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Abstract
The mid-domain effect states that in a spatially bounded domain species richness tends to decrease from the center towards
the boundary, thus producing a peak or plateau of species richness in the middle of the domain even in the absence of
any environmental gradient. This effect has been frequently used to describe geographic richness gradients of trophically
similar species, but how it scales across different trophic levels is poorly understood. Here, we study the role of geometric
constraints for the formation of spatial gradients in trophically structured metacommunities. We model colonization–
extinction dynamics of a simple food chain on a network of habitat patches embedded in a one- or two-dimensional domain.
In a spatially homogeneous or well-mixed system, we find that the food chain length increases with the square root of
the ratio of colonization and extinction rates. In a spatially bounded domain, we find that the patch occupancy decreases
towards the edge of the domain for all species of the food web, but this spatial gradient varies with the trophic level. As a
consequence, the average food chain length peaks in the center and declines towards the boundaries of the domain, thereby
extending the notion of a mid-domain effect from species richness to food chain length. This trophic mid-domain effect
already arises in a one-dimensional domain, but it is most pronounced at the headlands in a two-dimensional domain. As
the mid-domain effect for food chain length is caused solely by spatial boundaries and requires no other environmental
heterogeneity, it can be considered a null expectation for geographic patterns in spatially extended food webs.
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Introduction

The mechanisms underlying biogeographic patterns of
species diversity and community structure are among the
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most studied and debated questions in ecology (Lomolino
et al. 2017). One prominent example is the area effect,
where an increasing habitat size leads to an increasing
number of coexisting species (MacArthur and Wilson 1967;
Holt 1993). Spatial diversity patterns are also related to
geographic constraints. According to the so-called mid-
domain effect (MDE) in a spatial domain restricted by
“hard boundaries,” species richness tends to peak at the
center of the domain and declines towards the boundaries
(Colwell and Hurtt 1994). “Hard boundaries” could be
realized, for example, by continental edges or mountaintops
for terrestrial species, shorelines for aquatic species, or any
other large-scale dispersal barriers. The MDE occurs even
in the absence of other environmental gradients, and is thus
solely caused by spatial constraints.

The MDE is expected to occur by simple theoretic
reasoning: Assuming a random distribution of species
ranges within a bounded domain, in general, more ranges
should overlap near the middle of the domain than
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at the edges, producing a peak or plateau of species
richness towards the center. In a large number of empirical
and theoretical investigations, the effect has been firmly
validated and established as a null model for gradients
in species richness (Willig and Lyons 1998; Colwell and
Lees 2000; Bokma et al. 2001; Jetz and Rahbek 2001;
Grytnes 2003; Connolly 2005). While the MDE was
traditionally formulated for one-dimensional habitats, like
latitudinal (Colwell and Hurtt 1994), elevational (Kessler
2001; Grytnes and Vetaas 2002), and bathymetric (Pineda
and Caswell 1998) gradients or river courses (Dunn et al.
2006), two-dimensional extensions have been developed as
well (Jetz and Rahbek 2001; Bokma et al. 2001). Despite
its seminal role of describing species richness gradients, not
much is known about how the MDE scales across trophic
layers, raising the question for theoretical approaches to
study spatially structured trophic communities.

One prominent classic approach to theoretically capture
the dynamics and patterns of spatial communities is
provided by the metapopulation framework (Levins 1969;
Hanski and Gilpin 1991). The underlying principle is
that an ensemble of local populations can be described
by the dynamic balance between colonization of empty
patches from occupied ones and local extinction of occupied
patches, allowing a species to persist regionally despite
the possibility of local extinctions. By augmenting this
approach to metacommunities, Tilman (1994) showed that
a potentially infinite number of competitors can regionally
coexist, even if locally one superior competitor drives all
other species to extinction. The precise spatial structure can
affect species diversity in a metacommunity, as was shown
in microcosm experiments on river-like spatial networks and
lattice structures (Carrara et al. 2012, 2013). Thereby, the
network structure affects patterns of population densities
(Altermatt and Fronhofer 2018).

In a pioneering series of studies, Holt 1993, 1996,
2002 demonstrated that space can have similar effects
in trophically interacting communities. In particular, he
could show that in meta-food-webs species richness
and food chain length should increase with increasing
habitat size. Subsequently, metapopulation models based
on colonization–extinction dynamics were developed to
study the consequences of habitat destruction at different
trophic levels (Bascompte and Solé 1998; Melián and Jordi
Bascompte 2002). In another series of studies, Liao et al.
2017a, b, c) showed that habitat loss and fragmentation
can have different effects on meta-food-webs and that, in
particular, an intermediate level of fragmentation, compared
to a strongly connected remaining habitat, can promote food
web persistence. While these models treated only simple
few-species food web motifs, recently, this approach was
extended to include a larger number of species (Pillai et al.
2010, 2011; Calcagno et al. 2011; Gravel et al. 2011a,

b). These studies showed that complex food webs can
emerge at the regional scale even if locally only simple
food chains are allowed. Based on these models, Barter and
Gross 2016, 2017 highlighted the importance of the specific
spatial structure of the habitat, for example, by explicitly
embedding meta-food-webs in space in the form of random
geometric graphs.

Many of these metacommunity studies that incorporate
both trophic interactions and spatial structures are interested
only in regional results, such as overall persistence or
constraints on food web structure (Amarasekare 2008;
Calcagno et al. 2011). In contrast, explicit spatial patterns
of food web properties, such as spatial profiles of food
chain length, and the contribution of spatial effects to
their emergence, have rarely been considered or even
quantified. This is astonishing, as food chain length is a
central character of ecological communities and quantifies
the number of feeding links between resources and top
predators (Post 2002). Food chain length has classically
been related to either dynamic constraints, where longer
food chains become unstable and are particularly more
vulnerable to perturbation, or to energetic constraints,
where due to imperfect transfer of energy and resources
a diminishing amount of energy is available to support
higher trophic levels. Besides these two factors, the role
of spatial constraints is increasingly recognized as a major
determinant of food chain length (Post 2002). The main
reasoning is that a larger area or ecosystem size should
be able to support higher trophic levels and top predators.
Nevertheless, model studies that predict spatial patterns of
food chain length are still missing. In particular, to our
knowledge, the MDE has never been formulated for food
chain length.

In this paper, we study the role of geometric constraints
for the formation of spatial gradients in trophically
structured metacommunities. To this end, we develop a
stochastic patch occupancy model including both trophic
and explicit spatial structures. The model describes the
colonization–extinction dynamics of a simple food chain
on a network of habitat patches embedded in a one- or
two-dimensional domain. By resolving results to individual
patches, this setup allows us to investigate spatial patterns
of food chain length, and to assess the role of the
spatial constraints for the formation of these patterns. We
intentionally choose a very simple model to ensure that
we do not confound spatial effects with effects caused
by more complicated food web dynamics. By combining
direct stochastic simulations and analytic treatment in an
ODE model, we calculate patch occupancies, persistence
thresholds, and food chain length. Thereby, we consider
different spatial scenarios: First, we study a spatially
homogeneous or well-mixed system (representing high
colonization rates or spatially implicit dynamics) and are
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able to show that food chain length increases with the square
root of the ratio of colonization and extinction rates. Next,
we study the influence of hard boundaries in one- and two-
dimensional domains. We find that the patch occupancy
decreases towards the edge of the domain for all species of
the food web, even though this spatial decrease varies with
the trophic level. As a consequence, we find that the average
food chain length peaks in the center and declines towards
the boundaries of a spatial domain, demonstrating a clear
mid-domain effect of food chain length. This trophic mid-
domain effect already arises in a one-dimensional domain,
but it is most pronounced at the headlands in a two-
dimensional domain. Our findings exemplify the role of
geometric constraints for the formation of spatial gradients
in trophically structured communities.

Methods

Model setup

We develop a stochastic patch occupancy model to describe
the colonization–extinction dynamics of a trophically
structured community on an explicit spatial network of
habitat patches (Fig. 1). Thereby, we follow Pillai et al.

Fig. 1 Conceptual diagram of the colonization–extinction model of a
food chain on a network of habitat patches. Species (shown as orange
circles) are aligned vertically according to their trophic level k = 1..S.
Habitat patches (shown as rectangles) at spatial positions i = 1..N
are aligned horizontally. All species that are present in a patch at this
time point are indicated vertically above the corresponding rectangle.
These species must form a contiguous chain starting at the lowest
trophic level k = 1 (trophic interactions indicated as black vertical
lines connecting the circles). Species can colonize neighboring patches
within a colonization range r (black horizontal arrows). The green
arrow indicates an exemplary colonization event of species 4 from
patch 4 to patch 2. The dark-red cross indicates a possible extinction
event of species 3 in patch 5 and the subsequent bottom-up extinctions
of species 4 and 5 (light orange shading). Parameter values: S = 5 and
r = 2

(2010, 2011); Gravel et al. (2011a), and Barter and Gross
(2016, 2017) but restrict the trophic structure to a simple
food chain. We assume that the network is embedded in
a one- or two-dimensional domain. For any given patch,
i = 1, ..., N , all patches within spatial distance up to the
colonization range r are considered its neighbors, allowing
colonizations between the patches. In the one-dimensional
case, a patch that is not too close to any boundary has r

neighbors to the left and r neighbors to the right. In the two-
dimensional case, r is the radius of a circle. The colonization
range influences the spatial structure as experienced by the
species. The species in the food chain are labeled according
to their trophic level by k = 1, ..., S, and we refer to the
species at trophic level k simply by “species k.” In each
patch, we track the presence and absence of all species.
We call patches where species k is present k-occupied and
where it is absent k-empty.

We consider the case of “donor-controlled” stacked
specialist food chains (Holt 1993, 1996). This means that
a k-empty patch can be colonized by species k with a
colonization rate c per k-occupied neighbor, but only if its
prey species k − 1 is present on the target patch. If a patch
is k-occupied, species k can go extinct with extinction rate
e. In this case, all species higher up the chain go extinct
as well at the same time instance. The basal species 1
suffers no such bottom-up extinction and has access to the
full network. Furthermore, we neglect top-down extinction
effects. Ecologically, this means that we assume that a
predator does not over-exploit its prey and thereby increases
its extinction risk.

For simplicity, we assume that the colonization rate c,
the extinction rate e, and the colonization range r are the
same for all species (i.e., being independent of the trophic
level). This is not only a convenient simplification but
also prevents confounding effects caused by differences
between the species that go beyond their trophic positions.
In all cases, we set the extinction rate to e = 1. This
implies no loss of generality but simply fixes the time
scale. Note that for a single species (S = 1), the model
is equivalent to a susceptible–infected–susceptible (SIS)
model from epidemics on networks (Pastor-Satorras and
Vespignani 2001; Newman 2010).

Stochastic approach

We use two different approaches to analyse the model.
First, applying a stochastic approach, we run the model
based on direct stochastic simulations. Thereby, we use
the Gillespie algorithm (Gillespie 1977) which simulates
the dynamics step by step, one colonization, or extinc-
tion event at a time. Bottom-up extinctions are executed
simultaneously with the primary extinction. The algo-
rithm also provides the time that passes between any
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two processes, and thus produces a proper trajectory of the
whole system. Quantities like food chain length or occupa-
tion probability of any species on any patch are calculated
as time averages. When we are interested in these quanti-
ties resolved to single patches, we let the algorithm run for
100 000 · S · N steps and calculate the time average over the
last 90% of steps. When we are interested in spatial aver-
ages, which converge much faster, we let the system run
for 100 000 · S steps and, in addition to the spatial average,
calculate the time average over the last 10% of steps. As
initial conditions, we usually start with each patch having a
probability of 0.5 to be occupied by the whole food chain.
Using intensive numerical simulations, we have verified that
our results on the equilibrium state are independent to vari-
ations of initial conditions, simulation and transient times,
and averaging procedures.

Differential equation approach

Second, we employ a differential equation (ODE) approach
to solve our model. Thereby, we model the occupation
probability, u

(k)
i , of species k on patch i in form of the

following set of ordinary differential equations:

du(k)
i

dt
= c

(
u

(k−1)
i − u

(k)
i

) ∑
j

Aiju
(k)
j − keu

(k)
i . (1)

Here, A is the adjacency matrix of the spatial network with
Aij = 1 if patches i and j are connected and Aij = 0
otherwise. The second summand on the right-hand side of
Eq. (1) describes the extinction of occupied patches (the
factor k is necessary to include bottom-up extinctions). The
first summand describes the colonization of empty patches
and is given as the product of two terms. The first term
(u

(k−1)
i − u

(k)
i ) is the probability that species k is currently

not present on patch i, but its required prey species k − 1 is
present. In the equation for the basal species (k = 1), we set
u

(0)
i = 1 meaning that the basal species has access to any

patch of the network. The second term
∑

j Aiju
(k)
j is the

expected number of k-occupied neighbors of patch i, taking
into account that colonizers can only come from these
patches. Equation (1) uses the approximation that these two
quantities are independent. In reality, the probability that
one patch is currently empty and that a given neighbor of
this patch is currently occupied can be correlated (Newman
2010). Thus, we should expect the ODE model Eq. (1) to
give only an approximation of the full dynamics, and we
therefore always compare the solution to Eq. (1) with direct
simulations of the stochastic model to verify the accuracy of
this approximation.

Calculation of food chain length

Given our model, the food chain length Li on patch i can be
obtained by simply counting the number of trophic levels.
In the stochastic implementation of the model, we calculate
this quantity directly for every patch and time instance,
which then needs to be sufficiently averaged over time. In
terms of the ODE model (1) and occupation probabilities
u

(k)
i , we calculate food chain length as the weighted sum of

all possible food chain lengths (Holt 1993, 1996) as follows:

Li =
S∑

k=1

k
(
u

(k)
i − u

(k+1)
i

)

=
S∑

k=1

u
(k)
i . (2)

On the right-hand side of the first line in Eq. (2), u
(k)
i −

u
(k+1)
i is the probability to find exactly the first k species,

which follows from the hierarchical structure of the species.
The food chain length is thus simply the sum of the
occupation probabilities of all species in the food chain
(Holt 1993; 1996).

Results

Patch occupancy and food chain length in a spatially
homogeneous system

As a benchmark for the subsequent sections, we start
by investigating a one-dimensional system with periodic
boundary conditions. In this case, all patches of the lattice
have the same number of neighbors, so that, after an initial
transient, all patches will be equivalent for all times and
the system becomes spatially homogeneous. In this case,
the index i in Eq. (1) can be dropped and

∑
j Aij simply

becomes a factor corresponding to the number of neighbors
per patch, n(r). For the one-dimensional lattice, we have
n(r) = 2r . With these changes, Eq. (1) becomes as follows:

du(k)

dt
= C

(
u(k−1) − u(k)

)
u(k) − keu(k), (3)

where we have defined the total colonization rate C =
n(r)c. The probability u(k) is now not only the probability
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that any given patch is k-occupied but simultaneously
it is the expected fraction of k-occupied patches. For
the basal species, Eq. (3) is essentially the same as the
metapopulation equation introduced by Levins (1969). Note
that due to neglecting spatial correlations, the equations for
a closed lattice are the same as those for well-mixed space
(Pillai et al. 2010; Calcagno et al. 2011; Gravel et al. 2011a).

Setting the right-hand side of Eq. (3) to zero, we find that
the kth species has an equilibrium occupation probability of
u(k)∗ = u(k−1)∗ − k(e/C) (Pillai et al. 2011). This can be
solved to the following:

u(k)∗ = 1 − e

2C
k(k + 1), (4)

where negative values can be considered as equivalent to
zero. As expected, species at lower trophic levels have
higher occupation probabilities. This is shown in Fig. 2a,
b for a food chain with S = 3 species, where we plot
the expected fraction of occupied patches, u(k)∗ , for each
species as function of the total colonization rate C. Since
for fixed C = 2rc, the occupation probability u(k)∗ does not
depend on r , we obtain the same analytical results for r = 1
and r = 100. This is in striking contrast to direct simula-
tions of the stochastic processes (marked symbols in Fig. 2a
and b). While for r = 100, the analytical results from
Eq. (4) coincide well with the stochastic simulation, for
r = 1, the analytical results strongly overestimate the occu-
pation probabilities. For a given species, this discrepancy
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Fig. 2 Patch occupancy and food chain length in a one-dimensional
lattice with periodic boundaries. a, b Equilibrium occupancies u(k)∗

of a three-species food chain as a function of the total colonization
rate C = 2rc for r = 1 (a) and r = 100 (b). Solid lines: analyti-
cal results obtained by Eq. (4); discrete marker: stochastic simulation
results, averaged over 50 repetitions for each value of r and C. c Sta-
tionary solution to the ODE model Eq. (3) for larger food chains.
Black line: equilibrium occupancy u∗ as function of the trophic level
k for C = 20, following the quadratic decrease from Eq. (4). Blue

line: persistence threshold Ct as function of the trophic level k, follow-
ing the quadratic increase from Eq. (5). d Dependence of food chain
length on the total colonization rate C. Maximal possible trophic level
kmax: exact result from Eq. (6) (black) and approximation kmax ≈√
2C/e − 1 (yellow). Average food chain length L: exact result from

Eqs. (2) and (4) (blue) and approximation by Eq. (7) (red). The inset
shows the dependency of L on C on a double logarithmic plot. To
guide the eye, the black dotted line shows a power law L ∼ C0.5.
Parameter values: e = 1 and N = 1000 patches
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between analytical and stochastic calculations decreases
with increasing colonization rate and both approaches
practically coincide for r ≥ 100.

For both colonization ranges, for the stochastic as well
as the ODE approach, and for all species, we observe a
transition from a regime in which the species is extinct,
u(k)∗ = 0, to a regime in which u(k)∗ > 0. The critical
value C

(k)
t at which this transition occurs, the persistence

threshold of species k increases with the trophic level. As
seen from the stochastic simulation results in Fig. 2a, b,
the persistence thresholds are larger for r = 1 than for
r = 100. For example, C

(1)
t,r=1 = 3.2, C

(2)
t,r=1 = 8.1, and

C
(3)
t,r=1 = 14.9 compared to C

(1)
t,r=100 = 1.2, C

(2)
t,r=100 =

3.2, and C
(3)
t,r=100 = 6.4. Again, for sufficiently large

colonization range, the persistence thresholds obtained by
direct simulation coincide with that from the ODE model.

By setting Eq. (4) to zero, we can calculate the
persistence thresholds in analytic form, showing that the
C

(k)
t increase quadratically with the trophic level as follows:

C
(k)
t = ek (k + 1)

2
. (5)

This is shown in Fig. 2c. For example, the sixth species in
the food chain would be able to persist for a colonization
rate of C/e > 21. Thus, with further increase of C an
arbitrarily long food chain theoretically becomes possible.
As further shown in Fig. 2c, the quadratic increase of the
persistence threshold with k goes together with a quadratic
decrease of the equilibrium occupancy. Thus, for C = 20,
five species would be able to persist, while the occupation
probability of the sixth species would be negative and thus
zero. For a given value of the colonization rate, only a
finite number of species can survive, even when potentially
allowing an infinite number of species.

Finally, in Fig. 2d, we investigate the dependence of the
food chain length on the colonization rate C. By setting
Eq. (4) to zero and solving for k instead of C, we obtain the
maximal trophic level, kmax, found in the system as follows:

kmax = floor

(
−1

2
+

√
1

4
+ 2

C

e

)
, (6)

which increases as kmax ≈ √
2C/e − 1 for large C. This

maximal possible length of a food chain in the system is

larger than the average food chain length, L, because locally
species continuously go extinct, yielding a reduction of the
average food chain (blue line in Fig. 2d).

Using Eq. (2) and summing up the terms in Eq. (4) from
k = 1 to the upper bound kmax ≈ √

2C/e − 1, we can
approximate the average food chain length as follows:

L ≈ 2

3

√
2C

e
− 1. (7)

Thus, the average food chain length roughly scales with the
square root of the ratio of colonization and extinction rates.
This power law increase with C is superposed by slight
irregularities at the persistence thresholds (see Fig. 2d).
Note that this result, the quadratic decay of patch occupancy
withC in Eq. (4) is in contrast to a previous estimation of the
food chain length L ≤ C/e + 1 (Gravel et al. 2011a). These
authors, however, did not consider bottom-up extinctions.

Trophic mid-domain effect in a one-dimensional
domain

Next, we investigate the influence of hard boundaries in a
one-dimensional lattice. For this, we simulate the dynamics
of a food chain (with an in principle arbitrary number of
species) on a one-dimensional lattice with N = 1000
patches and hard boundaries. We are interested in the
spatial profile of occupation probabilities of all surviving
species, and the resulting food chain length, resolved to
individual patches. As before, we parametrize our model
by the total colonization rate C = n(r)c, but for a lattice
with hard boundaries, we define n(r) as the number of
neighbors of a non-boundary patch. In the simulations, we
pay specific attention to the total colonization rate C =
20, but repeated the simulations for a large range of C

values. Our simulation runs, shown exemplary in Fig. 3,
confirm that for sufficiently large colonization range (r =
100), we obtain an excellent agreement between the ODE
approach and stochastic simulations also in the spatially
explicit non-homogeneous system, similar to the case of
a spatially homogeneous system (Fig. 2) where we used
spatial averages.

In a homogeneous system, we found that for a total
colonization rate of C = 20, a number of S = 5 species are
able to persist (Fig. 2d). As shown in Fig. 3, this result holds
true also in a one-dimensional lattice with hard boundaries
(see also Appendix A, Fig. 6, showing a characteristic
spatial profile from the stochastic model). Additionally, we
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observe a clear MDE: All species show a clear plateau in
the inner parts (mid-domain) of the lattice and decay in
occupation probability towards the boundary. The transition
from the plateau to the boundary occurs roughly at patch r ,
though the transition is less sharp for higher trophic levels.
On the other hand, the MDE is more pronounced for species
at higher trophic levels that have overall smaller occupation
probabilities. Since according to Eq. (2), food chain length
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Fig. 3 Trophic mid-domain effect and spatial profile of food chain
characteristics in a one-dimensional lattice with hard boundaries. a
Equilibrium occupancy u∗ as a function of patch number for different
trophic levels, from k = 1 (blue) to k = 5 (green), obtained
from numeric simulation of the ODE model, Eq. (1). Since the
solution is spatially symmetric, only the left part (patches 1 to 400)
is shown. b Corresponding food chain length L, obtained from the
ODE model (blue line) and from temporally averaged stochastic
simulations (red dots). The horizontal black solid line marks the 95%
value between Lmin and Lmax (see Eq. 9) and the solid vertical line
marks the corresponding edge lengthE. The dashed vertical line marks
the colonization range r . Note that the figure shows time-averaged
quantities; a snapshot of a corresponding stochastic simulation is
shown in Appendix A, Fig. 6. Parameter values: number of patches
N = 1000, colonization range r = 100, total colonization rate
C = 20, extinction rate e = 1

is the sum of the occupation probabilities of all species, the
food chain length must inherit the MDE pattern from the
single species. Figure 3b confirms that this is indeed the
case. Both ODE and stochastic simulations reveal a clear
MDE for food chain length, meaning that food chain length
also reaches a plateau value in the middle of the domain and
decreases towards the boundary.

To characterize the trophic MDE, we first measure the
maximal average food chain length Lmax within the plateau
in the interior of the lattice and the minimal average food
chain length Lmin at the boundary of the lattice. Based on
these values, we define the relative strength of the trophic
MDE as follows:

RL = (Lmax − Lmin) /Lmax. (8)

In general, this index measures the relative magnitude of
the decay of the food chain length towards the boundaries.
It is bounded by 0 ≤ RL ≤ 1 and larger values indicate a
stronger spatial decay. For the example, shown in Fig. 3, we
obtain the values Lmin = 2.38 and Lmax = 3.25, yielding a
trophic MDE strength of RL = 0.27. Note that Lmax does
not give the maximum number of species or trophic levels
that can persist in the middle of the lattice (that would be
S = 5 in this example), but instead gives the maximal value
of the expected food chain length (see previous subsection).

While the index RL measures the “vertical” aspect of the
trophic MDE in Fig. 3, we next define a measure for the
“horizontal” aspect, that is, the characteristic spatial scale of
the trophic MDE. For this, we define the edge length E as
the distance to the boundary at which the food chain length
reaches the level as follows:

LE = Lmin + 0.95( Lmax − Lmin)

= 0.05 Lmin + 0.95 Lmax, (9)

that is, the level at which the food chain length has increased
from its boundary value Lmin by 95% of its range between
Lmax and Lmin. For the example shown in Fig. 3, we find
E ≈ 150 which is in the same order as the used value of the
colonization range r = 100. Thus, the colonization range
defines a characteristic spatial scale of the trophic MDE
and approximately separates the plateau from the boundary
regime over which the food chain length declines.

Next, we explore the dependence of the trophic MDE
indices on the total colonization rate C. This is shown in
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Fig. 4 for maximal and minimal food chain length, Lmax

and Lmin, the relative trophic MDE strength RL, and the
normalized edge length E/r . As expected from Fig. 2, Lmax

and Lmin increase with increasing C (Fig. 4a). Since Lmax

increases faster, the absolute strength of the trophic MDE,
Lmax − Lmin, is an increasing function of C as well. The
relative strength, RL, on the other hand, on average is a
decaying function of C (Fig. 4b). The trophic MDE is thus
stronger for longer food chains in absolute numbers, but
weaker on a relative scale.

As shown in Fig. 4b, the relative edge length is largest
at the persistence threshold of the first species at which
the food chain starts to exist. For increasing C, the edge
length has a decreasing tendency, though this tendency
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Fig. 4 Several trophic MDE quantifiers as functions of the total
colonization rate C on a one-dimensional lattice (N = 1000 patches,
hard boundaries, colonization range r = 100). Dashed vertical lines
mark the persistence thresholds C

(k)
t of species 1 ≤ k ≤ 7 (see

Eq. (5)). For C < C
(k)
1 , no food chain exists. Most quantities show an

irregular behavior at the persistence thresholds. a Plateau chain length
Lmax (black) and boundary chain lengthLmin (blue). bRelative trophic
MDE strength RL (black) and edge length normalized by colonization
range E/r (blue)

is superposed by an oscillating pattern, where typically
minima of E/r arise at the persistence thresholds of
additional species. The magnitude of these irregularities
decreases with increasing C since the effect of a newly
persistent species is weaker the more species are already
present in the community. The relative edge length roughly
converges to E/r ≈ 1.5 which is also the value that we
found in Fig. 3. In Appendix B, Fig. 7, we elaborate on the
dependence of the edge length E on the colonization range
r . We find that for increasing r , food chain length Lmax

and Lmin quickly converge to the values already observed
in Fig. 3 (Lmax → 3.25 and Lmin → 2.38) (Appendix B,
Fig. 7a). For sufficiently large r (� 30), the edge length
becomes a linear function of the colonization range, E ≈
7.2 + 1.5r (Appendix B, Fig. 7b). From a theoretical point
of view, these results imply that r (if not too small) primary
serves as a spatial scale while relevant results (Lmax, Lmin

and E/r) are independent of r . This underlines the role of C

being essentially the only free parameter in the system and
justifies why we usually consider the ratio E/r .

Similar to the irregularities observed in Fig. 4, also in
Fig. 7 in Appendix B, we can observe irregularities in the
behavior of Lmax, Lmin and E, in the regime of small
r . These irregularities occur exactly at the “persistence
thresholds” of the fourth and fifth species. The term
“persistence threshold” is here not meant with respect to the
total colonization rate C but with respect to the colonization
range r . For r < 11, only four of the five species are able to
persist. For r < 3, the fourth species goes regionally extinct
as well. Even though the total colonization rate is constant,
a large colonization range has a stabilizing effect on the
food chain. This can be understood by acknowledging that
for larger r , the effective distance between patches becomes
smaller and that there are more alternative paths from
one patch to another. For small r , the dynamics are less
robust and local extinctions do more often lead to regional
extinctions. Note that we have already seen this effect in
Fig. 2a and b, where for r = 1, the persistence of any
species required a significantly larger colonization rate than
for r = 100.

We can calculate Lmax and Lmin analytically, by directly
solving the set of equations (1) with an approximate ansatz.
To this end, we use a continuous limit of Eq. (1) as follows:

du(k) (x)

dt
= c

(
u(k−1) (x) − u(k) (x)

) ∫ min{1,x+r ′}
max{0,x−r ′}

u(k) (y) dy − keu(k) (x) .

(10)
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Here, the discrete patches are replaced by continuous space
(i → x, j → y) and the sum over i’s neighbors
is now an integral over x’s colonization range, which is
x ± r ′ if we are not too close to the boundary. The total
habitat is normalized to be of unity length. In order to use
the same range-to-habitat-size ratio as before (r = 100,
N = 1000), we set the normalized colonization range to
r ′ = 0.1. To find the equilibrium occupation probabilities
u(k)∗ (x), we set the left-hand side of Eq. (10) to zero.
The resulting set of equations for different trophic levels k

has to be solved iteratively, since the equation for species
k depends on the solution for species k − 1. Only the
basal species depends on no other species. To solve the
integral in Eq. (10), we assume for each single u(k) (x) a
linear growth from the boundary value u

(k)
min to the plateau

value u
(k)
max over an edge of length r ′. In Fig. 3b, we

have seen that this approximation is not entirely correct.
But incorporating more details into the calculation (e.g.,
replacing the range r by our previous definition of the
edge length E) does not improve the result. We therefore
prefer to employ the simpler approach that only depends
on qualitative observations instead of quantitative results.
Within our approximation, it is straightforward to solve the
integral in Eq. (10). By further using Eq. (2), we obtain for
C = 20 the analytical food chain length results Lana

min = 2.38
and Lana

max = 3.25 which coincide with the values extracted
from Fig. 3b.

Trophic mid-domain effect in a two-dimensional
domain

Finally, we explore whether the results from the previous
sections hold also in a two-dimensional domain. For this, we
repeated the ODE simulations for the case C = 20 on a two-
dimensional square lattice (N = 32 × 32 = 1024 patches)
and on a two-dimensional lattice placed on the mainland of
Australia (N = 2801 patches). For the colonization range,
that is now a radius, we used r = 8. This amounts to
n(r) = 196 neighbors (roughly πr2 ≈ 201) for any central
patch that is not too close to any boundary. The connectivity
of the networks is thus comparable to our choice in the one-
dimensional case with n(r) = 200 for a colonization range
of r = 100. We considered again hard boundaries and were
interested in the food chain length resolved to individual
patches.

Our numerical simulation (Fig. 5) demonstrates that the
trophic MDE emerges also on spatial networks embedded in
two-dimensional space. In fact, the effect in two dimensions
is even more pronounced than in the one-dimensional case.
For the relative strength of the trophic MDE, we find
RL = 0.45 for the square lattice and RL = 0.64 for the
lattice placed on the mainland of Australia (for the one-
dimensional lattice it was RL = 0.27). We used a total

colonization rate of C = 20 in all cases so that the results
can be properly compared, and differences are caused only
by the different spatial structures.

Using the same total colonization rate implies that we
should find the same maximal chain length in all cases.
For the example shown in Fig. 5, we find that this is
true at least approximately (Lmax = 3.22 for the square
lattice and Lmax = 3.24 for Australia compared to
Lmax = 3.25 for the one-dimensional lattice). The reason
for the small differences is related to the total extension
of the domains, used in the simulation. In our finite two-
dimensional networks, a larger fraction of patches belongs
to the boundary and a smaller fraction belongs to the mid-
domain. As a result, the lattice size is too small to support
a true mid-domain plateau. We repeated the simulations for
larger networks with a larger mid-domain to boundary ratio
(i.e., having more patches but the same value of r) and
found that the maximal food chain length indeed increased
to Lmax = 3.25 for both two-dimensional structures.

The differences in the relative strength RL, observed
in different network topologies, are caused by differences
in the minimal chain length Lmin. For the square lattice,
we observe Lmin = 1.77 at the outmost corners, and for
Australia, we find Lmin = 1.17 at the north-eastern land
tongue marked by the arrow in Fig. 5. Note that in the
one-dimensional case, we had Lmin = 2.38.

Discussion

In this study, we calculated the colonization–extinction
dynamics of a food chain in spatial networks of different
topologies. Our most notable finding is the mid-domain
effect for food chain length, stating that food chain length
is maximal in the center of a habitat and declines towards
the boundaries, even in the absence of other environmental
gradients. The effect can instead be explained as a direct
consequence of the underlying spatial structure. Habitat
patches close to the boundary have a smaller number of
neighbors, and thus receive fewer incoming colonizations.
Since outgoing colonizations do not take away anything
from the source patch, and since extinctions are purely local
events, having fewer neighbors has no other counteracting
positive effects. A fewer number of neighbors thus leads to
smaller species occupation probabilities and consequently
to shorter food chains.

Food chain dynamics in a spatially homogeneous
system

Our findings corroborate the theory that purely spatial
dynamics can provide a constraint on maximal food chain
length (Holt 1993, 1996). More generally, we found that



Theor Ecol

a
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1.17
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Fig. 5 Trophic mid-domain effect in a two-dimensional domain. The
figure shows the patterns of food chain length on a two-dimensional
square lattice (a N = 32×32 patches) and an analogous lattice placed
on the mainland of Australia (b N = 2801 patches). In both cases,
we used hard boundaries, colonization range r = 8 as depicted by

the circles, and total colonization rate C = 20. On both networks,
food chain length shows a clear trophic MDE, with the largest value
attained at the center. The respective minima are attained at the cor-
ners (square lattice), and at the north-eastern land tongue marked by
the arrow (Australia)

even on spatially homogeneous habitats (that have periodic
boundaries), the persistence and occupation probabilities of
all species in the chain (and consequently also the food
chain length) strongly depend on the colonization range r .
A larger colonization range makes spread and persistence
easier for all species. This happens even when the per-
neighbor colonization rate is simultaneously decreased in
such a way that the total colonization rate C remains
constant. This can be understood by the following two
arguments: (1) For all species, a larger colonization range
(i.e., shorter path lengths between patches) means that
empty patches can typically be (re)colonized faster (see
also Barter and Gross (2017)). This increases robustness
against local extinctions. (2) For species at higher trophic
levels, we can further interpret the colonization range as
the species’ ability to traverse through unsuitable habitat
patches, where the required prey species is absent. For small
ranges, the remaining suitable patches are more likely to
be disconnected, which strongly diminishes the species’
colonization ability.

It was also for small colonization ranges (r = 1) that
results of the stochastic and the ODE approach differed
significantly, which can be understood as follows: For small
ranges, the slow step-wise propagation of a species through
the habitat network implies that occupied patches tend to
form clusters, i.e., lie next to each other. This leads to strong
correlations between the occupation status of adjacent patches;
see also Newman (2010). For larger values of the colonization
range, these correlations are much weaker, first since there exist
much more alternative paths through the network and second
because the average distance between patches is much
shorter. For this reason, the agreement between the ODE
approach, that neglects these correlations, and the stochastic
approach, that contains these correlations, improves with
larger colonization ranges (Fig. 2a and b). Note that it is

possible to augment the ODE approach to partially include
the correlations. This would require, however, additional
and more complex equations, at the same time still being
only an approximation (Newman 2010).

In the ODE approach used here, a lattice with periodic
boundaries is formally equivalent to a well-mixed space. To
actually obtain a well-mixed space from our one-dimensional
lattice with periodic boundaries, we could use a colonization
range r ≥ N/2. In Eq. (3), the colonization range does,
however, enter only implicitly via the number of neighbors
per patch, n(r), which is absorbed into the total colonization
rate C. Accordingly, Eq. (4) shows that in equilibrium
the fraction of occupied patches depends only on C, and
not explicitly on the range r . The structure of the spatial
network does also not enter the equation in any other way.
This means that in our ODE approach, we obtain the same
results for r = 1, an actual lattice with only next-neighbor
interactions, and for r ≥ N/2, i.e., a well-mixed space.

We found that the fraction of occupied patches decreases
with trophic level (see Eq. (4) and Fig. 2a, b, and c). This
result is not surprising and has already been observed, e.g.,
by Pillai et al. (2011). It is simply a consequence of the
fact that species at higher trophic levels can make fewer
colonizations, as they are restricted to patches where their
prey is present, and go extinct more frequently due to
bottom-up extinctions. Both effects inhibit the spread of
the species. The increase of the persistence threshold with
trophic level (see Eq. (5) and Fig. 2d) is then simply a
consequence of the decrease of the occupation probabilities.
As another remarkable result, we found that the average
food chain length roughly increases with the square root
of the ratio of colonization and extinction rates. This result
deviates from previous estimation of the food chain length
(Gravel et al. 2011a) which, however, did not consider
bottom-up extinctions.
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Themid-domain effect for food chain length

We want to stress again that the MDE for food chain
length, as explained above, emerges in the absence of any
environmental gradients, except for the existence of the
boundaries; it is solely caused by spatial constraints and can
thus be considered a null expectation for spatial patterns
of food chain length. Thereby, the MDE is not supposed
to fully explain an actually observed pattern, such as food
chain length or (traditionally) species richness. The MDE
should rather be part of a multivariate explanation (Colwell
and Lees 2000; Jetz and Rahbek 2002; Colwell et al. 2004).
Other factors potentially contributing to observed spatial
patterns are heterogeneities in temperature, productivity,
annual precipitation, habitat diversity, or even “historical
gradients” like time since the last glaciation; see, for
example, Colwell et al. (2004) and Jetz and Rahbek (2002)
and references therein. This is in particular true for our
illustrative example using the mainland of Australia (Fig.
5b), where food chain length pattern are likely to be strongly
influenced by the existing environmental gradients. We also
want to point out that, while there is no environmental
gradient (other than the boundary) as input to our model,
the model generates its own gradients for species at higher
trophic levels (see Fig. 3a). The mid-domain pattern of the
occupation probability of the basal species is solely caused
by the spatial constraints. Due to the dependence of higher
trophic levels on lower ones, the patch occupancy of a
higher level is additionally influenced by the occupation
pattern of the next lower one. In this way, the MDE cascades
up the food chain, being stronger for species at higher
trophic levels and finally leading to a significant MDE for
food chain length.

The mechanistic explanation of the MDE for food chain
length, as presented here, slightly deviates from the classic
explanation of the MDE for species richness. The MDE is
classically explained by randomly placing species ranges
into a large region (Colwell and Hurtt 1994; Colwell and
Lees 2000; Jetz and Rahbek 2001). The mid-domain peak or
plateau of species richness then emerges since the centers of
these ranges must not lie too close to the boundary in order
to not overlap with the inhabitable zone. This theory, even
though being very compelling, is not sufficient to explain a
trophic MDE. In this framework, it is not sufficient that the
richness at all trophic levels decline towards the boundary.
An MDE for food chain length, i.e., a decline in the number
of trophic levels towards the boundary, can only arise if the
richness at higher trophic levels decline more rapidly than
that at lower trophic levels. To obtain this, we would need
to require that species ranges increase with the trophic level,
which however seems not to be supported by empirical
evidence. While a scaling with body mass, and thus with
trophic level, has been well established for the home range

of a species, i.e., the area or territory in which an individual
animal lives and moves on a periodic basis (Jetz et al. 2004),
there is no evidence that the same holds true for the species
range, i.e., the full geographic area where all individuals of
a particular species can be observed (Gaston 1996).

In addition, there are several noteworthy differences
between the MDE for food chain length and the classical
MDE for species richness as described by Colwell and
Hurtt (1994): (i) Classically, species ranges span only over
a fraction of the totally available habitat. In contrast, in our
case, species span over the full habitat, but in the absence
of any additional factors that shape occupation patterns,
this result is only natural. (ii) Classically, MDE models
describe cohesive species ranges (but for exceptions, see
for example (Grytnes and Vetaas 2002; Dunn et al. 2006)),
whereas in our case, at a given point in time, species ranges
are highly fragmented (see Appendix A, Fig. 6). Only at
the level of expected values, i.e., time averages, do species
ranges appear to be continuous. Note that in real data, the
fragmentation might be caused by various factors, such as
undersampling, environmental heterogeneity (unsuitability
of certain regions), but also by actual breaks in species
ranges (Dunn et al. 2006). (iii) Classically, species richness
declines to zero at the boundary (but for exceptions, see
for example, (Jetz and Rahbek 2001; Grytnes and Vetaas
2002)), whereas in our case, food chain length declines to
non-zero values at the boundary.

Even though the MDE for species richness has been
subject to criticism (Bokma et al. 2000; Laurie and Silander
2002; Colwell et al. 2004), there is a large consensus
that boundary constraints affect spatial patterns of species
richness at least to some degree. The same should be true
also for patterns of food chain length. Thus, we expect that
an MDE for food chain length will also be observed when
changing details of the model, or when using an entirely
different one, as long as spatial constraints are included.
Spatial constraints should thus always be considered as one
possible explanatory factor for spatial patterns of food chain
length (or any other ecologically interesting quantity).

Some diversity gradients that have classically been
explained by theMDE for species richness span large spatial
scales (e.g, ranging over thousands of kilometers) which
can easily exceed the spatial scale of metacommunities
and dispersal. Not surprisingly, patterns of species richness
were found to be less effected by geometric constraints for
species with smaller spatial ranges (Jetz and Rahbek 2001;
Dunn et al. 2006; Dunn et al. 2007). Similarly, the trophic
MDEmight only weakly contribute to patterns of food chain
length for species with a small colonization range relative
to the domain size, since in this case the plateau of the
food chain length reaches much closer towards the habitat
boundaries (Fig. 7b). Conversely, the trophic MDE might
best explain patterns of food chain length observed along
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elevational or bathymetric gradients or river courses that
span shorter geographic distance. Thus, the relative effect of
food chain dynamics for describing MDEs should strongly
depend on taxa, because a distance that is exceptional for
plants and mammals, could play a lesser role for birds and
marine fauna (Kinlan and Gaines 2003).

We observed that the trophic MDE characterized by its
relative strengthRL is stronger for two-dimensional habitats
(e.g., R

(2d,Australia)
L = 0.64 and R

(2d,square)
L = 0.45) than

for the one-dimensional lattice (e.g., R
(1d)
L = 0.27). This

observation is in agreement with our general explanation of
the MDE for food chain length in our model, i.e., that the
trophic MDE is caused by the fewer number of neighbors of
boundary patches compared to central patches. The larger
this difference becomes, the stronger the trophic MDE
should be. The ratios of the number of neighbors of the
outmost boundary patches to central patches, nbound, were
n

(1d)
bound = 0.5, n(2d,square)

bound = 0.29, and n
(2d,Australia)
bound = 0.16.

As expected, the decreasing tendency of nbound matches the
increasing tendency of RL. More generally, this suggests
the perimeter-to-area ratio as a key feature of habitat
configuration determining the strength of trophic MDE in
two-dimensional domains.

Empirical support and further considerations

In this study, we were mainly concerned with a theoretic
exploration of the MDE for food chain length, and we
leave it as a challenge for future work to test our theoretic
predictions in field data. One simple reason for this focus of our
study is that empirical data on spatial food web structure are
hard to come by. While topological aspects for food webs at
single patches have been characterized in depth (Thompson
et al. 2012), data on spatial food web structure are scarce.
Nevertheless, there are empirical observations that suggest
an MDE for food chain length. For example, it has been
well established in fisheries that large top predatory fish are
dominantly observed in mid ocean, but are rarely observed
in coastal areas (Worm et al. 2003). In another study,
Komonen et al. (2000) observed that a food chain consisting
of the bracket fungus Fomitopsis rosea, the tineid moth
Agnathosia mendicella, and the parasitic tachinid fly Elfia
cingulata reduced to the first one or two trophic levels
in isolated forest fragments. For more complex spatial
structures, it becomes more difficult to classify patches into
boundary and central or isolated and non-isolated patches.
In fact, a continuous “degree of connectedness,” in network
theory known as centrality measures (Newman 2010) is
needed to properly characterize patches. For our lattices, we
simply used the distance to the boundary as such a measure,
but for more complex networks, the choice of centrality
measure is less straightforward. Properly quantifying and

predicting spatial patterns of food chain length on arbitrary
habitat networks could thus prove challenging.

In general, not only the spatial structure but also the
food web structure will be more complex than studied here.
One interesting avenue for further explorations would be to
extend this analysis to the spatial patterns of other food web
properties beyond food chain length, such as connectance
or food web branching (Martinez 1991; Thompson et al.
2012). In our spatial setting, the mechanism causing the
trophic MDE, i.e., the smaller number of neighbors in
boundary patches, is rather generic and does not depend
on the food web structure or the nature of the trophic
interactions. More complex food webs and top-down effects
could, however, have additional effects that might alter
the mid-domain pattern. For example, the decrease of the
occupation probability of one species towards the boundary
could open a niche for other species better adapted to
this range, but that are out-competed in the mid-domain.
Such community effects might well lead to more complex
spatial profiles, possibly yielding even an inverted mid-
domain pattern. Another top-down effect with the potential
to feed back on the spatial structure is the predator-mediated
coexistence of multiple prey species (Holt 1984), meaning
that each new trophic level potentially allows more species
in lower trophic levels to coexist. Thereby, the larger
number of trophic levels in the mid-domain could locally
increase the number of species per trophic level, and thus
amplify the absolute gradient in species richness, essentially
propagating the MDE in food chain length to an enhanced
MDE in species richness.
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Appendix A: Snapshot of a stochastic
simulation in a one-dimensional habitat

Fig. 6 Snapshot of a stochastic
simulation in a one-dimensional
habitat with hard boundaries,
depicting the characteristic
rough spatial profile in a
colonization–extinction model.
The top five rows plot the
occupancy status (1 if patch is
occupied and 0 if patch is
empty) of species 1 to 5 at one
time instance as a function of
the patch number, respectively.
The bottom panel shows the
corresponding food chain length.
For comparison, the average
food chain length is shown as
red line. Due to random
extinction and colonization
events, the instantaneous spatial
profile stochastically deviates
from the smooth averaged
profile, yielding highly
fragmented species ranges.
Nevertheless, expected patch
occupancies and food chain
length decrease towards the
boundary of the habitat,
revealing a mid-domain effect of
food chain length. Parameters as
in Fig. 3: number of patches
N = 1000, colonization range
r = 100, total colonization rate
C = 20, extinction rate e = 1,
only the left part (patches 1 to
400) is shown
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Appendix B: Food chain length and edge
length vs. colonization range
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Fig. 7 Dependence of trophic MDE properties on the colonization
range. a Plateau food chain length Lmax (blue circles) and boundary
food chain length Lmin (red crosses) as a function of the coloniza-
tion range r . b The same as (a) but for the edge length E. The spatial
network is a one-dimensional lattice with N = 1000 patches and
hard boundaries. Since we are also interested in small values of r , for
which the ODE approach might yield erroneous results (see Fig. 2),
we use the stochastic approach. For each value of r , we run the
stochastic simulations only once, but exemplary repetitions indicate

that the results are robust. In all runs, each patch was initialized with
a probability of 0.5 to be occupied by the whole food chain. We fix
the total colonization rate to C = 2rc = 20, and thus compensate an
increase of r by a decrease of the per-neighbor colonization rate c. The
extinction rate is as always set to e = 1. For C = 20, in principle,
S = 5 species should be able to persist. The dashed vertical lines indi-
cate persistence thresholds (with respect to r) of the fourth and fifth
species
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