Nitric oxide mediates metabolic functions in the bivalve Arctica islandica under hypoxia


Contact
julia.strahl [ at ] hifmb.de

Abstract

The free radical nitric oxide (NO) is a powerful metabolic regulator in vertebrates and invertebrates. At cellular concentrations in the nanomolar range, and simultaneously reduced internal oxygen partial pressures (pO2), NO completely inhibits cytochrome-c-oxidase (CytOx) activity and hence mitochondrial- and whole-tissue respiration. The infaunal clam Arctica islandica regulates pO2 of hemolymph and mantle cavity water to mean values of <5 kPa, even in a completely oxygen-saturated environment of 21 kPa. These low internal pO2 values support a longer NO lifespan and NO accumulation in the body fluids and can thus trigger a depression of metabolic rate in the clams. Measurable amounts of NO formation were detected in hemocyte cells (~110 pmol NO 100−1 hemocytes h-1 at 6 kPa), which was not prevented in the presence of the NO synthase inhibitor L-NAME, and in the gill filaments of A. islandica. Adding a NO donor to intact gills and tissue homogenate significantly inhibited gill respiration and CytOx activity below 10 kPa. Meanwhile, the addition of the NO-oxidation product nitrite did not affect metabolic rates. The high nitrite levels found in the hemolymph of experimental mussels under anoxia do not indicate cellular NO production, but could be an indication of nitrate reduction by facultative anaerobic bacteria associated with tissue and/or hemolymph biofilms. Our results suggest that NO plays an important role in the initiation of metabolic depression during self-induced burrowing and shell closure of A. islandica. Furthermore, NO appears to reduce mitochondrial oxygen radical formation during surfacing and cellular reoxygenation after prolonged periods of hypoxia and anoxia.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
52322
DOI 10.1371/journal.pone.0232360

Cite as
Strahl, J. and Abele, D. (2020): Nitric oxide mediates metabolic functions in the bivalve Arctica islandica under hypoxia , PLoS ONE, 15 (5), e0232360 . doi: 10.1371/journal.pone.0232360


Download
[thumbnail of Strahl_Abele_2020_PlosOne.pdf]
Preview
PDF
Strahl_Abele_2020_PlosOne.pdf

Download (2MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Geographical region

Research Platforms
N/A

Campaigns
N/A

Funded by
DFG: AB124/10-1 and DR262/10-1


Actions
Edit Item Edit Item