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As global climate change progresses, the occurrence of potentially disruptive

climatic events such as storms are increasing in frequency, duration and inten-

sity resulting in higher mortality and reduced reproductive success. What

constitutes an extreme climatic event? First we point out that extreme climatic

events in biological contexts can occur in any environment. Focusing on field

and laboratory data on wild birds we propose a mechanistic approach to defin-

ing and investigating what extreme climatic events are and how animals cope

with them at physiological and behavioural levels. The life cycle of birds is

made up of life-history stages such as migration, breeding and moult that

evolved to match a range of environmental conditions an individual might

expect during the year. When environmental conditions deteriorate and

deviate from the expected range then the individual must trigger coping

mechanisms (emergency life-history stage) that will disrupt the temporal pro-

gression of life-history stages, but enhance survival. Using the framework of

allostasis, we argue that an extreme climatic event in biological contexts can

be defined as when the cumulative resources available to an individual are

exceeded by the sum of its energetic costs—a state called allostatic overload.

This allostatic overload triggers the emergency life-history stage that tempor-

arily allows the individual to cease regular activities in an attempt to survive

extreme conditions. We propose that glucocorticoid hormones play a major

role in orchestrating coping mechanisms and are critical for enduring extreme

climatic events.

This article is part of the themed issue ‘Behavioural, ecological and

evolutionary responses to extreme climatic events’.
1. Introduction
Organisms have evolved to match behaviour and physiology to the predictable

environmental variation in their particular habitats. In order to maximize fit-

ness, most organisms express different life-history stages (e.g. breeding,

migration, moult) that modify morphology, physiology and behaviour across

time to optimize performance. To time the expression of each life-history

stage appropriately, organisms rely on environmental cues that signal predict-

able changes in conditions such as seasons, day/night, low tide/high tide, etc.

(e.g. [1–5]). Thus, animals avoid the overlapping of life-history stages that are

energetically expensive and could affect fitness negatively.

Even though many organisms have evolved adaptations for predictable

environmental variation, unexpected events creating an unanticipated environ-

ment can have negative impacts on the organism (environmental perturbations).

Such changes may include deterioration in habitat quality, increased incidence

of injury/disease, shifts in predation pressure, anthropogenic changes and disrup-

tive weather events. Here we focus primarily on climatic perturbations of the

environment that are especially relevant given that the incidence of catastrophic

weather events such as floods, droughts, storms, heatwaves and cold spells have
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risen in frequency almost 10-fold in the past 50 years [6]. Fur-

thermore, there has also been an increase in duration and

intensity of such events in recent decades attributed to climate

change (e.g. [7], see also [8,9] in this issue for a broad discussion

of definitions and terminology).
 cietypublishing.org
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2. Definition of an extreme climatic event
Efforts to study ‘extreme climatic events’ have been stymied by

lack of a consistent and broadly applicable definition [8,9]. One

reason for this difficulty is that concepts of ‘extreme’ must be

appropriate for the organism or biological systems under

study and unbiased by the perspective of the scientists develop-

ing them [10–13]. At present two major definitions have been

used. First, the climatological definition uses a frequency distri-

bution of climatic events and designates conditions falling

within an arbitrary percentage region (often 5%) at either end

of the distribution as extreme [10–12]. The second, but far

less frequently used type, addresses environmental conditions

that become sufficiently harsh to elicit population- and individ-

ual-based biological responses. These types of reactions have

included changes in mortality rates, reproductive success, mor-

phology and physiology, though no consistent set of criteria

has emerged [10–14]. Caution is needed, however, because bio-

logical definitions of extreme climatic events cannot distinguish

other negative climatic events that may not fall within the

extreme 5% margins defined by climatologists [10]. This

means that biological definitions may identify more events as

extreme than climatological or, alternatively, that extreme

events under a biological definition may not appear to be so

if they do not conform to the climatological definition.

Extreme climatic events vary in frequency, intensity and

duration. For instance, long-term extreme climatic events

(termed compound events [9]) can last from weeks to months

such as the extreme cold spell in the spring of 2013 in

North America and Europe, and a strong El Niño Southern

Oscillation event, or they can be short-term such as a hurricane

or tornado (termed simple events [9]). What constitutes an

extreme climatic event is highly variable across environments.

For example, an accumulation of 20 cm of snow in western

Washington State, USA, would represent an extreme event

whereas the same snowfall would merely be an inconvenience

in Montreal, Canada. Similarly, a 20 m per second wind over

the open ocean would be a routine event, but would likely be

extreme in a forest [14,15]. Extreme climatic events impact

both plants and animals which may result in population

declines as well as changes in distribution and phenology.

This ultimately leads to the evolution of regulatory mechan-

isms as individuals adjust to a changing climate and the

occurrence of extreme climatic events. While biological defi-

nitions of extreme climatic events can emphasize population

level and individual responses that are very important

[14–17], until recent years there have been very few studies

that have addressed the underlying physiological and

behavioural mechanisms down to cell and molecular levels.
3. Variation in what constitutes an extreme
climatic event for an individual

While a climatological definition is intuitively appealing and a

useful categorization in many respects, we wish to make the
case for a biological definition of extreme climatic events

because some individuals in a population may perceive an

event as extreme and others may not. A climatological defi-

nition does not account for variation in how an event is

experienced by the individual organism that may experience

such events differently from another. Combinations of factors,

biotic and abiotic, predictable and unpredictable will determine

how extreme the event may be [18,19]. These factors, in turn,

have variable effects on organisms depending on body con-

dition, history of disease, social status, life-history stage (e.g.

breeding versus wintering), or even ‘carry-over’ effects from

prior events [20,21]. Furthermore, climatological definitions of

extreme events that are limited to a percentage window may

fail to capture the full range of extreme climatic events on

biological processes. As the climate changes, events that fall

within a window of extremes will shift, representing a greater

percentage of observed weather. However, organisms may

not have changed in their ability to cope with such conditions

and thus the window may no longer adequately describe the

full range of conditions that constitute an extreme event. We

argue that organism responses to extreme climatic events,

including susceptibility and resilience, cannot be predicted

solely by climatic definitions. To illustrate this point, we present

a series of case studies below that highlight the diversity of

responses to extreme climatic events across environments.
4. Case studies: Arctic-breeding songbirds,
species level variation in responses to extreme
spring weather

The Arctic is undergoing rapid changes in temperature and

snow-melt dates [22,23]. Here we examine responses of two

Arctic-breeding migratory songbirds the Lapland longspur,

Calcarius lapponicus, and Gambel’s white-crowned sparrow,

Zonotrichia leucophrys gambelii to ‘extreme’ conditions in spring

of 2013 on the North Slope of Alaska. This period featured

record low temperatures and persistent snow cover throughout

the Northern Hemisphere extending into the late spring during

the migration and breeding periods [24,25]. Arrival dates for

white-crowned sparrows and Lapland longspurs were mark-

edly delayed, which is likely the case for most migrants in that

year [24]. These extreme conditions resulted in reduced body

condition in both Lapland longspurs and white-crowned

sparrows as they arrived on the breeding grounds [24].

In addition to cold springs, shifts in climate are resulting in

greater occurrence of snowfall during the critical period of egg

laying and incubation [22,24]. Although these events might not

always be classified as extreme according to the climatological

definition, they do present challenges that may be perceived as

extreme by the birds that are enduring them. Snowstorms

reduce access to resources necessary for breeding and will

eventually cause both Lapland longspurs and white-crowned

sparrows to abandon territories and form mixed flocks,

resulting in reproductive failure for the current brood [24,26].
5. Case studies: Adélie penguins, combined
events with extreme consequences

Turning to the other Pole, we examine the case of breeding

Adélie penguins, Pygoscelis adeliae, in the Terre Adélie sector

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160140

3

 on May 8, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
of Antarctica. This anecdote illustrates how multiple events

that individually may or may not fit the climatological defi-

nition of extreme may prove catastrophic in combination.

During the austral summer, Adélie penguins typically breed

in subzero temperatures and strong katabatic winds blowing

north from the continental icecap [27–29]. As in the Arctic,

such conditions would be considered extreme by a subjective

observer, but reflect the climatological norm for Adélie pen-

guins (see also [18,30]). During the 2013/2014 breeding

season, the colony at Pétrels Island (668400 S, 1408010 E) experi-

enced unprecedented complete reproductive failure with loss

of all chicks on the island prior to fledging. This was the first

such record for the site [28]. From a biological perspective

the complete reproductive failure of a colony is certainly

indicative of an extreme event, but in this case the cause has

been attributed to two simultaneous weather events during

the 2013/2014 breeding season. First, the summer was unu-

sually warm leading to periods of rain that, combined with

subsequent snow-melt, posed significant thermal challenges

to drenched young chicks adapted to the typically cold and

dry conditions of the region. Compounding these increased

thermal challenges, uncharacteristically low wind speeds at

the colony failed to disperse sea-ice cover, which increased

the distance parents had to travel to forage at sea dramatically.

This decrease in resource availability ultimately led to less

chick provisioning. The combined result of these two events

was complete reproductive failure of the colony—which may

have significant future consequences for the population as

well as the local ecosystem [28]. This case highlights the fact

that to us, seemingly positive environmental changes such as

increased temperature and decreased wind speed may in com-

bination constitute an extreme event for a species adapted to a

polar environment. Further, it illustrates the need to integrate

climatic and biological definitions when assessing whether

an extreme event has occurred.
6. Case studies: snow petrels, extremes that
matter, extremes that do not

Snow petrels, Pagodroma nivea, spend their entire life cycle in

Antarctica, usually in pack ice [18,31]. In general, high winds

and snow may not constitute severe conditions for snow

petrels unless food availability is also affected. In January

2010 at the French Polar Institute in Dumont D’Urville

(668400 S, 1408010 E), east Antarctica, several days of high

winds and snow had only a negligible effect on nesting

snow petrels. However, on the fourth day, temperatures

soared to record highs (7.78C on 23 January) and snow

turned to rain. Drifted snow in nest cavities melted rapidly

resulting in flooding and abandonment of nests, loss of

eggs and newly hatched young [18,19]. Whereas snow and

ice would be considered more extreme for the investigators,

at least in this instance it was not a problem for this species

[31]. Some petrels hatched chicks while inundated with

snow. On the other hand, we see that warmer temperatures

and effects of flowing water (not extreme for investigators)

appeared to constitute an extreme climatic event for snow

petrels resulting in 90% reproductive failure. Choosing nest

sites sheltered from snow or ice positively alters the petrel’s

selective environment, but that same decision may create an

environment that is detrimental in a different context such

as flooding.
7. Case studies: extreme heat
Many animals and plants are adapted to seasonal heat

especially by using micro-habitats (for reviews see [15,32,33],

see also Gardner et al. [34], for longer term responses). This tol-

erance of what to us are extreme conditions can be exacerbated

by further extreme events of even higher environmental temp-

eratures. Animals may already be near the upper edge of their

thermal tolerance range due to limited mechanisms of cooling,

as opposed to the wide variety of mechanisms by which physi-

ology may be adapted to low temperatures [33]. Furthermore,

behavioural mechanisms such as facultative migrations may be

useless when temperature extremes are widespread forcing

birds to endure the event. As with humans [35], fatalities

during extreme heat events have been recorded in birds both

in Australia and North America (reviewed in [15,33,36]). The

single largest high temperature event on record occurred in

1932 when a heatwave struck much of southern Australia,

with air temperatures reaching 498C. This extreme event led

to the deaths of tens of thousands of birds despite the avail-

ability of water sources nearby [37]. More recently, a

multiday heatwave with temperatures in excess of 458C led

to the deaths of thousands of small birds in Western Australia

(approx. 500 km north of Perth; reviewed in [33]). These

heat-related mass mortality events highlight the example of

climatological extremes and biological extremes matching.

Such matching examples and others that do not necessarily

match underscore the importance of understanding physio-

logical responses of organisms to extreme events in order to

predict the scope and degree by which populations will be

able to resist future extremes.
8. A new take on the biological-based approach
to extreme climatological events:
physiological mechanisms using allostasis as a
concept to define extreme events at
population and individual levels

We propose an organism-based biological approach to define

extreme climatic events rooted in physiological and behaviou-

ral mechanisms of responses to harshening/deteriorating

environmental conditions as a means of detecting, exploring

and predicting how organisms respond. Using the concepts of

allostasis and the emergency life-history stage as a framework

allows identification of when an organism is experiencing an

extreme climatic event based on quantifiable physiological

and behavioural changes in response to altered environmental

conditions. It also allows researchers to predict when changed

environmental conditions may negatively affect organisms in

different physiological and behavioural states according to

sex, reproductive status, prior condition, etc. [14,16,38,39]. The

framework may provide a reliable and consistent way to

define an extreme climatic event across contexts, populations

and individuals.

Allostasis, stability through change, attempts to extend

the concepts of homeostasis in a world that is changing predic-

tably (e.g. seasons) and unpredictably (e.g. weather events,

human disturbance). It depends on energetic considerations

beginning with the energy in the environment (food), that is

designated as Egained (Eg) and is dynamic, quantitatively

http://rstb.royalsocietypublishing.org/
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Figure 1. Perturbation resistance potential (PRP) in different seasons. Ecr is the cumulative energetic resources available to an individual. Ee represents the existence
energy and Ei is the additional energy required to go about daily routines (see [14,38 – 40]). PRP ¼ Ecr 2 Ee þ Ei (vertical blue arrows). (a) PRP is higher in
summer allowing more energetically demanding life-history stages such as breeding, moult and migrations to occur. (b) Ee þ Ei are higher and because Ecr remains
unchanged then PRP is very low in winter and reduced in spring and summer. (c) Ee þ Ei remain the same as in (a) but Ecr is greatly reduced resulting in very low
PRP. The worst case scenario is shown in (d ) where Ee þ Ei are increased and Ecr is reduced. Now PRP is negative in winter and greatly reduced in spring and
summer. When PRP is low then extreme climatic events could result in allostatic overload type 1.
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and qualitatively, and also generally predictable (figure 1,

[39]). Egained is a function of day length as well because

longer days allow more primary productivity (figure 1).

Specific individual characteristics such as social status, body

condition and territory quality can also influence Egained in

terms of access to food and variation of quality with habitat.

Given these diverse contributions to energy available to the

individual we consider the cumulative resources available

(Ecr) that ultimately affect an individual and are critical for the

allostasis concept but are largely ignored in other discussions

of allostasis and reactive scope [14,16,41–43]. In the absence of

considering Ecr, then the assumption must be that food and

access to it is ad libitum. In captive studies this may be true

but in the natural world ad libitum is rare. Furthermore, as

pointed out by Walsberg [42], energy balance is not always a

good index of allostatic load (stress). However, if one considers

Ecr in the framework of allostasis and resources available then

many processes regarded as having trivial costs (such as social

status) actually carry large costs, but in terms of access to food

and shelter (Ecr). Thus although social status in some contexts

may have little effect on allostatic load, reduced access to Ecr
could have profound potential impacts on vulnerability to

further environmental changes [44,45]. Below we explore the

implications of Ecr and allostatic load and the potential regu-

lation and modulation of hormonal responses for coping with

environmental perturbations [14,43,46].

Hypothetical variations in Ecr with different seasons indi-

cate that resources tend to be low in winter when primary
productivity is least, and much higher in spring and summer

when primary productivity is greater (figure 1, [32,39]). Ee rep-

resents the existence energy for an individual across seasons

and Ei is the additional energy required to go about daily rou-

tines such as foraging, assimilating food, territory maintenance

etc. (figure 1, [32,39]). Both Ee and Ei tend to be higher in winter

when temperatures are lower and food is harder to find

compared with spring and summer [32,39].
9. Allostatic overload and the emergency
life-history stage

When costs of daily and seasonal routines, the current life-

history stage and additional unpredictable events such as

perturbations exceed Ecr, then allostatic overload type I occurs.

It is at this point that the emergency life-history stage, or survival

stage, is triggered and the life-history stage for that time of year is

abandoned so that all available energetic resources can be

devoted to self-preservation [14,32,38,39]. The activation of

the emergency life-history stage comes with trade-offs such as

abandonment of reproduction or delayed arrival on breeding

grounds depending on the time of year (e.g. [14,15]). Impor-

tantly, an individual must ideally trigger the emergency

life-history stage before Ecr is exceeded by current energetic

costs so that some reserves are available to maintain homeostasis

in a shelter, or fuel movement away to a refuge or habitat where

survival is possible. It should be noted that this emergency

http://rstb.royalsocietypublishing.org/
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life-history stage is not always successful and some events can

result in high mortality (for review and examples see [15,46]).
10. Perturbation resistance potential
A key concept of vulnerability to extreme climatic events or

environmental stress in general is the ‘perturbation resistance

potential’ (PRP, [18,19]). It is a function of the difference

between resources available (Ecr) and the sum of costs of

daily and seasonal routines (Ee and Ei). Thus perturbation

resistance potential ¼ Ecr 2 Ee þ Ei (see vertical blue

arrows in figure 1) and ideally should be kept as large as

possible to provide ample resources to cope with pertur-

bations of the environment without having to trigger the

emergency life-history stage [18,19]. In figure 1a, pertur-

bation resistance potential is low in winter but much

higher in summer allowing more energetically demanding

life-history stages such as breeding, moult and migration to

occur without exceeding available resources. It can also be

seen how low perturbation resistance potential in winter

might mean that the individual is more susceptible to an

extreme climatic event increasing energetic costs compared

to in summer. In figure 1b, Ee þ Ei could be higher because

of, for example, an injury to an individual that has increased

costs of daily routines and/or parasite load. Elevated costs

may also occur because of competition with conspecifics or

avoidance of predators reducing perturbation resistance

potential compared with figure 1a. In figure 1c, Ee þ Ei
remains the same as in figure 1a but Ecr is greatly reduced

owing to, for example, a climatic event, poor quality terri-

tory, etc. This latter example shows perturbation resistance
potential is again lowered but for different reasons. The

worst-case scenario is shown in figure 1d where Ee þ Ei are

increased as in figure 1b and Ecr is reduced as in figure 1c.

Now perturbation resistance potential is negative in winter

requiring migration to a location where resources are more

abundant (or hibernation). In spring and summer pertur-

bation resistance potential is greatly reduced in figure 1c
resulting in very little energy margin for breeding or

moulting. These individuals would also be very vulnerable

to energetic costs of further extreme events. When pertur-

bation resistance potential is low then extreme climatic

events will result in rapid allostatic overload type 1. If an

environmental perturbation such as an extreme climatic

event results in perturbation resistance potential declining

to zero, or becoming negative (allostatic overload type 1),

then the event fits our definition of extreme and the individ-

ual expressing a life-history stage appropriate for that time of

year cannot cope with current conditions. Allostatic overload

type 1 then represents a biological example of the effect of an

extreme climatic event as experienced by an individual.

The variation in perturbation resistance potential shown

in figure 1 does not take into account life-history stages

such as migrations, breeding and moulting that are also ener-

getically demanding and must be timed to occur when Ecr
can support such efforts [14,39]. However, adjustments of

expression of life-history stages through timing, duration

and intensity can maximize perturbation resistance potential

so that unpredictable perturbations such as extreme climatic

events may potentially be endured (figure 2). This example

shows the moult life-history stage. Figure 2a is identical to

figure 1a and is presented for easy reference. Here cumulative

food resources and reserves (Ecr) are much higher in spring

http://rstb.royalsocietypublishing.org/
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and summer (see also figure 1) and daily costs of mainten-

ance and routines (Ee þ Ei) tend to be lower at these times

maximizing perturbation resistance potential. If we then

include costs of the moult life-history stage in figure 2b then

Ecr is sufficient to cover energetic costs of that life-history

stage but perturbation resistance potential is reduced (vertical

blue arrows). This means that susceptibility to further extreme

climatic events is greater, but animals usually counter this risk

by scheduling moulting to a time of year when Ecr is very high

and weather is more stable (e.g. summer, [14,15]).

If the moult life-history stage progresses more slowly, then

costs will be lower but extended in time resulting in greater per-

turbation resistance potential during moult in figure 2c versus

figure 2b. Another option is to eliminate a separate moult life-

history stage altogether and spread moulting over the entire

year but at a very slow rate (e.g. as in the zebra finch, Taenopygia
guttata; see [47]). As a result, energetic costs of moulting would

be much lower but constant (red line in figure 2d). In this scen-

ario perturbation resistance potential would be only slightly

lower than in figure 2a. Adjustments of the intensity and dur-

ation of other life-history stages could also be made in

diverse ways to maximize perturbation resistance potential

over the entire year. In this way, the individual may be able

to maintain internal and external resources to cope with further

perturbations of the environment except for those most

extreme climatic events that could still result in energetic

costs exceeding Ecr.
11. Glucocorticoids and the emergency life-
history stage: mechanisms for coping
with extreme climatic events

The classic adrenocortical response to environmental stress is

one hormone regulatory system that has been investigated

most broadly in relation to extreme environmental events

in general. The hypothalamo-pituitary-adrenal (HPA) axis

responds to perturbations of the environment by triggering

a cascade of hormonal secretions beginning in the hypothala-

mus and ending with increased synthesis of glucocorticoids

(corticosterone in birds) that orchestrate a suite of physio-

logical and behavioural coping responses (see [15,46,48,49]).

There is also extensive experimental evidence that corticoster-

oids orchestrate changes in foraging behaviour, facultative

migratory behaviour, inhibition of unnecessary processes

such as reproductive behaviour and territorial aggression

in birds, as well as energy mobilization in general and

immune system function (see [14,16,48,49] for extensive dis-

cussions). It should be pointed out that in relation to

glucocorticoid effects on energy mobilization, analysis of

the literature indicates that the long assumed relationship

with glucose levels in blood do not always exist [41,50]

although permissive actions at the level of the liver may be

in operation including mobilization of free fatty acids and tri-

glycerides—important sources of energy in birds [14,50].

Other hormone systems are also involved in regulation of

the emergency life-history stage such as epinephrine, cyto-

kines and others but these are beyond the scope of this paper.

There is now very extensive evidence from free-living

species responding to natural environmental perturbations as

well as standardized stressors applied in the field and

laboratory that the HPA axis is activated resulting in elevations
of circulating corticosteroids (see [14] for broad review of ver-

tebrates, also [15] for responses to weather events). Elevation

of glucocorticoids is a response to deleterious environmental

variation and is often accompanied by activation of the emer-

gency life-history stage. Corticosterone in the blood of birds

at baseline levels (called A to B, see [14,32,50]) regulate daily

and seasonal changes in metabolism and osmoregulation in

relation to homeostasis (see [14,49]). As corticosterone levels

rise with elevated energetic costs (level B) then mobilization

of energy through gluconeogenesis is triggered (but see [41])

and at highest titres (level C) enable increased foraging,

escape activity consistent with leaving the immediate area

and increased night restfulness saving energy to be used for

survival the next day (see [14,17,30,32,50] for extensive

reviews). These actions cover the reactive scope [14,41] of corti-

costerone and are consistent with activities triggered in the

emergency life-history stage during an extreme climatic event.
12. Mechanisms of glucocorticoid action and
their role in coping with extreme climatic
events

How the reactive scope of glucocorticoids may direct responses

to extreme climatic events has important components at cell and

molecular levels. Actions of glucocorticoids have distinct mech-

anisms at baseline levels, (A to B, [51], see also the reactive scope

model of Romero et al. [41]) probably mediated through an

intra-cellular, high affinity receptor (mineralocorticoid receptor

or MR), generally associated with maintenance of day-to-day

functions and predictable events. At ‘stress’ induced levels

(level C) glucocorticoids are associated with coping mechan-

isms to deal with perturbations of the environment [50].

These actions of glucocorticoids likely involve binding to

another intra-cellular receptor, the glucocorticoid receptor

(GR), that has lower affinity for corticosterone than the minera-

locorticoid receptor and is only bound at high circulating levels

of glucocorticoids (e.g. [16,50,51]). There is also strong evidence

for a third type of receptor associated with target cell mem-

branes that can mediate very rapid actions (seconds to

minutes, [52]) of glucocorticoids compared with the other

intra-cellular receptors that affect gene transcription directly

but much more slowly (hours). The fast acting membrane recep-

tor [51] appears to have specific actions on locomotor activity

but only in the breeding season in white-crowned sparrows

[52]. Again, it is important to note that actions of glucocorticoids

can be very different at basal levels (level A) versus changes of

baseline levels of glucocorticoids during the day or annual

cycles (level B) [14,50,51]. Changes of glucocorticoid levels

within levels A and B allows expression of behavioural and

physiological phenotypes within the normal range of environ-

mental variation. Level C is the highest category of circulating

glucocorticoids (e.g. induced by allostatic overload type 1)

that triggers coping mechanisms outside the normal range of

environmental variation (see figure 1).
13. Adrenocortical responses to environmental
variation and extreme climatic events

Many field studies repeatedly show that weather events which

trigger the emergency life-history stage have elevated plasma

http://rstb.royalsocietypublishing.org/
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Figure 3. The hypothetical relationships of circulating glucocorticoids and the
range of environmental conditions expected when a specific life-history stage
is expressed. Environmental conditions can be expected to be good, poor or
bad for each life-history stage. Baseline corticosteroid levels in blood tend to
increase slowly as conditions deteriorate and increase allostatic load. These
concentrations rise above level A (homeostatic level, lightest shade of
grey) and within level B (reactive scope for that life-history stage, middle
shade of grey). When conditions become extreme (right hand vertical line)
then corticosterone levels increase rapidly to level C as a result of allostatic
overload; that then triggers facultative responses such as the emergency
life-history stage (darkest shade of grey). The slope of the lines for circulating
corticosteroids will vary among life-history stages. Four are presented here
with one showing low baseline and rate of increase as well as maximum
level. Such variation in the dynamics of corticosteroid responses to
deteriorating weather events and stress in general are common [14,32].
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corticosterone levels above baseline (i.e. levels A and B to C

[14,15,17,24]). This appears to be true whether the focal species

is living at low or mid-latitudes in mesic environments, or in

more extreme environments such as polar regions or high alti-

tude. These populations may already be coping with cold,

snow, rain, etc. as part of their daily and seasonal routines

before exposure to an extreme climatic event. There are numer-

ous examples for each of these scenarios that have now been

reported and have been reviewed extensively in relation to

weather events [14,15]. However, there are some exceptions

such as in Lapland longspurs and white-crowned sparrows

breeding in Arctic environments where they differ in some

physiological indicators of exposure to extreme climatic

events. Lapland longspurs responding to an extreme weather

event had elevated levels of corticosterone when tested

with a standardized stressor (capture, handling and restraint)

whereas baseline levels were not different [24,26]. Similar

results were obtained for white-crowned sparrows breed-

ing at the northern edge of their range in Alaska and in a

more harsh environment (see [53]). There may be numerous

reasons to explain these apparent anomalies given that

corticosterone receptors can change, as can blood levels of

a binding protein, corticosterone-binding globulin [14].

Because corticosterone bound to corticosteroid-binding globu-

lin is generally thought not to be able to enter target cells, then

levels of this protein in blood will be an important consider-

ation for future studies (but see [54]). Other components of

the secretion-transport-target cell cascade, such as corticoster-

oid metabolizing enzymes that can deactivate corticosterone

or promote its action, will also be important for future investi-

gations to fully understand the hormonal control of responses

to extreme climatic events (see [14,16] for extensive discussion).

Given the widespread demonstration that weather events

resulting in altered life-history stages are accompanied by

elevated circulating levels of corticosteroids, it is now appropri-

ate to depict the hypothetical relationships of circulating

corticosterone to the range of environmental variation expected

when a specific life-history stage is expressed (figure 3).

Environmental conditions can be expected to be good, poor

or bad for each life-history stage (figure 3) but perturbation

resistance potential and baseline levels of corticosterone

allow the individual to cope with this range of conditions.

Baseline corticosteroid levels in blood tend to rise as conditions

deteriorate and increase allostatic load. These concentrations

increase though level A (homeostatic level, lightest shade of

grey, see also [41]) and level B (reactive scope for that reaction

norm, middle shade of grey). When conditions become

extreme (right hand vertical line) then corticosterone levels

rapidly increase to level C as a result of allostatic overload

that then triggers facultative responses such as the emergency

life-history stage (darkest shade of grey). The slope of the lines

for circulating glucocorticoids will vary among life-history

stages. For example, baseline levels of corticosterone in

Gambel’s white-crowned sparrow tend to be lowest in the

year during moult and show the least increase in response to

a standardized stressor of capture, handling and restraint [14].

In contrast, during spring migration and arrival on Arctic

breeding grounds, baseline levels are high and stress titres are

the greatest of the year ([14,53] for review and discussion).

It is possible that rising corticosteroid levels within levels

A and B and as environmental conditions vary from good

to bad and extreme (figure 3), might be involved in determining

phenotypes that are expressed under such conditions [55,56].
Examples could include changing morphological, physiological

and behavioural traits within an individual as conditions

deteriorate leading to differences among individuals and popu-

lations. Many other factors could then have an influence on how

individuals respond to extreme climatic events. It should also

be borne in mind that specific corticosterone reactive pheno-

types can develop such as reactive/proactive individuals

depending upon varying environments both biotic and abiotic

(e.g. [55–57]). These in turn may add to the broad spectrum of

ways by which individuals and populations respond to the

same extreme climatic events. Note also that the scenarios in

figure 3 no longer assume that plasma corticosterone levels

increase in parallel with allostatic load (as suggested earlier in

[32,39]), but may increase slowly at first and then rise rapidly

when conditions become more extreme.
14. Conclusion and new directions
What constitutes an extreme climatic event? Firstly it is impor-

tant to differentiate between climatological definitions of

extreme events and the biological contexts that result in a

response by an organism to that event. It is clear that many

extreme climatic events do elicit a behavioural and physio-

logical coping response but this can also occur in less

extreme climatic conditions. Some individuals in a population

may be experiencing extreme conditions in what otherwise

would not be considered an extreme event climatologically

because of other circumstances such as habitat quality,

body condition, social status, etc. A mechanistic approach is

suggested to define and investigate further what extreme cli-

matic events are in biological contexts and how animals cope
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with them at physiological and behavioural levels. An allostatic

load approach allows us to assess the resources available to an

individual in relation to costs incurred by daily routines and

additional stress. This is called the perturbation resistance

potential. When the perturbation resistance potential reaches

critically low levels, or even becomes negative, this is a signal

of an extreme event (including climatic) and the emergency

life-history stage is triggered allowing the individual to cope.

This disrupts the temporal progression of life-history stages,

but enhances survival. Evidence is growing that glucocorticoid

hormones play a major role in orchestrating coping mechanisms

and are critical for enduring extreme climatic events.

Additionally, including the framework of phenotypic plas-

ticity provides two levels of concepts that could be useful to

define when an event should be considered ‘extreme’. On one

hand, predictable and unpredictable changing environmental

conditions at short time scales promote the reversible expression

of different phenotypes within individuals (i.e. phenotypic

flexibility, [55,56,58–60]). These reversible transformations in

morphological, behavioural and physiological traits might

involve a positive outcome in terms of fitness (see [4,5]). In con-

trast, the concept of ‘developmental plasticity’, environmentally

induced variations in the traits of individuals during develop-

ment, are normally irreversible [4]. These variations can be

described by empirical relationships such as reaction norms

[61,62], but what this may mean at mechanistic levels remains

to be clarified. In the particular case of reversible endocrine

traits—mediators of many behavioural responses—the concept

of phenotypic and endocrine flexibility has been recently intro-

duced [1,5,30,56,58,59]. Endocrine responses are not necessarily

best examined as positive or negative but may display impor-

tant and informative patterns of variation within and between

individuals. Taff & Vitousek [56] differentiated between the

potential (i.e. maximum flexibility) and realized endocrine flexi-

bility (the exhibited endocrine flexibility by one individual in

different contexts), and between the magnitude of within-

individual changes of endocrine traits (i.e. scope of flexibility)

and the speed of flexibility or how fast the endocrine response

takes to be expressed. Such approaches may be useful to

integrate with the concepts of allostasis and perturbation resist-

ance potential to predict hormonal mechanisms underlying

coping with extreme climatic events.

As proposed by Piersma & Drent [59], the environmen-

tal components of the total phenotypic variance can be

divided into separate factors, reversible (flexibility) and
non-reversible (plasticity). The interaction between these

two components allows us to understand how much of the

organismal response to environmental perturbations is a

result of reversible variations shaped by developmental

stages [57]. However, both phenotypic flexibility and plas-

ticity have associated limits and costs, and cannot be

expressed without energetic expenditures.

One of the most obvious costs is the potential expression of a

phenotype that mismatches the environment and therefore has

lower fitness [63]. Such mismatches in the endocrine system

and environmental perturbations may increase with global

change undermining coping mechanisms for extreme climatic

events [6,64]. In addition, there are plasticity and flexibility

costs per se, such as maintenance, which are related to sensory

and regulatory mechanisms [40,63–65]. In terms of limits, the

lag-time between the environmental change and the pheno-

typic response is pivotal and could have important fitness

effects. Integration of these concepts and coping with environ-

mental extremes will provide new insights and hypotheses

for mechanistic investigations, especially as global climate

change drives more extreme climatic events. Theoretical

approaches that bring together allostasis, perturbation resistance

potential, reactive scope and phenotypic flexibility along

with data on responses to extreme weather events (see [66] for

modelling approaches) will be particularly insightful for future

research directions.
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