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ABSTRACT: Fourier-transform ion cyclotron resonance mass
spectrometry (FT-ICR-MS) is one of the state-of-the-art methods
to analyze complex natural organic mixtures. The precision of
detected masses is crucial for molecular formula attribution.
Random errors can be reduced by averaging multiple measure-
ments of the same mass, but because of limited availability of
ultrahigh-resolution mass spectrometers, most studies cannot
afford analyzing each sample multiple times. Here we show that
random errors can be eliminated also by averaging mass spectral
data from independent environmental samples. By averaging the
spectra of 30 samples analyzed on our 15 T instrument we reach a
mass precision comparable to a single spectrum of a 21 T
instrument. We also show that it is possible to accurately and
reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured
deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose
Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a
simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass
accuracy and the precision of intensity ratios of isotopologues at no extra cost.

Natural organic matter in aquatic, sedimentary, and soil
environments are highly complex mixtures, largely of low

molecular weight substances (<1000 Da).1−3 Marine dissolved
organic matter (DOM), for example, consists of at least
hundreds of thousands if not millions of different substances.4

All these substances are interconnected within the global
carbon cycle, due to past and recent metabolic or
physicochemical processes, making their identification an
important issue in the context of climate change.5−7

Fourier-transform ion cyclotron resonance mass spectrom-
etry (FT-ICR-MS) has established itself as one of the state-of-
the-art methods to analyze such complex mixtures.8−10 The
ultrahigh precision of detected masses is a crucial requirement
for subsequent molecular formula attribution. Even a precision
of <0.1 ppm cannot lead to unique molecular formula
matches8 as with increasing mass the number of possible
matches is inflated via combinatorial explosion. On top of that,
the resolution decreases with increasing mass to charge ratio.11

This challenge has inspired ideas how to improve the accuracy
of the molecular formula attribution e.g. using isotope patterns
or ratios8,9,12 or investigating homologous series.8,13

The measurement of a mass in FT-ICR-MS is always
accompanied by two potential sources of errors that have a
direct influence on the accuracy. The first is a systematic error,

a shift from the true value to lower or higher values within
measurements. A systematic error emerges due to the
aggregation of multiple biases such as imprecise calibration
of the instrument, directed electronic misadjustments, wrong
information transfer or many other factors influencing the
measurement. The systematic error is either positive or
negative but always directed. The second is a random error,
which is a fluctuation of the measured mass from the true mass
by chance only. The total random error of a mass
measurement can be a combined error of multiple undirected
effects that are all of purely probabilistic nature, e.g.
unpredictable fluctuations of the environment influencing the
measurement. The random error can be reduced by arithmetic
averaging multiple measurements of the same mass, since
positive and negative deviations from the true values (for
vanishing systematic error) within measurements cancel out. In
fact, the random error is reduced by the factor of n1/ , where
n represents the number of averaged measurements.14 Usually,
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multiple mass spectrometry scans are accumulated for the
analysis of a single sample to take advantage of this averaging
effect and to enhance sensitivity. But because of limited
availability of ultrahigh-resolution mass spectrometers, most
studies cannot afford analyzing each sample multiple times to
further reduce the mass error through averaging after the actual
measurement. Also, many environmental studies involve
dozens or even hundreds of individual samples, increasing
the pressure for measuring efficiency. In such sample sets,
however, most molecular formulas are detected multiple times
in even only partly related samples, because many compounds
are globally ubiquitous even in contrasting environments.15

Thus, in principle, one can consider the multiple detection of
the same mass across different samples as replicate measure-
ments and take advantage of the error reduction through
averaging.
The same potentially holds true not only for masses but also

for their signal intensities. Signal intensity, however, is sample
specific, because identical compounds occur in varying
concentrations in the environments.15 Averaging signal
intensities of detected masses across samples is therefore not
useful, but the intensity ratio of isotopologues is determined by
the natural abundance of isotopes and should as such be
constant across samples in a first approximation. In analogy to
the potential reduction of mass error through averaging also
the natural abundance ratio of isotopologues should be
approached more precisely through averaging of signal
intensity ratios.
To make use of averaged masses and intensity ratios from

multiple spectra, they have to be aligned first. This spectral
alignment is a crucial step, because aligned mass values will
slightly deviate from spectrum to spectrum due to the above-
mentioned sources of errors. In this study we present a method
of spectral-alignment and show that averaging masses over true
or technical replicates gives rise to an additional reduction in
mass error. For quantifying the mass error, we use the common
metrics16 mean absolute error (MAE) and root mean squared
error (RMSE). Such a reduction of mass error has direct effects
for molecular formula attribution because it allows reduction of
the tolerance window that is used to find potential formula
matches. Moreover, we show that for DOM spectra also
isotope ratio deviances benefit from being averaged, making
them an improved indicator of the correct molecular formula
match as well.

■ EXPERIMENTAL SECTION
Data Acquisition. We used two different data sets in this

study. One consisted of replicate measurements (n = 65) of
the same sample collected from North Equatorial Pacific
Intermediate Water near Hawaii. The DOM sample was
obtained by solid-phase extracting >10,000 L of deep-seawater.
Details on sample collection and processing were described in
previously published work for this data set.17,18 It represents
the case example of measuring the same sample multiple times
with values being considered as technical replicates reflecting
only measurement errors. In the following we name this data
“Deep Sea”.
The second data set consisted of mass spectra of 137 DOM

samples from the German Bight (North Sea) measured at
different points in time. These samples span over a wide range
of different proportions of fresh and marine waters, spring and
summer plankton blooms, and winter conditions. DOM of the
samples was obtained by solid-phase extracting the water

samples according to the established protocol for such kind of
samples.19 In the following we name this data set “North Sea”.
All DOM samples were measured on a Bruker Solarix 15 T

FT-ICR-MS at the University of Oldenburg (Germany) in
50:50 methanol/water (v/v) at a DOM concentration of 20
mg carbon L−1. Samples were directly infused into the
electrospray ionization (ESI) unit and ionized in negative
mode. Five hundred transients were summed per sample. The
spectra were mass calibrated (linearly) using the Bruker
Daltonics Data Analysis software package with an internal
calibration list consisting of about 50 compounds present in
the samples and covering the entire relevant mass range. The
mass error for the calibration points was <0.1 ppm after
calibration. For more details on instrument settings we refer to
Riedel and Dittmar.18

Basic Data Processing. To eliminate noise from FT-ICR-
MS spectra we applied the method detection limit (MDL).18

Here, we used the 99.9% confidence limits of intensities of
“noise” peaks as the upper limit. All ions with at least two
isotopologues were singly charged, as evident from isotopo-
logue mass spacing. Thus, we assume that all detected ions
were singly charged and use the term mass synonymous for
mass to charge ratio.

Peak Alignment. To average masses from different
spectra, the masses that belong to the same molecular formula,
but are found in different spectra, had to be identified and
aligned correctly. In the following we explain in short the steps
that lead to a cross tabulation of aligned masses.

Step 1: Across all spectra we identified the mass with the
largest intensity (mref).
Step 2: We combined this peak with at most one peak
per spectrum that is at minimal distance and within a
suitable tolerance of 0.5 ppm. The distance between a
mass, present in another spectrum than mref was
calculated as

−
×

m m

m
e1 6 ppmref

ref

Given a set of n spectra, the collection eventually
comprised a mass cluster of at most n peaks (which was
reached only when the mass was found in all spectra).
Step 3: All members of the cluster were removed from
the raw data set and the corresponding cluster was
transferred to a row of a cross tabulation with columns
collecting cluster properties of interest, in particular, its
mass average and masses and intensities of all cluster
members.
Step 4: Returning to Step 1, we repeated all steps until
all masses were processed.

The validation of a successful mass alignment was
accomplished by comparing the mass differences and standard
errors within mass clusters with those between mass clusters.
The between mass cluster distances should be much larger and
clearly separable from the distribution of mass differences
within mass clusters which was always the case for our data
sets.

Molecular Formula Attribution. For every mass cluster
its average mass was used to attribute all possible molecular
formulas within a tolerance range of 0.5 ppm. We used a
master list, containing all chemically valid combinations of
elements up to 1000 Da considering the elements (ranges) C
(1−100),13C (0−1), O (0−100), H (1−200), N (0−3), S (0−
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1), and P (0−1). We considered it chemically valid to
encompass element combinations that summed up to even
valence and lay in the range of certain elements (H ≤ 4C, H >
0.25C, O ≤ 2C, N ≤ C + 1, S ≤ C + 1, P ≤ C + 1). We
excluded all formulas containing a 13C that had no 12C
isotopologue.
Molecular Formula Confirmation. For each data set

(Deep Sea and North Sea) we constructed three subsets of
attributed molecular formulas that are inclusively ordered (All
matches ⊇ Likeliest match ⊇ Isotope verified match).
These subsets were defined as follows:

Subset 1: “All matches”
This subset included all molecular formula attribu-

tions even multiple matches for a single mass.
Subset 2: “Likeliest match”
This subset was already more restricted than subset 1.

It only included the likeliest molecular formula for a
single mass obtained by applying the following sequence
of filters. If we had found only one formula attribution
for a mass this became automatically the likeliest match.
For masses with more than one formula attribution we
applied three criteria in a hierarchical order:
(1) Isotope verification: Here, we used a maximum

Δ13C (see eq 4) tolerance of ±1000 permille to
flag a molecular formula as isotope verified. If only
one molecular formula suggestion for the mass
was isotope verified, we already had found the
likeliest one. If multiple molecular formulas were
isotope verified, we proceeded to the next filter
with all isotope verified formula suggestions. For a
mass without any isotope verified formula, we
simply proceeded to the next filter retaining all
molecular formulas.

(2) Maximum length of homologous series network:
If we still had multiple formula matches for a
mass, we counted the homologous series (CH2)
length that each formula suggestion of that mass
exhibited in the complete data set and took the
molecular formula with the maximum homolo-
gous series length as the likeliest match.8

(3) Minimal distance in ppm to the reference mass: If
there was still more than one formula suggestion
for a mass, we took the molecular formula with
the closest distance to its reference mass as the
likeliest match.

Subset 3: “Isotope verified match”
This subset was the most restrictive one. It included

only the likeliest molecular formulas from subset 2
(likeliest match) that were isotope verified.

Quantification of Mass Error. For each data subset
(index “s”: all matches, likeliest matches, isotope verified), we
calculated the well-known Mean Absolute Mass Error16

(MAE) of the averaged masses (eq 1).

=
∑ ×=

̅ −( )e

N
MAE

1 6
ppms

i
N m M

M

s

1
s i

s
i
s

i
s

(1)

with m̅i
s = averaged mass i, Ns = number of masses in subset s,

and Mi
s = reference mass of attributed molecular formula.

We preferred using MAE over the root mean squared error
at this point, because it is more robust to outliers.16

To demonstrate how averaging spectra improves the mass
precision, we computed the MAE for ubiquitous masses for
different number of spectra, (n = 1, 3, 30). Three is a common
number of technical replicates, while 30 may correspond to a
typical number of samples taken along environmental gradients
(e.g., a salinity gradient in an estuary). To estimate the
distribution of the MAE, we used a bootstrapping approach
(30-fold repeated sampling with replacement from the pools of
spectraDeep Sea: 65, North Sea: 137). Additionally, for both
data sets and each of their respective subsets, we applied a
Kruskal−Wallis test20 to test for statistically significant
differences across the selected values of “n”.
The progressive error reduction by increasing the number of

aligned spectra could also be followed through the root mean
squared error (RMSE)16 (defined in analogy to the MAE).
This enabled us to calculate random and left-over systematic
error (see below). To show this, we excluded all masses with
an SNR below 20 and used only the remaining ubiquitous
masses from the isotope verified subsets. We did this because
we expected the mass error to have no SNR dependence
anymore and the highest accuracy in formula attribution with
the isotope verified subset, so that there were no extreme
values corrupting the (nonrobust) RMSE and our model fit.
For each remaining molecular formula, we averaged masses
over “n” randomly drawn spectra. We swept “n” over the range
from one to 65 for the Deep Sea data or 137 for the North Sea
data, respectively, and computed the “n” specific RMSEn:
The functional relation between RMSE and “n” could be

described by the nonlinear parametric model for error
partitioning21 (eq 2).

= + nRMSE err err /n sys
2

rnd
2

(2)

So that we could fit random “errrnd” and systematic “errsys”
errors to the obtained RMSEn values.
Savory et al.21 have shown that there is a systematic mass

error along the mass axis within spectra. This systematic error
is not linearly increasing with mass but can be highly nonlinear
with a clear autocorrelation structure along the mass to charge
ratio axis. We employed a general additive model22 (gam) to fit
a nonparametric function of mass error (as response variable)
versus mass (as explanatory variable). Using this result, we
recalibrated the measured masses to reduce the mass error for
each spectrum independently. With recalibrated spectra, we
repeated all of the above analyses and compared them to
related nonrecalibrated data.

Isotope Ratio Deviances. Isotope ratio deviances were
calculated between molecular formulas differing only in one
stable isotope (isotopologues). This was done to determine the
number of carbon atoms in a compound, independently from
the molecular mass, in order to have an independent
confirmation of a molecular formula assignment. In the
following such pairs of molecular formulas are denoted as
“isotope pairs”. In this study we only considered 13C/12C
isotope pairs. Previous approaches in geochemistry defined a C
deviance8,23,24 as the isotope pair intensity ratio divided by the
relative abundance of 13C minus the number of carbons in the
molecule to calculate an isotope ratio deviance (eq 3).
For this study, we calculated the isotope ratio deviances

(Δ13C) in analogy to δ13C where deviations from the average
natural isotope abundance were related to the Vienna Pee Dee
Belemnite25,26 (VPDB) standard. This quantity is frequently
used as a sample trait in biological, geochemical, or
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paleoclimatic studies.27 Here, we used it on a molecule-specific
basis for every isotope pair based on binomial probabilities.
This approach is not new in mass spectrometry28 but not yet
well established in geochemistry where C deviance is more
frequently applied.8,23,24

Underlying the binomial distribution is the idea that the
molecule is assembled via sequentially drawing its “n” carbon
atoms from an urn (a carbon pool). The urn is filled with a vast
number of 13C and 12C isotopes with relative abundances given
by p and (1 − p), respectively. In this approach VPDB = p/(1
− p) which is equivalent to p = VPDB/(1 + VPDB). When the
relative abundance of 12C and 13C in the urn is known, we can
calculate the probability to draw one 13C and “n − 1” 12C and
the probability to draw “n” 12C isotopes. We expect that the
ratio of these two probabilities matches the intensity ratio for
the isotope pair. This suggests measuring deviations from the
expectation by the expression for Δ13C shown in eq 4.

= −
( )

C
p

ndeviance

C
C

Intensity
Intensity

13

12

(3)

Δ = − ×
= × −

= × −

−

( )
( )

( )

C e1 1 3‰

C
C

C
n

p p

C
n
n j j

13

Intensity
Intensity

expected
1

(1 )

expected (1 )

n

n

13

12

13 1 1

12 0

i

k

jjjjjjjjjjjjjjjjjjjjjj
i

k

jjjjjjj
y

{

zzzzzzz

y

{

zzzzzzzzzzzzzzzzzzzzzz
(4)

with n = number of Carbon atoms; p = probability of 13C; and
j = probability of 12C (here: 1 − p).
We note that the matching of intensity and related

probability ratios may also be expected for any number of
13C isotopes found in the molecule. This means, we expect that
Δ13C calculated for an isotope pair containing zero and one
13C is equal to Δ13C calculated for isotope pairs involving zero
and more than one 13C per molecule, as both nominator and
denominator change. We also assumed that isotopologues
involving other elements (e.g., 18O) share the same Δ13C
under the condition that they occur in both molecular formulas
of the isotope pair. A generalization to a multinomial approach
is not necessary for carbon. Due to low peak intensities for
molecules containing more than one 13C or other isotopo-
logues such as 18O, we focused on the isotope pairs with the
largest intensities which are generally molecules containing
only 12C (monoisotopic ions) and one 13C for molecules of
low molecular weight (<1000 Da) (eq 4). Contrary to the
commonly used C deviance, our approach provides a measure
that can directly be compared to natural deviations (δ13C). We
purposefully used the annotation Δ instead of δ to emphasize
that we were not aiming at detecting natural isotope
fractionations related to biological or geochemical processes.
In analogy to δ13C we calculated deviations from the VPDB
standard, but in our study, we are not aiming at ruling out
instrument error as a source for systematic deviations from that
standard.
When comparing C deviance with the theoretically derived

Δ13C, we see that C deviance scales linearly with the number
of carbon atoms in the molecule (Figure S1, light green line);
in fact, the following linear relationship (eq 5) between C
deviance and Δ13C holds true.

=
+

−
×

Δ

C
p

p
ndeviance

(1 )

C
1000‰

13

(5)

Assuming the average natural abundance ratio of 13C/12C in
a compound containing 100 carbons, the C deviance approach
overestimates the number of carbons of that compound by 1.
Exemplarily, a Δ13C of −36 permille would give an absolute C
deviance below −1 for a molecular formula with more than 40
carbon atoms as indicated in Figure S1. Such a Δ13C is within
the range of natural isotope fractionation occurring in natural
organic matter29,30 by, for example, enzymatic processes.
Consequently, using −1 as a threshold in C deviance would
lead to false exclusions when used for molecular formula
confirmation. C deviance is an erroneous estimator. Because of
that, we strongly suggest using Δ13C rather than the C-
deviance as a measure for isotope ratio deviance because C
deviance introduces a systematic error.
FT-ICR-MS signal intensities close to the analytical noise

(low SNR) are affected by an intrinsically large error. We
investigated the influence of SNR on observed Δ13C values.
For this, for each isotope pair we calculated the standard
deviation of Δ13C and related mean SNR values of the 12C
isotopologue over all aligned spectra of either the Deep Sea or
North Sea data set. We fitted a model (eq 6) to decompose the
error of Δ13C into a SNR-dependent and an SNR-independent
part.

σ = +Δ (err /SNR ) errb
13C SNR

2
asymptotic

2
SNR (6)

Here, “errSNR” and “errasymptotic” represented both independ-
ent random errors, where the former represented the SNR-
dependent and the latter the SNR-independent (residual)
error. The exponent “b” was not supported by a theoretical
reasoning but added, because a log−log plot suggested a power
law relationship. From the Deep Sea data set we exemplarily
took the four molecular formulas with the largest SNR values,
so that the SNR-dependence was negligible, and after
confirming that their Δ13C values along spectra were normally
distributed, we tested for statistically significant differences
between the mean Δ13C of these four formulas using an
analysis of variance (ANOVA).

■ RESULTS AND DISCUSSION
Overview of Data Basis. The Deep Sea data subsets

contained nearly twice the number of molecular formulas (“all
matches” = 2590, ”likeliest match” = 2489, “isotope verified” =
2072) compared to the North Sea data (“all matches” = 1730,
”likeliest match” = 1712, “isotope verified” = 1195). In both
cases we obtained only very few multiple formula assignments
as indicated by the minor differences between the respective
“all matches” and “likeliest match” subsets. The calculation
time for the molecular formula attribution of ubiquitous
masses was approximately 10−12 times faster compared to a
formula attribution done for every spectrum separately (65
Deep Sea, 137 North Sea), because formula attribution had to
be done only once. The factor was not directly proportional to
the number of spectra, because of the time required for spectral
alignment.

Reduction of Mass Error. Averaging masses following
from mass alignment yielded a substantial reduction of mass
error. As expected, we observed a pronounced MAE reduction
for both data sets progressing with the number of aligned
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spectra (“n”). For example, the mass error was more than
halved when averaged 30 times, resulting in values ranging
between 0.015 and 0.065 ppm (Figure 1). Kruskal−Wallis
showed that spectral averaging leads to a statistically significant
(p < 0.01) reduction of MAE (cf. Figure 1) for all subsets (all
matches, likeliest matches, isotope verified).
The isotope-verified subsets showed by far the smallest MAE

in each case (Figure 1). This underpins the utility of isotope
verification for the analysis of FT-ICR-MS mass spectra. The
window in the molecular formula attribution can lead to
multiple matches for a mass. If the true formula contains
elements not included in the formula attribution settings, e.g.
Cu, all attributed molecular species must necessarily be wrong.
This will most probably increase MAE, especially when the
tolerance window is wide. Such formulas will generally not be
isotope verified. Consequently, such formulas will be excluded
from the isotope verified subset, thus reducing the MAE. A
further reason follows from the fact that detected peaks of 13C
isotopologues will be adjoint to 12C peaks with high SNR with
the consequence of smaller MAE. In other words, 50% of peaks
in an isotope-verified subset have a relatively high SNR, going
hand in hand with higher mass precision. This ratio of peaks
with high SNR is always smaller in the “likeliest match” subset,
because it includes 12C mass peaks with SNR values not high
enough to exhibit isotopologues.
Finally, the recalibration of the mass axes of each of the

individual spectra via general additive models (gam fit)
reduced the MAE further for both North Sea and Deep Sea
data sets to 0.01−0.02 ppm (Figure 1). The RMSE reduction
of the isotope verified subsetwith a minimum SNR of 20
of both Deep Sea and North Sea is clearly visible in Figure 2.
As predicted,21 the reduction follows a curve described by
formula 2. As already shown for the MAE the mass
recalibration clearly reduced the mass error (RMSE) further
down for both data sets, but more pronounced for the Deep
Sea data set. Still a small amount of systematic mass error
remained even after our recalibration. This is clearly visible as
the asymptotes of the curves (Figure 2), which represent the
leftover systematic error which is always nonzero. This

systematic error must be considered as an average systematic
error across many compounds; it is due to multiple factors
including, but not limited to, imperfect recalibration or
remaining wrong formula attributions.
Because the precision is improved by averaging of mass

spectra of different samples, mass spectrometers using averaged
measurements can become competitive to single measure-
ments of instruments with much higher magnetic field
strengths. Extrapolating the effect of magnetic field strength
on mean absolute error reported for small molecules,31 a mean
absolute error of 0.01−0.02 ppm, that we reached by averaging
30 spectra using a 15 T instrument, would correspond to single
spectrum data with a field strength greater than 21 T, if all
other performance parameters are considered identical.
Furthermore, mass error reduction would allow shrinking the
tolerance window that is used to screen for formula matches. A
smaller tolerance window goes hand in hand with a reduced
rate of erroneous formula attributions.

Reduction of Error in Isotopologue Intensity Ratios.
The distribution of isotope ratio deviances of the ubiquitous
isotope pairs ranging below the deviance threshold within

Figure 1. Mean absolute error (MAE) of attributed molecular formulas. The factors “one”, “three”, “thirty”, and “all” correspond to the number of
spectra over which equal masses were averaged and used for the MAE calculation.

Figure 2. Data inherent mass error reduction by averaging equal
considered masses along aligned spectra measurements. The
saturation values represent a left-over systematic error. Note the
different scale of the y-axes to highlight the shape of the curve.
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molecular formula attribution (±1000 permille) showed a clear
contraction with growing “n” (Figure 3). As expected, the
recalibration of masses did not affect the isotope ratio
distributions because these were based solely on intensities.
By contrast to mass error, the true isotope ratio deviance to be
estimated was nonzero. Most natural substances or carbon
pools have been subject to enzymatic isotope fractionation and
exhibit negative δ13C values usually in the range of −10‰ to
−30‰, but isotope fractionation effects can also be much
larger, e.g. in the case of methanogenesis.32 By decreasing
random error through averaging spectra, we considerably
narrowed the distribution of Δ13C close to δ13C values
observed for bulk DOM. Indeed, the Δ13C values were
comparable to observed bulk δ13C values for natural organic
matter in the literature29,30 and were similar for both Deep Sea
and North Sea (Figures 3 and 4). Instrumental fluctuations of
intensity values were large (exceeding a factor of 2) and clearly
related to instrument drifts, as exemplarily shown for molecular
formula C19H24O9 (Figure S2). By contrast, intensity ratios
and, as such, Δ13C values showed no clear autocorrelation or
trend. This result is encouraging and indicates that it is
possible to accurately and reproducibly determine isotope
ratios of bulk DOM from averaging isotope ratios of individual
compounds detected in FT-ICR-MS spectra. It also
independently confirms that molecular formula assignment
based on detected masses was accurate because the Δ13C
values converge to values we expect for DOM. Furthermore,
the tolerance of ±1000 permille that we used within formula
attribution could be reduced to ±400 permille for both data
sets (Figure 4) when using all spectra. In an even more
conservative setting, isobaric compounds, where only the

numbers of heteroatoms and hydrogens varies, not the
numbers of carbons, can be accounted for by extending our
method to other isotopologues, such as 15N.
The SNR of the isotope pair had a systematic influence on

the range of Δ13C (Figures 4 and 5, here SNR based on the
12C peak). This suggests that Δ13C values are measured more
precisely with higher SNR, which is consistent with the fact
that instrumental noise in intensity is higher for low-SNR
peaks. Our fitted model (eq 6) separating SNR dependent
from SNR independent random error described both data sets
(Figure 5) very well, although to a lesser extent the North Sea

Figure 3. Distributions of Δ13C of ubiquitous masses after mass merging and averaging of isotope ratios visualized in violin plots which are based
on a rotated kernel density estimation of the data flanking a boxplot in the center. The factors “one”, “three”, “thirty” and “all” correspond to the
number of spectra across which averaging took place. The (30×) corresponds to the number of bootstraps.

Figure 4. Violin plots of averaged Δ13C values calculated along all
spectra of the respective data sets for each isotope pair. Colors (red =
high, gray = low) correspond to mean signal-to-noise ratios of the
respective isotope pair across all spectra.
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data set. We observed an asymptotic SNR-independent error
in the data of 10‰ for North Sea and 11‰ for Deep Sea.
Quantile plots (Figure S3) for the four masses with the

highest mean SNR within the Deep Sea data set showed
normally distributed Δ13C values. This strengthens our
assumptions that the left-over (asymptotic) error can be
reduced via averaging spectra by a factor of 1/ n . The mean
Δ13C of these four formulas (means with 95% confidence
intervals: C19H24O9 = −20.85 ‰ ± 3.8 ‰; C19H24O10 =
−22.53 ‰ ± 4.4 ‰; C20H24O10 = −46.54 ‰ ± 2.8 ‰;
C20H26O10 = −43.17 ‰ ± 3.0 ‰) showed statistically
significant differences (Figure S3) tested by ANOVA (p <
0.01). There is no reason to assume that elemental
composition or structural features of a compound would lead
to systematic instrument errors of Δ13C. Thus, it is possible
that we approximated natural isotope ratios (δ13C) of
individual molecules by determining Δ13C.

■ CONCLUSION
With this study we have shown that mass precision of FT-ICR-
MS is strongly improved by alignment of spectra from different
natural organic matter samples. Time-consuming and
expensive replicate measurements are not necessarily required.
As a rule of thumb, the best cost to benefit ratio was seemingly
obtained with a set of 30 independent samples. More samples
or replicate measurements of identical samples did not yield
noteworthy improvements, even though studies involving
steeper environmental gradients and compositionally more
differentiated DOM arguably could benefit from larger data
sets. The resulting improved accuracy of mass is a key to
successful molecular formula attribution. Our method can not
only be applied to improve future data sets but could also
easily be used to reprocess existing data sets and be extended
to other instruments; e.g. Orbitrap-based mass spectrometers.
A further advantage is the reduction of computational effort
because molecular formula attribution has to be done only
once for the averaged masses and not for every spectrum
separately. Furthermore, aligned mass spectra can be directly
used to exclude noise in the data by accepting only masses
present in at least a certain number of spectra for further
processing steps33a strategy that makes intuitive sense when
a study involves replicate measurements or only weakly
differentiated DOM samples. The smallest mean absolute
mass error (MAE) was obtained for isotope-verified subsets of
molecular formulas. Thus, only isotope-verified subsets should

be used in studies where maximum accuracy of formula
attribution is of highest importance. Averaging improves the
mass precision and allows obtaining mean absolute errors that
otherwise can only be reached by instruments with much larger
magnetic field strengths. By averaging 30 spectra (samples) of
our 15 T instrument, we reach a precision comparable to a
single spectrum measurement of a 21 T instrument. Further
improvements in mass accuracy are obtained by novel
instrument technology, mainly novel ICR-cell design, absorp-
tion mode, and detecting second harmonic oscillations. Here
we show that by simple postdetection data processing,
significant improvement in mass accuracy can be obtained at
little cost.
In addition to improving mass accuracy by aligning spectra

and averaging, also the accuracy of intensity ratios of
isotopologues was improved to a degree that measured
deviations were within the range of natural isotope ratios.
We recommend calculating isotope ratios as accurately as
possible using binomial probabilities instead of the traditionally
used, erroneous expression of C-deviance, which is increasingly
biased with the number of carbon atoms in a molecule. In
analogy to δ13C in environmental studies, we introduce Δ13C
as an analytical measure for isotope ratio deviance. Contrary to
raw intensities, Δ13C values are only marginally influenced by
instrumental fluctuations and they are reproducibly and
accurately detectable. Spectra-averaged Δ13C values of
molecular formulas, especially when accounting for the
influence of SNR, reach values in the range of natural organic
matter.29,30,34 However, there is considerable and consistent
variation in Δ13C of individual molecules. We encourage future
studies to validate this observation with reference compounds
with known δ13C. The determination of δ13C on a molecular
formula level would allow revolutionary new insights into the
source and cycling of compounds through aquatic food webs
and in biogeochemical cycles.
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