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A B S T R A C T

This study presents an algorithm for globally retrieving chlorophyll a (Chl-a) concentrations of phytoplankton
functional types (PFTs) from multi-sensor merged ocean color (OC) products or Sentinel-3A (S3) Ocean and Land
Color Instrument (OLCI) data from the GlobColour archive in the frame of the Copernicus Marine Environmental
Monitoring Service (CMEMS). The retrieved PFTs include diatoms, haptophytes, dinoflagellates, green algae and
prokaryotic phytoplankton. A previously proposed method to retrieve various phytoplankton pigments, based on
empirical orthogonal functions (EOF), is investigated and adapted to retrieve Chl-a concentrations of multiple
PFTs using extensive global data sets of in situ pigment measurements and matchups with satellite OC products.
The performance of the EOF-based approach is assessed and cross-validated statistically. The retrieved PFTs are
compared with those derived from diagnostic pigment analysis (DPA) based on in situ pigment measurements.
Results show that the approach predicts well Chl-a concentrations of most of the mentioned PFTs. The perfor-
mance of the approach is, however, less accurate for prokaryotes, possibly due to their general low variability
and small concentration range resulting in a weak signal which is extracted from the reflectance data and
corresponding EOF modes. As a demonstration of the approach utilization, the EOF-based fitted models based on
satellite reflectance products at nine bands are applied to the monthly GlobColour merged products.
Climatological characteristics of the PFTs are also evaluated based on ten years of merged products
(2002−2012) through inter-comparisons with other existing satellite derived products on phytoplankton
composition including phytoplankton size class (PSC), SynSenPFT, OC-PFT and PHYSAT. Inter-comparisons
indicate that most PFTs retrieved by our study agree well with previous corresponding PFT/PSC products, except
that prokaryotes show higher Chl-a concentration in low latitudes. PFT dominance derived from our products is
in general well consistent with the PHYSAT product. A preliminary experiment of the retrieval algorithm using
eleven OLCI bands is applied to monthly OLCI products, showing comparable PFT distributions with those from
the merged products, though the matchup data for OLCI are limited both in number and coverage. This study is
to ultimately deliver satellite global PFT products for long-term continuous observation, which will be updated
timely with upcoming OC data, for a comprehensive understanding of the variability of phytoplankton com-
position structure at a global or regional scale.

1. Introduction

Over the past decades, satellite ocean color (OC) remote sensing has
been widely used for estimating chlorophyll a (Chl-a) concentration,
which is often used as an indicator of phytoplankton biomass. Beyond

that, extracting information on phytoplankton community structure,
e.g., phytoplankton functional types (PFTs), size classes (PSCs) and
taxonomic composition, has become a research topic of priority, as it
plays an important role in understanding the marine food web and aids
the modelling associated with climate change impacts on

https://doi.org/10.1016/j.rse.2020.111704
Received 4 July 2019; Received in revised form 7 January 2020; Accepted 3 February 2020

⁎ Corresponding author.
E-mail address: Hongyan.Xi@awi.de (H. Xi).

Remote Sensing of Environment 240 (2020) 111704

0034-4257/ © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111704
https://doi.org/10.1016/j.rse.2020.111704
mailto:Hongyan.Xi@awi.de
https://doi.org/10.1016/j.rse.2020.111704
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111704&domain=pdf


biogeochemical and ecological cycling of oceans (e.g., Falkowski et al.,
1998; Le Quéré et al., 2005; IPCC, 2013; Bracher et al., 2017). In ad-
dition, accurate estimation on phytoplankton diversity and group dis-
tribution provides valuable information on identifying blooms caused
by specific toxic algae, i.e., harmful algal blooms such as cyanobacterial
blooms and red tides (e.g., Craig et al., 2006; Hu et al., 2010; Wang
et al., 2017). A PFT is usually defined as a homologous set of "organisms
related through common biogeochemical processes" such as silicifica-
tion, calcification, nitrogen fixation, or dimethyl sulfide production, but
are not necessarily phylogenetically affiliated (Falkowski et al., 2003;
Litchman et al., 2006; IOCCG, 2014). However, as many phytoplankton
groups which can be detected by remote sensing are also functional
types, (e.g., diatoms are silicifiers, some cyanobacteria are nitrogen
fixers, and coccolithophorids are calcifiers) (Bracher et al., 2017), these
satellite proxies have been named PFTs for brevity (e.g., Losa et al.,
2017).

Satellite OC remote sensing enables observation of phytoplankton
over large areas or even at global scale. With previous (e.g., Sea-
Viewing Wide Field-of-View Sensor – SeaWiFS and MEdium Resolution
Imaging Spectrometer – MERIS) and current available OC satellites
Moderate Resolution Imaging Spectroradiometer (MODIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), and especially the newly
launched OLCI onboard Sentinel-3A (in February 2016) and 3B (in
April 2018), a vast amount of quality controlled OC data are collected,
allowing us to contribute to developing and/or improving methods and
the corresponding applications to satellite data for estimating biogeo-
chemical parameters in terms of global observation. There is a clear
need to implement a sound PFT retrieval algorithm to the recent OLCI
data, as well as to previous and current satellite OC time series data
such as CMEMS GlobColour merged products (ACRI-ST GlobColour
Team et al., 2017).

Different bio-optical and ecological algorithms have been developed
to identify PFTs and phytoplankton taxonomic composition at the
ocean surface, mainly based on phytoplankton abundance and in-
herent/apparent optical properties. Abundance-based approaches seek
to establish empirical relationships between the PFTs and phyto-
plankton abundance or biomass, such as Chl-a concentration that can
be retrieved from satellites (e.g., Uitz et al., 2006; Brewin et al., 2010,
2015; Hirata et al., 2011). Ecological-based approaches incorporate
additional environmental parameters to identify ecological niches
where particular phytoplankton communities may be found (Raitsos
et al., 2008; Palacz et al., 2013). Efforts have also been made to com-
bine abundance and ecological-based approaches (e.g. Brewin et al.,
2015; Ward, 2015). Spectral-based approaches are more direct as they
target known optical signatures and use satellite observed spectra to
extract the signatures of specific PFT (e.g., Ciotti and Bricaud, 2006;
Devred et al., 2006; Alvain et al., 2005, 2008; Hirata et al., 2008;
Bracher et al., 2009; Kostadinov et al., 2009; Werdell et al., 2014;
Brewin et al., 2015; Correa-Ramirez et al., 2018). These methods are
mainly based on radiative transfer or bio-optical models and generally
require high computation performance and adaptations for specific
sensors. More complete reviews of these approaches are well detailed
by the works of the IOCCG (2014), Bracher et al. (2017), and Mouw
et al. (2017).

In this study, we seek to establish an approach that uses satellite
reflectance data which inherit the information of various phyto-
plankton pigments and, therefore, allows retrieving the Chl-a con-
centrations of multiple PFTs. We choose the empirical orthogonal
function (EOF) analysis, also known as principal component analysis, as
it has been previously used for predicting ocean color metrics and
various phytoplankton pigment concentrations by assessing variance of
structures in spectral remote sensing reflectance (Rrs) or water leaving
radiance (e.g., Lubac and Loisel, 2007; Craig et al., 2012; Taylor et al.,
2013; Bracher et al., 2015; Soja-Woźniak et al., 2017). The spectral data
are subject to EOF analysis to reduce the high dimensionality of the
data and derive the dominant signals (EOF modes) that best describe

the variance within the data set. Studies also proved that the EOF
analysis could provide reliable retrievals even with limited number of
data points (Craig et al., 2012; Bracher et al., 2015). Another advantage
is that the models exhibited negligible loss of skill when applied to data
sets with a reduced spectral resolution, which enables the applicability
to the previous or currently existing multispectral OC sensors and future
hyperspectral satellite missions such as PACE (Gregg and Rousseaux,
2017), HyspIRI (Lee et al., 2015) and EnMAP (Guanter et al., 2015).

Given that the EOFs derived from in situ or satellite hyper-/multi-
spectral Rrs data have provided reliable retrievals of the concentrations
of Chl-a and different pigments/pigment groups (Taylor et al., 2013;
Bracher et al., 2015), we intend to present an implementation of the
method proposed in Bracher et al. (2015) to retrieve PFTs instead of
pigments, and to up-scale the application from regional to global scale
by constructing large in situ data sets and multi-sensor OC products.
Therefore, with the use of extensive in situ phytoplankton pigment data
sets, satellite OC products, and matchups between in situ and satellite
data, we propose an EOF-based global PFT retrieval approach by
linking the variances in Rrs spectral structures to different PFTs. In the
present study, we aim firstly to establish the EOF fitted model based on
the nearly globally covered matchups between the satellite Rrs and the
PFT Chl-a concentrations derived from diagnostic pigment analysis
(DPA) of in situ HPLC pigment data, and cross-validate the performance
of the EOF-based algorithm statistically; secondly, to set up the PFT
retrieval scheme based on the EOF modes obtained from the matchups
for the implementation to satellite OC products; thirdly, to investigate
and evaluate the climatological characteristics of the PFTs retrieved
from merged OC products (2002–2012) through inter-comparisons with
other existing PFT/PSC products at the same period, and finally, to
explore the potential of applying the approach to OLCI products based
on a prediction scheme using a much more limited number of
matchups.

2. Data and methods

2.1. Data sets

2.1.1. In situ databases of phytoplankton pigments
2.1.1.1. Pigment Database I (1997–2012). A large data set of the quality
controlled near surface (first 12 m) HPLC phytoplankton pigments built
for the ESA SynSenPFT Project (Bracher et al., 2016) was used for the
extraction of the collocated Rrs spectra from satellite data. This HPLC
pigment data set includes >15,000 sets of phytoplankton pigment data
spanning 25 years from 1988 to 2012 covering the global ocean,
collected from SEABASS, MAREDAT, LTER, BATS, AESOP-CSIRO, LOV
and also from our own data published at PANGAEA (see Table 1 in Losa
et al., 2017). Since SeaWiFS as an earlier OC sensor was launched in
1997, a subset for the period of 1997–2012 including 11,977 sets of
pigment data was taken as Pigment Database I and used for the
extraction of the Rrs matchups from GlobColour merged products.
Yearly coverage of this matchup database spans from 3.2% (the least
data points for 2012) to 9.3% (the most for 2004). 24.1%, 17.4%,
21.1%, and 37.4% of the data were collected during March–May,
June–August, September–November, and December–February,
respectively. Fig. 1(A) shows the spatial distribution of all the data
points in this database in which all pigments are included, but only total
chlorophyll a concentration (TChl-a, sum of monovinyl chlorophyll a,
divinyl chlorophyll a, chlorophyll a allomers, chlorophyll a epimers,
and chlorophyllide a) is present in the figure.

2.1.1.2. Pigment Database II (2016–2018). A relatively smaller
(n = 992) phytoplankton pigment database of quality controlled near
surface HPLC pigments was also built for the OLCI matchups from 2016
to 2018, involving our recently published data sets of HPLC based
phytoplankton pigment concentrations collected mainly in late spring
and summer from five cruises – Heincke462 in the North Sea

H. Xi, et al. Remote Sensing of Environment 240 (2020) 111704

2



(April–May 2016): https://doi.pangaea.de/10.1594/PANGAEA.899043
(Bracher and Wiegmann, 2019), PS99 in the North Sea and the Fram
Strait Arctic (June–July 2016): https://doi.pangaea.de/10.1594/
PANGAEA.905502 (PS99.1) and https://doi.pangaea.de/10.1594/
PANGAEA.898102 (PS99.2) (Liu et al., 2019a, 2019c), PS103 in the
Southern Ocean: https://doi.pangaea.de/10.1594/PANGAEA.898941
(Bracher, 2019) (December 2016–January 2017), PS107 in the Fram
Strait Arctic (July–August 2017): https://doi.pangaea.de/10.1594/
PANGAEA.898100 (Liu et al., 2019b), and PS113 in the trans-Atlantic
Ocean (May–June 2018): https://doi.pangaea.de/10.1594/PANGAEA.
911061 (Bracher et al., 2020). Fig. 1(B) shows the locations of the data

points from Pigment Database II (including all the pigments but with
only TChl-a concentration present in the figure), which covers a large
range of latitudes but focuses on the Atlantic Ocean only (60°W–20°E).

2.1.2. Satellite ocean color data
Satellite normalized remote sensing reflectance (Rrs) Level-3 (L3)

products from multiple sensors were obtained from the CMEMS
GlobColour data archive (http://www.globcolour.info/). The Rrs pro-
ducts used for matchup analysis included daily Rrs L3 products with 4-
km resolution at the bands from either individual sensors (SeaWiFS,
MODIS, MERIS, and VIIRS onboard Suomi-NPP) or the merged products

Table 1
Numbers of available Rrs matchups (1 × 1 pixel and averaged by 3 × 3 pixels) with different band combinations from the CMEMS GlobColour merged products. Bold
highlights the matchups used in the EOF based algorithm. SeaW = SeaWiFS (1997–2010), MO = MODIS (2002–present), ME = MERIS (2002–2012), V = VIIRS/
Suomi-NPP (2012–present). Note that with SeaWiFS included merged products, the bands from SeaWiFS only contributed until December 2010. Waveband centers
for the four sensors were listed in Table S1 in the supplementary document.

Sensors No. of matchups Available wavebands (nm) No. of bands

1 × 1 3 × 3 412 443 490 510 531 547 551 555 560 620 670 678

SeaW 1223 609 × × × × × × 6
SeaW/ME 381 125 × × × × × × × × 8
SeaW/MO/ME 766 516 × × × × × × × × 8
SeaW/MO/ME 394 265 × × × × × × × × × 9
MO + V 25 27 × × × × × × × × × 9
SeaW/MO/ME 183 63 × × × × × × × × × × × 11
MO/ME/V 3 2 × × × × × × × × × × × × 12

Fig. 1. Spatial distribution of the TChl-a concentration from the quality controlled in situ (A) Pigment Database I (1997–2012), and (B) Pigment Database II
(2016–2018).
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of two or more sensors. More details on the merged products are given
in the GlobColour Product User Guide (ACRI-ST GlobColour Team
et al., 2017). Rrs products from OLCI were not merged with any other
sensor products and were therefore used separately for an OLCI only
PFT retrieval scheme. Similar to the merged products, daily 4 km Rrs L3
products of OLCI were used for matchup extraction. In further appli-
cation of the proposed approach to derive global long time series PFT
products, monthly Rrs L3 products with 25 km spatial resolution from
both, the merged products and OLCI data, were obtained for July
2002–April 2012 (time when SeaWiFS, MODIS and MERIS were in
orbit, although SeaWiFS operation ended in late 2010 and then in late
2011 VIIRS was added), and April 2016–December 2018 (OLCI on
Sentinel-3A in operation), respectively. In addition, the GlobColour
merged ocean TChl-a monthly products with 25 km resolution in July
2002–April 2012 were also obtained for inter-comparison. The merged
L3 TChl-a products were derived by a weighted average method (AVW)
from single-sensor Level 2 chlorophyll products for case 1 waters
(ACRI-ST GlobColour Team et al., 2017).

2.1.3. PFT retrieval input data

(A) PFT Chl-a concentrations derived from diagnostic pigment analysis
(DPA)

Chl-a concentrations of PFTs were derived using an updated DPA
method (Soppa et al., 2014; Losa et al., 2017). The DPA method was
originally developed by Vidussi et al., 2001, adapted in Uitz et al.
(2006) and further refined by Hirata et al. (2011) and Brewin et al.
(2015). Basically, it relates the weighted sum of seven DPs (re-
presentative of individual PFTs) to TChl-a concentration, enabling us to
determine the fraction of each PFT to the TChl-a thus to derive the PFT
Chl-a concentrations. The partial coefficients of the DPs used in this
study were derived from multiple linear regression using the data from
the large global pigment data set as detailed in Table S1 of Supple-
mentary Material in Losa et al. (2017) and were in good agreement with
previous studies. The pigment concentrations of fucoxanthin, peridinin,
19′hexanoyloxy-fucoxanthin, 19′butanoyloxy-fucoxanthin, alloxanthin,
chlorophyll b, zeaxanthin and divinyl chlorophyll a were used to derive
the Chl-a concentrations of six PFTs in our study, that are, respectively,
diatoms and dinoflagellates which are commonly considered as mi-
crophytoplankton, two types of nanophytoplankton – haptophytes and
green algae (chlorophytes), and two picophytoplankton – prokaryotes,
and Prochlorococcus which is a typical species of prokaryotes and
commonly found in the subtropical region. PFT Chl-a concentrations
<0.005 mg m−3 were excluded as such low values might contain much
uncertainty. The rational for this threshold is that the surface Chl-a
concentration encountered in the clearest ocean waters (South Pacific
Gyre) was found to be in the range 0.01–0.02 mg m−3 (Morel et al.,
2007). Therefore, values below 0.01 mg m−3 may be questionable. The
corresponding PFT Chl-a concentration can be smaller. Considering the
quality control on a large pigment data set as in Aiken et al. (2009), we
chose the threshold of 0.005 mg m−3 for PFT Chl-a to minimize the
influence of low accuracy in observations on the retrieval model, as it
could bring much higher uncertainty to final prediction. The DPA de-
rived PFT Chl-a concentrations for diatoms, haptophytes and prokar-
yotes from the pigment database I were published already in Losa et al.
(2017) and are available from PANGAEA: https://doi.pangaea.de/10.
1594/PANGAEA.875879 (Soppa et al., 2017).

(B) Matchups between in situ PFT and satellite Rrs data

Matchups to in situ PFT data were extracted from GlobColour global
4-km daily products for both merged and OLCI products. GlobColour
"L3b" products with a sinusoidal projection were used so that each
extracted pixel covers the same area. For each in situ measurement
covered by a product, a matchup of 1 × 1 and 3 × 3 pixels around the

in situ location was extracted. No specific quality filtering was applied
at this stage because L3 products already exclude bad quality Level-2
pixels (ACRI-ST GlobColour Team et al., 2017). Averaged data based on
3 × 3 pixels were computed using the standard MERMAID tools
(http://mermaid.acri.fr/) which follows the protocol from Bailey and
Werdell (2006), in summary:

• only matchups containing at least 50% of valid pixels were kept;
• outlier pixels with (pixel value – median value) greater than

±1.5 ∗ standard deviation were removed;
• the matchups were removed if the coefficient of variation (CV) of

the remaining pixels was higher than 0.15.

The same extraction and averaging protocol was used for merged
and OLCI matchups. Based on the two HPLC pigment databases in Sect.
2.1.1, we have obtained the following matchups:

1) Matchups between daily merged Rrs products and in situ PFT data:
the Rrs spectra at multispectral bands collocated with the PFT data
derived from the Pigment Database I in Sect. 2.1.1 were extracted
from the merged products (including SeaWiFS, MODIS, MERIS,
VIIRS) from 1997 to 2012 archived in the GlobColour database. The
extracted Rrs matchups included 1 × 1 pixel, and averaged Rrs by
3 × 3 pixels with the median and the standard deviation for each
matchup. However, the same wavebands for Rrs data are not always
available because different sensors have different spectral coverage
at different periods (in addition to the exclusion of data with bad
quality). Table 1 lists the numbers of matchups with different band
combinations (from six to twelve bands) for Rrs matchups with
1 × 1 pixel and 3 × 3 pixels, respectively. Fig. 2 shows the cor-
responding geographical locations of 1 × 1 pixel matchups for Rrs at
eight, nine and eleven bands, where the matchups were to some
extent still globally distributed.

2) Matchups between daily OLCI Rrs and in situ PFT data: the Pigment
Database II in Sect. 2.1.1 was used to derive the in situ PFT data and
extract the corresponding OLCI Rrs matchups from 2016 to 2018.
Table 2 lists the numbers of matchups with 10, 11 and 12 wave-
bands for Rrs data from S3A OLCI with 1 × 1 pixel and 3 × 3 pixels,
respectively. Note that OLCI also includes the 709 nm and that OLCI
itself does not have a band at 555 nm, but GlobColour database
provides for MERIS and OLCI sensors the 555 nm through an inter-
spectral conversion using:

Rrs(555) = Rrs(560) ∗ (1.02542–0.03757 ∗ y − 0.00171 ∗ y2

+ 0.0035 ∗ y3 + 0.00057 ∗ y4), where y = log10(CHL1) and CHL1 is
the TChl-a concentration estimated by OC4 algorithm (ACRI-ST
GlobColour Team et al., 2017). With this conversion, Rrs at 555 nm for
OLCI were also included in our study.

2.2. Empirical orthogonal functions (EOF) based algorithm for PFT retrieval

2.2.1. EOF-based statistical approach
Following Bracher et al. (2015), each Rrs spectrum was firstly

standardized by subtracting the mean spectral value and then divided
by the spectral standard deviation (Taylor et al., 2013). The standar-
dized data set of Rrs, denoted as matrix X (M observations × N wave-
lengths), was collocated to the respective DPA-based PFT data set C
with M observations and 6 PFTs (M might be different for the six PFTs).
As indicated in the model training box of Fig. 3, singular value de-
composition (SVD) was applied to X for deriving the EOF modes:

=X U V ,T (1)

where matrix U (M × N) contains column vectors of scores associated
with EOF modes, matrix V (N × N) contains the EOF loadings (spectral
pattern), and Λ is an N × N matrix containing the singular values of X
on the diagonal in decreasing order. For the PFT Chl-a prediction,
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generalized linear models (GLM) were created expressing the log-
transformed Chl-a concentrations of each PFT, Cp, as a function of a
subset of EOF scores (U). EOF modes with standard deviations (singular
values from Λ) that are <0.0001 times the standard deviation of the
first EOF mode were considered insignificant and thus omitted. The
regression model for PFT prediction was expressed as:

= + + + …C a a u a u a uln( ) ,n np 0 1 1 2 2 (2)

where u1,2,…n are the leading n EOFs from column vectors of U, a0 is the
intercept and a1,2,…n are the regression coefficients. In addition, a
stepwise routine was applied to search for smaller regression models,
i.e., less u variables, through minimization of the Akaike information
criterion (AIC). The significance of included terms was defined by the
change in AIC (ΔAIC) with each term's removal.

2.2.2. Model assessment
We consider the coefficient of determination (R2), the slope (S) and

the intercept (a) of the GLM regression, which are based on the log-
scaled predicted (ln(Cp)) against the log-scaled observed (ln(Co)) PFT
Chl-a concentration data, while the root-mean-square difference
(RMSD), the median percent difference (MDPD), and the bias are based
on the non-log-transformed data. Model performance statistics are ex-
pressed as:

= =

=

C C
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2 1
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where M is the number of observations in Co, and Coi is the mean of the
observations, i.e., = =C Coi M i

M
oi

1
1 .

To test the robustness of the fitted model, cross-validation of the
model fitting was carried out, similar to the procedure performed in
Bracher et al. (2015). The collocated data were randomly split into two
subsets, in which 80% of the data was used for model fitting/training,
which included Xtrain (standardized Rrs spectra) and Ctrain (PFT Chl-a
concentrations), and the rest 20% was used for prediction validation
including Xval and Cval. The procedure was run for 500 permutations to
eliminate the model uncertainty produced based on a spatially or
temporally biased data set. For each permutation, with Eqs. (1)–(2) and
the stepwise routine, a regression model was fitted between ln(Ctrain)
and Utrain. The standardized validation set Xval was then projected onto
the EOF loadings Vtrain and the inverse of singular values Λtrain−1 to
derive their EOF scores Uval:

=U X Vval val train train 1 (7)

Fig. 2. Geographical locations of the single pixel matchups for merged Rrs at eight (in ×), nine (in △) and eleven bands (in +). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Numbers of available OLCI Rrs matchups with 10, 11 and 12 wavebands.

Number of OLCI matchups OLCI central bands (nm) No. of bands

1 × 1 3 × 3 3 × 3 alla 400 412 443 490 510 555 560 620 665 674 681 709

115 33 924 × × × × × × × × × × 10
115 33 924 × × × × × × × × × × × 11
86 25 749 × × × × × × × × × × × × 12

a 3 × 3 all: all available pixels in the 3 × 3 square were selected, but only matchup data with more than five out of nine pixels available were used.

H. Xi, et al. Remote Sensing of Environment 240 (2020) 111704

5



Lastly, the PFT Chl-a concentrations for the validation data set
(Cpval) were predicted using Uval of the selected EOF modes and the
corresponding regression coefficients. The pairs of the observed and
predicted PFT concentrations (Coval and Cpval) of the 500 permutations
were recorded for model assessment.

For each permutation, the R2 for cross validation based on ln(Cpval)
versus ln(Coval) is determined, and the mean value of the R2 from all
permutations (R2cv) is calculated. Similarly, other statistical para-
meters for cross validation are determined as follows by taking the
mean values of the parameters from all permutations:

= =

=

cv
c c
c c

R
(ln( ) ln( ))
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2.2.3. PFT predictions from satellite data
As illustrated in Fig. 3 (model application part), we were able to

apply the EOF analysis to satellite Rrs data listed in Sect. 2.1.2. Fol-
lowing Bracher et al. (2015), to predict PFTs globally using Rrs data

from merged OC or OLCI products, for which we do not have corre-
sponding pigment and PFT measurements, we projected standardized
Rrs data from the satellite onto the EOF loadings (V) to derive a new set
of EOF scores (Usat), which was subsequently used for the prediction
with the fitted model (see equations in model application of Fig. 3),
where a0 and a1,2,…n were taken from the model developed with
matchups from merged products or OLCI data as listed in Sect. 2.1.2.

2.3. PFT relative dominance

With the six retrieved PFTs in our study, we classified the relative
PFT dominance in terms of Chl-a concentration on a global scale. The
classification was performed simply based on the absolute values of the
retrieved PFT Chl-a concentrations. For each set of the monthly PFT
products, two steps were performed as follows. Step 1: the five PFTs –
diatoms, dinoflagellates, haptophytes, green algae and prokaryotes –
were compared pixelwise and the one with the highest Chl-a con-
centration was considered as the dominant PFT at this particular pixel.
Since prokaryotes mainly contain Prochlorococcus and Synechococcus-
like-cyanobacteria (SLC), Step 2 was performed to further assign the
dominance of prokaryotes to either Prochlorococcus-dominated or SLC-
dominated type. That is, for pixels where prokaryotes were the domi-
nant group, we then compared the retrieved Prochlorococcus with pro-
karyotes – pixel with Prochlorococcus Chl-a concentration higher than
50% of that of the prokaryotes was defined as Prochlorococcus domi-
nated, otherwise it was SLC dominated. With this straightforward
classification we finally derived the dominance of diatoms,

Fig. 3. Schematic flowchart of the EOF-based algorithm for predicting six PFTs with different input data sets. The left dashed-line box depicts the model training with
the pigment-satellite matchup data and the right dashed-line box depicts the model application to satellite products. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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dinoflagellates, haptophytes, green algae, Prochlorococcus and SLC from
EOF-based PFTs.

3. Results and discussion

3.1. EOF analysis of Rrs data sets from GlobColour matchups

The matchups of satellite Rrs data sets highlighted in Table 1 with
eight, nine and eleven bands (namely Rrs_8, Rrs_9, and Rrs_11) were taken
as input data for the corresponding EOF analysis, respectively. The
choice of the number of bands was based on previous positive experi-
ence with the eight MERIS bands (Bracher et al., 2015). In addition, it
was tested if more spectral information would improve the retrieval
results. As an example to illustrate satellite Rrs matchups, Fig. 4 shows
the spectra of Rrs_9 and the corresponding standardized spectra used in
the EOF analysis. Most of the Rrs spectra presented quite typical spectral
features of clean open ocean waters, i.e., high reflectance presented in
blue band. However, our data set also contained cases of phyto-
plankton-rich waters with high reflectance in the green. With hyper-
spectral Rrs, a few bio-optical features related to phytoplankton pig-
ments and thus to PFTs can be caught only when they are prominent
enough, such as phycocyanin (a marker pigment for cyanobacteria)
which causes an obvious trough in 620–630 nm. While most spectral
features in hyperspectral Rrs are often caused by a combined effect, e.g.,
both absorption and fluorescence peaks of phycoerythrin are located in
green bands, where chlorophylls have the minimum absorption (Soja-
Woźniak et al., 2017). With limited number of wavebands measured by
multispectral sensors, it is even more challenging to identify directly
the spectral features in terms of specific pigments of phytoplankton
types.

As a statistical approach, EOF analysis on multispectral Rrs may not
be able to catch the entire PFT absorption and scattering properties, but
it provides information on to what extent the EOF modes (which have
each their specific spectrum) are correlated to the PFTs. Following Sect.
2.2.1, the standardized Rrs_8, Rrs_9, and Rrs_11 were decomposed by Eq.
(1) into seven, eight, and ten EOF modes, respectively. As shown in
Table 3, the first four modes already explain 99.51% to 99.71% of the

total variance, with the first mode explaining 79.11%–82.51% of the
total variance. Though previous studies (e.g., Craig et al., 2012; Bracher
et al., 2015) have investigated the underlying bio-optical signature that
the first several EOF modes may carry, it is still difficult to well define
the distinct linkage between the EOF modes and the specific pigments
or PFTs, as the significance level of the modes may change in different
water types (Craig et al., 2012), and the PFT information cannot be the
first-order reflected by the EOF modes derived from multispectral Rrs

data. Nevertheless, a stepwise regression routine, via which the im-
portant modes to a certain PFT can be retained, was used to determine
the PFT prediction models. Since the in situ PFT Chl-a concentrations
derived from DPA are based on the marker pigments that were mostly
identified in Bracher et al. (2015), we followed their study and included
in the prediction model higher EOF modes. Though they contributed
only a minute portion to the total Rrs variance, they might still inherit
the optical signature by phytoplankton (partly group specific) pigments
and therefore, be statistically significant for the prediction.

3.2. EOF-based algorithm for PFT retrievals

3.2.1. Stepwise regression procedure
As illustrated in Sect. 2.2.1, a stepwise routine was applied to de-

termine the best EOF prediction model. The ΔAIC indicating the relative
importance of the included terms (EOF modes) was presented in
Table 4. For all three data sets, EOF-2 was the most important term in
the respective models for TChl-a and Chl-a concentrations of most PFTs
except for prokaryotes (also except for Prochlorococcus for Rrs_11).
However, the second important EOF mode differed in PFT prediction
models, and the total number of the EOF modes included in each model
also varied. For instance, with data set Rrs_9 only three EOFs were se-
lected for Prochlorococcus, but all eight EOFs were included for hapto-
phytes. It was also found that the most relevant EOF modes for pro-
karyotes and Prochlorococcus prediction were not fixed among the three
Rrs data sets, indicating that the models are vulnerable and unstable,
which was also reflected in their low performance (see Table 5 and
Fig. 5). According to Bracher et al. (2015), EOF-2 is associated with Chl-
a; the high importance of EOF-2 in the PFTs is likely due to the

Fig. 4. (A) Rrs spectra at nine bands and (B) the corresponding standardized Rrs spectra from merged OC matchups at 1 × 1 pixel (in grey) with the mean spectra and
standard deviation (black line with error bars).

Table 3
Percentage of total variance explained (%) by the decomposed EOF modes derived from three satellite matchup data sets Rrs_8, Rrs_9, and Rrs_11 within the 1 × 1 pixel.

% of variance EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9 EOF-10

Rrs_8 1 × 1 82.51 14.78 2.14 0.28 0.18 0.08 0.02
Rrs_9 1 × 1 79.11 17.75 2.03 0.79 0.22 0.06 0.03 0.01
Rrs_11 1 × 1 79.28 17.60 1.76 0.87 0.25 0.13 0.05 0.05 0.01 0.01
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elevation of Chl-a concentration in most of the PFTs when TChl-a in-
creases. Since prokaryotes and Prochlorococcus mainly dominate in
oligotrophic regions with very low biomass concentration, they do not
have a collinearity in their Chl-a concentration with TChl-a as most
other PFTs. A similar statement was also given in Bracher et al. (2015)
for predicting pigments.

3.2.2. Performance of retrieval models based on matchups of merged Rrs
data sets

Satellite PFT Chl-a and TChl-a concentrations were predicted with
the regression models built based on the EOF scores derived from the
Rrs data sets and the in situ PFT Chl-a concentrations. Matchups at
different band settings and pixel level (1 × 1, 3 × 3 pixels) were taken
as input for comparison between the results from different band

Table 4
ΔAIC for the predictions of the TChl-a and six PFT Chl-a concentration by the EOF modes based on Rrs 1 × 1 matchups with eight, nine and eleven bands from merged
OC products (Rrs_8 1 × 1, Rrs_9 1 × 1, and Rrs_11 1 × 1). Bold highlights the EOF mode with the highest ΔAIC for TChl-a and each derived PFT.

Rrs_8 1 × 1 EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7

TChl-a 16.02 283.25 105.43 24.82 2.48
Diatom 8.16 130.24 90.83 10.53 0.89
Haptophytes 42.34 214.50 4.57 24.04 1.45
Prokaryotes 12.52 5.49
Dinoflagellates 5.69 122.46 54.56 0.41
Green algae 1.14 92.25 8.05 1.49 9.25
Prochlorococcus 7.29 6.87 0.73

Rrs_9 1 × 1 EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8

TChl-a 38.27 416.17 109.26 58.11 3.13 10.07
Diatom 20.05 217.09 80.52 30.17 9.43 7.07 1.14
Haptophytes 41.31 266.08 1.32 7.33 1.89 4.64 4.1 7.45
Prokaryotes 16.71 7.32 0.63 3.24 22.24 10.93 2.84
Dinoflagellates 4.85 177.95 27.59 24.62 7.14
Green algae 173.91 2.59 2.29 7.43 4.46
Prochlorococcus 20.63 12.66 1.97

Rrs_11 1 × 1 EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

TChl-a 13.34 181.37 48.59 6.66 1.94
Diatom 7.86 105.23 44.49 0.32 3.41
Haptophytes 25.35 123.10 0.58 0.82 0.55 6.38 1.32
Prokaryotes 9.45 3.15 6.86 0.55 4.52
Dinoflagellates 10.32 86.57 8.95 5.10 2.03
Green algae 102.48 1.73 8.36 1.82 0.39
Prochlorococcus 9.30 0.06 0.65 10.87

Table 5
Statistics of regression models for TChl-a and six PFT Chl-a concentrations using EOF modes based on Rrs matchups Rrs_8, Rrs_9, and Rrs_11 within 1 × 1 pixel from
merged products. Cross-validation (cv) results are presented with 500 permutations for data splitting into 80% of the data used for training and 20% for validation.
N = number of valid matchups for each parameter.

N MDPD (%) RMSD (mg m−3) R2 MDPDcv (%) RMSDcv (mg m−3) R2cv

Rrs_8 1 × 1
TChl-a 381 40.66 1.38 0.72 40.97 1.40 0.71
Diatoms 286 80.28 1.25 0.59 81.56 1.27 0.58
Haptophytes 366 57.16 0.30 0.58 57.97 0.30 0.54
Prokaryotes 348 62.32 0.15 0.05 62.95 0.14 0.04
Dinoflagellates 258 59.14 0.91 0.56 60.52 0.64 0.54
Green algae 239 60.51 0.12 0.50 61.81 0.12 0.47
Prochlorococcus 139 41.92 0.03 0.13 42.77 0.03 0.08

Rrs_9 1 × 1
TChl-a 394 37.41 1.24 0.76 37.08 1.27 0.75
Diatoms 306 73.70 1.21 0.65 74.74 1.29 0.63
Haptophytes 387 47.16 0.22 0.64 48.62 0.24 0.61
Prokaryotes 367 53.70 0.13 0.15 55.08 0.13 0.11
Dinoflagellates 272 55.32 0.93 0.62 57.29 0.72 0.59
Green algae 262 55.81 0.11 0.51 56.26 0.11 0.48
Prochlorococcus 142 39.65 0.02 0.24 42.68 0.02 0.18

Rrs_11 1 × 1
TChl-a 183 38.15 1.42 0.75 40.20 1.43 0.73
Diatoms 148 75.56 1.26 0.68 77.42 1.28 0.64
Haptophytes 179 53.04 0.28 0.61 55.84 0.29 0.54
Prokaryotes 171 61.41 0.17 0.13 62.61 0.16 0.08
Dinoflagellates 132 64.32 1.20 0.56 66.75 0.83 0.51
Green algae 116 54.52 0.12 0.60 58.60 0.13 0.48
Prochlorococcus 52 41.83 0.02 0.35 50.60 0.03 0.14
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numbers, pixels and data points. Prediction model performances of
using Rrs data sets with 1 × 1 and 3 × 3 matchups were statistically
similar. Therefore, here we only presented and discussed in detail the
results of the 1 × 1 pixel matchups, as there were more collocated data
which should provide more robust predictions (statistics based on Rrs

3 × 3 data sets are presented in Table S2 in the supplementary docu-
ment). The prediction models developed from the 1 × 1 collocated Rrs

data sets were also later applied to the satellite products.
Statistics of the EOF-based regression models are listed in Table 5

for different Rrs data sets (Rrs_8, Rrs_9 and Rrs_11). The predicted PFT Chl-
a concentrations display slight differences between different band set-
tings of the input Rrs. With all three data sets, the predicted and ob-
served (based on in situ data) TChl-a and Chl-a concentrations for

diatoms, haptophytes, dinoflagellates and green algae are well corre-
lated, with R2 ≥ 0.50 and R2cv ≥ 0.47. TChl-a has the highest corre-
lation (R2 ≥ 0.72), while Prokaryotes and Prochlorococcus have the
weakest correlation between the predicted and observed concentrations
but are generally better correlated using data set Rrs_9 compared to the
other two data sets. The MDPD are lowest for TChl-a and Pro-
chlorococcus (< 42%) and low for haptophytes, dinoflagellates, green
algae and prokaryotes (< 60% for data set Rrs_9). The highest MDPD
was found for diatoms (< 80%). The MDPDcv of all cases are slightly
higher but still comparable with the MDPD, indicating that the pre-
diction models are stabilized. Rrs_9 presents an overall lowest MDPD
among the three data sets. RMSD values were calculated in non-log
transformed manner, and thus vary depending on the corresponding

Fig. 5. Regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) Chl-a concentrations of (A) diatoms, (B) haptophytes, (C) prokaryotes, (D) dino-
flagellates, (E) green algae, (F) Prochlorococcus, and (G) TChl-a using EOF modes derived from merged Rrs products at 9 bands (1 × 1 pixel).
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Chl-a concentration ranges of individual PFTs. TChl-a has the highest
RMSD as it is the indicator of all phytoplankton biomass, whereas Chl-a
of Prochlorococcus which is always low in concentration has the lowest
RMSD. Among the three data sets, the lowest RMSD are found for Rrs_9.
Hence, we conclude that the EOF-based models with Rrs at nine bands
(see Table 1) perform best and slightly better than those with eleven
bands, while the weakest are the models based on eight bands. This to
some extent indicates that the performance of prediction models is not
only subject to the number of bands (i.e., the more bands the better),
but also to the number of matchups (with Rrs_11 the least).

As a summary, Fig. 5 shows the observed against the predicted TChl-
a and Chl-a concentrations for the six PFTs by the EOF-based method
using Rrs_9. Corresponding to the statistics in Table 5, TChl-a and Chl-a
of diatoms, haptophytes, dinoflagellates, and green algae which have
relatively larger ranges in magnitude show relatively good predictions,
with regression lines close to the 1:1 reference line and lower inter-
cepts. Prokaryotes and Prochlorococcus are of weaker correlations with
slopes much lower than 1 and higher intercepts, mainly due to their low
concentrations, the narrow range of the variation, as well as the low
variability in the concentrations especially for prokaryotes that could
not be well interpreted by the EOF modes. Slopes of all regression lines
<1 indicate that the models to some extent overestimate the variables
in low concentrations and underestimate them in higher concentra-
tions. Slopes of <1 were also shown in Bracher et al. (2015) for all the
predictions of pigments and pigment composition, though in their study
the prediction performance for some important pigments was statisti-
cally better compared to our prediction of PFT Chl-a concentration.
Among the well predicted pigments in Bracher et al. (2015), zeax-
anthin, typically used as a marker pigment for prokaryotes, showed the
lowest correlation but reasonable MDPD, which corresponds to our
lower R2 values for prokaryotic phytoplankton. It is worth investigating
further the prediction models and perform certain tuning procedure
through mathematical methods to reduce these over- or under-
estimations, especially for picophytoplankton which are usually very
low in concentration.

The cross-validation procedure effectively examined the robustness
of the prediction models. The statistical parameters for cross-validation
(averaged for all 500 permutations with 20% data for prediction) were
nearly or as equivalently good as the statistics for the model trained
with the whole data set (Table 5). This suggests that the number of data
points (matchups) is adequate for a robust model establishment. In fact,
in our study there were 52–394 data points for all matchups with dif-
ferent band settings, which is much higher than that was suggested to
be necessary for robust model development by Craig et al. (2012) (15
points at a seasonal cycle) and Bracher et al. (2015) (50 points).
However, since their studies were rather regional while we are focusing
on the global scale, a higher number of points is expected in our study
to enable a comprehensive coverage of the global ocean water types.
From Table 5 one can see that the statistics of the cross validation are
much worse than the original statistics for the green algae and Pro-
chlorococcus Chl-a predictions using the data set Rrs_11, for which less
available matchups were obtained. Therefore, though lower R2 and
higher MDPD were obtained with the data set Rrs_9, for these two PFTs,
the cross-validation showed better results than that from the data set
Rrs_11, convincing us the nine-band setting of the Rrs to be optimal for
PFT model applications to satellite products without in situ matchups.

To better understand the performance of the EOF-based algorithm,
Fig. S1 in the supplementary document shows the uncertainty for dif-
ferent ocean biomes in the algorithm derived Chl-a concentrations of
the six PFTs using GlobColour merged Rrs at nine bands (global pro-
jection of the uncertainty is detailed in the supplementary document).
Diatoms show underestimation in coastal regions (mean deviation of
−0.11 mg m−3 in this biome), slight underestimation in high latitudes
and near the equator (~−0.02 mg m−3), and very slight over-
estimation in the subtropical regions (~0.013 mg m−3). Haptophytes,
dinoflagellates, and green algae present similar uncertainty

distributions, i.e., overestimation in higher than 40°N and subtropical
regions and underestimation near the equator and in the Southern
Ocean, but with different amplitudes. Both prokaryotes and
Prochlorococcus show distinct overestimation in the central part of the
oligotrophic gyres (0.026 and 0.014 mg m−3, respectively) but un-
derestimation in the surrounding areas of the gyres (−0.06
and − 0.012 mg m−3, respectively).

3.2.3. Application to merged products for global PFT retrieval
Given that the EOF-based PFT models based on the matchups of

merged Rrs at nine bands show the best performance, we applied these
models (based on the full data set fit) to the merged Rrs global products
at the same nine bands for the period of 2002–2012. Selection criterion
of the nine bands from merged Rrs products is detailed in Sect. 3.2.2 of
the supplementary document. The numerical matrices and regression
coefficients determined by Eqs. (1) and (2) used for the model im-
plementation to the merged Rrs products at nine bands are also ex-
plained and provided in Tables S3 and S4 in the supplementary docu-
ment.

Fig. 6 illustrates the global mean distribution Chl-a concentration of
each PFT, based on the monthly PFT products derived from the merged
Rrs products with 25 km resolution from 2002 to 2012. Diatom Chl-a
concentrations are generally higher in high latitudes, marginal seas and
coastal upwelling regions but are much lower in the tropical regions
and extremely low in the subtropical gyres. The typical diatom abun-
dant regions are higher than 40°N (North Atlantic, Bering Sea and
Labrador Sea up to the Arctic Ocean), the Patagonian upwelling and
most part of the Southern Ocean. The average Chl-a concentration of
diatoms over the globe is ~0.08 mg m−3. Chl-a concentration of di-
noflagellates is low nearly over the whole globe (~0.02 mg m−3) but
higher in the Arctic Ocean and Patagonian upwelling. Haptophytes with
a global average Chl-a of 0.09 mg m−3 follow in distributions of the
diatoms but have more spread regions of high Chl-a in the high lati-
tudes, waters near the coasts, and equatorial regions (such as the west
coast of Africa). Chl-a concentration of green algae (global average of
0.03 mg m−3) is found typically higher in the Arctic and the near coast
oceans around the southern part of South America. Prokaryotes and
Prochlorococcus show distinctly different distribution features from the
other four PFTs. Prokaryotes with a global average Chl-a concentration
of 0.07 mg m−3 are much more abundant in the subtropical regions but
also substantially contribute (~5–30% of TChl-a) in the Arctic Ocean.
Waters such as the Baltic Sea, the east coast of China, and the west coast
of Africa (around 5°S and 10–20°N) show very prominent abundance of
prokaryotes. Prochlorococcus are generally very low on a global scale
(global average 0.03 mg m−3), especially in high latitude waters (not
really detectable), slightly higher in subtropical regions and apparently
abundant in some parts of the west coast of Africa similar to prokar-
yotes. Distribution of Prochlorococcus is supported by previous findings
(Flombaum et al., 2013). Their quantitative model based on a large
number of observations well defined the assessment of the Pro-
chlorococcus abundance and the results match well our retrievals. In
general the global average Chl-a concentrations of the PFTs retrieved
from our study are consistent with those from Hirata et al. (2011),
except that prokaryotes Chl-a is higher (0.07 mg m−3 in our study
versus 0.04 mg m−3 from Hirata et al., 2011), mainly due to our ele-
vated Chl-a prediction in the subtropics for prokaryotes. To illustrate
the changes in the PFT Chl-a distribution with seasons, the monthly
climatological products of each PFT are provided in Figs. S2-S7 in the
supplementary document. For instance, diatom blooms are mainly de-
tected during early summer in the Southern Ocean (December–Jan-
uary) and in the subarctic and Arctic waters (May–June). Haptophytes
show similar seasonal changes in high latitudes as diatoms, but highly
increase during the summer season in the equatorial Atlantic. A strong
prokaryotic enhancement is also found during July–August at the west
coast of South Africa.

Distribution of TChl-a retrieved by the EOF-based algorithm is
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presented in comparison to the GlobColour merged ocean chlorophyll
products (mean over all years in Fig. 7, and climatological monthly
mean in Figs. S8–S9). The ten-year mean of our EOF-based predicted
TChl-a is generally in good agreement considering the distribution
patterns with the standard products, though it is clearly seen that the
EOF-based TChl-a shows higher/lower values in the subtropical gyres/
coastal waters than the standard products. This was however expected,
as the EOF-based retrieval models based on matchups already showed
an over-/under-estimation for lower/higher values for all the retrieved
variables/PFTs, as illustrated in Fig. 5. This flattening effect of the
prediction is most prominent in prokaryotes and Prochlorococcus, of
which the EOF-based models present the weakest correlation. An ac-
curate retrieval of prokaryotic phytoplankton or its corresponding
marker pigments (zeaxanthin, divinyl Chl-a) has always been a chal-
lenge so far (e.g., Bracher et al., 2015; Losa et al., 2017), as the pico-
phytoplankton Chl-a concentrations are usually globally very low, even
when dominating in oligotrophic oceans. This results in a narrow var-
iation range and low variability in their concentrations compared to

other PFTs, and also in a weak imprint on the spectral shape which are
limited for the detection via the spectral analysis. An exception is that
in the Baltic Sea prokaryotes can have high Chl-a concentrations
especially during blooms. This is also reflected in our retrievals, though
there are no matchups available included in the EOF analysis.

3.3. Evaluation of the EOF-based PFT products

3.3.1. Inter-comparison with other PFT/PSC products
To evaluate our retrieval algorithm, the derived Chl-a concentra-

tions of diatoms, haptophytes and prokaryotes were compared with
SynSenPFT Chl-a of diatoms, coccolithophores and cyanobacteria (Losa
et al., 2017) and Chl-a of three PSCs (micro- >20 μm, nano- 2–20 μm,
and picophytoplankton <2 μm, Sieburth et al., 1978) obtained with the
PSC model of Brewin et al. (2010, 2015). Both SynSenPFT and PSC
products developed within the frame of the SynSenPFT project (Losa
et al., 2017) were available globally at 4 km daily resolution over the
period from 2002 to 2012. Prior to the inter-comparison, both products

Fig. 6. Ten-year mean distribution (July 2002–April 2012) of the PFT Chl-a concentration for (A) diatoms, (B) dinoflagellates, (C) haptophytes, (D) green algae, (E)
prokaryotes, and (F) Prochlorococcus retrieved by EOF-based algorithm from merged monthly Rrs products at nine bands.
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were binned to monthly averages and re-gridded to 25 km resolution, to
be consistent with our EOF-based PFT products. For simplification, in
the following text the SynSenPFT derived Chl-a concentrations of dia-
toms, coccolithophores, and cyanobacteria are denoted as dia-Syn-
SenPFT, coc-SynSenPFT, and cya-SynSenPFT, respectively; the Chl-a
concentrations of micro-, nano- and picophytoplankton derived from
PSC model are denoted as c-micro, c-nano, and c-pico, respectively. The
EOF-based Chl-a products of the other two PFTs, green algae and Pro-
chlorococcus were compared to those derived by OC-PFT method pro-
posed by Hirata et al. (2011) using GlobColour AVW merged TChl-a
monthly 25-km products as input for the same period (2002–2012).
Dinoflagellates were not considered for comparison as the OC-PFT de-
rived dinoflagellates showed very poor validation result (Hirata et al.,
2011). It is noteworthy that OC-PFT also allows the retrieval of Chl-a
concentrations of diatoms, haptophytes and prokaryotes, but as they
are intrinsic in the SynSenPFT products (Losa et al., 2017) they were
not included as separate products for the inter-comparison.

Following Losa et al. (2017), the time-latitude Hovmöller diagrams
were generated covering the monthly means from 2002 to 2012 of the
different PFT/PSC products. Since globally the Chl-a concentration is
typically log-normally distributed (Campbell, 1995), all averaging was
done in logarithmic space and then back-transformed to the original
scale. The Hovmöller diagrams are presented in Figs. 8–11, where the
left side of each subplot shows the monthly variation during the ten-
year period (2002–2012), and the right side shows the climatological
annual cycle. Since different studies tend to provide different retrieval
information in terms of phytoplankton composition, the optimal way
for the inter-comparison is to select the variables carrying the most
similar PFT information, but one has to keep in mind that the products
compared here are not always representing exactly the same quantities.

Diatoms derived from our study (Fig. 8A) and dia-SynSenPFT
(Fig. 8B) show similar distributions with both lowest diatom Chl-a
concentration in the subtropical regions especially in the gyres and
higher concentration in high latitudes. Compared to dia-SynSenPFT, the
EOF-based diatoms show generally lower Chl-a in the polar and tropical
regions, however they indicate the same blooming periods for diatoms
in May–June in the Arctic and December–January in the Southern
Ocean. Dia-SynSenPFT presented distinct higher Chl-a from 10°S to
10°N during December to February 2005–2006, 2007–2008 and
2010–2011 than other years, whereas the change between the years is
not evident in either our results or the c-micro products (Fig. 8C). Since
microphytoplankton contain not only diatoms but also other micro-size
phytoplankton such as dinoflagellates, the sum of EOF-based diatoms
and dinoflagellates was also shown (Fig. 8D), presenting similar sea-
sonal variation to c-micro but higher/lower Chl-a in the gyres/high
latitudes.

Before comparing the EOF-based haptophytes to other products, it
should be noted that coccolithophores are a main contributing PFT to
haptophytes, while haptophytes are a part of nanophytoplankton, with
the latter containing also Phaeocystis, cryptophytes, and a few other
groups. Haptophytes derived from our study (Fig. 9A) are well con-
sistent with coc-SynSenPFT (Fig. 9B), although again our retrievals
show a relatively mild pattern with lower Chl-a in high latitudes and
the 10°S-10°N equator belt. Chl-a concentration of coc-SynSenPFT from
10°N to 40°N during the summer time is significantly higher, but this
pattern is not found in either our products or c-nano. Our haptophytes
present similar distribution with c-nano (Fig. 9c) but lower Chl-a in the
high latitudes and equatorial regions as expected. The climatological
annual cycles of both are in very good agreement in the Southern
Ocean, while in the Arctic c-nano shows much Chl-a enhancement in
May–July. In addition, c-nano spreads more to the north until 25°N
from the equator. However, caution should be taken since our DPA
derived haptophytes contain only their nanophytoplankton fraction
while their picophytoplankton fraction is neglected, whereas Brewin
et al. (2015) consider part of the haptophytes in the picophytoplankton
group when TChl-a is below 0.08 mg m−3.

The overall Chl-a concentration of our EOF-based prokaryotes
(Fig. 10A) is generally low (0.03–0.20 mg m−3), but higher con-
centrations are found in the subtropical regions, only slightly lower
than the maxima in the Arctic and in the Southern Ocean from 70°S to
80°S during the summer. On the contrary, both distributions of cya-
SynSenPFT (Fig. 10B) and c-pico (Fig. 10C) show the lowest Chl-a in the
gyres. Similar seasonality (with little changes) between the cya-Syn-
SenPFT and c-pico is observed at the mid- to high latitudes, while the
EOF-based prokaryotes show slightly lower Chl-a maxima as well as a
different seasonal change in the Arctic, which have a clear elevation in
Chl-a from spring to summer. It is noteworthy that the cyanobacteria
derived from SynSenPFT include all the prokaryotic phytoplankton
(Losa et al., 2017) which should thus be the same product as our EOF
retrieved prokaryotes. The product of c-pico from Brewin et al. (2015)
contains not only prokaryotes but also other picoeukaryotic phyto-
plankton (green algae and pico-sized haptophytes), therefore we also
presented in Fig. 10D the sum of the prokaryotes and green algae Chl-a
from our study, which shows much higher Chl-a concentration in
general compared to c-pico, simply due to the predictions of high Chl-a
of prokaryotes in the subtropical regions. Nevertheless, the high pro-
karyotes Chl-a concentrations in the subtropical regions are not only
shown in our study, but are also found in the cyanobacteria simulated
by NASA Ocean Biogeochemical Model (NOBM), which is a global
biogeochemical model with coupled circulation and radiative models
(Gregg, 2002; Gregg and Casey, 2007, figure not shown here but can be
found in Losa et al., 2017). However, our prokaryotic phytoplankton

Fig. 7. Ten-year mean distribution (July 2002–April 2012) of (A) TChl-a concentration retrieved by EOF-based algorithm from merged monthly Rrs products at nine
bands and (B) GlobColour AVW merged TChl-a concentration based on open ocean L2 chlorophyll products from SeaWIFS, MODIS and MERIS sensors.
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Fig. 8. Hovmöller diagrams of Chl-a concentrations of (A) diatoms derived from our study, (B) dia-SynSenPFT (Losa et al., 2017), (C) c-micro derived from PSC
method (Brewin et al., 2015), and (D) sum of diatoms and dinoflagellates (Diatom + Dino.) from our study.
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retrieval performance still needs to be further improved by potentially
scaling the low concentration range or using non-linear prediction
models.

Hovmöller diagrams of green algae and Prochlorococcus Chl-a con-
centrations derived by our study (Fig. 11A–B) are presented in com-
parison with those from OC-PFT (Hirata et al., 2011, Fig. 11D–E). Green
algae in both products show distinct seasonality but Chl-a concentra-
tions of green algae from our study are generally lower than those from
OC-PFT (except for the subtropical regions), especially in the Arctic
where OC-PFT shows enhanced green algae from late spring to early
winter, whereas the EOF-based green algae show the lowest Chl-a
during summer and increase in autumn to winter. Prochlorococcus Chl-a
is generally very low (< 0.1 mg m−3) for both products with quite
different patterns presented. The EOF-based Prochlorococcus Chl-a
concentrations are higher in mid- to low latitudes but lower in polar
regions, corresponding to previous findings by Flombaum et al. (2013),

while the OC-PFT Prochlorococcus shows higher Chl-a in the Southern
Ocean which is outside the known distribution range and likely caused
by undersampling of the in situ data (Hirata et al., 2011). Dino-
flagellates show similar distribution with diatoms but with much lower
Chl-a concentration, which is almost neglectable in subtropical regions
and only higher than 0.05 mg m−3 in higher than 40°N with clear
seasonality observed (Fig. 11C). However, an equivalent product is still
necessary for dinoflagellates evaluation.

3.3.2. PFT Chl-a dominance comparison with PHYSAT products
We compared the PFT Chl-a dominance derived from our study for

the period of 2002–2012 to the PHYSAT product from 1997 to 2006
(Alvain et al., 2008) which empirically relates the radiance anomaly to
specific dominant phytoplankton groups. It is worth noting that the
periods of the two compared products do not coincide, because we
could only obtain the 12-month PHYSAT climatology data from 1997 to

Fig. 9. Hovmöller diagrams of Chl-a concentrations of (A) haptophytes derived from our study, (B) coc-SynSenPFT (Losa et al., 2017), and (C) c-nano derived from
PSC method (Brewin et al., 2015).
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Fig. 10. Hovmöller diagrams of Chl-a concentrations of (A) prokaryotes derived from our study, (B) cya-SynSenPFT (Losa et al., 2017), (C) c-pico derived from PSC
method (Brewin et al., 2015), and (D) sum of prokaryotes and green algae (Proka. + GA) from our study. Note that the color scale is different from Figs. 8–9.
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2006 due to our limited access to the PHYSAT product. Diatoms, hap-
tophytes, Prochlorococcus and SLC were included but the dominance of
Phaeocystis-like group derived by PHYSAT was not available in our
products. Distributions of dominant PFTs extracted from our products
for four representative months (Fig. 12) generally present haptophytes
and diatoms dominating in high latitudes and Prochlorococcus and SLC
dominating in lower latitudes, which is well consistent with PHYSAT
products. A more detailed comparison is described as follows.

In the high latitudes of the north hemisphere, our classified hapto-
phytes dominance in January spreads a smaller range (30°N–50°N) than
that from PHYSAT. In April, both products show haptophytes dom-
inating above 30°N while diatoms are dominating in coastal areas only
in our product. In July the two products show similar identification
results with diatoms dominating in some parts of the North Sea,
Norwegian Sea, Bering Sea and the Arctic waters, while haptophytes are
still the major dominant PFT. Similar distribution is found for October
as well despite of our product showing more diatoms in nearshore
waters.

In the mid- to low latitudes, haptophytes and diatoms mainly
dominate in coastal waters. Our product also shows dominance of
haptophytes in the equatorial waters especially in the Pacific Ocean
nearly for all seasons, which is barely presented in PHYSAT products.
Prochlorococcus and SLC are two largely dominant groups in the mid- to
low latitudes (Zubkhov et al., 1998). Prochlorococcus dominance is
hardly found in 20°N–35°N from our product, whereas it is prominent in
PHYSAT product especially in the north Pacific and north Atlantic gyres
for all seasons. Prochlorococcus is found dominating in the low latitudes
approximately between 15°S–15°N and SLC mainly dominates in the

south Pacific gyre in both products. In the central to south Atlantic and
Indian Ocean (equator to 40°S), our product shows SLC dominance in
most of the regions in January and April, which decreases and is taken
over by Prochlorococcus and haptophytes in July. However, PHYSAT
products present dominance of both Prochlorococcus and SLC in this
region in January and April, which is then gradually taken over by
haptophytes in July with Prochlorococcus only dominating in the gyres.
In the southern Pacific Ocean near 40°S both products show mainly
Prochlorococcus dominating for nearly all seasons.

In the high latitudes of the south hemisphere (40°S–80°S), our
product shows that Prochlorococcus and SLC spread more to the
Southern Ocean especially from the south Pacific Ocean. In January,
diatoms dominance of our product is found in Patagonian coastal wa-
ters and the south part of the Southern Ocean, while PHYSAT shows
extensive diatoms dominance in 40°S–80°S with haptophytes and
Phaeocystis also detected. For the other seasons, our product presents a
smaller coverage of haptophytes dominance compared to PHYSAT
products, and that diatoms are always dominant in Patagonian coastal
waters and the west coast of South Africa.

Overall, besides some different distribution in diatoms dominance
between PHYSAT and our products, the other main difference exists in
the dominance of Prochlorococcus and SLC distributed in the central
oceans, likely attributed to the low retrieval performance of prokar-
yotes. One should also keep in mind that PHYSAT product presents the
climatology of 1997–2006 while ours for a more recent period
(2002–2012) as explained in the beginning of this section. Recent long-
term observations in the Arctic have shown a shift in phytoplankton
composition from diatom-dominated to haptophyte-dominated and an

Fig. 11. Hovmöller diagrams of Chl-a concentrations of (A) green algae, (B) Prochlorococcus, and (C) dinoflagellates derived from our study, with the former two in
comparison to (D) green algae and (E) Prochlorococcus from OC-PFT (Hirata et al., 2011). Note that the color scale is the same as Fig. 10.
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enhancement of prokaryotic phytoplankton indicating that smaller
phytoplankton species appear more often in the high latitudes (Nöthig
et al., 2015), which is also presented in our product. In general, the
overall high consistency between the two products confirms that rea-
listic information on the PFT dominance can be extracted from the EOF-
based PFT products.

3.4. Potential application to Sentinel-3A OLCI products

3.4.1. EOF-based PFT algorithm based on collocated OLCI Rrs and in situ
HPLC pigments

Based on the Rrs matchups extracted specifically from the OLCI
products (listed in Table 2), the EOF-based algorithm for OLCI appli-
cation was built using the matchups of Rrs at 10 bands, 11 bands and 12
bands (denoted as OLCI Rrs_10, OLCI Rrs_11, and OLCI Rrs_12,

Fig. 12. PFT Chl-a dominance extracted from the EOF retrieved PFTs (2002–2012, left panel) versus the results derived by PHYSAT (1997–2006, Alvain et al., 2008,
right panel) for representative months. Note that the classified dominant PFTs are not all the same as the PHYSAT product, i.e., dinoflagellates and green algae
dominance were included in our product while Phaeocystis dominance was included in PHYSAT. Blank areas indicate no available data.
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respectively) at 1 × 1 pixel and corresponding DPA-derived PFTs. The
matchups for 3 × 3 averaged data were not used due to low number of
points. As shown in Fig. 3, the same procedure was applied to OLCI
matchups regarding EOF analysis and regression model establishment.
Similar to Sects. 3.1 and 3.2.1, EOF analysis was performed and the
contribution to total variance of each important EOF mode was pro-
vided in Table S5 (supplementary document), showing EOF-1 takes
>85% and the first four EOF modes contribute >99.9% of the total
spectral variance. Table S6 in supplementary document presents the
stepwise routine generated ΔAIC showing the importance of the EOF
modes. Different from that based on merged matchups (Table 4), EOF-3
and EOF-2 for most PFTs both have high ΔAIC scores, indicating both
are relatively important. Statistical results of the prediction perfor-
mance provided in Table S7 (supplementary document) shows little
differences between using different band numbers for the input Rrs data
sets. For all PFTs the predictions are comparable to that gained using
merged matchups in Sect. 3.2.2, however low number of matchups led
to weaker cross validation statistics. As an example, Fig. S10 (supple-
mentary document) shows the comparison between the predicted and
observed PFTs using OLCI Rrs_11 at 1 × 1 pixel. In general, good pre-
dictions are achieved with OLCI Rrs_11 for diatoms, haptophytes, dino-
flagellates, green algae and Prochlorococcus, especially the predictions
of the latter two PFTs were obviously better than those from merged
matchups. However, performances for TChl-a and diatom Chl-a pre-
diction are a bit downgraded with OLCI data compared to merged
matchups, possibly due to the low quality of corrected Rrs at blue bands
for OLCI. This needs to be further investigated as it does not apply to
other PFTs. As the retrieval approach is also an empirical method based
on regressions, other factors such as the lower number of matchup
points andvariation range of input data do also have impacts on the
OLCI model performance. Prokaryotes prediction still has the least good
performance. Good performance for Prochlorococcus estimation is
achieved but the robustness could be weak due to little number of
matchups (only 17–22 points for 1 × 1 pixel).

3.4.2. Test output of global PFTs retrieved from S3A OLCI products
The EOF fitted models based on OLCI Rrs_11 at 1 × 1 pixel were

selected and applied to the OLCI Rrs L3 monthly products with 25 km
spatial resolution. Fig. 13 shows the mean distribution of each PFT Chl-
a concentration derived from OLCI products during April 2016–De-
cember 2018. Compared to the PFTs derived from merged products,
diatoms derived from OLCI are also well represented for coastal regions
and show similar distribution in polar regions, but have higher Chl-a in
the gyres and lower at the Equator. Haptophytes, dinoflagellates and
green algae show nearly identical distributions with those from merged
products, suggesting that the fitted models of these PFTs are well de-
fined for both satellite products. Prokaryotes present elevated Chl-a
concentration in the oligotrophic regions, however, opposed to that
derived from the merged products, low abundance of prokaryotes is
detected in coastal waters and high latitudes especially in the Arctic.
Prochlorococcus shows much spatial variation with higher Chl-a con-
centration in the Arctic Ocean, north and central Atlantic Ocean, cen-
tral Pacific Ocean, most coastal waters, and scattered regions in the
Southern Ocean. This is apparently inconsistent with the consensus that
Prochlorococcus is hardly detectable in most of these regions. This
misinterpretation might be attributed to the ill-defined prediction
model due to low number of valid matchups for Prochlorococcus.

It is noteworthy that the PFTs are retrieved for different periods
between OLCI (2016–2018) and merged products (2002–2012), and
that the matchups extracted from OLCI data are not adequate for a
global coverage. Relatively weak performance for prokaryotes and
Prochlorococcus retrieval lies in both applications of OLCI and merged
products, suggesting again that improvement on their models is ne-
cessary to achieve more reliable retrievals.

4. Conclusion and outlook

An EOF-based global retrieval algorithm for quantifying multiple
PFTs was developed using collocated satellite Rrs data and DPA derived
PFT Chl-a concentrations from in situ pigment data. Rrs matchups with
different band numbers extracted from the GlobColour SeaWiFS/
MODID/MERIS merged products were used to assess and compare the
performance of corresponding EOF fitted models in predicting PFTs.
The models developed using Rrs data set with nine bands slightly out-
performed those using the other data sets. The retrieval skills for six
PFTs (diatoms, dinoflagellates, haptophytes, green algae, prokaryotes
and Prochlorococcus) were investigated and cross-validated via a boot-
strapping method. Satisfactory retrievals were achieved for diatoms,
dinoflagellates, haptophytes and green algae, while the correlation
generated by the EOF-based models for prokaryotic phytoplankton was
relatively weak, resulting in less accurate retrievals for prokaryotes and
Prochlorococcus. Global PFT retrievals over a ten-year period
(2002–2012) were obtained based on the EOF-based models using
merged Rrs L3 products at nine bands, showing plausible distributions
for most of the investigated PFTs in the open ocean.

Evaluations on the EOF-based PFT products were carried out
through inter-comparisons with SynSenPFT, PSC and OC-PFT products.
Time-latitude Hovmöller diagrams covering monthly means of
2002–2012 showed generally good agreement between our EOF-based
PFTs and other PFT/PSC products, despite that prokaryotic phyto-
plankton showed higher Chl-a concentrations in the subtropical gyres,
which needs to be further validated. Dominance of PFTs derived from
the EOF-based PFT products was also in high agreement with PHYSAT-
products. Implementation of EOF models to OLCI products showed
potential for a continuous observation, though differences for certain
PFTs appeared comparing to the PFT products derived from merged
products, likely due to lower number and limited coverage of matchups.

Different from abundance-based PFT algorithms, the proposed re-
trieval algorithm directly uses the reflectance data from satellites, thus
can avoid uncertainty generated in the chlorophyll products, and links
the variation of satellite reflectance spectra via PFT specific EOF based
regression models. In addition, the retrieval algorithm is still an em-
pirical approach, which is subject to the input data sets for training with
regard to the number of observations, range of data variation and
homogeneity of the data distribution in space and time. The apparent
over−/underestimation feature in the regression models should also be
further investigated. Nevertheless, this study showed the high potential
of the EOF-based algorithm for quantitatively retrieving PFTs globally
using satellite reflectance products from different sensors, which was
not adequately reported in previous studies. Future efforts will be put in
improving the current algorithm especially for prokaryotes prediction,
such as applying proper scaling to the data sets and using non-linear
fitting models. Further work, which is ongoing, is focusing on updating
and extending the global in situ pigment data sets (especially from 2012
to present). The updated data sets will be used for EOF re-training with
hopefully globally distributed matchups for OLCI (2016–present) and
MODIS/VIIRS (2012–present) merged products, to fill the gap between
MERIS and OLCI (2012–2016), and ultimately enable a continuous PFT
observation from multi-sensor data. The updated in situ data sets will
also be used for a thorough validation of the satellite retrieved PFTs.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2020.111704.
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