

forcing and sea ice thickness will only be important for a few weeks near the

onset of the melt season (the delayed ice growth in fall occurs at a time when
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the ice interactions are small, (Richter-Menge, 1997)); this will therefore re-

sult in second order changes in the cost function over the full winter season.

For these reasons, we believe that the simpler treatment of thermodynamic

will not impact the main conclusions.

The choice of forcing data generally has a large impact on model results

(Lindsay et al., 2014). Prior to optimization, we chose the best forcing data

set based on our cost function. A different forcing data set may change

the magnitude of ice thickness or the regional distribution of ice and it will

guide the optimization to a different set of optimized parameter values, but

the internal mechanics of the model that are responsible for the differences

between the parameterizations are not affected.

2.5 Conclusions

A rigorous model-data comparison for an ITD model and two different strength

parameterizations leads us to the following conclusions: Sea ice models with

an ITD parameterization can outperform single-category models in repro-

ducing observed concentration, thickness, and drift fields. Somewhat unex-

pectedly, the best fit to observations is achieved with an ITD model following

Thorndike et al. (1975) combined with a simple ice strength parameteriza-

tion (Hibler, 1979). The more sophisticated ice strength parameterization

by Rothrock (1975) leads to the poorest agreement to observations, even

compared to the single-category model: Problems associated with this pa-

rameterization over-compensate the positive effect of an ITD model on the

overall model.

It is not obvious why the Arctic-wide behavior of sea ice is reproduced

with the least accuracy for the ice strength parameterization after Rothrock

(1975) in our simulations. We found the modeled physics to produce im-

plausibly large peak ice thicknesses, probably due to very high deformation

of already thick ice and also a very strong dependence of the modeled ice

strength on the number of thickness categories. This points to potential is-

sues in both the physical assumptions in the formulation and the numerical

discretization procedure. A short term improvement may be achieved by

using the ITD parameterization together with the H79 strength formulation

for medium resolution models. But because of the lack of physical justifica-

tion for this parameterization, this short-term solution may turn out to be
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insufficient for sea ice simulations in climate change scenarios.

The increasing availability of satellite data make possible detailed, quan-

titative analyses of model parameterizations. These can be further enhanced

by additional data sources such as EM-Bird thickness measurements (Haas

et al., 2009) or ice age (Hunke, 2014). We argue that in order to realisti-

cally reproduce Arctic sea ice it is necessary to re-evaluate the ice strength

formulation as a major link between ice volume and ice drift.
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CHAPTER 3. REPRODUCTION OF LOCAL ITDS IN MODELS

Abstract A key parameterization in sea ice models describes the sub-grid scale

ice thickness distribution. Although the positive impact of this parameterization

on Arctic models is well documented, the evaluation of the produced distributions

has been hindered for a long time by a shortage of reliable observations. We use a

combination of historic and recent observations of local sea ice thickness to evaluate

how well the model reproduces the physical processes shaping individual thickness

distributions. To this end we evaluate modeled thickness distributions both in

regional averages and single grid points and focus especially on the reproduction

of regional, seasonal and decadal variability in the observations. We find that the

model reproduces the observed regional and seasonal differences between thickness

distributions, but underestimates decadal changes. The thickness distributions in

single grid cells are a good reproduction of regional average conditions, but the

variability on the grid scale is smaller in the model than in observations. We

conclude that the ice thickness distribution parameterization provides good results

for most current basin-scale models that aim to reproduce average ice properties

in medium resolution. Further, we propose to calculate the modal thickness as

an additional model diagnostic that allows to distinguish more clearly between

thermodynamic and dynamic effects in the thickness evolution.

3.1 Introduction

The Arctic is changing rapidly. Especially the ice cover is in a transition

from a perennial to a seasonal state (Overland et al., 2013). For this reason,

accurate sea ice models become increasingly important: (1) climate predic-

tions depend on sea ice models to realistically represent both the feedback

processes in the Arctic and the connections between Arctic phenomena and

lower latitudes. (2) The reduced sea ice cover sparks economic interest in ma-

rine operations like shipping or offshore exploration. For their safety, these

activities require reliable information about the ice cover.

For both applications, small openings in the ice pack are very important,

starting from small cracks up to larger leads between floes or linear kinematic

features in the ice more than 100km long. The ocean and the atmosphere

exchange the largest part of heat and water in the Arctic in exactly those

small stretches of open water. And for shipping in an ice covered ocean, leads

mark divergent regions in the ice pack and often prescribe the most efficient
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or only possible routes. These sub-grid scale features are not wide enough to

be fully resolved even in very-high resolution sea ice models and need to be

parameterized.

Thorndike et al. (1975) presented a sub-grid scale Ice Thickness Distribu-

tion (ITD) parameterization as an early and still one of the most important

steps to tackle this problem. By now, this theory is used in many current cli-

mate models (Stroeve et al., 2014) and numerous studies demonstrated how

the ITD improves the representation of sea ice in models (Holland et al., 2006;

Massonnet et al., 2011; Komuro & Suzuki, 2013; Ungermann et al., 2017).

In addition, more sophisticated parameterizations were developed based on

this theory, e.g. more detailed thermodynamics (Bitz et al., 2001) or melt

pond parameterizations (Flocco & Feltham, 2007).

But despite the broad success of this parameterization, the insufficient

availability of reliable observations hindered evaluations of the modeled ITDs

for a long time. Some of the first Arctic models with an ITD parameteriza-

tion compared ITDs from single grid cells of an Arctic model to observations

from submarines (Hibler, 1980; Flato & Hibler, 1995), but only a few data

points could be compared to the models and the strong differences between

individual measurements led to mixed results for the reproduction of the ob-

servations in the model. In an investigation of the impact of the ITD param-

eterization on a fully coupled climate model, Bitz et al. (2001) also included

a comparison against submarine data. But again, since the observations were

not enough to really constrain the model development, they focused mostly

on relative changes in the model with and without the parameterization in-

stead of on thickness comparisons between model and observations. More

recent evaluations of Arctic ocean – sea ice models often used large sets of

different observations to assess the model. Part of such sets were also ob-

served ITDs, e.g. from moorings (Dupont et al., 2015) or airborne sounding

(Herzfeld et al., 2015). Both of these studies showed that the models could

reproduce the observed ITDs, but the authors only compared model results

to averages over observations during multiple years or over a larger region.

A different set of studies investigated how far ITD parameterizations can

reproduce specific observed changes in clearly defined ITDs. Lindsay (2003)

used the large amount of observations of atmospheric properties and sea ice

deformation obtained during the Surface Heat Budget of the Arctic Ocean

(SHEBA) experiment to force an ITD model of the immediate surround-

ings of the drift camp, but did not have any observations of the ITDs apart
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from their initial state to validate the results. Bellchamber-Amundrud et al.

(2002) used a coastal draft distribution model that was forced with meteoro-

logical observations from the coast and evaluated against draft observations

from moorings. They identified excessive ridging in their model, but could

otherwise largely reproduce the observations. Further, Kubat et al. (2010)

evaluated a new redistribution model against high-resolution field observa-

tions in the Gulf of St. Lawrence. They found their model to reproduce very

accurately the observed changes in the ice thickness distribution, but their

experiments spanned only a few days.

In summary, it has been shown that ITD models can reproduce different

observations of Arctic ITDs. But at the same time, most studies acknowl-

edge mismatches of model results to observations either in the generation

of open water, or in the amount of very thick ice produced by ridging, or

in the amount of ridging taking place in shear. Depending on the region of

the Arctic, each of these aspects can dominate the evolution of local ITDs.

While it has been shown that these biases can be adjusted to reproduce single

observations, it is still unclear if a single configuration using similar param-

eterizations can reproduce the many different ice conditions of the whole

Arctic.

Over the last decades the amount of high-resolution sea ice thickness ob-

servations has increased continuously, with airborne ElectroMagnetic (EM)

sounding of ice thickness complementing the Upward-Looking Sonar (ULS)

measurements from submarine cruises, so that a detailed evaluation is finally

possible. The aim of this study is to investigate in how far ITD parame-

terizations can reproduce regional, seasonal and decadal variability in Arctic

ITDs. In the evaluation of the model results, I focus on three aspects: (1)

Does the model reproduce regional averages of observed distributions? (2)

Does the model reproduce single observations at the grid scale? And (3)

which mechanisms and model parameters have the highest impact on the

modeled ITDs? The data set I use and a description of the ITD model are

presented in section 3.2. The relevant model – observation comparisons and

the results of sensitivity studies are presented in section 3.3. These results

are discussed in section 3.4, and the main conclusions are drawn in section

3.5.
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(a)

(c)

(d)

(b)

Figure 3.1: Overview of available observations: orange lines for EM-Bird flights,
gray dots for ULS submarine track segments. Shaded areas are the model regions
for comparison in (a) Beaufort Sea, (b) Central Arctic, (c) Lincoln Sea, (d) Fram
Strait.

3.2 Methods

3.2.1 Observations

As early as 1958, submarines sailing under the Arctic sea ice have been

equipped with Upward-Looking Sonar (ULS) that measure the draft of the

sea ice. Lindsay (2013) collected large amounts of submarine-based ULS

data and calculated draft distributions for each 50km segment of submarine

track. These data cover a large part of the Arctic Ocean and span from

1975 to 2005. Over the last 15 years, many measurement campaigns where

airborne electromagnetic sounding were used to measure the combined ice

and snow thickness complemented this ULS-dataset (e.g. Haas et al., 2008,

2010). The lengths of the individual flight tracks in those campaigns differ,

but are also in the order of 50km. In this study, I focus on a subset of

these observations in four regions (1) Beaufort Sea, (2) Lincoln Sea, (3)

Fram Strait and (4) Central Arctic as shown in Figure 3.1. The sampled

observations cover different seasons and different decades, the ULS data used

in this study are from the years 1986 – 1997 and the EM data are from the

years 2001 – 2012. Table 3.1 summarizes the exact years and seasons of the

different observations.

ULS and EM soundings are very precise at measuring the thickness of
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Table 3.1: Overview of different sets of observations

region1 years months source # obs2 # campaigns3

(S1) Beaufort Sea 1986–1994 Apr ULS 32 6
(S2) Beaufort Sea 1993–1997 Sep, Oct ULS 54 4
(S3) Central Arctic 1989–1997 Sep ULS 117 6
(S4) Central Arctic 1986–1994 Apr, May ULS 202 14
(S5) Fram Strait 1987–1991 Apr, May ULS 42 2
(S6) Beaufort Sea 2007–2011 Apr EM 25 7
(S7) Lincoln Sea 2004–2012 Apr, May EM 30 9
(S8) Central Arctic 2001–2011 Aug, Sep EM 37 3
(S9) Fram Strait 2004–2011 Aug EM 15 3

(S10) Fram Strait 2003-2011 Apr, May EM 12 4

1
Regions as defined in Figure 3.1

2
submarine track segments / individual EM-flights

3
submarine cruises / EM measurement campaigns

undeformed ice, but have known biases for ridged ice. Rothrock & Wen-

snahan (2007) found the ULS data to overestimate the thickness by 29cm

± 25cm over large sample sizes. One important source of error is that the

sensors record the fastest reflection of the emitted acoustic signal. This way

the maximal draft over the footprint of the sensor is observed instead of the

mean draft, and especially for rough, strongly deformed ice, the ice draft is

overestimated. The uncertainties in the EM data are as low as ± 10cm for

level ice (Pfaffling et al., 2007), but again the thickness of deformed ice is less

certain. In contrast to the ULS data, the electromagnetic sounding measures

a weighted mean over a large footprint. That way, the thickness of individual

ridges is mostly smoothed out by the surrounding thinner ice and EM data

thereby underestimate the thickness of ridges (Reid et al., 2006).

For a comparison of ULS and EM observations, I convert the ice draft

to combined ice and snow thickness using the time-dependent values for

snow thickness and snow density of Warren et al. (1999) and constant values

ρw = 1027kg/m3 and ρi = 928kg/m3 for the densities of water and ice.

Finally, both measurement techniques have difficulties to distinguish thin ice

from open water. For this reason, the open water fraction is excluded from

the analysis in this study.
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3.2.2 Model Equations

Sea Ice Dynamics

The vector u of sea ice velocity is calculated according to the momentum

balance

m
∂u

∂t
= mfCk × u+ τa + τo −mĝ∆H +∇ · σ, (3.1)

where m = ρiHi + ρsHs is the ice and snow mass per unit area, calculated

from the respective densities ρi, ρs and grid cell area averaged thicknesses

Hi, Hs of ice and snow. The different forcing terms on the right hand side of

(3.1) are: the horizontal Coriolis force, calculated from the Coriolis parameter

fC and the vertical unit vector k; the stress from atmosphere τa and ocean

τo; the sea surface tilt ∆H with the gravitational acceleration ĝ; and the

divergence of the internal ice stress σ. The stresses from atmosphere and

ocean on the ice are calculated using the quadratic laws

τa = ρacd,a|ua − u|Ra(ua − u) (3.2)

τo = ρocd,o|uo − u|Ro(uo − u) (3.3)

where ρa and ρo are the reference densities, cd,a and cd,o the drag coefficients,

ua and uo the velocities, andRa andRo rotation matrices for the atmosphere

(underscript a) or ocean (underscript o) (McPhee, 1975).

To be able to solve the momentum balance (3.1), the internal ice stress

σ depends on the strain rate ε̇ = 1
2

[
∇u+ (∇u)T

]
. I use the constitutive

equation

σ = 2ηε̇+

(
(ζ − η)ε̇I −

P

2

)
I (3.4)

for the viscous-plastic rheology (Hibler, 1979). Here the bulk viscosity ζ =
P

2∆ε̇
and the shear viscosity η = ζ

e2
are calculated from the ice pressure

P , the axis ratio e of the elliptical yield curve, and invariants for divergence

ε̇I = ε̇11+ ε̇22 and shear ε̇II =
√

(ε̇11 − ε̇22)2 + 4ε̇12 of the strain rate. Finally,

I is the identity matrix and ∆ε̇ =
√
ε̇2
I + e−2ε̇2

II is a measure of deformation.

In the sensitivity studies, four more parameterizations are included: (1)
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The compressive ice strength

P = P ∗Ahe−C
∗(1−A) (3.5)

is calculated linearly in ice thickness h and decreases nearly exponentially

with lower sea ice concentration A (Hibler, 1979). P ∗ and C∗ are tuning

parameters. (2) A gross closing rate of the ice pack is calculated from the

sum of the divergence and the amount of shear, multiplied with a factor

0 ≤ Cs ≤ 1. This factor determines how much of the shearing motion

can be translated to closing of leads, and thereby ridging (Flato & Hibler,

1995). (3) The thickness of newly frozen ice is set to H0 (Hibler, 1979). A

large initial thickness can be criticized as going against physical principles,

since the thickness of newly frozen ice increases more or less continuously in

reality, beginning with an “initial thickness” of at most a few centimeters

when frazil ice and small platelets start to form in the water. But this

parameter allows to control how quickly open water freezes and offers a very

rough parameterization of the many small-scale processes that take place

during the freeze-up of open leads until the new ice is somehow consolidated.

And (4) during ridging, a factor 0 ≤ FS ≤ 1 of the snow on the undeformed

ice pack stays on the ridged ice, the rest is pushed into the water during the

process (Flato & Hibler, 1995).

Ice Thickness Distribution

Thorndike et al. (1975) defined the thickness distribution g(h) as the relative

fraction of ice of thickness between h and h + dh. This distribution can

change by advection, thermodynamics or through ridging processes. The

latter mechanical changes are described following the theory of Thorndike

et al. (1975), but using the smooth functions of Lipscomb et al. (2007) in

this framework: First, a participation function

a(h) =
1

b0

exp

(
−G(h)

a∗

)
g(h) (3.6)

determines how much of the ice of thickness h takes part in each ridging

event. Here b0 is a normalization factor, G(h) =
∫ h

0
g(ĥ) dĥ is the cumulative

thickness distribution and a∗ is the participation parameter that scales the

relative participation of thin and thick ice. And second, a redistribution
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function

γ(hin, hout) = γ0 exp

(
−(hout − hmin)

µ
√
hin

)
(3.7)

describes how much ice is ridged into thickness hout, if unit area of ice of

thickness hin is ridged. Here, γ0 is a normalization factor, µ is a scaling

parameter, and hmin gives the minimal thickness into which ice can be ridged.

3.2.3 Model Data

An Arctic configuration of the MIT general circulation model (MITgcm) is

compared against the observational data. The model setup in this study is

based on previous Arctic configurations using the ITD parameterization and

the Hibler-type strength (Ungermann et al., 2017). The ITD is discretized

into ten thickness categories. This configuration was chosen as a compromise

between computational costs and sufficient thickness resolution.

In this configuration, sensitivity studies are performed for the influence

of ten different parameters on the shape of the ITD produced. The tested

parameters are the two redistribution parameters (1) a∗, that determines

which ice takes part in ridging processes and (2) µ, that determines the shape

of the produced ridges; (3) the compressive ice strength parameter P ∗ and

(4) the ice concentration parameter C∗, of the ice strength parameterization;

the drag coefficients (5) cd,a and (6) cd,o for the ice with respect to atmosphere

and ocean; (7) the axis ratio e of the elliptical yield curve, which determines

the ratio between shear strength and compressive strength P in the VP-

rheology; (8) the shear coefficient Cs, which determines how much energy

during shear deformation is used to build pressure ridges; (9) the thickness

of newly formed ice H0; and (10) the snow fraction Fs that remains on the

ice after ridging.

The results of those sensitivity studies informed a manual adjustment of

the parameters. The final values were chosen to improve the representation of

the ITD in the model without departing too far from the mean sea ice state of

the tested configurations from (Ungermann et al., 2017) and are summarized

in Table 3.2. In addition, I infer the sensitivity of the ITDs to individual

parameter changes from the differences between the two perturbation runs for

each parameter. I calculate the mean area between the regional cumulative

thickness distributions as an established measure of similarity of histograms
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Table 3.2: Parameter values in sensitivity analyses and final configuration

Baseline Perturbation Range F inal

µ 3.029 2.0 2.0
a∗ 0.041 0.02 0.03
P ∗ 2.299× 104 7.0× 104 2.2× 104

C∗ 15.92 8.0 10.0
cd,a 1.657× 10−3 0.5× 10−3 1.9× 10−3

cd,o 6.647× 10−3 1.0× 10−3 6.5× 10−3

e 1.523 0.8 1.8
Cs 0.5 0.5 0.85
H0 0.5649 0.3 0.6
Fs 0.5 0.5 0.6

(Rubner et al., 2000).

Model results are compared to observations of either ice draft (ULS) or

combined ice and snow thickness (EM). In the MITgcm, local ice and snow

profiles and the density of the ocean surface are active model variables, while

the densities of ice and snow are kept constant. With this information, both

the ice draft

hd =
ρi
ρw
hi +

ρs
ρw
hs (3.8)

and the total ice and snow thickness

ht = hi + hs (3.9)

can be calculated from the thicknesses hi, hs and densities ρi, ρs of ice and

snow (subscripts i and s respectively) and the surface density ρw of the ocean.

The observations allow to assess both regionally averaged ITDs and single,

localized measurements. For these comparisons, the modeled thickness dis-

tributions are first averaged over the regions and months of the year defined

in Table 3.1. Second, model snapshots are sampled every ten days, so that

each track segment of the ULS data and single flight of the EM data can be

matched with the nearest grid cell.
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3.3 Results

3.3.1 Regional Ice Thickness Distributions

The model captures the regional differences of ITDs very accurately, but it

sometimes overestimates seasonal changes in the ITDs (Figure 3.2). Decadal

variability in the modeled ITDs is small.

The model shows a broad range of different ice conditions in different

regions, similar to the observations. But the model reproduces the observa-

tions generally better for certain ice types than for others. When the obser-

vations cover mostly first-year ice, as in the Beaufort Sea and in the Central

Arctic during the 2000s, the agreement between model and observations is

very accurate. The total average area between the cumulative histograms

is 0.64m ± 0.21m, while the average over the observations in the Beaufort

Sea is 0.41m± 0.06m. In regions with a larger amount of multi-year ice, the

model still captures the overall properties of the ice pack, but the agreement

with the exact shape of the observed ITDs tends to be lower especially for

bi-modal distributions. Similarly, the modeled changes in the ITD between

different seasons match mostly first-year ice behavior: The model slightly un-

derestimates the changes in the Beaufort Sea, while it strongly overestimates

the annual cycle in the Central Arctic and in the Fram Strait.

Differences between decades are small in the model. I compare averaged

ITDs centered at 1990 and 2005 for regions and seasons as in the observations

S1, S2, S3, S4, S5, S7 and S9 (see Table 3.1). Over this time, the modal

thicknesses in the model distributions do not change on average (0m±0.02m).

In this evaluation, S5 is excluded because the distribution is very flat around

its mode. Over the same time, the mean thicknesses of the distributions

decrease by 0.06m±0.12m in the model. In comparison, for the three regions

with observations in different decades, the estimated loss in mean ice and

snow thickness is 0.88m (S1 and S6, Beaufort Sea), 1.79m (S3 and S8, Central

Arctic) and 1.37m (S5 and S10, Fram Strait).

The model underestimates both modal and mean thickness compared

to observations, but the differences are smaller for the mean than for the

mode. On average, the modal thicknesses of the ten regions are thinner

by 0.66m ± 0.89m in the model than in the observations, while the same

difference for the mean thicknesses is only 0.25m ± 0.47m, indicating that

the distributions in the model are skewed compared to the observations:
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Figure 3.3: Semi-logarithmic plot of average ice thickness against probability
mass in each category for three regional ITD. Blue crosses for model values, red
lines for observations. The dashed black lines emphasize the accordance to an
exponential fit.

The high amount of unrealistically thin ice in the modeled mode is partially

offset by too much ridged ice and the lack of ice thinner than the mode.

The exponential tails in the distributions further highlight these differ-

ences in the shape of the ITDs. Both the observed and the modeled ITD

show an exponential tail, but the rate parameters (or the slopes in the semi-

logarithmic plot) are different. In Figure 3.3, the thickness distributions of

three different regions are plotted on semi-logarithmic axes. The specific

regions were chosen for an overview of the range of tails that are present

in the model and the observations, the thickness distributions in other re-

gions show comparable exponential decay. While the qualitative behavior of

the tail agrees between model and observations, the rate parameter of the

modeled tail differs in most regions from the observations.

3.3.2 Grid-Scale Ice Thickness Distributions

The model results from single grid cells are often very similar to the regional

averages presented in section 3.3.1. Figure 3.4 compares histograms from

20 different observations to model results from the nearest grid point. In

general, the model distributions in single grid cells look physically plausible

with mostly a single, dominant mode of thermodynamically grown ice and

an exponentially decreasing tail of deformed ice. But the points are selected

because they highlight the variability in the observations: nearly flat, uni-

and bi-modal distributions. The modeled ITDs are less variable in shape than

the observations. Without any smoothing by averaging, this comparison is

more sensitive to biases in the ITD parameterizations than the comparison

57



CHAPTER 3. REPRODUCTION OF LOCAL ITDS IN MODELS

of regional mean values. Especially when data from the same regions and

seasons in Figure 3.4 are evaluated, the differences between model results at

different points are small, compared to the observed range of distributions.

3.3.3 Sensitivity Studies

Sensitivity studies for tested parameters show that the redistribution during

ridging and the deformation in shear are most important in shaping the

modeled ITD. Figure 3.5 summarizes the sensitivity of the regional ITDs to

the different parameters.

Adjusting the ridging parameterization, especially the redistribution of

thicknesses during ridging (µ), can produce the largest changes in the mod-

eled ITD. But note that the two tuning parameters involved in ridging have

a drastically different impact on the ITD: adjusting the participation of ice

in ridging (a∗) produces almost no changes in the ITDs at all. For the two

parameters changing the behavior in shear deformation (e and Cs), a differ-

ence in impact is much smaller (than for µ). The sensitivity of the ITDs to

both e and Cs is still larger than the sensitivity to P ∗ or cd,a. These two

parameters are among the most common parameters used to tune compa-

rable sea ice models towards large-scale observations (Nguyen et al., 2011),

but these results indicate that they are not the best choice to tune regional

ITDs.

3.4 Discussion

3.4.1 Regional Ice Thickness Distributions

I show that with the ITD parameterization regional and seasonal differences

in ITDs can be reproduced and matched with corresponding observations.

To my knowledge, it has not been shown in this detail that an ITD model

is not only able to reproduce average ice conditions in a single region (e.g.

Dupont et al., 2015; Herzfeld et al., 2015), but also to reproduce very different

regional and seasonal ITDs in the same configuration. The model tends to

produce distributions with a thin peak and an exponentially decaying tail of

thicker, ridged ice. This leads to good model–observation fits for conditions

of relatively uniform first-year ice as in the Beaufort Sea. At the same time,

this tendency leads to a poor representation of bi-modal distributions with
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Figure 3.5: Sensitivity of the ITDs to each parameter. The mean areas between
the cumulative thickness distributions of the respective perturbation experiments
are plotted as colored bars; the color coding refers to different physical mechanisms.

multiple ice types, that are common e.g. in Fram Strait.

The changes in modeled ITDs over 15 years are small. The thinning

in mean ice and snow thickness calculated from the observations probably

overestimates the real changes, since the (older) ULS data generally overes-

timate mean ice thickness while the (younger) EM data underestimate mean

ice thickness. But Rothrock et al. (2008) evaluated a larger set of observa-

tions with a higher precision and give a decrease of 0.54m in sea ice draft for

the time span from 1990 to 2005 as an Arctic mean, still larger than even

the largest values modeled in this study.

Over the time span of my investigation, one of the largest changes in

the Arctic was the reduction in the multi-year ice fraction (Polyakov et al.,

2012), which can explain the different behavior of model and observations.

The MITgcm currently does not distinguish first-year ice from multi-year ice,

even though their physical properties differ greatly (Timco & Weeks, 2010).

Armour et al. (2011) showed that sea ice models without such a distinction

can reproduce mean ice properties from observations, but produce distorted

climate sensitivities when the relative fraction of first-year ice and multi-

year ice is not variable. My results, namely that the seasonal and regional

differences can be reproduced, but that there is only small variability with

changing forcing situations over the decades, support this finding.

I argue that including the modal thickness as model diagnostics can help
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to constrain uncertain coefficients in different parameterizations, because the

model used in this study (and probably models in general) can better simu-

late observed mean thickness than observed modal thickness. Sea ice models

are often evaluated against mean sea ice thickness (e.g. Chevallier et al.,

2016; Stroeve et al., 2014). Apparently, tuning the models towards this

target can introduce compensating biases in the thermodynamics and the

ridging schemes: for example, too much ridged, thick ice can be offset by

a prominent and too thin mode, or too much very thin ice. Herzfeld et al.

(2015) use a model with much more sophisticated thermodynamics than the

MITgcm, but arrive at ice draft distributions with similar characteristics as

those presented in Section 3.3. Therefore I assume that such compensating

biases exist both for simple and very sophisticated model parameterizations

of thermodynamic processes. With the current amount of available observa-

tions, including the modal thickness as a model diagnostic allows to better

distinguish between thermodynamic changes of the mean ice thickness and

purely mechanical changes. This provides a simple and cheap option to con-

strain the development and tuning of these two important parts of any sea

ice model.

I interpret the clear exponential decay of the tail of the simulated distri-

butions as an indication for a good model of the physical processes inherent

to ridging. The exponentially decreasing tail of thick ice is a common fea-

ture of observed Arctic ice thickness distribution (Wadhams & Davy, 1986).

Similar tails are simulated by Bellchamber-Amundrud et al. (2002) with a

ridging model similar to the one used here but with constant redistribution,

and by Godlovitch et al. (2012) using a stochastic model, also with constant

redistribution. Their results indicate that the exponential tails are not cre-

ated by the exponential redistribution functions used in this study. Instead,

these results confirm that the appropriate physical mechanisms are included

in the ITD parameterization.

3.4.2 Grid-Scale Ice Thickness Distributions

The evaluation of grid-cell ITDs shows that mean conditions are reproduced,

but that the variability between points close to each other is low. My results

corroborate previous evaluations of point-wise ITDs: Hibler (1980) provided

ITDs taken from single grid cells of his model and the evolution of this

parameterization was often based on the comparison of columnar ITD mod-
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els with observations (Schramm et al., 1997; Bellchamber-Amundrud et al.,

2002). Their results agree with mine in that with the ITD parameterization

the sea ice simulations are consistent with observed Arctic ITDs and that

the parameterization can be tuned to a specific set of observations. But with

the currently available data, I can further show that the parameterization

simulates ITDs in single grid cells that are very similar to the regional mean

states and underestimate the observed variability on the grid scale.

I speculate about two explanations for the smaller grid-scale variability in

the model: (1) The distinction between ice types is insufficient; (2) localiza-

tion of deformation events is missing. The first explanation is in line with the

arguments presented in section 3.4.1: The ice properties are chosen to rep-

resent the Arctic-wide mix of different ice types. Especially in regions where

different ice types should be present in single grid cells, this approach will

lower the range of possible behavior of the ice and might make the ITDs more

uniform. The second explanation might be given in terms of the localization

of deformation in viscous-plastic sea ice models: With coarse and medium

resolution, such models underestimate the absolute deformation rate and es-

pecially the localization of the deformation (Dansereau et al., 2017; Spreen

et al., 2017). A stronger localization of deformation events also leads to more

heterogeneity in the simulated fields and hence might allow ITDs in different

grid cells to develop more independently from each other. Spreen et al. (2017)

show that the localization of deformation increases in VP models with high

resolution. With this in mind, a high-resolution VP model with an active

ITD parameterization may be necessary to better distinguish the effects of

deformation localization on local ITDs.

3.4.3 Sensitivity Studies

The sensitivity studies emphasize how important the deformation properties

in shear are for sea ice models. Both of the investigated shear parameters

are used in many current model studies with their original values of e = 2

(Hibler, 1979) and Cs = 0.5 (Flato & Hibler, 1995), although these choices

were only weakly motivated. More recent studies found that decreasing the

value of e leads to improved representation of different Arctic-wide sea ice

features (Miller et al., 2005; Bouchat & Tremblay, 2017; Ungermann et al.,

2017). In addition, Kwok & Cunningham (2016) analyzed deformation fields

and thickness changes from coinciding satellite observations. They found
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that the major part of mechanical ice thickness redistribution is caused by

deformation in shear, not by deformation in convergence. My results support

the notion that deformation in shear is a key factor in shaping different ITDs

in the Arctic. At the same time, this implies that it is possible to use the

abundance of ITD observations to constrain poorly constrained parameters

like e in future studies.

In addition, I hypothesize that changes in modeled local ITDs are always

connected to changes in the basin-scale circulation. The ITD in a single

grid-cell is the result of all processes along the Lagrangian path of the ice

parcel. Therefore, changes in basin-scale patterns can have a larger impact

on ITDs than changes in local processes. In the evaluation of the sensitivity

runs, no parameter perturbation produced a change in the ITDs without a

clear change in Arctic wide thickness and drift patterns (not shown), even

though the processes that shape ITDs are inherently local in their effect. The

large role of shear deformation also supports this hypothesis, since the axis

ratio e effects primarily the dynamic behavior of the sea ice (e.g. Bouchat &

Tremblay, 2017), and it also produces the second-largest changes in ITDs.

3.5 Conclusions

From a comparison of modeled ITDs against observations from different re-

gions, seasons and decades in the Arctic, I draw the following conclusions:

The currently used form of ITD parameterizations allows to consistently

simulate basin-wide sea ice in the Arctic. Observed regional and seasonal

variations in ITDs in the Arctic are, to a large degree, reproduced in regional

averages and snapshots from single grid cells. The modeled ITDs depend on

the overall drift and thickness patterns and hence on parameters that are not

directly related to the ITD parameterization.

At the same time the parameterization appears to be incomplete, which

limits its use for specific applications: The changes between different decades

are small in the model and there is so far no mechanism implemented to

distinguish between first-year and multi-year ice. Therefore, the parameter-

ization might underestimate the climate sensitivity of the Arctic ice cover

in longer climate change scenarios. Additionally, the grid cell ITDs mostly

follow the regional mean without the observed variability. The parameter-

ization was developed to describe tens of kilometers of pack ice. For local
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process studies of, for example, sea ice-ocean interaction, or sea ice biology,

it may not provide sufficient sub-grid scale information.

For future work, the shape of the modeled ITDs, and especially the modal

thickness provide a new, and easy to implement model diagnostic. This di-

agnostic allows to separate more clearly thermodynamic and dynamic effects

in thickness patterns, and can thereby reduce potentially compensating bi-

ases in these two parameterizations. In addition, it might allow to constrain

poorly constrained model parameters like the axis ratio e of the elliptical

yield curve.
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4. Is the thin ice fraction re-

ally the key factor for the ice

strength parameterization?
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Abstract The choice between two common ice strength parameterizations can

have a large effect on the reproduction of satellite observations of Arctic sea ice

concentration, thickness and drift in viscous-plastic sea ice models. One parameter-

ization calculates the ice strength from a multi-category ice thickness distribution

and the other uses a two-category thickness model. With the latter parameter-

ization the ice strength depend linearly on mean thickness, but with the multi-

category model this dependence is quadratic on average. The aim of this study is

to determine which of the differences between the two parameterizations are cru-

cial for their impact on basin-scale models. A rederivation of the multi-category

strength in the limiting case of only two thickness categories allows to perform

Arctic model simulations that allow to distinguish effects of mean dependences

on thickness and concentration from effects of the choice of thickness representa-

tion. The results show that a two-category strength is better suited for Arctic

sea ice simulations than a multi-category strength and that the mean dependence

of strength on thickness is only second order. In the original derivation of the

multi-category strength, energy stored and dissipated during ridging is assumed

to determine the large-scale ice strength. This assumption emphasizes the role of

the thin ice fraction computing the ice strength, which we find to be detrimental

to model performance. When calculating the ice strength, a larger role of energy

dissipated in shear can explain both that the mean ice thickness determines the

ice strength and that the ice strength is linear in the ice thickness.

4.1 Introduction

The climate is changing, and the Arctic is one of the regions, where those

changes are most prominent (Overland et al., 2013). Sea ice is a key factor in

this rapid reaction to changing conditions, and it is necessary to understand

its behavior to explain and correctly predict the future changes and their

impact on the global climate system (Overland et al., 2016). In addition, the

sea ice cover plays a key role in every human activity in the Arctic, from the

smallest communities to large shipping and construction operations (Meier

et al., 2014). But despite this importance on many different levels, many

of the large-scale properties of the pack ice are still highly uncertain and a

matter of ongoing research (Stroeve & Notz, 2015).

The yield strength of the ice pack is a central parameter for both climate
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models and engineering applications. The maximum internal pressure that

the ice can withstand before failing and deforming permanently. For sea ice

models, the yield strength determines how the ice moves under a given forcing

(Spreen et al., 2017). And for any man-made structure in Arctic waters,

knowledge of the yield strength is necessary to predict maximal forces that

can be exerted by the ice (Timco et al., 2017).

Today, many different parameterizations for the ice strength exist with

the two most common ones attributed to Rothrock (1975) and Hibler (1979).

Rothrock (1975) equated the work necessary to build a pressure ridge in the

pack ice to the sum of the rise in the potential energy of the system and the

energy lost to friction in the ridging process. Based on these processes, he

derived an expression for the ice strength directly from the redistribution of

sea ice between ice of different thicknesses. Such a model relies fundamen-

tally on keeping track of sea ice in a number of ice thickness categories. The

basic assumption behind this model is that the work associated with ridge

formation is the dominant sink of energy when sea ice deforms. Another con-

sequence of this model is that the thickness of the weakest ice determines the

strength of geophysical sea ice (Rothrock, 1975). In contrast, Hibler (1979)

defined the ice strength of sea ice in terms of the mean sea ice thickness over

a given area (a grid cell in a finite element model). In this simpler model,

the distribution of sea ice between different ice thickness categories is not

necessary, reducing the computational cost and allowing for longer integra-

tions. In his model the ice thickness distribution reduced to two categories -

ice with cell-averaged thickness H and open water or thin ice with negligible

volume, where the fraction of the surface area covered by either ice type is

denoted by A. The mean ice thickness h̄ can then be expressed in terms of

the cell-averaged ice thickness and the ice area fraction (h̄ = H
A

).

Apart from the use of the multi-category framework (Rothrock, 1975) or

the two-category approach (Hibler, 1979), there are other conceptual differ-

ences between the two formulations: The ice strength parameterization of

Hibler is linear in the mean ice thickness h̄, while the original expression of

Rothrock (in the limit of a two-category model as in Hibler) is proportional

to h2. Hibler (1980) continued to develop the multi-category ice strength and

included more realistic ridge geometries, arriving at an expression that is pro-

portional to h1.5. There have been efforts to constrain the ice strength param-

eterizations by discrete element simulations of the ridging process (Hopkins,

1998), satellite observations (Tremblay & Hakakian, 2006) or both direct and
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indirect observations in the ice pack (Timco et al., 2017). But for all these

approaches, many assumptions are needed to transfer the direct results of the

experiments to parameterizations describing an effective yield strength of the

ice pack on large scales. Therefore, any general laws for the ice strength in

models inferred from these results are still highly uncertain.

In addition to the unknown dependence of ice strength on ice thickness,

Wilchinsky & Feltham (2006) noted that models using the multi-category ice

strength of Rothrock (1975) produce a larger misfit to observed Arctic-wide

ice draft distributions than models using the mean-thickness ice strength of

Hibler (1979). This result was confirmed in an evaluation of simulated model

diagnostics against satellite observations of sea ice concentration, thickness

and drift (Ungermann et al., 2017): Again, model configurations with the

Hibler two-category strength outperformed model configurations using the

Rothrock multi-category strength, even when all other parts of the config-

urations were kept strictly the same. So far it is unclear if this modeling

result is due to the different exponents in the thickness dependence of the

strength parameterizations, or due to the use of mean thickness or a thickness

distribution in the calculation of the ice strength.

The aim of this study is to determine the main reason why multi-category

strength parameterizations deteriorate the reproduction of Arctic-wide sea

ice observations in models. For this goal it is necessary to differentiate be-

tween the effects of different mean dependencies on ice thickness and concen-

tration, and the effects of calculating the ice strength from the Ice Thickness

Distribution (ITD) instead of the mean thickness. To this end I present

the different ice strength parameterizations together with the assumptions

made in their respective derivations in section 4.2.1. This allows to rederive

the multi-category strength after Rothrock in the limit of a two-category ice

model in section 4.2.2, to facilitate a direct comparison to the Hibler strength.

Model configurations using the different ice strength parameterizations are

described in section 4.2.3 and the effective dependence of the multi-category

strength formulations in these configurations on mean ice thickness and con-

centration are evaluated in section 4.3.1. Using these results, the observed

changes in Arctic model configurations using the Rothrock strength com-

pared to the Hibler strength are separated in section 4.3.2 into contributions

of the multi-category formulation compared to a two-category formulation

and contributions of different dependencies on mean ice thickness and con-

centration. Finally, these results are discussed in section 4.4 and the most
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important conclusions are given in section 4.5.

4.2 Methods

4.2.1 Ice Strength Parameterizations

In his derivation of an expression for the ice strength, Rothrock (1975) started

from the framework for the thickness distribution presented by Thorndike

et al. (1975). The ice thickness distribution g(h) is defined so that
∫ h2
h1
g(h) dh

gives the relative fraction of ice with thicknesses between h1 and h2. This

definition implies that ∫ ∞
0

g(h) dh = 1 (4.1)

where the upper limit can also be replaced by hmax, the maximal ice thick-

ness present in the respective area. An equivalent way of presenting the ice

thickness distribution, that will be helpful in the derivation, is the cumulative

thickness distribution

G(h) =

∫ h

0

g(h̃) dh̃. (4.2)

Thorndike et al. (1975) described the change of the ITD during ridging by

two functions:

First, a participation function

a(h) = b(h)g(h) (4.3)

describes the relative participation of ice of thickness h in a ridging event.

This is done by multiplying a weighting function b(h) with the local ITD

g(h), to avoid more ice of a certain thickness taking part in ridging than is

actually present. The weighting function b should emphasize the thin end of

the thickness distribution, since this part of the ice pack ridges most easily

in compression. The participation function a is defined to give the relative

fractions of ice taking part in ridging, so it is normalized to∫ ∞
0

a(h) dh = 1, (4.4)
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by a scalar factor in the weighting function b.

Second, the actual build-up of ridges is described by a redistribution

function γ(hin, hout) that determines how much ice is ridged into thickness

hout, when a unit area of ice of thickness hin takes part in ridging. With this

redistribution function, the thickness distribution

n(h) =

∫ h

0

a(hi)γ(hi, h) dhi. (4.5)

of ice created by ridging can be calculated as the integral over the ridges that

are produced by all ice thicknesses in the local ITD that take part in ridging.

It is assumed that the produced ridges contain exactly the amount of ice that

took part in ridging, so that volume conservation can be expressed as∫ ∞
0

hn(h) dh =

∫ ∞
0

h a(h) dh (4.6)

which can be achieved by normalizing the redistribution function γ.

From these two functions, the ridging mode

wr(h) =
−a(h) + n(h)

ω
(4.7)

can be formed, which describes the overall change in the thickness distribu-

tion due to ridging. In the case of pure convergence, the reduction of total

ice cover by this ridging mode must equal the influx of ice into the grid cell.

For this reason, the corresponding term in the evolution equation of the ITD

is a product of the ridging mode and the divergence. Conservation of area

in compression is then obtained for the simple condition∫ ∞
0

wr(h) dh = −1, (4.8)

which is met with the scalar normalization factor ω =
∫∞

0
n(h)− a(h) dh in

equation (4.7).

In this framework, Rothrock calculated the change in potential energy of

the ice by ridging as

Cp

∫ ∞
0

h2wr(h) dh (4.9)

where Cp = ĝ (ρw−ρi)ρi
2ρw

is a factor calculated from the gravitational acceler-
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ation ĝ and the densities ρi, ρw of ice and water. Including a factor Cf to

account for frictional processes, which are assumed to be proportional to the

change in potential energy, the total rate of energy lost to the deformation

of the ice in unit strain is

P = CfCp

∫ ∞
0

h2wr(h) dh. (4.10)

Finally, Rothrock (1975) argued that this term can equivalently be seen as

ice strength: The general form of the energy lost in deformation σI ε̇I +σII ε̇II

must be equal to the energy loss calculated in (4.10). In the special case of

pure convergence (ε̇II = 0) the ice deforms only when σI = P .

Hibler (1979) followed a simpler route and presented a two-category model:

This model only keeps track of open water and ice instead of the detailed ITD

in every grid cell. In this case, the only information about the ice thickness

h is the mean ice thickness h̄. In this simpler context, Hibler presented an

alternative parameterization for ice strength

PH = P ∗Ah̄e−C
∗(1−A) (4.11)

that only depends on mean ice thickness h̄ and concentration A per grid cell.

Here, P ∗ is the ice compressive strength parameter, that gives the ice strength

of a full ice cover with 1m thickness, and C∗ is a scaling parameter that

determines how quickly the ice strength decreases with open water fraction.

4.2.2 Multi-category Ice Strength for a Two-Category

Model

For a better comparison of the parameterizations (4.10) and (4.11), I derive

a closed-form solution of equation (4.10) in the limit where I have only two

ice categories (ice and no ice). In this case, I let

a(h) =


2
G∗

(
1− G(h)

G∗

)
g(h) 0 ≤ G(h) ≤ G∗

0 G(h) > G∗
(4.12)
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be the participation of ice in ridging, where G∗ is a cumulative ice concen-

tration below which the ridging occurs (Rothrock, 1975). And let

γ(hi, ho) =

 1
2(H∗−hi) 2hi ≤ ho ≤ 2

√
H∗hi

0 ho < 2hi ∨ ho > 2
√
H∗hi

(4.13)

be the redistribution process with H∗ a scaling parameter for the maximum

ridge height (Hibler, 1980). To be able to solve the integrals analytically,

the thickness distribution g of ice with mean thickness h̄ is assumed to be

uniform between h = 0m and h = 2h̄. With these definitions and using the

notation

I− = G∗ − (1− A)

I+ = G∗ + (1− A),

the ice strength derived analytically (PR,ana, see equation 4.10) can be written

as

PR,ana =

2h̄I2
−

(
−32A2H∗

√
2H

∗h̄
A
I− + 35AH∗h̄I− + 21h̄2I2

−

)
7A2

(
8AI−

√
2H

∗h̄
A
I− − 15AH∗I+ + 25h̄I−I+ − 20G∗h̄I−

) .
(4.14)

Details of this derivation are presented in the appendix 4.A.1.

In addition, it is also possible to evaluate the integrals in equation (4.10)

numerically. This allows to relax the assumptions made to arrive at the

result (4.14) and investigate cases for which no closed-form solution exists.

In this manner, different choices of redistribution functions can be tested. For

instance, Lipscomb et al. (2007) proposed to use the following participation

and redistribution functions:

aL(h) =
e
−G(h)
a∗

a∗(1− e−1
a∗ )

g(h) (4.15)

γL(hi, ho) =
hi

(hmin + µ
√
hi)µ
√
hi
e
−(ho−hmin)

µ
√
hi (4.16)

In these formulations, the parameter a∗ has a role that is equivalent to the
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participation parameter G∗, µ is the equivalent of the redistribution param-

eter H∗, and hmin is a minimal thickness produced by ridging, which is

assumed to be equal to the minimum of 2hi and hi + 1m. In the following, I

use PR to denote ice strength calculated using equation (4.10) with the ridg-

ing functions (4.12) and (4.13), and use PL to denote ice strength calculated

using equation (4.10) with the functions (4.15) and (4.16).

I also test the impact of the choice of ice thickness distribution g(h)

around the mean thickness h̄. To this end, three different distributions are

assumed for the integration: (1) a uniform distribution guni(h) = A
2h̄

between

h = 0 and h = 2h̄, (2) a triangular distribution gtri(h) = 8A
9h̄2

(h̄− h) between

h = h̄
2

and h = 2h̄ to test the impact of empty thin ice categories as an

extreme case, and (3) a log-normal distribution gln with the mean h̄ and the

mode 2
3
h̄ that is set to gln = 0 for all thicknesses h > 3h̄. The different

distributions are plotted in Figure 4.1.

Figure 4.1: Different choices for the thickness distribution g(h) expressed as a
function of the mean ice thickness h̄.

4.2.3 Comparison of Arctic Configurations

I use the method presented in Ungermann et al. (2017) to evaluate the per-

formance of the different ice strength parameterizations in the MIT general

circulation model (MITgcm). This method consists of two parts: A cost

function calculates the misfit between model and satellite observations of sea

ice as a measure of the quality of model results. Each configuration under-
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goes an individual parameter optimization to ensure that comparisons are

between equally-well tuned configurations.

The cost function uses satellite observations of sea ice concentration (EU-

METSAT Ocean and Sea Ice Satellite Application Facility, 2011), sea ice

thickness (Kwok & Cunningham, 2008), and sea ice drift (Lavergne et al.,

2010; Kimura et al., 2013). The uncertainties in sea ice concentration, thick-

ness and drift are provided with the measurements, taken as the minimum

of 40% of the signal or 1m, and taken from detailed analyzes, respectively

(EUMETSAT Ocean and Sea Ice Satellite Application Facility, 2011; Sumata

et al., 2014, 2015). The cost function value

F =
N∑
i=1

(yi − xi)2

Nd(yi)ξ2
i

(4.17)

is calculated as the root mean square of the misfit between the model results

xi and the observed values yi, weighted by the pointwise measurement uncer-

tainty ξi. Then, the different observations are weighted in the cost function

by the number Nd(yi) of observations in each data set, so that each satel-

lite product has the same weight in the final cost function value. A more

detailed description of the dataset and method can be found in Ungermann

et al. (2017).

The choice of a quadratic cost function allows to optimize parameter val-

ues automatically towards this target using a Green’s function approach. A

description of the method used in the context of the MITgcm can be found in

Menemenlis et al. (2005); and a description of the mathematical background

on which the method is based can be found in Menke (2012). Green’s func-

tions are used to obtain a linear estimate of the model dependency on a

chosen set of parameters. Using this linearized operator instead of the full

non-linear model, it is possible to find an optimal perturbation for these

parameters that minimizes the quadratic cost function. Using this routine,

I tune the parameters relevant for the strength parameterizations in each

configuration individually.

The model used in this study is a fully-coupled ocean – sea ice configura-

tion of the MITgcm in the Arctic region. This configuration is well tuned to

a large set of observations (Nguyen et al., 2011; Ungermann et al., 2017) and

employs a mean grid resolution of 36km, making it representative of a broad

class of climate models. The atmospheric forcing is taken from the NCEP
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Climate System Forecast Reanalysis data (Saha et al., 2010). Following this

approach, I arrive at two different configurations for my comparisons:

PR(int) Using the basic Rothrock strength PR based on equation (4.10) with the

participation functions (4.12), (4.13). The ice strength is determined

by an integral over the ice thickness distribution. The tuning procedure

gives values G∗ = 0.1456, H∗ = 23.69m1/2 and Cf = 13.42.

PR,smooth Using the same strength as in configuration PR(int), but fixing the value

for the participation parameter at G∗ = 0.5. This choice aims at re-

ducing the impact of the thin ice fraction on the ice strength fields.

Tuning gives H∗ = 29.35m1/2 and Cf = 12.6.

Two other configurations with commonly chosen parameterizations are in-

cluded as reference, which were originally presented by Ungermann et al.

(2017):

PH(mean) Using an active ITD parameterization together with the classical two-

category ice strength PH after equation (4.11).

PH,2cat Using a simple two-category scheme for ice thickness together with PH .

4.3 Results

The evaluation of the different strength parameterizations consists of two

parts: first, I approximate the dependence of the somewhat unwieldy analyt-

ical strength parameterization (4.14) with simple functions and investigate

to which degree these simpler laws depend on choices of parameterizations

and coefficient values in section 4.3.1. Second, I compare the effects of differ-

ent strength parameterizations in Arctic simulations in section 4.3.2, where

I use the results of section 4.3.1 to distinguish clearly between the effects of

multi-category vs. two-category strength and the effects of different mean

dependencies on ice thickness and concentration.

4.3.1 Thickness and Concentration Dependence of Ice

Strength

In a first step, I investigate if the behavior of the analytical ice strength (4.14)

can be approximated by simple functions in thickness and concentration.
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This allows to compare this newly derived ice strength parameterization more

easily to the established two-category ice strength of Hibler (1979). Fits of

different functions to the analytical ice strength (4.14) are plotted in Figure

4.2. In a second step, I compare how the quality of fit and the coefficient

values of the fitted functions change with different choices for the distribution

of g(h) around h̄ or for the participation and redistribution functions.

Figure 4.2: Thickness and concentration dependence for the closed-form solution
of the multi-category ice strength PR,ana after Rothrock (1975) for two different
choices of the participation parameter G∗. Fitted are the Hibler strength PH(mean)

and the new variant PR(mean) with the exponent of hr as an additional free param-
eter. Parameter values are H∗ = 25m, A = 1 (subplot 1) and h = 1m (subplot
2).

These fits are performed for parameter combinations ofG∗ ∈ {0.05, 0.1, . . . , 0.45, 0.5}
and H∗ ∈ {10, 30, 50, 70, 90}. In a first order approximation, PR,ana should

be proportional to h̄1.5 (Lipscomb et al., 2007). In almost perfect agreement

to this estimate, the dependence on thickness can be modeled by an expo-

nential function P (h) = C̃hr, where a least-squares fit produces an exponent

of r = 1.5 ± 0.01 in all tested cases. For the dependence of the PR,ana on

the concentration, I find that the function P (A) = C̃
(
G̃∗−1+A

G̃∗

)3

produces

excellent fits for the dependence on sea ice concentration, where the relative

difference between the fitted parameter G̃∗ and the original value of G∗ is

less than 5% in all tested cases. Combining these two results, equation (4.14)

can be approximated by

PR(mean) = CP h̄
1.5

(
G∗ − (1− A)

G∗

)3

(4.18)

where CP is a scaling coefficient equivalent to the ice strength parameter P ∗.

The exact value of the ice strength parameter CP depends strongly on the
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thickness distribution g(h). When numerically evaluating the ice strength

PR with parameters G∗ = 0.15 and H∗ = 25m for different assumed dis-

tributions g(h) around the same mean thickness h̄, the values for the ice

strength parameter are fitted to CP = 1, 780Nm1.5, CP = 10, 429Nm1.5 and

CP = 19, 514Nm1.5 for the uniform, log-normal and triangular distribution,

respectively. The thickness of the ice that takes part in ridging determines the

work against gravity necessary for piling it up into a ridge, and thereby deter-

mines the ice strength. Taking the participation parameter to be G∗ = 0.15

and solving the different distributions for the thickness with G(h) = G∗,

the thickest ice that still takes part in ridging has a thickness of 0.3h̄ for

the uniform distribution, and 0.51h̄ for the log-normal one. This thicker ice

in the redistribution process (4.13) has a large impact on the calculated ice

strength (equation 4.10).

Figure 4.3: Thickness and concentration dependence for the numerical evaluation
of the multi-category ice strength PL after Lipscomb et al. (2007) for two different
choices of the participation parameter a∗. The Hibler strength PH(mean) and the
new variant PR(mean) with the exponent of hr as an additional free parameter are
fitted to PL. In subplot 2 only values for A ≥ 0.8 are fitted. Parameter values are
µ = 3m1/2, A = 1 (subplot 1) and h = 1m (subplot 2), g is assumed log-normal.

A multi-category ice strength with smoother, exponential ridging func-

tions can still be approximated by function (4.18), but introduces unexpected

behavior for small sea ice concentrations. The strength PL uses the smooth

ridging functions (4.15) and (4.16) as a smooth approximation of the discon-

tinuous functions (4.12) and (4.13). When fitting the function P (h) = C̃hr

to the results of PL, the optimal exponents r range between 1.57 and 1.73

for parameter values a∗ ∈ {0.03, 0.04, 0.05, 0.08} and µ ∈ {2., 3., 4., 6.}. So

in this case, second-order effects start to show in the calculated values for

ice strength, slightly increasing the exponent in h compared to the origi-
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Table 4.1: Overview of different model configurations

strength equations calculated from comment

PR(int) (Rothrock, 1975) ITD
PR(mean) (Rothrock, 1975) h̄ equation (4.18)
PH(mean) (Hibler, 1979) h̄
PR,smooth (Rothrock, 1975) ITD G∗ = 0.5
PH,2cat (Hibler, 1979) h̄ 2-category thickness

nal PR. The decrease of the ice strength with lower concentrations is slower

than predicted by the approximation (4.18) for sea ice concentrations smaller

than 0.8, and shows a second local maximum for small concentrations around

A = 0.1 for certain combinations of a∗ and µ (Figure 4.3). Ice of concentra-

tions lower than A = 0.8 is normally assumed to be in free drift, so there

should be only little or no internal ice strength (Leppäranta, 2011). Still, I

assume the unexpected dependence on concentration does not influence sea

ice models strongly: for sea ice concentrations of less than A = 0.8, even the

comparably high ice strength PL is low enough to be negligible in the sea ice

momentum balance.

4.3.2 Impact on Arctic Simulations

I compare the reproduction of Arctic sea ice observations in configurations

using different ice strength parameterizations. In addition to the model con-

figurations presented in section 4.2.3, a configuration PR(mean) using the ice

strength equation (4.18) will be included in the comparisons. Note that this

configuration does also use an active ITD parameterization, but calculates

the ice strength from the average thickness values. The tuning procedure pre-

sented in section 4.2.3 gives CP = 15.09kN and G∗ = 0.1597. An overview

of the compared configurations is presented in Table 4.1.

Comparing the cost function results of the tested configurations gives

better (lower) total values for the configurations using two-category strength,

than for the configurations using multi-category strength (Figure 4.4). This

difference holds both for a comparison between PR(int) and PH(mean) and for a

comparison between PR(int) and PR(mean). The latter comparison shows that

reduced model skill when using a Rothrock strength (Wilchinsky et al., 2006;

Ungermann et al., 2017) is caused by the use of a multi-category strength

formulation, and not by different exponents in the thickness dependencies of
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Figure 4.4: Comparison of the cost function results for configurations using
an multi-category thickness scheme and respectively the mean-thickness Hibler-
strength PH(mean), the newly derived mean-thickness strength PR(mean), the multi-
category Rothrock-strength PR(int), and the multi-category strength PR,smooth with
a high participation parameter G∗ = 0.5. As a reference the configuration PH,2cat

with a two-category thickness scheme is shown and differences to this configuration
are color-coded. Note the different scales for single contributions (hatched, left
scale) and total sum (black, right scale).
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the ice strength.

Figure 4.5: Difference between the norm of the average ice pressure gradient

(normalized as
‖∇PR(int)‖−‖∇PR(mean)‖

‖∇PR(mean)‖
) for the multi-category strength PR(int) minus

the mean-thickness strength PR(mean).

One consistent difference between configurations is that the ice strength

gradients are much larger for the multi-category strengths than for two-

category strengths (see also Ungermann et al., 2017). Comparing PR(int) and

PR(mean) as an example, ‖∇PR(int)‖ is at least twice as large as ‖∇PR(mean)‖
under almost all ice conditions, often larger (Figure 4.5). My experiments in-

dicate that these high strength gradients may be one of the main problems of

the multi-category strength and I discuss this result further in section 4.4.2.

I tried to smooth the high strength gradients in multi-category parame-

terizations by increasing the participation parameter to G∗ = 0.5, but this

did not improve the model performance. A higher value of the participation

parameter leads to a larger range of ice thicknesses taking part in ridging.

Thereby, the ice strength should depend less strongly on the thinnest part

of the ITD. Even though this change reduced the norm of the ice strength

gradients on average (not shown), the resulting configuration PR,smooth pro-

duces the largest (i.e. worst) cost function values. The extreme change in

the participation parameter has a large effect on many different parts of the

sea ice model when compared to the configuration PR(int): during summer,

the sea ice concentration is reduced drastically over the whole Arctic and
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the thickness is decreased moderately over the central Arctic for PR,smooth.

Still, the ice drift is slower in PR,smooth over the whole year in most of the

ice covered area. These effects probably outweigh the positive impact it may

have on the ice strength.

Figure 4.6: Mean modeled ice strength for different thicknesses as calculated in
the Arctic by the mean-thickness strength formulation PR(mean) together with the
replacement pressure method. All strength values are rescaled to full concentration
A = 1 using equation (4.18).

Note that, if the replacement pressure method is used, the relationship

between ice strength and thickness, as calculated in Section 4.3.1 (equation

4.18), is only valid for ice thicknesses below 3m (Figure 4.6). The replacement

pressure method was introduced to avoid non-physical viscous creep in the

ice in the absence of all forcing (Hibler & Ip, 1995). Using the replacement

pressure

Pr = P
∆ε̇

∆ε̇ + ∆ε̇,min

(4.19)

instead of the calculated ice pressure P in the stress calculations removes

this creep from the equations, where ∆ε̇ is a measure of deformation and

∆ε̇,min = 2× 10−9s−1 is a regularization parameter (details on the equations

are given in appendix 4.A.2). I find that using this method also introduces

a limiting feedback for the ice strength: since thick ice is generally stronger,

it deforms less and the deformation measure ∆ε̇ is small. In these situations

the regularization (4.19) regulates the ice strength down. This result agrees

with previous work, where ridging was found to be increased when using the
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replacement pressure method (Kimmritz et al., 2017).

4.4 Discussion

4.4.1 Thickness Dependence of Ice Strength

The results of this study suggest that there is no clear advantage of an ice

strength proportional to h1.5 over an ice strength proportional to h in large-

scale models. The total cost function is lower with the ice strength PH(mean)

(proportional to h) than with the ice strength PR(mean) (proportional to h1.5).

The total cost function value should be interpreted with care: PR simulates an

ice edge in better agreement with observations than PH ; but the ice velocities

in the central ice pack are consistently lower for PR than for PH , which in

turn reduces the agreement with drift observations. Additionally, the two

strength parameterizations differ not only in their dependence on the ice

thickness, but also in the dependence on ice concentrations, making any

decision about the more accurate form of ice strength to thickness relation

even more complicated.

Both physical reasoning (Hibler, 1980) and discrete element simulations

of the ridge building process (Hopkins, 1998) indicate that when ridging is

considered the only energy sink, the ice strength should be proportional to

h1.5. In contrast, Croasdale (2012) estimated the maximum pressure that

the ice pack can exert on large structures in the Arctic. He identified four

different processes that can limit this pressure and found that a thickness

dependency on h1.104 gives a best fit to the observations available for his

analysis. In a review of this and similar analyzes of direct and indirect ob-

servations of maximum pressures in the ice pack, Timco et al. (2017) pointed

out that current observations do not allow to derive general laws like these

with certainty: Too many assumptions are necessary to translate the obser-

vations into values of peak pressure in the ice pack and especially the relative

importance of different energy sinks in the failure process is still uncertain.

A lower exponent of ice thickness can be explained when shear deforma-

tion along linear kinematic features is the limiting process for sea ice strength.

The assumption of Rothrock (1975) that the work done by the pressure force

is equal to the sum of the potential energy increase and the energy loss to

friction in ridging gives an ice strength proportional to h2 (or h1.5 with refined

ridge geometries (Hibler, 1980)). But assuming a situation of pure shear (i.e.
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ε̇II 6= 0, ε̇I = 0), the energy dissipated along shear lines is

DII = ε̇IIσII (4.20)

where σII is the area average over a grid cell of the depth integrated stress

invariant, so

σII =
1

L

∫ L

0

∫ h′(x′)

0

σ′II(x
′) dz′ dx′

= σ′II h̄ (4.21)

where 0 and L are the beginning and end of the shear line in a given grid

cell, and quantities of the sub-grid scale are marked with a prime. Since the

stress is assumed constant over a single grid cell, inserting equation (4.21)

into the definition (4.20) gives an energy dissipated in shear

DII = ε̇IIσ
′
II h̄ (4.22)

that depends only on the mean thickness of the ice along the shear line, and

the thin ice fraction has no special importance. As a consequence, the same

argument made by Rothrock (1975) can be used to show that the ice strength

in such shear deformation also depends on the mean ice thickness in a given

grid cell.

The frictional loss associated with shearing along large-scale linear kine-

matic features is a much larger energy sink in sea ice models than both

potential energy rise and frictional loss in compression (Bouchat & Trem-

blay, 2014). Further, sea ice models that increase the shear strength relative

to the compressive strength compared to the usual ratio of e = 2 in an ellip-

tical yield curve simulate better thickness distribution, sea ice drift, sea ice

concentration and deformation fields (Miller et al., 2005; Ungermann et al.,

2017; Bouchat & Tremblay, 2017). Wilchinsky & Feltham (2006) explicitly

accounted for the effects of sliding friction with a newly derived shape of

the yield curve and improved the probability distribution function for ice

thickness, ice speed and ice velocity angle with this method. In contrast, the

derivation of Rothrock (1975) is based on the argument that the main en-

ergy sinks in sea ice deformation are directly connected to ridge formation.

A larger role of shear deformation in the energy balance of sea ice could

therefore imply an exponent of ice thickness closer to one in ice strength

83



CHAPTER 4. THIN ICE AS PROXY FOR ICE STRENGTH?

parameterizations.

The assumptions of Rothrock (1975) about the work necessary for ridging

lead to the large role of the thin ice fraction that is found to reduce model

performance. The energy dissipated in shear depends on the mean thickness

of the ice pack along the shear line, which should have no special connection

to the thin ice fraction in any given grid cell. Adjusting the ice strength to

account for this large impact of shear deformation could therefore not only

explain the low exponents of ice thickness, but also the dependence on mean

thickness that are found optimal to reproduce observations.

4.4.2 Weaknesses of the Multi-Category Strength

In this study I find that mean-thickness ice strength parameterizations give

better results in an Arctic ocean – sea ice model than multi-category strength

parameterizations. In this section I discuss possible reasons for the deficits

of ice strength parameterizations based on a multi-category ice model.

Wilchinsky & Feltham (2006) found in multiple combinations of differ-

ent rheologies and strength parameterizations that multi-category strength

leads consistently to larger misfits to observed ice draft distributions. They

argue that stability problems alone are not enough to explain this persistent

bias. My study agrees with these results when the contributions of each in-

dividual dataset for the cost function are taken into account: While the ITD

parameterization has an overall positive impact on the concentration field,

multi-category strength parameterizations consistently produce a poorer fit

to thickness observations (c.f. Figure 4.4).

I propose the high grid-scale gradients in the ice strength as one possible

explanation for the poor fit of multi-category strength configurations to thick-

ness observations. The thin categories of the ITD can change more easily on

small scales than the mean ice properties. Since the multi-category strength

depends strongly on the thin ice fraction, it is affected much more by these

changes than a mean-thickness strength. I argue that the other forcing terms

in the momentum balance, most importantly the wind and ocean currents,

do not fluctuate as strongly on the grid scale. If the forcing in neighboring

grid cells is very similar, large differences in ice strength introduce velocity

gradients. These increased velocity gradients can lead to excess sea ice de-

formation with a large impact on Arctic-wide thickness distributions. In my

experiments, neither smoother ridging functions (Lipscomb et al., 2007) nor
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a higher value for the participation parameter G∗ can improve the thickness

cost function results significantly, even if they slightly reduce the ice strength

gradients. I see this as confirmation that the unrealistically large gradients

are inherent to multi-category strength parameterizations.

Noisy fields of sea ice concentration, thickness and strength in models us-

ing the Rothrock strength led to unrealistically high thicknesses and strong

numerical instabilities (Lipscomb et al., 2007). The smooth ridging functions

(4.15) and (4.16) were proposed to damp these effects to make the models

more stable. However, the use of the smoother multi-category strength pa-

rameterization PL instead of PR does not significantly improve the results of

the cost function, although this result was produced without resolving the

plastic waves (Ungermann et al., 2017). Unresolved plastic waves in viscous-

plastic sea ice models can also lead to instabilities on the grid scale (Williams

et al., 2017), for example those described in Lipscomb et al. (2007). These

unresolved plastic waves have so far been analyzed only in numerical mod-

els using the two-category strength of Hibler (Williams et al., 2017), so it

is unclear if multi-category strength parameterizations simply amplify this

instability into the ice strength field, or if the behavior found in the present

study is independent of the plastic waves.

4.5 Conclusions

The simple strength parameterization following Hibler (1979) leads to better

reproductions of Arctic-wide sea ice observations in an ocean – sea ice model

than the strength parameterization based on the simulated change in the

ice thickness distribution proposed by Rothrock (1975). The key difference

between the two parameterizations is that Hibler calculates the ice strength

from the mean ice thickness per grid cell, while Rothrock uses a discretized

ice thickness distribution for his calculations. The role of the different mean

dependencies of the two ice strength parameterizations on ice thickness and

concentration are of second order.

My results show that mean-thickness strength parameterizations perform

generally better in basin-scale models than multi-category strengths. I find

consistently much larger gradients in the ice strength for multi-category

strength than for mean-thickness strength and argue that these lead to unre-

alistic sea ice deformation. I suggest that grid-scale fluctuations of the thin
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ice fraction may cause these larger gradients in the ice strength, possibly

amplifying known numerical instabilities caused by unresolved plastic waves

in viscous-plastic sea ice models.

Additional arguments for a simple linear relationship between the ice

strength and the ice thickness on large scales are: over the last years, different

studies indicated that the ice strength should be proportional to a power of

hr with an exponent lower than r = 1.5, but the exact value for this exponent

is still uncertain. In Arctic simulations, I find no clear advantage of an ice

strength dependence on h1.5 over an ice strength dependence on h. When the

energy necessary for deformation of the ice pack is determined by ridging, the

ice strength should be proportional to h1.5. Assuming instead that energy

dissipated in shear determines the work necessary for deformation, the ice

strength should be linear in h. Therefore the relative importance of the

different processes taking place in deformation of the ice pack on large scales

determines if the exact value of the exponent in the thickness dependence is

closer to r = 1 or to r = 1.5. Specifying the relative amounts of ridging and

shear deformation will be the next step necessary for physically realistic and

effective ice strength parameterizations.

Appendix 4.A Derivations and Equations

4.A.1 Closed-Form Solution of Ice Strength for Two-

Category Model

For a better comparison of the theory of Rothrock (1975) (equation 4.10)

and the simpler ice strength of Hibler (1979) (equation (4.11)), I derive a

closed-form solution for the ice strength (4.10) if there is only a mean ice

thickness h̄ known. This derivation is based on the three assumptions:

1. Ice of mean ice thickness h̄ is uniformly distributed between h = 0 and

h = 2h̄

2. Ice takes part in ridging up to the fraction G∗ of the cumulative thick-

ness distribution, following Thorndike et al. (1975)

3. Ice of thickness hin is ridged uniformly into thicknesses between hout =

2hin and 2
√
H∗hin, following Hibler (1980)
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If ice in a grid-cell has mean thickness h̄ and covers a fraction A of the

total area, then the first assumption leads to an ice thickness distribution

g(h) =


(1− A)δ(h) h = 0

A
2h̄

0 < h ≤ 2h̄

0 h > 2h̄

(4.23)

and a cumulative thickness distribution

G(h) =

(1− A) + Ah
2h̄

0 ≤ h ≤ 2h̄

1 h > 2h̄.
(4.24)

The second assumption states that ice of thickness h only takes part in

ridging if

G(h) ≤ G∗. (4.25)

For an ice concentration A > 1 − G∗ this condition provides a maximal ice

thickness

hG =
2h̄

A
(G∗ − (1− A)) (4.26)

⇔ G(hG) = G∗ (4.27)

that takes part in ridging. At this point I introduce the notation

I− = G∗ − (1− A)

I+ = G∗ + (1− A)

which allows to write hG = 2h̄
A
I−. The general form of the weighting function

b after Thorndike et al. (1975) is

b(h) = b0

(
1− G(h)

G∗

)
, (4.28)

which can be written as

b(h) =

b0

(
I−
G∗
− Ah

2G∗h̄

)
0 ≤ h ≤ hG

0 h > hG
(4.29)
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in this special case. Inserting (4.29) into equation (4.3) gives a normalization

factor

b0 =
2G∗

I−I+

(4.30)

and a final participation function

a(h) =


2(1−A)
I+

h = 0

A
h̄(I+)

− A2h
2h̄2I−I+

0 < h ≤ hG

0 h > hG.

(4.31)

Finally the third assumption defines a redistribution function

γ(hi, ho) =

Nγ 2hi ≤ ho ≤ 2
√
H∗hi

0 ho < 2hi ∨ ho > 2
√
H∗hi

(4.32)

for the tuning parameter H∗ and a normalization coefficient Nγ that allows

to fulfill the volume conservation (4.6). Inserting the special cases (4.31) and

(4.32) into equation (4.5) gives the preliminary form

n(h) =


Nγ

A
2h̄
I−1

+

(
h− AH∗+4h̄I−

8h̄H∗I−
h2 + A

32h̄H∗2I−
h4
)

h ≤ 2hG

NγI
−1
+

(
I− − A

5h̄H∗
h2 + A2

64h̄2H∗2I−
h4
)

2hG < h < 2
√
H∗hG

0 h ≥ 2
√
H∗hG

(4.33)

of the ITD of produced ridges, which can be inserted into (4.6) to solve for

the normalization coefficient

Nγ =
A

2(AH∗ − h̄I−)
. (4.34)

The results (4.31),(4.33) and (4.34) allow to use the conservation of area

(4.8) to calculate the normalization coefficient

ω =
8
√

2AI−

√
H∗h̄
A
I− − 15AH∗I+ + 25h̄I−I+ − 20G∗h̄I−

−15I+(AH∗ − h̄I−)
(4.35)
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necessary to define the ridging mode (4.7). Inserting (4.31), (4.33) and

(4.35) into equation (4.10), the result is an analytical formulation for the

ice strength

P =

2h̄I2
−

(
−32A2H∗

√
2H

∗h̄
A
I− + 35AH∗h̄I− + 21h̄2I2

−

)
7A2

(
8AI−

√
2H

∗h̄
A
I− − 15AH∗I+ + 25h̄I−I+ − 20G∗h̄I−

) .

4.A.2 Equations of Sea Ice Motion

The motion of the sea ice is determined by the momentum balance

m
∂u

∂t
= mfCk × u+ τa + τw −mĝ∆H +∇ · σ, (4.36)

which calculates the change in sea ice velocity u from the Coriolis force with

fC the Coriolis parameter and k a unit vector pointing vertically upward;

the surface stress on the ice from air τa and water τw; the sea surface tilt ∆H

with ĝ the gravitational acceleration; and the divergence of the internal ice

stress σ. Finally, m = ρiHi + ρsHs is the ice and snow mass per unit area,

where Hi, Hs are the grid cell averaged thicknesses of ice and snow and ρi,

ρs the densities of ice and snow. Note that the advection of momentum is

neglected in this balance. The surface stresses are calculated as

τa = ρacd,a|ua − u|Ra(ua − u) (4.37)

τo = ρocd,o|uo − u|Ro(uo − u) (4.38)

where ρa, ρo are the reference densities, cd,a, cd, o are the drag coefficients,

ua, uo are the surface velocities andRa, Ro rotation matrices for atmosphere

(subscript a) and ocean (subscript o) (?).

Using the viscous-plastic rheology with an elliptical yield curve, the strain

rate tensor ε̇ = 1
2

[
∇u+ (∇u)T

]
is connected to the stress by the constitutive

equation

σ = 2ηε̇+

(
(ζ − η)ε̇I −

P

2

)
I (4.39)

where η and ζ are the bulk and shear viscosities, P is the ice pressure and I
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is the identity matrix. The strain rate can be expressed in its two invariants

ε̇I = ε̇11 + ε̇22 (4.40)

ε̇II =
√

(ε̇11 − ε̇22)2 + 4ε̇12 (4.41)

expressing divergence and maximum shear. Finally, the bulk viscosity ζ =
P

2∆ε̇
and the shear viscosity η = ζ

e2
depend on the axis ratio e of the elliptical

yield curve, and the deformation measure

∆ε̇ =
√
ε̇2
I + e−2ε̇2

II . (4.42)
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5. Summary and Conclusions

Summary

Chapter 2 explores in how far an active ice thickness distribution parame-

terization in combination with commonly used ice strength parameterizations

can improve Arctic sea ice model simulations. A precise methodology is de-

veloped to clearly single out the effects of a single parameterization on the

model. As a measure of model quality, a costfunction measures the misfit

between model results and satellite observations for sea ice concentration,

sea ice thickness and sea ice drift, weighted by the measurement uncertainty.

Each of the model configurations that are compared is tuned individually

with an automated parameter optimization, so that the comparison is be-

tween equally-well tuned configurations. I find that an ice thickness distri-

bution parameterization improves model simulations overall, with the most

prominent change in the position of the ice edge in the North Atlantic. At

the same time, a multi-category ice strength parameterization reduces the

agreement of the model results with observations, even undoing the positive

impact of the ice thickness distribution parameterization. In addition, this

multi-category strength depends strongly on the number of thickness cate-

gories which further complicates the use of this parameterization in sea ice

models.

Chapter 3 focuses on the precision of the ice thickness distribution parame-

terization. Results of this parameterization are compared to a large amount

of observed local ice thickness distributions in the Arctic. The model repro-

ducing both regional and seasonal differences in the observed distributions to

a large degree. However, the model shows a larger bias in modal thicknesses

than in mean thicknesses, which indicates skewed distributions compared to
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the observations. We argue that such a shift in the distributions is caused

by biases in the thermodynamics and the dynamics of the sea ice model

that cancel each other out for the mean thickness. Implementing the modal

thickness as an additional model diagnostic allows to interpret these biases

more clearly in the future. Finally, the model underestimates both differ-

ences between different decades and variability in different grid points next

to each other. A distinction between multi-year and first-year ice could help

the model to better match the observed variabilities and thereby improve the

climate sensitivity of the sea ice cover.

Chapter 4 focuses on the different ice strength parameterizations and of-

fers explanations why the two-category parameterization produces better re-

sults in Arctic sea ice models than the multi-category parameterization, even

though the latter is physically derived from first principles. In this chapter,

the multi-category strength is rederived in the limit of only two ice thickness

categories to enable a clear comparison of individual features. A compari-

son of the resulting ice strength parameterizations shows that sea ice models

improve when the ice strength depends on the mean thickness instead of on

the thin ice fraction as in the multi-category approach. The exact functional

dependence of the ice strength on the thickness is a second order effect. This

dependence on mean thickness can be explained by taking into account that

deformation in shear dissipates the largest amount of energy in the Arc-

tic, while the multi-category ice strength parameterization calculates the ice

strength based on the energy lost in compression.
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Conclusions

The most general result of this thesis is that the inclusion of an ice thickness

distribution parameterization does improve sea ice models overall. But at the

same time, the associated multi-category strength parameterization leads to

a poorer agreement of model results to observations of sea ice parameters and

should be avoided in favor of a simpler two-category ice strength. Even if

the multicategory ice strength is derived from first principles, a more ad hoc

two-category ice strength parameterization gives better results for medium-

resolution sea ice models (Question Q1, page 10).

The answer to the question Q2 requires more detail. The ice thickness

distribution parameterization both improves the large-scale features in sea

ice models, and it also simulates realistic ice thickness distributions in single

grid cells. These distributions match the observed regional and seasonal

differences and show the exponentially decaying distribution of thick, ridged

ice that can be found in most observations. Therefore, I conclude, that the

parameterization of ridging provides an adequate description of the many

complex processes involved. In conclusion, sea ice simulations on a basin-

scale will improve through an ice thickness distribution parameterization,

and it can be fully recommended as long as the additional computational

cost is affordable.

The only drawback of this parameterization is that it underestimates the

changes connected to decadal differences in atmospheric forcing. Even though

the advantages provided by this parameterization are not affected, this can

further reduce the climate sensitivity of the Arctic in models compared to

reality. Especially for climate change scenarios in fully coupled ocean – sea

ice – atmosphere simulations and predictions of future sea ice reduction,

these small decadal changes should be taken into account for the evaluation

of possible results.

Ice strength parameterizations based on the multi-category approach of

Rothrock (1975) generally lead to poorer fits to Arctic sea ice thickness ob-

servations than a simple two-category ice strength. This bias is inherent to

the multi-category formulation and does not depend on the functional de-

pendence of the ice strength on ice thickness or concentration. I can explain

this behavior with the physical assumptions that were made in the derivation

of the multicategory strength. There, the deformation in compression of the

ice pack is assumed to be the main process that determines the strength of
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the ice pack while the impact of deformation in shear on the ice strength is

underestimated.

The evaluation of the inner mechanics of these parameterizations leads

directly to question Q3 about possible further improvements. The simplest

recommendation is to use sea ice models with an active ice thickness dis-

tribution parameterization and the basic two-category ice strength param-

eterization of Hibler (1979). Many sea ice models already employ the ice

thickness distribution (e.g. CICE, LIM3, see Hunke et al., 2011; Masson-

net et al., 2011) and I can support this choice by a rigorous comparison

to observations that has not been done in this detail. While some of the

models already combine the ice thickness distribution with a two-category

ice strength (Massonnet et al., 2011), I show for the first time the clear ad-

vantage this choice has over a multi-category strength and I can counter

the argument that the multi-category strength parameterization should be

physically more realistic.

The thickness resolution of the ice thickness parameterization should be

high enough to calculate a modal thickness of the distributions and it should

be included in the model diagnostics. The modal thickness should be a

standard model diagnostic and the thickness resolution of the ice thickness

distribution parameterization should be high enough to represent a modal

thickness of the distributions. This allows to use thickness distribution ob-

servations in a simple yet effective way as an additional model constraint.

Any further development of the investigated parameterizations would take

substantially more effort. Possible directions for future work to eliminate the

identified flaws are outlined below.

Future perspectives

• The underestimation of the climate sensitivity can be seen as the most

relevant problem of the ice thickness distribution parameterization.

While sea ice models constantly improved the reproduction of many

different observations, the observed decline in summer sea ice area in

the Arctic is still not captured by most predictions. A possible step

forward could be to implement a distinction between first-year ice and

multi-year ice in the model, even though the atmospheric models have

probably the largest margin for improvements in similar, fully coupled
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predictions. In a simple variant, this distinction could be done by trac-

ing the age of individual ice parcels and adjusting the mechanical and

thermodynamic properties of the ice according to age. Alternatively,

this could be done in a more process-oriented way, so that deformation

events and the desalination over the course of a melting season change

the sea ice properties directly.

• The difference between the multi-category strength parameterization

and the two-category strength parameterization can be interpreted on

a physical basis: the former assumes deformation in convergence as the

main mechanism that determines the ice strength, while the latter can

be explained by assuming deformation in shear as the main mechanism.

Ideally, an ice strength parameterization would take both contributions

into account when calculating the ice strength against deformation. In

this case, either the thin ice fraction or the mean thickness could be

more important for the ice strength, depending on the direction of

the loading. A single parameterization that blends different physical

processes like this would need a completely new design, starting from

the physical assumptions. Even though parts of the theory presented

by Rothrock (1975); Pritchard (1981); Wilchinsky & Feltham (2006)

may be used, this would be an elaborate project.

• Integrating a more complex relationship between ice strength in com-

pression and ice strength in shear into the model does not only influence

the ice strength parameterization but also the yield curve. Adjusting

the ice strength to properly account for different mechanisms in shear

deformation and in compression might make it necessary to simultane-

ously modify the rheology of the sea ice model.

Additionally, in this thesis I developed a method to investigate the iso-

lated impact a single parameterization can possibly have on a sea ice model.

This method includes a semi-automatic parameter optimization routine that

is easy to use and flexible in the definition of the target for the optimization,

the Green’s Function Approach. While I used this method for the evalua-

tion of specific parameterizations in a sea ice model, the range of possible

applications is far larger and it is simple to apply this method to any other

parameter-dependent model and with different goals. Currently, it is already

used in different contexts:
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• Current PhD student Elena Gerwing reduced successfully the sea sur-

face elevation bias in a global ocean model using this method. She

took satellite observations of global sea surface elevation as the target

of the optimization and adjusted a set of 5 ocean parameters using the

Green’s Function Approach.

• Giulia Castellani analyzed the effect of variable sea ice drag coefficients

in a coupled ocean – sea ice model. She used the Green’s Function Ap-

proach to adjust the free parameters of the new variable drag parame-

terization to the used model configuration, using a similar costfunction

as presented in chapter 2.

This exemplifies that the Green’s Function Approach can serve as a valuable

tool to quickly adjust a set of model parameters towards any target and the

existing scripts can be used with any numerical model, both for large scale

circulation simulations and for process studies.

Overall summary

• I developed a method to measure the fit between model results to

satellite observations for sea ice concentration, thickness and drift

in a quantitative way and account for confounding effects of

model tuning.

• Sea ice models give best results when combining an ice thickness

distribution and a two-category thickness parameterization.

• An ice thickness distribution parameterization improves overall

results in Arctic sea ice models and produces realistic thickness

distributions both in regional averages and in single grid cells.

• Deformation in shear is more important for the strength of the

ice pack than deformation in convergence, and ice strength

parameterizations need to reflect this. As a consequence,

multi-category ice strength parameterizations in sea ice models

do not perform as well as two-category ice strength

parameterizations.
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