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Abstract

Background: Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization
strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during
their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in
shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration
speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and
migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only
likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to
guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds.

Methods:We tested this idea using individual tracks across six long-distance migratory shorebird species (family
Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration
performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that
serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites,
total migration distance and step length from one site to the next.

Results: During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to
migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal
differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration,
whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the
seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis
that larger species tend to use time-minimization strategies during both pre- and post-breeding migration.

Conclusions: Our study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory
bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of
their habitats during both seasons may thus be crucial for averting further population declines.

Keywords: Optimal migration theory, Migration strategy, Time-minimization, Energy-minimization, Light-level geolocator,
Migration speed, Body size

* Correspondence: meijuanzhao1@gmail.com
1Centre for Integrative Ecology, School of Life and Environmental Sciences,
Deakin University, Geelong, Australia
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhao et al. Movement Ecology  (2017) 5:23 
DOI 10.1186/s40462-017-0114-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s40462-017-0114-0&domain=pdf
http://orcid.org/0000-0001-9625-1821
mailto:meijuanzhao1@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Long-distance migration has evolved independently in
multiple taxa enabling animals to exploit spatially and tem-
porally discrete peaks in resources [1], ultimately allowing
increased reproductive output and survival [2]. However,
migration is risky and energetically costly, and selection for
optimal migratory strategies is paramount to ensure the
benefits of migration outweigh the risks [3]. These consid-
erations have led to the formulation of optimal migration
theory and notably the time- and energy-minimization
hypotheses [3]. The time-minimization hypothesis assumes
that animals migrate at their maximum speed and thus
complete their migration as fast as possible given con-
straints on flying speed and fuel deposition rate. The
energy-minimization hypothesis assumes that migrants use
the minimum amount of energy by either minimizing
energy cost of transport per unit distance or by minimizing
total energy cost of migration [4]. We refer to these as
energy-minimization strategy without differentiating
between the two. Accordingly, both the time and energy
minimization hypotheses yield considerably different
predictions for how migratory birds move in space and
time during their annual migrations.
Optimal migration theory suggests that animals may

adopt a time- or energy-minimization strategy depending
on the season of migration [3, 5]. Time-minimization is
commonly thought to play a major role during pre-
breeding migration from the non-breeding (i.e. wintering)
grounds to the breeding grounds [4], where a timely arrival
provides a competitive advantage [6, 7] and guarantees opti-
mal use of seasonally available local resources [8, 9], benefit-
ing reproductive performance [10, 11]. Conversely, post-
breeding migration is expected to be less time constrained
[12], because it is generally assumed that a timely arrival at
the wintering grounds has fewer fitness consequences [13].
Migrants are therefore expected to use an energy-
minimization strategy during post-breeding migration [4].
Individuals employing a time- or an energy-minimization

strategy are expected to differ in a range of quantifiable mi-
gratory behaviours [3, 4, 14, 15] (Table 1). Time-minimizers
should take less time to complete their migration and
therefore fly and migrate faster (i.e. minimize time spent in
both flight and in preparing for migration) than energy-
minimizers. In contrast, energy-minimizers are not con-
strained by time but limit energy use and therewith also

require reduced foraging effort to deposit fuel and reduced
fuel loads (e.g. [16]). Moreover, they may be more inclined
to wait for favourable migration conditions to further
reduce energy costs [17]. Habitat quality varies across sites
and seasons, time-minimizers are proposed to be more
selective in their habitat use, choosing high quality habitats
allowing higher fuel deposition rates and shortened staging
periods, ultimately promoting a faster migration [18].
Time-minimizers may thus bypass low quality sites and
only stop at high quality sites. Energy-minimizers, on the
other hand, should stop more regularly and deposit less fuel
to avoid high fuel loads that are costly to carry and fly with
[15]. Thus, time-minimizers are expected to take fewer and
on average longer steps in completing their migration than
energy-minimizers. Finally, time-minimizers might take
longer routes than energy-minimizers, making detours via
higher quality sites away from the direct migration route to
speed up overall migration, even when this comes at higher
flight costs [15, 19, 20]; obviously, time-minimizers do not
have to migrate extra distance if quality sites are located
along the direct migration route. Thus, we expect a similar
or longer migration distance in time- compared to
energy-minimizers.
To test the hypothesis that migrants adopt a time-

minimization strategy during pre-breeding and an
energy-minimization strategy during post-breeding
migration, Nilsson C, et al. [21] reviewed studies and in-
vestigated multiple behaviours between seasons. They
found supportive evidence, with faster average migration
speeds, higher flying speeds and shorter migration dura-
tions during pre- compared to post-breeding migration.
However, a number of studies in this review, together
with other case studies (e.g. [22–24]), failed to detect a
seasonal difference, or found even higher migration
speeds during post-breeding migration [25, 26]. A range
of explanations for these deviations from theory have
been proposed. For example, Raess M [22] largely attrib-
uted this to the harsh environment, i.e. low temperature
and poor vegetation availability that Siberian Stonechats
(Saxicola torquata maura) encountered during their
pre-breeding migration, delaying their arrival and lower-
ing their average speed of migration. In another example
involving Bewick’s Swan (Cygnus columbianus bewickii),
Nuijten RJM, et al. [25], attributed the faster post-
breeding than pre-breeding migration to either swans’
tendency to avoid being trapped by ice later in the sea-
son or swans potentially being capital breeders spending
extra time depositing energy stores during their pre-
breeding migration. Importantly, these studies do not
consider the role of body size—which places physical
constraints on flying speed [27–29], fuel deposition [30,
31], migration speed [32–34], migration distance [35, 36]
and other life-history traits [33]—in determining the
extent to which migrants adopt a time- or energy-

Table 1 Expectation for the four migratory behaviours when
migrants adopt a time- versus energy-minimization strategy

Time-minimization Energy-minimization

(i) Migration speed high low

(ii) Number of staging sites few many

(iii) Total migration distance long or similar short or similar

(iv) Maximum step length long short
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minimization strategy, and how this may differ between
pre- and post-breeding migrations.
Body size is an important determinant of the energy costs

and speed at which life processes take place [37, 38]. The
major life history events, i.e. breeding, moult and migration,
generally take more time in large compared to small bird
species [33] and it has consequently been argued that large
migrants are potentially more time constrained than small
birds [39]. Accordingly, large migratory birds may not only
be time constrained during pre-breeding, but also during
post-breeding migration. For instance, large-sized migrants
may need to arrive at the wintering grounds sooner so that
they can start moulting sooner and thus complete their
moulting before the onset of the premigratory stage. If this
is the case for relatively large migrants, then it may be ex-
pected that their migratory behaviours may not differ signifi-
cantly between pre-breeding and post-breeding migrations.
In this study, we tested two hypotheses. First, we tested

the hypothesis that birds minimize time use on their pre-
breeding migration, while they minimize energy use on
post-breeding migration. We accordingly expect that pre-
breeding migrations are associated with 1) faster migra-
tion speed 2) smaller number of staging sites 3) potentially
longer migration distance and 4) longer step length. We
should bear in mind that these are largely non-distinctive
characteristics of a time-minimization strategy. For
instance, a faster pre-breeding migration speed could also
be caused by more favourable environmental conditions
for migration rather than higher time constraints during
the pre- compared to post-breeding period (e.g. longer
days for foraging, higher food availability, more prevailing
tailwind). Nevertheless, examining these four migration
variables in concert, should provide us with a good proxy
of the migration strategies employed during both migra-
tion seasons. Next, we tested whether any seasonal differ-
ence in migratory behaviour decreases with body size.
To this end, we used detailed individual tracks obtained

from light-level geolocation (‘geolocators’). To reduce the
potential interference from phylogeny and ecology, we limited
our study to six species of closely related (family Scolopacidae
within the order Charadriiformes), long-distance (8000–
13,000 km) migratory shorebirds using a single flyway (East
Asian-Australasian Flyway, hereafter EAAF) across a large
size range (50–750 g in lean body mass).

Methods
We obtained complete, individual tracking data from six
shorebird species: Sanderling (Calidris alba), Ruddy
Turnstone (Arenaria interpres) (hereafter Turnstone),
Grey-tailed Tattler (Tringa brevipes) (Tattler), Red Knot
(Calidris canutus), Great Knot (Calidris tenuirostris),
and Far-eastern Curlew (Numenius madagascariensis)
(Curlew). All species migrate between their wintering
grounds in Australia and New Zealand, and their

breeding grounds in northeast China and Siberia. Indi-
vidual tracking data were either not published or were
extracted from publications, detailed information on
species and tracking data compilation can be found in
Table 2. For each individual, data for pre- and post-
breeding migration was collected from successive sea-
sons, mostly in the same year. But individuals within or
across species were tracked across years between 2009
and 2014 (Table 2). Method of geolocator data process-
ing, from light-level to estimation of spatial-temporal
data, followed Lisovski S, et al. [40] for Sanderling,
Turnstone and Great Knot. BASTrack software was used
to process data for other species, with further details
and the methods used being provided in the respective
publications (Table 2).
For body size we used lean body mass (g), i.e. body mass

of a bird without any migratory fuel, obtained from the
literature or, if unavailable, estimated as the median body
mass of individuals captured during November–December
in Australia (unpublished data, Victorian Wader Study
Group and Australasian Wader Studies Group) and multi-
plying this by 0.94 following [41].
Four migration variables depicting aspects of the mi-

gratory itineraries were extracted from the tracks for
each individual tracked for both pre-breeding and post-
breeding migration separately, namely (i) migration
speed, (ii) number of staging sites, (iii) total migration
distance, and (iv) maximum step length. Migration speed
(i) was calculated by dividing the total migration dis-
tance by the total migration duration. As migratory birds
at the start of their migration (i.e. wintering grounds
prior to pre-breeding migration and breeding grounds
prior to post-breeding migration) commence fuelling be-
fore departure on their first migratory leg, this “premi-
gratory” staging period should be taken as part of
migration [3]. This premigratory staging period, how-
ever, was impossible to ascertain from the tracking data.
To ensure that any pattern we might detect in migration
speed with size was not caused by our subjective selec-
tion of methods, we endeavoured to use two methods to
calculate migration speed, naming them as traditional
migration speed and partial migration speed. In brief,
traditional migration speed was calculated by dividing
total migration distance by total migration duration. We
defined total migration duration as the days elapsed
from the date on which the birds left their wintering/
breeding grounds to the date on which the birds arrived
on their breeding/wintering grounds. Partial migration
speed was the migration speed excluding the first migra-
tory leg, and was calculated by dividing migration dis-
tance between the first staging site and the wintering/
breeding location by the time elapsed from the date of
arrival at the first staging site and the date of arrival at
the wintering/breeding grounds. Although partial
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migration is probably the less biased estimate of an indi-
vidual’s migration speed, we consider that collectively
the two estimates provide a better insight in migration
speed variations among the focal species.
We defined “true” staging sites as sites where birds

stopped for a duration of at least 4 days (see [42] for def-
inition of staging and stopover site) and the number of
staging sites (ii) was calculated accordingly. A migratory
leg is considered to be the journey connecting the subse-
quent “true” staging, wintering or breeding site. Step
length (iv) was the distance travelled in one migratory
leg via a great circle route. Due to the limited resolution
in geographic position using geolocators, the step length
estimation for some short steps may be associated with
high errors. To avoid this problem, we used the max-
imum step length during each migration to represent
step length. Maximum step length rather than mean or
median step length was also considered for other
reasons. During pre-breeding migration, a few shorebird
species fly non-stop for over 5000 km from Australia
and New Zealand to the East Asian coast [43, 44],
bypassing potential stopover sites on the Pacific Islands.
Thereafter, they move along the East Asian coast with small
steps before flying to their breeding grounds (Far Eastern
Curlew as an exception). Given the high food availability
across the area [43], time-minimizers are likely to stop fre-
quently to fuel up at all possible stopover sites in East Asia,
and avoid to carry and fly with high fuel loads [15], thus be-
having similarly to energy-minimizers. This contrasts with
scenarios where high quality sites are only sparsely distrib-
uted and time-minimizers have to deposit high fuel loads to
make it between high quality sites [15]. To distinguish
between time- and energy-minimization, maximum step
length compared to the average or median step length
therefore serves as a better proxy. A longer maximum step
would be observed if migrants fly non-stop between

Australia/New Zealand and East Asia, as opposed to
stopping in the tropical islands in between. Total migration
distance (iii) was the sum of each step length
(Additional file 1: Table S1 in provides data of seasonal
difference, i.e. pre- minus post-breeding migration, for all
four investigated migration variables for each individual).

Statistical analysis
To compare the seasonal difference between pre- and
post-breeding migration for each of the migration
variables (including two estimates of migration speed,
number of staging site, total migration distance and
maximum step length), we used two-tailed paired t-tests
for Turnstone and, because of non-normality of the data,
Wilcoxon signed rank test for Sanderling, Great Knot
and Curlew. For Tattler and Red Knot where sample size
was too small (2 and 3 respectively), seasonal difference
was described but no statistical test was applied. To
further examine if a seasonal difference existed across
species, analysis of variance (ANOVA) was used. Before
performing ANOVA, we firstly checked homogeneity of
variances across species using Bartlett test. One-way
ANOVA was used if homogeneity of variances held true,
otherwise Welch’s ANOVA was used to account for het-
erogeneity; both types of ANOVA were followed by a
post-hoc pairwise multiple comparison test. Considering
the unequal sample size and heterogeneity in most cases,
we performed Games-Howell post-hoc tests using the ‘post-
hocTGH’ function in the R-package ‘userfriendlyscience’.
To examine if the between-species difference in a

migration variable varied in a size related manner, we
compared three linear model structures. All three linear
models included the seasonal difference as the response
variable and size as a covariate, but with different ex-
planatory structures: 1) general linear model, including
size as the only fixed variable; 2) general linear mixed

Table 2 Details of the six EAAF migratory sandpipers that were tracked using geolocators

Species Lean body mass
(g)a

Wintering site Breeding grounds n Year

Sanderling Calidris alba 50b South Australia Arctic Russia 12c 2012

Ruddy Turnstone
Arenaria interpres

93b Tasmania, Victoria, South
Australia

Arctic Russia 60d 2009–
2014

Grey-tailed Tattler
Tringa brevipes

108e Queensland Russia’s far east 3f 2011

Red Knot Calidris canutus 113g New Zealand Arctic Russia 2h 2011–
2012

Great Knot
Calidris tenuirostris

135b North Western Australia Arctic Russia 7i 2013

Far Eastern Curlew
Numenius madagascariensis

743b Victoria sub-Arctic between northeast China and
Russia

9j 2011–
2012

alean body mass obtained from the literature or bcalculated as the median body mass of individuals captured during November–December on their wintering
grounds in Australia (unpubl. Data Victorian Wader Study Group and Australasian Wader Studies Group) and multiplied by 0.94 [41]. cTracks were extracted from
Lisovski S, et al. [40]. dUnpubl. tracks from Victorian Wader Study Group, Australia. eTracks were extracted from Johnsgard PA [76]. fUnpubl. tracks from
Queensland Wader Study Group, Australia. gTracks were extracted from Battley PF [77]. hTracks were extracted from Tomkovich PS, et al. [78]. iTracks were
extracted from Lisovski S, et al. [68]. jUnpubl. tracks from Victorian Wader Study Group, Australia, and extracted tracks from Minton C and Gosbell K [79]
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model, besides including size as the only fixed variable,
fitting species as a random factor; and 3) general linear
mixed model, besides including size as the only fixed
variable and fitting species as a random factor, also
accounting for potential heterogeneity of variances
between species. The three models were compared and
the one with the lowest Akaike information criterion
was selected as the final model structure. Using the final
structure, we compared models with and without size as
a covariate and displayed the ΔAIC between the two.
This procedure was repeated for each migration variable
for which ANOVA/Welch’s ANOVA revealed a
between-species difference. We used the 10-log of lean
body mass to normalise the body size data. We con-
ducted the linear mixed models using the ‘lme’ function
in R-package ‘nlme’. Accounting for heterogeneity of
variances was done by specifying there is heterogeneity
between species using the ‘varIdent’ function [45].
Although we limited our studied species to six closely

related species within a single family to largely avoid po-
tential phylogeny interference, phylogenetic differences
still exist. To examine the potential interference of phyl-
ogeny, we used a phylogenetic mixed model to examine
the effect of size on all migration variables that showed
a between species difference. To this end, we used a
Bayesian approach, applying the ‘MCMCglmm’ function
within the R-package ‘MCMCglmm’. Data were trans-
formed prior to analyses as outlined above for linear
models. We defined the data distribution as Gaussian
for all migration variables. We used a phylogenetic tree
based on data provided in Thomas GH, et al. [46]. All
analyses were conducted using R version 3.2.3 [47].

Results
Migration speed
For both partial and traditional migration speed most
species migrated at similar or faster speed during pre-
compared to post-breeding migration (Fig. 1), support-
ing the hypothesis that migrants generally are time-
minimizers during pre-breeding migration. The faster
pre- compared to post-breeding migration speed was
significant and most pronounced in the smallest sized
species, Sanderling and Turnstone (Table 3; Fig. 2iA, iB).
No (apparent) differences between seasons were
detected in the three medium-sized species Great Knot
(Table 3, Fig. 2ib, iB) and Tattler and Red Knot (no
statistical tests applied due to small sample size; Fig. 2iA,
iB). The seasonal difference was also significant in the
largest sized species, Curlew, but the direction of the
seasonal difference was opposing with a faster pre-
breeding traditional migration speed (pre-breeding
minus post-breeding: 96 km /d, Fig. 2iA) and a slower
pre-breeding partial migration speed (−87 km/d, Fig.
2iB). Collectively, the species-specific differences

between pre- and post-breeding migration speeds
resulted in a significant decline in the difference in partial
migration speed between the two seasons with size (Fig.
2iB and Additional file 2: Fig. S1), supporting our predic-
tion. This was revealed by both the model correcting for
phylogeny (slope = −143, p = 0.020) and the model without
correcting for phylogeny (slope = −135, t89 = −5.22,
p < 0.001), with AIC being much lower for the model with
than without size as a covariate (Table 4). Although
seasonal difference in traditional migration speed showed a
very weak tendency in the same direction, this was far from
significant (traditional speed correcting for phylogeny:
slope = −96, p = 0.220; not correcting for phylogeny:
slope =−44, t6,93 = −0.79, p = 0.470), despite the inclusion of
size leading to a considerably better fitting model (Table 4).

Number of staging sites
All species made either fewer or a similar number of stops
during pre- compared to post-breeding migration. Al-
though weak in support only, this observation is consistent
with the prediction that migrants minimize time use when
migrating towards their breeding grounds (Fig. 1ii). Tattler,
Red Knot (Fig. 2ii), Great Knot and Curlew (Table 3 and
Fig. 2ii) used a similar number of staging sites during pre-
breeding and post-breeding migration. The two small spe-
cies, i.e. Sanderling and Turnstone, used more staging sites
(Table 3 and Fig. 2ii) during post-breeding migration. This
seasonal difference was more pronounced in Sanderling
(on average two more sites during post-breeding migration)
compared to Turnstone (one more site). The seasonal dif-
ference in number of staging sites did not systematically
vary with size, AIC value being similar between models
including and not including size as a covariate (Table 4).

Total migration distance
For the four species that were statistically tested, Sanderling
and Curlew covered a similar total distance during post-
breeding migration compared to pre-breeding migration
(Table 3, Fig. 1iii). The other two species Turnstone and
Great Knot covered slightly longer distances during post-
compared to pre-breeding migration). However, the seasonal
difference was minimal (100 km and 300 km respectively),
falling within the 200–400 km error range for geolocator
data. Although untested, seasonal difference in total migra-
tion distance for Red knot was also small (380 km) and
within the error range of geolocator data. Tattler was the
only species taking a shorter post-breeding route by
1000 km (Fig. 2iii). The overall similar or longer migration
distance during pre- compared to post-breeding migration
is in line with our expectation that migrants minimize time
use and potentially choose a longer but faster route when
migrating to the breeding grounds. The seasonal difference
in total migration distance failed to show a size dependent
pattern, despite that the model including size as a covariate
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Fig. 1 Four migratory variables for pre- and post-breeding migration in six EAAF migratory sandpipers. (iA) traditional migration speed (km/d) calculated
as the total migration distance divided by total migration duration; (iB) partialmigration speed (km/d), dividing migration distance between the first
staging site and the wintering/breeding grounds by the total duration from arrival at the first staging site until arrival at the breeding/wintering grounds;
(ii) number of staging sites; (iii) total migration distance (km); (iv) the maximum step length (km). Species along the X-axes are ranked in order of
increasing lean body mass. The thick line within each box and whisker plot represents the median, and the lower and upper box border represents the
first and the third quartile, respectively. Whiskers denote the lower and upper 95% confidence interval. Dots outside the whiskers are outliners above or
below the 95% confidence interval. Because of low samples size in Tattler and Red Knot (i.e. three and two data points, respectively) individual data
points and medians are presented for these species

Table 3 Results of seasonal difference between pre- and post-breeding migration in four EAAF migratory sandpipers

Sanderling Turnstone Great Knot Curlew

n 12 60 7 9

(i) Migration speed

Traditional V = 78 (p = 0.000) t59 = 12.2 (p = 0.00) V = 17 (p = 0.688) V = 45 (p = 0.004)

Partial V = 78 (p = 0.000) t59 = 2.7 (p = 0.010) V = 10 (p = 0.578) V = 0 (p = 0.031)a

(ii) Number of staging sites V = 0 (p = 0.003) t59 = −4.9 (p = 0.000) V = 2.5 (p = 0.424) V = 3.5 (p = 0.129)

(iii) Total migration distance V = 20 (p = 0.151) t59 = −2.44 (p = 0.018) V = 0 (p = 0.016) V = 8 (p = 0.353)

(iv) Maximum step length V = 75 (p = 0.002) t59 = 6.23 (p = 0.00) V = 4 (p = 0.109) V = 15 (p = 0.059)
aFor three Curlews migrating around the equinox their timing of migration and there with their partial migration speed could not be determined with sufficient
accuracy, resulting in a sample size of 6 instead of 9 for this variable
Paired-t test was used for Turnstone and Wilcoxon signed rank test was used for the other three species. n depicts sample size. Significant results (p < 0.05) are
highlighted in bold
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performed better in terms of a lower AIC value compared
to the model not including size (Table 4).

Maximum step length
Maximum step length was similar or longer during pre-
compared to post-breeding migration (Table 3, Fig. 1iv),
consistent with the prediction that migrants might make
longer steps to minimize time use when migrating
towards their breeding grounds. During post-breeding
migration, all four statistically tested species took shorter
(Sanderling, Turnstone and Curlew) or similar step

length (Great Knot) (Table 3, Fig. 2iv). Although statis-
tical testing was not opportune given low sample sizes,
Tattler and Red Knot also had similar or longer step
lengths during pre- compared to post-breeding migra-
tion (Fig. 2iv). The seasonal difference in maximum step
length was significantly higher in Sanderling and
Turnstone than Great Knot. We detect no size-related
pattern in maximum step length, despite that model
including size as a covariate performed better in terms
of a lower AIC value compared to the model not
including size (Table 4).

Fig. 2 Seasonal difference in four migratory variables for six EAAF migratory sandpipers. Seasonal difference was based on subtracting data for post-breeding
from pre-breeding migration for each individual bird. (iA) traditionalmigration speed (km/d) calculated as the total migration distance divided by total migration
duration; (iB) partialmigration speed (km/d), dividing migration distance between the first staging site and the wintering/breeding grounds by the total
duration from arrival at the first staging site until arrival at the wintering/breeding grounds; (ii) number of staging sites; (iii) total migration distance (km); (iv) the
maximum step length (km). Species along the X-axes are ranked in order of increasing lean body mass. The thick line within each box and whisker plot
represents the median, and the lower and upper box border represents the first and the third quantile, respectively. Whiskers denote the lower and upper 95%
confidence interval. Dots outside the whiskers are outliners above or below the 95% confidence interval. Since only three and two data points were available
for Tattler and Red Knot, respectively, the individual data points and the medians are plotted for each of these two species. In all panels a dotted horizontal line
representing no seasonal difference is added to assist visual interpretation. For example, in panel (iA) below the zero horizontal line
indicates slower pre- compared to post-breeding migration speed, whereas above the line indicates faster pre- compared to post-breeding migration.
Seasonal difference within species differences were tested using paired t-tests asterisks identifying significant differences (p < 0.05 ‘*’, p < 0.01 ‘**’,
p < 0.001 ‘***’). Between species differences were tested using multiple comparison Games-Howell post-hoc tests and are noted with capital letters,
with species not sharing the same letter being significantly different. Liner models showed that only partial migration speed (iB) varies in relation to
lean body mass, with post-breeding migration becoming progressively faster relative to pre-breeding migration with an increase in body size
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Discussion
Using individual tracking data across six differently sized
shorebird species migrating along the EAAF, we found
support for the hypothesis that, overall and more often
than not, migrants showed evidence of using a time-
minimization strategy during pre-breeding migration
and an energy-minimization strategy during post-
breeding migration. Most species displayed one or more
of the four seasonal differences, including migrating fas-
ter, using fewer staging sites, covering similar or longer
total distance and making longer steps during pre- com-
pared to post-breeding migration. Seasonal difference in
the number of staging sites, total migration distance and
maximum step length did not show any size-related pat-
tern. Remarkably, we found that the seasonal difference
in migration speed, the ultimate indicator of time- ver-
sus energy- minimization, tended to decrease with body
size. Across seasons, larger species showed greater simi-
larity in their migratory behaviour than small species.
Assuming they were using a time-minimisation strategy
during pre-breeding migration (for which e.g. a long
maximum step length and few staging sites [Fig. 1] are
indicative), this conforms to our additional hypothesis
that large species are potentially more time constrained
year around. Large species thus potentially not only
adopt a time-minimization strategy during pre-breeding
migration, but also during post-breeding migration. We
acknowledge that migration speed was mainly repre-
sented as partial migration speed in this study; migra-
tion speed across the entire migration would be ideal
and such study is warranted to further test our
hypothesis. We also acknowledge that the four investi-
gated migration variables can only suggest and not
distinctively identify the use of a time- versus an energy-

minimization strategy. There is still the probability that
differences in environmental conditions rather than
migration strategy underlie the seasonal differences
observed in migratory behaviour. Nevertheless, evidence
supporting the hypothesis was strong in terms of all four
variables performing as expected. This is, to our know-
ledge, also the first study proposing and demonstrating
that body size plays a key role in shaping migratory
behaviours between seasons. This was evident in all but
one (staging site) AIC tests for the effect of size (Table 4).
Also, the potentially more conservative hypothesis-testing
(i.e. P value) approach (see [48] for discussion), which we
will preferentially refer to in our discussion below, indicated
that size affected many of the migratory behaviours.

Migration speed
The overall similar or higher migration speed during
pre- compared to post-breeding migration is consistent
with the findings in the review by Nilsson C, et al. [21].
Seasonal difference in partial migration speed declined
significantly with size. The traditional migration speed
tended to decline, although not significantly, corroborat-
ing the partial migration speed results of a decline in
migration speed with size. This lack of seasonal differ-
ence in large species suggests that large compared to
small species behave more like time-minimizers during
both pre- and post-breeding migration. Alternatively,
one might argue that large species might use energy-
rather than time-minimization during both pre- and
post-breeding migration. This, however, is unlikely to be
the case due to the apparent high time constraints
throughout the annual life cycle for large species and in
these large species clear hallmarks of a time-minimisation
strategy (e.g. small number of staging sites and long
maximum step lengths, Fig. 1).
Besides migration and breeding, primary moult is also

energy-costly [49]. Many long-distance migratory birds
schedule these events so as to avoid overlap (e.g. passer-
ines [50], shorebirds [51]). All six shorebird species in
this study conduct most if not all of their moult on the
wintering grounds [52]. Large species however tend to
take more time to complete primary moult; e.g. moult
takes an average of 98 days for the smallest of species in
this study, Sanderling [53], while taking four or more
months in the largest, Curlew [52]. Large species also
tend to take more time to breed (e.g. 20.5–24 days in
Turnstone versus 27–29 days in Eurasian Curlew
Numenius arquata [54]). The longer duration of primary
moult and longer breeding, together with lower fuel
deposition rate [30], pose high time constraints for large
species round the year, wherever they are, be it at their
wintering grounds, migration and breeding grounds. We
therefore interpret the shrinking of migration speed
between seasons as that large species are time

Table 4 Comparisons of linear model performances of the
migration variables with and without size as a covariate in terms
of difference in AIC values (ΔAIC)

Explanatory variables ΔAIC

(i) Migration speed

Traditional ~ 1 8.5

~ 1+ size 0

Partial ~ 1 21.3

~ 1+ size 0

(ii) Number of staging sites ~ 1 1.0

~ 1+ size 0

(iii) Total migration distance ~ 1 10.6

~ size 0

(iv) Maximum step length ~ 1 14.7

~ 1+ size 0

In all cases a ΔAIC of 0 defines the best model. ΔAIC of alternative models that
are >2 suggest that these alternative models are performing worse than the
model with a ΔAIC equalling 0
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constrained and thus may adopt time-minimization
strategy during both pre- and post-breeding migration.
Remarkably, however, instead of migrating at a similar

speed across seasons, Curlew in fact showed a faster
partial migration speed during post- compared to pre-
breeding migration. This higher post-breeding migration
speed can possibly be explained by potential differences
in environmental conditions between the two seasons,
such as food availability, day length [55] and weather
conditions [56]. These differences in environmental con-
ditions between the two seasons may not only affect
Curlew but also other shorebird species, suggesting that
despite faster migrations during pre-breeding migrations
in the smaller species, conditions for migration might in
fact be more favourable during post-breeding migration.
The main food for Curlews at their migratory staging

sites consists of various crustacean species [57–60],
whose density is higher during post- compared to pre-
breeding migration along the EAAF ([61–63], but [64]).
This overall higher food availability during post-breeding
migration potentially enhances fuel deposition rate in
Curlew, contributing to its higher post-breeding migration
speed. Since Curlew and the other five studied species were
tracked across 6 years, the observed seasonal difference in
migration speed and the overall decline of migration speed
with size is unlikely caused by the potential fact that species
were coincidently tracked in years with particularly high
seasonal difference in food availability.
Day length may also affect migration speed, where long

days may result in higher net intake and thus fuel depos-
ition rates as was suggested by Bauchinger U and Klaassen
M [55] for passerines. Although most Scolopacidae, includ-
ing Curlew, forage during both day and night [60], detect-
ing prey by vision and tactile sensation [58, 65], their food
intake might be more efficient during the day by using both
detection methods while during the night vision detection
might be limited. Indeed, Curlew experienced slightly
longer days during post- compared to pre-breeding migra-
tion, potentially facilitating their relatively speedy migration
during this season. Conversely, the smaller Sanderling and
Turnstone, which migrated faster during the pre- compared
to post-breeding migration, where in fact experiencing
longer days during that season. Our data thus suggest that
difference in day length during migration periods might to
some extent have contributed to the seasonal difference in
migration speed.
Another potentially important environmental factor in

determining migration speed is weather conditions, and
wind conditions in particular. Departing and flying with
wind assistance enhances flying speed and saves energy
and time during migration [56]. However, the only study
investigating such potential differences between seasons
at Chongming Dongtan in the south Yellow Sea (a
stopover site along the EAAF), found that wind was on

average supportive during both pre- and post-breeding
migration in 3 years from 2007 to 2009 [66]. Although
large variations existed within seasons, they did not find
a significant difference in the strength of wind support
between seasons. Therefore, weather was not considered
to be the main driver of seasonal difference in migration
speed observed in the present study. Rather, it implies
that, as we predicted, large species were most likely
under time selection pressure during not only pre- but
also post-breeding migration. Future studies investigat-
ing seasonal difference in weather conditions along the
migration route is warranted.

Total migration distance
Similar total migration distances during pre- and post-
breeding migration do not necessarily refute a differen-
tial migration strategy during the two seasons (i.e. time
versus energy- minimization strategy, respectively).
Still, longer migration distances during pre-breeding
migration are considered to be the hallmark of time-
minimization and considerably longer migration dis-
tances (up to 22%) have indeed been found in some
migratory species during pre- compared to post-
breeding migration [67]. In our study such seasonal dif-
ference was absent in all species but Tattler, despite
that Turnstone and Great Knot were recorded to cover
slightly longer distance during post-breeding migration,
which fell within the range of geolocator errors [68].
Tattlers travelled a significantly shorter distance (10%)
during post-breeding migration. All three Tattlers
migrated via a more direct, easterly route when cross-
ing the Pacific Ocean during their post-breeding migra-
tion, instead of stopping at more westerly islands such
as the Philippines as shown during their pre-breeding
migration [69].
Seasonal difference in total migration distance has

been shown in some species along other flyways [67, 70].
The absence of any major seasonal difference in total
migration distance might also be related to the
geography of the EAAF. The most direct route traveling
between the wintering grounds in New Zealand and
Australia and the breeding grounds in the Siberian sub-
Arctic and Arctic would involve a trans-Pacific crossing.
This energetically demanding route option is avoided by
most species under study but Bar-tailed Godwit [71, 72].
The next most straightforward route involves migrating
using the coasts of China, Japan and/or Korea. Coinci-
dently this route importantly runs through a region
assumed to be one of the world’s most food abundant
staging sites for shorebirds [73], with the Yellow Sea as
one of its main areas. Not surprisingly, most shorebird
species migrate via these staging sites during both
seasons, resulting in similar total migration distance.
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Maximum step length
Longer maximum step length during pre- compared to
post-breeding migration was recorded in Sanderling,
Turnstone and Curlew. The longest steps occurred when
the shorebirds under study crossed the Pacific Ocean
from their wintering grounds in Australia to their
staging sites on the east coast of China, spanning
between 4400 and 9000 km. This very long jump during
pre-breeding migration conforms to the prediction of a
time-minimization strategy [43]. Instead of conducting a
similar jump which could take them across the western
Pacific when migrating back to the wintering grounds,
most individuals divided this section of the journey into
several small steps by stopping at islands in the Pacific
Ocean, such as Java, Malaysia, Brunei and the Philippines,
consistent with an energy-minimization strategy. Although
apparently engaging in a time-minimization strategy during
both pre- and post-breeding migration as judged from their
migration speeds during both seasons, Curlew also made
smaller steps during post-breeding than pre-breeding migra-
tion. However, the difference in maximum step length
between the two seasons in Curlew (14%) was smaller than
in Sanderling (25%) and Turnstone (25%).

Conclusions
Although the optimal migration theory proposes that
time-minimization is more relevant during pre- com-
pared to post-breeding migration, the role of body size
in comparing the two seasons has never been consid-
ered previously. The data presented to some extent
support our initial hypothesis that large sized species
are more time-constrained and thus tend to use a time-
minimization strategy during both pre- and post-
breeding migration.
Migration is a seriously threatened natural phenomenon

and notably so along the EAAF, with many migrants being
particularly impacted by habitat deterioration and loss in a
major stopover region, the Yellow Sea [74]. In the face of
these threats, identifying size and other species-specific
constraints in their migratory behaviour and capacities
may be of crucial importance in understanding and in
assisting developing optimal conservation strategies to
mitigate the threats of habitat deterioration. Considering
the generally higher time pressure during pre- compared
to post-breeding migration, the conservation of crucial
sites for pre-breeding migratory preparation in shorebirds
along the EAAF, such as the wintering grounds and
important staging areas such as the Yellow Sea, are of pro-
found significance to ensure a timely arrival at the breed-
ing grounds. Furthermore, relatively large birds, which
face high time constraints during both pre- and post-
breeding migration, may be less flexible still in time and
site use. Conservation of their habitat during both seasons
is thus crucial for averting further population declines.

The recent ongoing population declines in Eastern Curlew
may be the hallmark of this [75]. However, size clearly is
not the only crucial variable determining conservation
needs since smaller shorebirds species along the EAAF,
such as Curlew Sandpiper (Calidris ferruginea), may show
similar dramatic declines [75].
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