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Abstract
Understanding the energy flux through food webs is important for estimating the capacity of marine ecosystems to support 
stocks of living resources. The energy density of species involved in trophic energy transfer has been measured in a large 
number of small studies, scattered over a 40-year publication record. Here, we reviewed energy density records of Southern 
Ocean zooplankton, nekton and several benthic taxa, including previously unpublished data. Comparing measured taxa, 
energy densities were highest in myctophid fishes (ranging from 17.1 to 39.3 kJ g−1 DW), intermediate in crustaceans (7.1 
to 25.3 kJ g−1 DW), squid (16.2 to 24.0 kJ g−1 DW) and other fish families (14.8 to 29.9 kJ g−1 DW), and lowest in jelly 
fish (10.8 to 18.0 kJ g−1 DW), polychaetes (9.2 to 14.2 kJ g−1 DW) and chaetognaths (5.0–11.7 kJ g−1 DW). Data reveals 
differences in energy density within and between species related to size, age and other life cycle parameters. Important taxa 
in Antarctic food webs, such as copepods, squid and small euphausiids, remain under-sampled. The variability in energy 
density of Electrona antarctica was likely regional rather than seasonal, although for many species with limited data it 
remains difficult to disentangle regional and seasonal variability. Models are provided to estimate energy density more 
quickly using a species’ physical parameters. It will become increasingly important to close knowledge gaps to improve the 
ability of bioenergetic and food web models to predict changes in the capacity of Antarctic ecosystems to support marine life.

Introduction

The Southern Ocean is home to some of the largest popula-
tions of top predator species worldwide such as penguins, 
flying birds, seals and whales. It comprises the sub-Antarctic 
and Antarctic regions and is here defined as the water masses 
south of the Subtropical Front (STF), which separates the 
surface waters of the Southern Ocean from the warmer and 
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more saline surface waters of subtropical circulations (Orsi 
et al. 1995; Belkin and Gordon 1996). To predict conse-
quences of challenges to top predators, such as from climate 
change and increased fisheries, and to develop adequate 
conservation measures, a quantitative understanding of the 
energy flux in the ecosystem is important. The energy con-
tent of species is a key factor in models of energy flux in 
food webs and in the studies of trophic relationships between 
species (Van de Putte et al. 2006).

The life cycle and physiology of a species can strongly 
influence its energetic value. Organisms often have seasonal 
cycles in lipid content and consequently energy density (His-
lop et al. 1991; Tierney et al. 2002). This is generally associ-
ated with the annual reproductive and feeding cycles (Hislop 
et al. 1991). Many species, for instance, acquire energy for 
reproduction, and therefore, have a high energy value just 
before spawning, and a lower one afterwards (Norrbin and 
Båmstedt 1984; Van de Putte et al. 2006; Fenaughty et al. 
2008). Particularly in crustaceans, energy densities can vary 
between sexes (Färber-Lorda et al. 2009a). Lipid storage is 
used as buoyancy control in many marine animals, causing 
differences in energy content between animals with a dif-
ferent vertical distribution (Lawrence 1976). Furthermore, 
lipid content changes with size and age, greatly influenc-
ing energy content (Tierney et al. 2002; Färber-Lorda et al. 
2009a; Färber-Lorda and Mayzaud 2010). Energy allocation 
for different purposes, such as growth or reproduction, most 
likely occurs simultaneously, but one purpose may domi-
nate over others depending on locality and season (Båmstedt 
1986).

Within a single species, the energetic value can vary 
between regions or seasons, due to differences in the type 
or amount of food (Williams and Robins 1979; Tierney et al. 
2002; Van de Putte et al. 2006). Temperature and changes 
in food can, furthermore, influence the energy storage func-
tion of prey species (Ruck et al. 2014). Specifically at higher 
latitudes, the Southern Ocean experiences strong seasonal-
ity, with drastic changes in light availability between sea-
sons and massive changes in sea-ice cover in many parts. 
In winter, the phytoplankton growth in the water column of 
both ice-covered and open water is greatly reduced (Arrigo 
et al. 1998, 2008). In ice-covered waters, algae and other 
fauna within and at the underside of the sea ice may provide 
the only source of primary production (Eicken 1992; Quetin 
and Ross 2003; Arrigo et al. 2008; Flores et al. 2011, 2012; 
Meiners et al. 2012; Schaafsma et al. 2017). A patchy and 
seasonally changing food distribution can cause frequent 
periods of starvation. Therefore, organisms living in harsher 
environment tend to have higher energy content, as they have 
adapted to the lower degree of predictability of food avail-
ability, and energy content and lipid stores of organisms tend 
to increase towards higher latitudes (Norrbin and Båmstedt 
1984; Falk-Petersen et al. 2000).

The winter food scarcity has resulted in different over-
wintering strategies used by zooplankton and nekton living 
in the Southern Ocean such as relying on lipids reserves, 
reducing metabolic activity, dormancy, feeding on sea-ice 
resources, opportunistic feeding, combustion of tissue, 
or a combination of these (Torres et al. 1994; Schnack-
Schiel et al. 1998; Meyer et al. 2009; Kohlbach et al. 2017; 
Schaafsma et al. 2017). Species need to make optimal use 
of periods of high production, for instance to “fatten up” for 
winter and/or to gain enough energy for reproduction. Tim-
ing of reproduction can be important to ensure winter sur-
vival of young stages. Many species, therefore, have a spe-
cific strategy to make optimal use of spring phytoplankton 
blooms, which in ice-covered waters is initiated by sea-ice 
melt, or the peak summer phytoplankton production during 
their life cycle (Quetin and Ross 1991; Lizotte 2001).

The overwintering strategy utilized by zooplankton and 
nekton influences its seasonal physiology and consequently, 
energetic density. Species relying on reserves in winter often 
have a low energetic value by the end of this season (Torres 
et al. 1994). Organisms that have accumulated lipids for a 
time of low phytoplankton availability have relatively high 
lipid content and high energetic values. Therefore, higher 
energetic values are often found in herbivores in certain 
seasons (Donnelly et al. 1994). Species can also have a 
‘business as usual’ overwintering strategy, encompassing 
opportunistic feeding combined with some combustion of 
tissue (Torres et al. 1994). This strategy is, for instance, 
adopted by deeper living zooplanktivorous species which 
do not necessarily experience a food decline during the win-
ter months, as they have access to, e.g. calanoid copepods 
that sink out of the euphotic zone to overwinter in diapause 
(Bathmann et al. 1993; Torres et al. 1994; Kruse et al. 2010). 
Many larger crustaceans adopt a mixed strategy compris-
ing a combination of opportunistic feeding, combustion 
of body mass, a lowered metabolic rate, and occasionally, 
negative growth (Ikeda and Dixon 1982; Quetin and Ross 
1991; Torres et al. 1994). In general, the food supply is more 
variable for pelagic species as opposed to benthic species, 
as seasonal changes are less pronounced in deeper waters. 
Pelagic species often have a higher and more variable energy 
density compared to benthic species. This is attributed to 
the generally more variable food supply for pelagic species 
as opposed to benthic species, as seasonal changes are less 
pronounced in deeper waters (Norrbin and Båmstedt 1984).

Predation, seasonality, and subsequent life cycle strategy 
has influenced the behaviour and distribution of zooplankton 
and nekton species. This has consequences for the availabil-
ity of zooplankton and nekton as a food source for predators, 
for example, prey species have different depth distribution 
between seasons (Ainley et al. 1991, 2006; Greely et al. 
1999; Flores et al. 2014), prey species shift their horizon-
tal distribution depending on growth and retreat of sea ice 
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(Van Franeker 1992; Van Franeker et al. 1997; Flores et al. 
2011) or schooling behaviour of prey species changes with 
food availability, seasons and/or regions which can change 
the catchability of this prey species for predators (Hamner 
et al. 1989; Kawaguchi et al. 2010). Therefore, the quality 
(in terms of energetic value) of available prey may change 
between seasons, possibly influencing the physiology, dis-
tribution and behaviour of predators (Ainley et al. 2015).

Information on the energetic value of prey can be used to 
predict the behaviour and population dynamics of predators, 
and to gain insight into key trophic interactions between 
species (Trathan et al. 2007). It is furthermore important 
for the calculation of the energy flux through trophic levels 
of marine ecosystems (Goldsworthy et al. 2001; Lea et al. 
2002), the investigation of the importance of a particular 
prey species in the diet of a predator (Cherel and Ridoux 
1992; Lea et al. 2002) and for the use in bioenergetics mod-
els (e.g. Hartman and Brandt 1995). The aim of this review 
is to summarize the knowledge on the energy density of 
zooplankton and nekton species of the Southern Ocean, for 
the potential utilization in trophodynamic studies and bio-
energetic models. Although the focus is on zooplankton and 
nekton, benthic species are included. Previously unpublished 
data are also included in this study.

Methods

Southern Ocean environmental framework

South of the STF, the Southern Ocean comprises different 
water masses and zones with distinct characteristics, sepa-
rated from each other by several fronts and currents, and 
is thus not ecologically uniform (Pakhomov and McQuaid 
1996; Belkin 2007). Large regions such as the continen-
tal shelf and slopes, sub-Antarctic and Antarctic Island 
groups, features of different fronts, the deep ocean, banks 
and basins and large gyre systems can be separated hav-
ing distinct environmental features (Grant et al. 2006). The 
dominating current of the Southern Ocean is the Antarc-
tic Circumpolar Current (ACC), driven by westerly winds 
(Orsi et al. 1995; Belkin 2007). The surface water of the 
ACC has a northern boundary at the Sub-Antarctic Front 
(SAF). Within the ACC, the Antarctic Polar Front (APF) 
marks the boundary between warmer sub-Antarctic water 
and cold Antarctic surface water. The surface waters of the 
ACC do not show a clear boundary to the south, its proper-
ties being rather uniform from the APF to the continental 
margins. However, in the underlying circumpolar deep water 
a Southern Boundary (SB) of the ACC occurs (Orsi et al. 
1995), which has been found to also influence the physical 
features of the overlying water (Nicol et al. 2000; Dinniman 
et al. 2011). The Weddell and Scotia Seas also have different 

characteristics and they are separated by the Weddell–Scotia 
confluence separating the ACC from the Weddell Gyre (Orsi 
et al. 1995; Belkin 2007). Although, the ACC consisting of 
aforementioned fronts is the classical view based on studies 
mainly conducted in the Drake Passage, the frontal struc-
ture can be more complex in different areas. More details 
on this can be found in Solokov and Rintoul (2009). Along 
the margins of the continent there is a westward current, the 
Antarctic Slope Current. The waters of the continental shelf 
and the oceanic waters are separated by the Antarctic Slope 
Front (Jacobs 1991), which in areas where the continental 
shelf is narrow coincides with the slope current (Heywood 
et al. 1998). In between the major currents there are various 
eddies, the largest being the Weddell Gyre and the Ross 
Gyre (Riffenburgh 2007). Temperature and salinity gradients 
often coincide with the shelf breaks leading to a separation 
between coastal and oceanic areas (Ainley and Jacobs 1981; 
Van de Putte 2008). Broadly, the oceanic area south of the 
APF can be separated in (from north to south) a permanent 
open ocean zone, a seasonal ice zone (SIZ) and a coastal 
and continental shelf zone, which are regarded as different 
sub-systems with specific mechanisms controlling nutrient 
and phytoplankton dynamics (Tréguer and Jacques 1992). 
More information in biogeographic regions can be found in 
De Broyer and Koubbi (2014).

Measuring energy density

Bomb calorimetry

Bomb calorimetry is the most direct method to analyse the 
energy content of a species. A bomb calorimeter establishes 
the energy density (the amount of energy per unit mass) 
of a plant or animal tissue sample by measuring the heat 
released when that sample is completely oxidized. The sam-
ple is placed in a combustion chamber filled with oxygen, 
which is surrounded by water. After ignition, the tempera-
ture rise in the surrounding water is measured and converted 
to calorific density. If a sample causes 1000 g of water to 
rise with 1 °C, the calorific content of the sample is 1 kilo-
calorie (kcal; Shul’man 1974; Robbins 1983). The calorific 
density (cal g−1 weight) will then depend on the weight of 
the sample. To determine the whole-body energy density of 
an animal using bomb calorimetry, the animal is dried and 
homogenized. After ignition in the bomb calorimeter, the 
calorific density of the tissue per gram dry weight (DW) is 
obtained, DW representing the weight of the organic and 
inorganic contents of the body without any water. Following 
the Système international d’unités (SI), energetic densities 
are expressed in joule (J) or kilojoules (kJ). One kilocalorie 
equals 4.184 kJ.

Depending on the intended use of the data, the energy 
density can be expressed in several ways. Expression 
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in kJ g−1 wet weight (WW) can be useful in studies of 
trophic relationships and predator distribution/abundance, 
for instance to translate energetic requirements into food 
requirements (in number of individuals or kg) and is thus 
relevant for ecological considerations (Båmstedt 1986; 
Van Franeker 1992; Flores et al. 2008). However, the wet 
weight energy content of an individual is strongly related to 
its water content, the determination of which is a potential 
source of error. Samples are often weighed after being stored 
frozen and freezing samples causes dehydration. Calculat-
ing the ‘wet’ energetic value can, therefore, be skewed, as a 
lower water content will result in a higher wet weight ener-
getic value (Hislop et al. 1991). Using fixation solutions also 
often results in loss of water or lipids and can, therefore, bias 
the relationship between WW, DW, chemical composition 
and energy content (Lamprecht 1999). Therefore, expression 
of energy density in kJ g−1 DW can be a better tool for com-
parison of the energy density within and between species.

As DW includes inorganic material, expression of the 
energetic density in kJ g−1 ash-free dry weight (AFDW), 
representing the mass of only the organic part of the body 
or tissue, can in some cases be a more suited unit of meas-
urement, for instance for growth and translocation studies 
(Lamprecht 1999). For energy comparison between tissues 
it is also more useful to use AFDW, because different tis-
sues often have different ash contents (Lamprecht 1999). 
Although the literature sources suggest that ash content can 
be determined using the residue in the calorimeter cup after 
combustion (Lamprecht 1999), the more accurate determina-
tion is to make an independent estimate of the ash content 
of an organism (Paine 1971; Craig et al. 1978; Cherel and 
Ridoux 1992).

Measurements of organisms with high ash content can 
yield unrealistic energetic values. Ash consisting of high 
proportions of  CaCO3 or other decomposable salts can cause 
endothermic reactions when subjected to the high tempera-
tures present in the bomb calorimeter, leading to a loss of 
heat within the calorimeter and consequently an underesti-
mation of the energy density (Paine 1964, 1971). This error 
increases with increasing ash content (Paine 1971). There-
fore, caution should be taken with ash contents higher than 
25% (Paine 1971). Determination of the proportion of ash 
can also lead to errors due to the decomposition of salts 
(Paine 1971).

Measurements of energetic values lower than 17 kJ g−1 
AFDW (the energetic density of carbohydrates) should be 
considered with caution, as they may be due to a wrong 
determination of ash content or to contributions of inorganic 
reactions during burning (Lamprecht 1999). Even though 
substances with lower calorific values exist, such as pyruvic 
acid and glycine, etc., it is unlikely that these substances 
substantially lower the energetic values of an individual 
organism (Paine 1971).

A bomb calorimeter typically oxidizes nitrogen to a 
greater degree than most aquatic organisms (except microor-
ganisms), giving a higher estimate of energy than is actually 
available to a consumer. To account for this extra energy, a 
nitrogen correction can be used (Kersting 1972; Salonen 
et al. 1976). However, for such a correction it is necessary 
to know the amount of nitrogen in the sample, and correc-
tion can possibly vary depending on the organism (Kersting 
1972). The energy density values obtained by bomb calo-
rimetry are usually not corrected for nitrogen and may thus 
be slightly overestimated.

Bomb calorimetry measures the energy content of an 
organism as a whole. Part of this energy can; however, not 
be used by the consumer because food is often not com-
pletely digested or metabolized. Incomplete catabolism of 
protein leaves compounds (ammonium, urea, uric acid and 
creatinine) that are lost in urine (Brody 1945; FAO 2003). 
The digestibility of chitin, the main component of the exo-
skeleton of crustacea, can differ between species (Danulat 
1987; Jackson et al. 1992), and carbohydrates can have indi-
gestible parts often referred to as dietary fibre (FAO 2003). 
The energy density determined using bomb calorimetry is 
thus the gross energy of an organism. This, in contrast to, 
e.g. metabolizable energy or digestible energy, represents the 
total amount of energy that is potentially available (Brody 
1945; Brett and Groves 1979; FAO 2003). For detailed stud-
ies that require knowledge on digestible energy, correction 
factors and recommendations can be found in Brody (1945) 
and the FAO (2003). Although analysing fresh tissue is best 
when using bomb calorimetry, freezing is regarded as the 
most suitable preservation method for samples, as chemical 
preservation methods (e.g. ethanol or formaldehyde) sig-
nificantly affect the results (Giguère et al. 1989; Benedito-
Cecilio and Morimoto 2002; Hondolero et al. 2012).

Proximate composition

Apart from ash and water fractions, organisms have an 
organic fraction that can be regarded as being composed of 
lipids, proteins and carbohydrates. By analysing the relative 
proportion of these components in the body of an organism, 
the energetic value can be reconstructed using energetic con-
version factors (Paine 1971).

The energy content of the different fractions can show 
slight variations due to differences in molecular struc-
ture (Båmstedt 1986), but conversion factors commonly 
used are 23.64 kJ g−1 AFDW (5.65 kcal g−1) for proteins 
and 16.97 kJ g−1 AFDW (4.1 kcal g−1) for carbohydrates 
(Brett and Groves 1979). For lipids, an energy content of 
39.54 kJ g−1 AFDW (9.45 kcal g−1) has often been used 
(Paine 1971 and references therein; Brett and Groves 1979). 
These values represent gross energy content of the com-
pounds (Brody 1945; Brett and Groves 1979), which, similar 
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to bomb calorimetry, does not take into account potential 
differences in digestibility between animals and substrates, 
and lost protein compounds (Brody 1945; FAO 2003). A 
factor of 36.40 kJ g−1 AFDW (8.7 kcal g−1) is suggested to 
be more appropriate for lipids, because lipid content in the 
body may be overestimated due to impurities in the lipid 
extract (Craig 1977; Craig et al. 1978). This may, however, 
vary between methods used (FAO 2003). As the energy 
density of lipids is almost twice as high as that of protein, 
higher lipid contents often result in a higher energetic value 
(Anthony et al. 2000). Therefore, differences in the lipid 
content of organisms can often predict differences in energy 
density. There are exceptions to this rule, however, as the 
energy density can also change significantly due to changes 
in, e.g. water or protein content, particularly during growth 
(Shul’man 1974; Donnelly et al. 1994). In addition, changes 
in protein content cause greater changes in an organism’s 
weight compared to lipids (Shul’man 1974).

As carbohydrates usually contribute very little to the total 
dry body composition, this constituent is sometimes not con-
sidered in proximate analysis (Craig et al. 1978). The protein 
content of a body is sometimes estimated by measuring the 
total nitrogen content of a sample and then multiplying this 
with a factor 6.25, which is known as the Kjeldahl method 
(Craig et al. 1978). The protein content estimated using this 
method is often referred to as crude protein. For the ener-
getic contribution of chitin to the total energy density, the 
same conversion factor as for carbohydrate is usually used 
(Clarke 1980; Donnelly et al. 1994). Such factors cannot 
always accurately represent the potentially large variabil-
ity of energy content of proximate compounds. Therefore, 
estimating the energetic content by means of proximate 
compositions is potentially subject to more error than bomb 
calorimetry (Henken et al. 1986; Kamler 1992; Hartman and 
Brandt 1995; Higgs et al. 1995).

Several studies found a good agreement between energy 
densities estimated using proximate composition and meas-
ured with bomb calorimetry (Paine 1971; Vollenweider 
et al. 2011). Other studies, however, found significant dis-
crepancies between energy densities established using both 
proximate composition and bomb calorimetry (Craig et al. 
1978; Henken et al. 1986; Kamler 1992). Energetic densi-
ties based on proximate composition were on average 4.4% 
higher than values obtained with bomb calorimetry in Craig 
et al. (1978), while they were on average 3–4% lower in 
Henken et al. (1986). The conversion factors do not take 
into account potential differences in heat of combustion of 
protein, depending on their amino acid composition, or the 
contribution of dietary fibre to carbohydrates, which have 
a lower energetic density (FAO 2003). Furthermore, meth-
ods used for measuring the relative contribution of different 
proximate compounds, as well as calculation of the energetic 
value, often differ between studies (Henken et al. 1986). 

Therefore, bomb calorimetry is considered the preferable 
method for energy density estimation (Henken et al. 1986; 
Kamler 1992; Hartman and Brandt 1995; Higgs et al. 1995). 
An advantage of proximate composition measurements is 
that changes in energy density can be related to changes in 
particular components that can give additional information 
on, e.g. ecological strategies, feeding activity, trophody-
namics and reproductive status (Lawrence and Guille 1982; 
McClintock and Pearse 1987; Donnelly et al. 1994). A clear 
recommendation on the preservation of samples for proxi-
mate composition analysis was not found, but samples are 
usually processed directly or stored frozen.

Water content, carbon content and energy density

A relationship between energy density and water content 
is often found, showing an increase in water content with 
decreasing energy content (on a WW basis) and vice versa 
(Båmstedt 1981; Torres et al. 1994; Hartman and Brandt 
1995). This can be attributed to water and lipids or pro-
tein replacing each other, depending on age, season and 
reproductive state (Torres et al. 1994; Hartman and Brandt, 
1995; Lea et al. 2002; Tierney et al. 2002; Van de Putte et al. 
2006). For example, the water content increases when lipids 
(or protein) are combusted (Torres et al. 1994). The relation-
ship between water, lipid and protein content in fish changes 
with age because younger individuals would use the protein 
to build-up the body, but when growth ceases and protein 
metabolism stabilizes, the fish switch to the accumulation of 
fat (Shul’man 1974). Protein growth occurs in adult fishes 
in the form of gonad development (Shul’man 1974). Protein 
and lipid accumulation can, however, also depend on avail-
ability and composition of food. For example, in two species 
of anchovy with similar energy densities, one species had 
less available food, was larger at same age and contained 
more protein and less fat, while the other species had more 
food available, was fatter, but also smaller and contained less 
protein (Shul’man 1974). The water content/energy density 
(WW) relationship is also common in crustaceans (Torres 
et al. 1994). Exceptions are found, however, in for instance 
decapod, amphipod and krill species, where water and lipids 
do not replace each other, but increase or decrease simulta-
neously, or where changes in one of the fractions do not lead 
to changes in the other (Torres et al. 1994).

Relationships have also been found between total carbon 
content and energy density. Platt and Irwin (1973), Salonen 
et al. (1976), Finlay and Uhlig (1981), Gnaiger and Bitterlich 
(1984) and Normant et al. (2002) show regressions to cal-
culate energy density. Different studies show relationships 
using different parameters and variable methods to establish 
both carbon content and energy density, making it hard to 
compare them. Measurements were done on phytoplankton 
(Platt and Irwin 1973), protozoa (Salonen et al. 1976; Finlay 
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and Uhlig 1981) and crabs (Normant et al. 2002). Platt and 
Irwin (1973) make a regression calculating calories  mg−1 
DW using the total % carbon, while Salonen et al. (1976) 
calculate kJ g−1 AFDW using the total % carbon, the for-
mer having a negative intercept, while the latter has a posi-
tive one. The relationship found by Normant et al. (2002), 
between kJ g−1 DW and % carbon, also has a negative inter-
cept, and a relatively low R2 (0.61), suggesting that a rela-
tively low proportion of the variability was explained by the 
regression. Finlay and Uhlig (1981) calculate energy density 
in terms of kJ g−1 DW based on mg C  mg−1 DW. Färber-
Lorda et al. (2009a) shows a regression between carbon and 
energy in krill, with values based on mg  ind−1 and J  ind−1. In 
addition to regressions, factors to convert carbon to energy 
density were suggested. Salonen et al. (1976) suggested a 
conversion factor of 45.7 kJ (AFDW)  g−1 organic carbon 
while Finlay and Uhlig (1981) suggested 46 kJ g−1 organic 
carbon. A conversion factor of 50.2 kJ g−1 C was suggested 
based on measurements on the amphipod Themisto com-
pressa, caught in the North Atlantic (Williams and Robins 
1979). Due to differences in regression slopes and intercepts, 
measured species or species groups, and differences in units 
used, it remains unclear if the conversion factors and regres-
sions can be used in a general context. It is also likely that 
season, region, organism, size and age will affect the car-
bon–energy density relationship, and these influences need 
to be assessed. Therefore, carbon content was not used in 
this review to estimate the energy density of species.

Data and statistics

In this review, we aimed to express all energy density val-
ues in kJ g−1 DW for species comparison and in kJ g−1 WW 
for use in ecological studies. When possible, the energy 
density values obtained from the literature were recalcu-
lated to kJ g−1 DW and/or kJ g−1 WW using given energy 
densities, species weights or water contents reported in the 
references concerned. Energy density values, determined 
by proximate composition, were calculated by the origi-
nal authors using a factor of 36.40 kJ g−1 AFDW for the 
conversion of the lipid fraction, unless stated otherwise. 
Protein values represent actual measurements derived from 
true protein content analysis. When crude protein meas-
urements were used in the original paper, this is speci-
fied. We also calculated energy densities from references 
reporting only proximate composition values (usually 
given in %WW) using the above mentioned conversion 
factors. When the carbohydrate fraction was not given in 
the source, we assumed it to be the remainder of 100% 
minus the other fractions (water content, lipids, carbohy-
drate, protein, ash, and where relevant, chitin). The lengths 
of fish reported in this review are given in standard length 
(SL), measured from the most forward part of the head to 

the end of the vertebrae. Some lengths are given in total 
length (TL), which is measured from the most forward part 
of the head to the end of the caudal fin.

Previously unpublished data obtained during two expe-
ditions have been included in this review. Individual zoo-
plankton and nekton species were collected on board the 
RV Polarstern in the Weddell Sea (PS81: August–October 
2013) and in the Lazarev Sea (PS89: December/January 
2014/2015), using Rectangular Midwater Trawls (RMT) and 
Surface and Under-Ice Trawls (SUIT). Details on sampling 
procedures, research area and environmental conditions for 
PS81 and PS89 can be found in Schaafsma et al. (2016) and 
Flores et al. (2015), respectively. After collection, zooplank-
ton and nekton species were frozen at − 20 °C. Before the 
analysis of energetic value, samples were defrosted, blotted 
dry, and length and WW were measured. Then samples were 
freeze-dried until complete desiccation and re-weighted to 
determine DW and water content. After homogenization, 
a subsample of approximately 0.5 g was used for calorim-
etry. If necessary, individuals were pooled to obtain a suf-
ficient amount of material to enable energy density meas-
urements. The energy density (in kJ g−1 DW) of samples 
was determined with an isoperibol bomb calorimeter (IKA 
C2000 basic), calibrated with benzoic acid. Benzoic acid 
(29.62 kJ g−1 DW) was added to samples that were too small 
to obtain a minimum sample weight of 0.5 g. Some jelly fish 
body parts did not combust in the bomb calorimeter, most 
likely due to high ash contents (> 75%DW). These tissues 
were then measured again using a sample consisting of half 
tissue, half benzoic acid. The AFDW of the jelly fish was 
obtained by drying a homogenized sample to constant mass 
at 60 °C, followed by 6 h incineration at 500 °C.

In datasets with a sufficient sample size, energy densi-
ties were compared using two-way ANOVA followed by 
a non-parametric Tukey’s HSD post hoc test. Linear rela-
tionships between DW and energy content were established 
using ln-transformed data (Van de Putte et al. 2006). Linear 
relationships between water content and wet weight energy 
density were also investigated. Slopes and intercept of 
regression models were compared using ANCOVA (Hart-
man and Brandt 1995). All analyses were performed with 
R version 3.3.1 (R Core Team 2015). Seasons listed within 
the tables are defined as stated by the authors, or as summer 
for December to February, autumn for March to May, winter 
for June to August and spring for September to November. It 
should be kept in mind that environmental conditions may 
vary within a month depending on region. All data used 
in this review, including the previously unpublished data, 
are available as part of the SCAR Southern Ocean Diet and 
Energetics Database, which is a compilation of diet and 
energetics data from Southern Ocean studies. More infor-
mation on use and contributing can be found at https ://www.
scar.org/data-produ cts/south ern-ocean -diet-energ etics /.

https://www.scar.org/data-products/southern-ocean-diet-energetics/
https://www.scar.org/data-products/southern-ocean-diet-energetics/
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Energy density of zooplankton and nekton 
species

General overview

Energetic densities of zooplankton and nekton species 
from sub-Antarctic and Antarctic waters collected and 
found in the literature included crustaceans such as cope-
pods, euphausiids, amphipods, mysids and decapods, fish, 
squid, and gelatinous species. The numbers of records var-
ied greatly between groups and species. Some species have 
been given more attention than others which is often related 
to their abundance, importance in the diet of top preda-
tors, commercial interest and catchability. Figure 1 shows 
an overview of all reported dry weight energy densities per 
species group and the locations at which recorded animals 
were sampled.

The majority of measurements of energy content in 
Antarctic crustaceans were conducted on euphausiids. The 
most comprehensive studies of energy density of crustaceans 
other than euphausiids were conducted by Donnelly et al. 
(1994) and Torres et al. (1994), using proximate composi-
tion. These studies provide, to our knowledge, almost the 

only records of energy densities of copepod, amphipod, 
decapod, mysid and ostracod species, which were caught 
in autumn and winter in the north-western Weddell Sea and 
the southern Scotia Sea. Donnelly et al. (1994) noted that 
their estimates of energy density are in general relatively 
low due to the incomplete recovery of organic material dur-
ing analysis. Copepods showed a wide range of dry weight 
energy density values including very low values. Other low 
values were in general found for amphipods and ostracods. 
Amphipods have the highest skeletal ash, suggesting a more 
robust exoskeleton compared to copepods, euphausiids, 
decapods and mysids (Percy and Fife 1981; Torres et al. 
1994). This can result in a lower dry-weight energy density 
because smaller proportion of the DW encompasses organic 
material. Amphipods furthermore have the highest chitin 
content (Donnelly et al. 1994; Torres et al. 1994). However, 
two measurements on amphipods using bomb calorimetry 
yielded an energy density similar to the other crustaceans. 
It is unclear if this was is an artefact of the different meth-
ods used, as all other energy densities were estimated using 
proximate composition, or due to a different life cycle and/or 
distribution of the species. Ostracods had a low lipid content 
and slightly higher ash content compared to other crusta-
ceans except amphipods (Donnelly et al. 1994).

Fig. 1  a Overview of energy density records per species group. 
One point represents an average energetic value per species and per 
record. A distinction is made between measurements done using 
bomb calorimetry (BC) and proximate composition (PC). Note that 
one literature source can contain multiple energy density records, for 
instance of different species or developmental stages, and that, there-
fore, one point does not represent one literature source. b Overview 
map of energy density records, including several fronts. One point on 

the map represents one source. Therefore, a single point can include 
multiple measurements on a single species or measurements of multi-
ple species from a single group. Approximate locations were derived 
from the source material. The map was made using Quantarctica from 
the Norwegian Polar Institute (Matsuoka et  al. 2018). Mean front 
positions were taken from Solokov and Rintoul (2009). Previously 
unpublished data are included
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In terms of energetic measurements, fish are the most 
studied organisms in the Southern Ocean. The main focus 
lies on nototheniid, myctophid and bathylagid species. The 
lipid content of myctophids is in general high, while noto-
theniids are more variable in composition, which shows a 
difference between the two families that is possibly related 
to habitat use (Lenky et al. 2012). This is reflected in their 
dry-weight energy density, which was generally high for 
myctophids, while for nototheniids it ranged from values 
similar to crustaceans to values similar to myctophid fish. 
Dry-weight energetic densities of fish from other families, 
including Bathylagus antarcticus and Notolepis coatsi, were 
also comparable to those of crustaceans or the lower end 
of the range of nototheniids (Fig. 1). A similar range was 
found for squid.

Dry-weight energy densities of other groups showed 
relatively low values with the exception of a gastropod spe-
cies, Clione limacina antarctica (Bryan et al. 1995). Meas-
uring the energy content of gelatinous species is difficult 
due to their low proportion of organic material (high ash 
content), and high water content. A large part of the inor-
ganic ash can be attributed to salt; a result from the large 
volume of sea water constituting the bulk of the organism’s 
tissue (Percy and Fife 1981; Norrbin and Båmstedt 1984). 
In jellyfish it is thought that residual water remains, even 
after drying to constant mass. This residual water is esti-
mated to be 11.7% DW (Larson 1986; Doyle et al. 2007). 
For these reasons bomb calorific measurements and proxi-
mate composition estimates of gelatinous species should be 
considered with caution (Doyle et al. 2007). The high ash 
content can furthermore explain the low dry-weight energy 
density values of gelatinous species such as jelly fish, salps 
and siphonophores.

Crustaceans

Copepods

Copepods are the numerically dominant zooplankton group 
and often also dominate in biomass (Foxton 1956; Schnack-
Schiel et al. 2001; Atkinson et al. 2012; David et al. 2017). 
Therefore, they are an important part of the diet of many 
zooplanktons, fish and some top predator species (Laws 
1977; Gon and Heemstra 1990; Hubold and Ekau 1990; 
Bocher et al. 2002; Van Franeker et al. 2002). Many species 
found in the Antarctic and sub-Antarctic regions have a wide 
distribution and are found north of the STF, sometimes even 
as far north as the Arctic Ocean (Kouwenberg et al. 2014). 
Of the total 388 species that have been reported to occur in 
the Southern Ocean, 53 are endemic south of the APF (Kou-
wenberg et al. 2014) and often rare. Many copepods can also 
be found residing within the sea ice (Schnack-Schiel et al. 
2001; Arndt and Swadling 2006).

The energy densities of copepods estimated in Donnelly 
et al. (1994) ranged between 9.0 and 21.8 kJ g−1 DW. High-
est energy densities were from Paraeuchaeta antarctica 
(21.8 kJ g−1 DW), Calanus propinquus (21.3 kJ g−1 DW) 
and Calanoides acutus (17.6 kJ g−1 DW) which were all 
caught in autumn. All three species have a wide distribu-
tion and occur from south of the STF to the Antarctic conti-
nent (Kouwenberg et al. 2014). The other species analysed 
in Donnelly et al. (1994) showed energy densities below 
13.8 kJ g−1 DW. An overview of recorded copepod average 
energy density measurements including, where possible, 
values expressed in kJ g−1 WW can be found in Table S1 of 
the electronic supplement.

Some observations on energy content of copepods by 
Donnelly et al. (1994) can be explained by their life cycle, 
overwintering strategy and/or food. Species such as C. acu-
tus and C. propinquus are mainly herbivorous and have high 
lipid levels (Donnelly et al. 1994), resulting in a relatively 
high energy density. More omnivorous species, such as 
Euchirella rostromagna and Gaetanus tenuispinus, or car-
nivorous species, such as Heterorhabdus spp. have lower 
lipid levels (Donnelly et al. 1994). There are, however, 
exceptions to this pattern: the carnivorous Paraeuchaeta ant-
arctica was found to have a high lipid content and the her-
bivorous Rhincalanus gigas has a relatively moderate lipid 
content, the latter attributed to their more flexible 2-year 
life cycle including a delayed reproduction (Donnelly et al. 
1994). Heterorhabdus austrinus continues to feed during 
winter which is reflected in higher protein content and lower 
lipid content compared to its congener H. farrani, which 
does not feed during winter. Their estimated energy con-
tent was, however, similar (12.1 kJ g−1 DW; Donnelly et al. 
1994).

All species that were analysed in two seasons showed 
a similar or lower energy density in winter compared to 
autumn, except for Rhincalanus gigas. Calanoides acutus 
overwinters at depth in diapause and did not show a differ-
ence in proximate composition between seasons which could 
be attributed to its reduced metabolic rates (Donnelly et al. 
1994). This could also be the case for R. gigas, although this 
species has also been found to feed and reproduce during 
winter (Atkinson 1998). Calanus propinquus, overwinter-
ing using a combination of continuous feeding, reduction in 
body integrity and combustion of energy reserves, shows an 
increase in water level, and a decrease in chitin content and 
lipid levels from autumn to winter (Donnelly et al. 1994). 
As C. propinquus relies on energy reserves, their energy 
content can be expected to show large variations between 
seasons. Changes from autumn to winter were observed in 
the composition of Paraeuchaeta antarctica which was sug-
gested to be a consequence of reproductive demand. Their 
energy content was, however, similar in both seasons (Don-
nelly et al. 1994). Studies on the lipids of copepods indicated 
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that seasonal as well as regional variability of lipid content 
can be found within species, due to differences in food avail-
ability, type of food and overwintering strategy (Hagen et al. 
1993; Donnelly et al. 1994).

Euphausiids

Euphausiids are a major component of Southern Ocean eco-
systems. The three most studied species of Euphausiacea are 
Euphausia superba, Thysanoessa macrura and Euphausia 
crystallorophias. Euphausia superba has a circumpolar dis-
tribution, from south of the polar front to the continental 
shelf, with a majority of the total stock found in the regions 
of the Antarctic Peninsula and the Scotia Arc (Atkinson 
et al. 2008; Pakhomov et al. 2000; Flores et al. 2012). Thy-
sanoessa macrura has a similar distribution but can also be 
found north of the SAF (Pakhomov et al. 2000; Atkinson 
et al. 2012; Flores et al. 2012; Cuzin-Roudy et al. 2014). 
The distribution and density of E. superba has been related 
to sea ice, although this association differs between seasons, 
while the smaller T. macrura can be found in ice-covered 
waters but is less ice-associated and often occupies a deeper 
stratum (Nordhausen 1994; Flores et al. 2012; Haraldsson 
and Siegel 2014). Euphausia crystallorophias is neritic and 
found close to the Antarctic continent (Nordhausen 1994; 
Pakhomov and Perissinotto 1996), where they reside in 
ice-covered waters year-round. For all krill species, larvae, 
juveniles and adult have different physiological, metabolic 
and functional adaptations and can, therefore, have different 
habitat requirements (Cuzin-Roudy et al. 2014). The larg-
est species, E. superba, is the most heavily studied due to 
its high total biomass, its importance in the diet of many 
top predators and because it is a target species of a growing 
fishery (Atkinson et al. 2012).

The lowest average energetic density for E. superba was 
15.2 kJ g−1 DW for adults during autumn, estimated using 
proximate composition (Torres et al. 1994). The highest 
density found in the literature is 22.7 kJ g−1 DW of gravid 
females at South Georgia during summer (Clarke 1980), 
although another source reports a somewhat lower ener-
getic density for gravid females (20.1 kJ g−1 DW) found 
at Elephant Island (Ishii et al. 2007). Both aforementioned 
energy densities were estimated using proximate composi-
tion, but differences in methodological details used could 
have resulted in different values. Ishii et al. (2007), for 
instance, did not take the chitin fraction into account and 
details on the methods used for different components are 
undescribed. For the energy densities of T. macrura, E. 
crystallorophias and Euphausia frigida, estimates using 
bomb calorimetry, proximate composition and calculations 
using published equations (Färber-Lorda 1986; Torres 
et al. 1994; Ainley et al. 2003; Ruck et al. 2014) suggest 
that the energy density of these krill species is similar to 

that of E. superba. Bomb calorific measurements on adult 
and juvenile T. macrura from the southern Indian Ocean 
showed that individuals at one station (6.1 and 5.4 kJ g−1 
WW, respectively) had higher WW energy density values 
than individuals from another station (5.5 and 4.8 kJ g−1 
WW, respectively; Färber-Lorda 1986). A measurement 
of the mesopelagic, circumpolarly distributed Euphausia 
triacantha (Piatkowski 1985; Atkinson et al. 2012) showed 
that this species had a relative low energy density com-
pared to the other euphausiid species from the same study 
(Torres et al. 1994). An overview of recorded euphausiid 
average energy density measurements including, where 
possible, values expressed in kJ g−1 WW can be found in 
Table 1.

The energy density of E. superba varies between regions, 
seasons, sexes and states of sexual maturity. Mature females 
have a high energy density and lose up to 55–58% of their 
lipids when spawning, resulting in a lower energetic value 
(Clarke 1980; Färber-Lorda et  al. 2009b). Euphausia 
superba spawns from December to April with a peak in Jan-
uary (Ross and Quetin 1986; Pakhomov 1995; Spinidonov 
1995). During summer, the energetic density of males is rel-
atively low compared to juveniles and females (Clarke 1980; 
Färber-Lorda et al. 2009a). Studies suggest that this is due to 
differences in lipid accumulation, which was found to be low 
in males and at a maximum in maturing females, although a 
lot of variance was found (Pond et al. 1995; Mayzaud et al. 
1998; Färber-Lorda et al. 2009a; Ruck et al. 2014). Lower 
lipid content in males is assumed to be a result of a higher 
investment of energy in growth to increase reproductive 
success (Ruck et al. 2014). Virtue et al. (1996) suggested 
that low accumulation of lipids in male krill is a result of a 
higher sexual activity. Multiple linear regressions between 
dry weight, carbon content, and lipid content versus energy 
content of E. superba, reported as values  individual−1, can 
be found in Färber-Lorda et al. (2009a).

Similar differences in lipid content between males and 
females were found for T. macrura (Färber-Lorda and Mayz-
aud 2010).The lipid content of E. superba and T. macrura 
showed a high local variability in several studies (Pond et al. 
1995; Hagen et al. 1996; Mayzaud et al. 1998; Färber-Lorda 
et al. 2009a; Färber-Lorda and Mayzaud 2010; Ruck et al. 
2014; Kohlbach et al. 2017). In E. superba lipid, but also 
protein content, was found to be highly variable within a 
single population during several seasons, and the variety 
within a season can be greater than between seasons (Tor-
res et al. 1994; Mayzaud et al. 1998; Ruck et al. 2014). This 
intra-seasonal variation can be attributed to a patchy and/or 
regionally variable distribution of available food (Mayzaud 
et al. 1998; Ruck et al. 2014; Virtue et al. 2016; Schaafsma 
et al. 2017).

As the spawning seasons of T. macrura and E crystal-
lorophias are somewhat earlier in the year compared to E. 
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Table 1  Overview of the average energy density of several euphausiid species ±, were available, the standard error (SE) or standard deviation 
(SD) as given in the original source

Season Location n Stage Water Mean energy density Method Source

Content (%) kJ g−1 WW kJ g−1 DW

Euphausia superba
 Summer South Georgia 5–20 Female (gravid) 76.0 5.45a,b 22.66 PC Clarke (1980)

Elephant Island 4 Female (gravid) 75.9 ± 0.4 SE 4.80a,c ± 0.05 
SE

20.08 PC Ishii et al. (2007)

Southern Indian 
Ocean

7 Female (spent) 4.88 ± 0.78 SD MBC Färber-Lorda 
et al. (2009a)

Lazarev Sea 3 (p) Female 73.8 ± 1.9 SD 5.54 ± 0.73 SD 22.27 ± 0.72 SD BC This study (PS89)
Southern Indian 

Ocean
15 Female 6.31 ± 0.88 SD MBC Färber-Lorda 

et al. (2009a)
WAP (p) Female 22.0 ± 0.3 SE BC Ruck et al. (2014)
Elephant Island 2 Female 77.7 ± 1.3 SE 4.16a,c ± 0.33 

SE
17.41 PC Ishii et al. (2007)

South Georgia 5–20 Male 80.1 3.83a,b 19.22 PC Clarke (1980)
Southern Indian 

Ocean
10 Male 4.76 ± 0.96 SD MBC Färber-Lorda 

et al. (2009a)
WAP (p) Male 19.5 ± 0.5 SE BC Ruck et al. (2014)
Elephant Island 4 Male 78.9 ± 0.5 SE 3.73a,c ± 0.12 

SE
15.61 PC Ishii et al. (2007)

Elephant Island 2 Male (sub-
adult)

77.9 ± 0.3 SE 4.09a,c ± 0.03 
SE

17.11 PC Ishii et al. (2007)

Lazarev Sea 2 (p) Juvenile 75.1 ± 3.5 SD 5.63 ± 1.19 SD 22.38 ± 0.44 SD BC This study (PS89)
Southern Indian 

Ocean
10 Juvenile 5.59 ± 0.76 SD MBC Färber-Lorda 

et al. (2009a)
WAP (p) Juvenile 20.8 ± 1.7 SE Calc Ruck et al. (2014)
Elephant Island 1 Juvenile 78.3 4.0a,c 16.74 PC Ishii et al. (2007)
WAP 9 77.0 ± 2.7 SD 5.01 21.8 ± 0.7 SD BC Nagy and Obst 

(1992)
75.7 4.86 20.0 PC Yanagimoto et al. 

(1979)e

 Summer/
autumn

East Antarctica 1 4.47 BC Tamura and Koni-
shi (2009)

 Autumn 75 5.31 22.22 PC Márquez et al. 
(1978)e

Weddell Sea 23 Adult 73.3 ± 3.4 SD 4.07f 15.24 PC Torres et al. 
(1994)

76.5 4.71 20.0 BC Jackson (1986)
 Winter Scotia Sea 32 Adult 77.3 ± 3.4 SD 3.80f 16.75 PC Torres et al. 

(1994)
Thysanoessa macrura
 Summer WAP (p) 28.5 ± 2.8 SE Calc Ruck et al. (2014)

Southern Indian 
Ocean

1 (p) Adult 5.52 MBC Färber-Lorda 
(1986)

Southern Indian 
Ocean

1 (p) Adult 6.12 MBC Färber-Lorda 
(1986)

Southern Indian 
Ocean

1 (p) Juvenile 4.76 MBC Färber-Lorda 
(1986)

Southern Indian 
Ocean

1 (p) Juvenile 5.35 MBC Färber-Lorda 
(1986)

Southern Indian 
Ocean

74.2 5.42 21.00 PC Färber-Lorda 
et al. (2009b)
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superba, differences in timing of the peak energetic value 
can be expected between species. The spawning season for T. 
macrura ranges from June to January with a peak from Sep-
tember to November (Haraldsson and Siegel 2014), while E. 
crystallorophias spawn in November/December (Pakhomov 
and Perissinotto 1996; Falk-Petersen et al. 2000). Both spe-
cies use energy reserves accumulated in summer and autumn 
to overwinter and reproduce, which ensures that their larvae 
can feed on the spring phytoplankton blooms (Falk-Petersen 
et al. 2000; Vallet et al. 2011). Euphausia superba needs 
the spring and summer phytoplankton blooms for sexual 
maturations, mating and egg development (Cuzin-Roudy 
et al. 1999). Due to the lack of data, however, these differ-
ences in life cycles do not become clear in a seasonal vari-
ability of their energetic density. Regarding lipid contents, 
E. crystallorophias showed steady decrease of lipid content 
over winter and the following spawning period in spring. 
Lipid content increased again in late spring/summer which 
was found to coincide with elevated chlorophyll a content 
in the water column (Clarke 1984). Larger sized individuals 
of E. triacantha showed a higher lipid level and lower water 

content than smaller sized individuals. Seasonal changes in 
composition suggests that this species combusts tissue dur-
ing winter (Torres et al. 1994).

Amphipods

The 820 amphipod species recorded in the Southern Ocean 
occupy a very wide variety of ecological niches and have 
a large range of feeding strategies (Dauby et al. 2001; De 
Broyer et al. 2001; Dauby et al. 2003; Zeidler and De Broyer 
2014). The amphipods can be divided in gammarid and 
hyperiid amphipods. The gammarid amphipods are mainly 
benthic with few pelagic species. Some gammarids, such 
as species from the genus Eusirus, have been found closely 
related to the sea-ice underside (Flores et al. 2011; David 
et al. 2017). The hyperiid amphipods are mainly pelagic 
and have been found to be important prey species for top 
predators such as several bird species (Ridoux 1994; Bocher 
et al. 2001). The swarming Themisto gaudichaudii occurs in 
high abundances in the sub-Antarctic and Antarctic regions 
(Kane 1966).

Method used for energy density estimates are bomb calorimetry (BC), micro-bomb calorimetry (MBC), proximate composition (PC) and are cal-
culated using published equations from Färber-Lorda et al. (2009a; Calc). Energy densities given in italics represent values that were converted 
using information from the given sources. n represents the number of samples measured. Where this expresses samples of pooled individuals, 
this is indicated with (p)
a Energy density calculated with an energetic value of 39.54 kJ g−1 AFDW (9.45 kcal g−1) for lipids
b A factor of 4.1864 was used to convert calories to joules
c Energy density calculated excluding chitin
d Sample taken from bird stomach contents, in which the energetic value is potentially overestimated due to water removal in stomach
e From Barrera-Oro (2002)
f A factor of 4.19 was used to convert calories to joules

Table 1  (continued)

Season Location n Stage Water Mean energy density Method Source

Content (%) kJ g−1 WW kJ g−1 DW

 Autumn Weddell Sea 1 (p) 70.4 5.04f 17.02 PC Torres et al. 
(1994)

 Winter Scotia Sea 6 (p) 76.9 ± 1.2 SD 3.72f 16.10 PC Torres et al. 
(1994)

Euphausia crystallorophias
 Summer Ross Sea 4 (?) Adult 19.33 BC Ainley et al. 

(2003)
WAP (p) 21.8 ± 0.8 SE Calc Ruck et al. (2014)

 Autumn 80.6 3.85 19.85 BC Green and Gales 
(1990)

71.7 6.45d 22.79 BC Green and Gales 
(1990)

Euphausia triacantha
 Winter Scotia Sea 9 (p) 76.1 ± 3.6 SD 2.92f 12.22 PC Torres et al. 

(1994)
Euphausia frigida
 Summer Southern Indian 

Ocean
1 (p) 4.62 MBC Färber-Lorda 

(1986)
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The energy density of several amphipod species from 
the Weddell and Scotia Seas was estimated using proximate 
composition by Torres et al. (1994). The lowest value of 
9.9 kJ g−1 DW, was from the gammarid amphipod Paran-
dania boecki collected in winter (Table S2). This species 
also had the highest water content and is the deepest liv-
ing. It has furthermore been found to have low lipid levels 
and to be feeding on coelenterates (Reinhardt and Van Vleet 
1986). The highest energetic density of 18.2 kJ g−1 DW, was 
from the hyperiid amphipod Cyllopus lucasii collected in 
autumn (Torres et al. 1994). The relatively high energy den-
sity expressed in kJ g−1 WW is a result of the water content 
of 68.7% (of WW), which is relatively low compared to that 
of other amphipods or euphausiids.

Both C. lucasii and Primno macropa showed a signifi-
cant decline in energy density in winter compared to autumn 
(Torres et al. 1994). This could be a result of reproductive 
activity, but considering what is known about the timing of 
reproduction, most likely a result of lipid combustion. This 
was supported by an increase in water content with decreas-
ing lipid content. Cyllopus lucasii furthermore showed sig-
nificant variability in lipid content between regions (Torres 
et al. 1994). Themisto gaudichaudii had a very low energy 
density of 12.7 kJ g−1 DW during wintertime. It was sug-
gested to be a result of reproductive activity, as their repro-
duction peak is in spring. Mayzaud and Boutoute (2015) 
found that T. gaudichaudii (females), which continues to 
feed carnivorously over winter, had a relatively stable lipid 
content year-round. A bomb calorimetry measurement 
of T. gaudichaudii yielded an average energy density of 
22.1 kJ g−1 DW (Ciancio et al. 2007). Torres et al. (1994) 
suggested a mixed overwintering strategy for all examined 
hyperiid amphipods. The gammarid amphipods examined 
in Torres et al. (1994) are all deeper living species and a 
business-as-usual overwintering strategy was suggested.

An energy density of 22.3 kJ g−1 DW was found for the 
gammarid Eusirus microps during summer in the Lazarev 
Sea (PS89). Eusirus microps has been found in the surface 
of both open and ice-covered waters during summer (Flo-
res et al. 2011) and winter (Flores et al. 2011; David et al. 
2017). All energy density values of amphipods are listed in 
Table S2 of the electronic supplement.

Other crustacea

Energy density values of crustaceans of the orders Decap-
oda, Mysida and the class Ostracoda were also found in 
Donnelly et al. (1994) and Torres et al. (1994). Their energy 
densities, estimated using proximate composition, ranged 
from 19.0 to 25.3, 18.2 to 24.0, and 7.1 to 11.7 kJ g−1 DW, 
respectively. The decapod Pasiphaea scotiae had a higher 
energy density in autumn compared to winter, while the 
opposite was found for the decapod Petalidium foliacium. 

The species from Torres et al. (1994) are all deeper liv-
ing animals, although ostracods have also been found in 
the under-ice surface (David et al. 2017). Recorded energy 
density measurements including, where possible, values 
expressed in kJ g−1 WW are listed in Table S3 of the elec-
tronic supplement.

Fishes

In general, there is a strong distinction between coastal and 
oceanic fish assemblages (Hubold 1991; Kock 1992). The 
families Myctophidae, Bathylagidae, Gonostomatidae and 
Paralepidae dominate the fish community of the Southern 
Ocean’s oceanic waters (Kock 1992; Flores et al. 2008; 
Duhamel et al. 2014). The oceanic myctophids, or lantern-
fishes, dominate the meso- and bathypelagic zones in term 
of species richness, abundance and biomass (references in 
Duhamel et al. 2014). The cold waters of the Antarctic con-
tinental shelf and slope are dominated by the Nototheniidae 
(Eastman and Eakin 2000; Van de Putte 2008), which are 
mainly benthic or bentho-pelagic (La Mesa et al. 2004). 
Other families significantly contributing to the Southern 
Ocean fish fauna are the Liparidae, Zoarcidae and Macro-
uridae (Duhamel et al. 2014). The neritic species composi-
tion differs between the continental areas, SIZ and around 
the (sub-)Antarctic islands (Kock 1992). In some species, 
the larval stages have a different (vertical) distribution pat-
tern than adult individuals of the same species (e.g. Hubold 
1990).

The availability of previously unpublished data and data 
of individual fish kindly provided by colleague researchers, 
allows for a more detailed description and analysis of the 
energetic density of the nototheniid Pleuragramma antarc-
tica, the myctophids Electrona antarctica, Gymnoscopelus 
braueri and the bathylagiid Bathylagus antarcticus.

Pleuragramma antarctica

The notothenoid Pleuragramma antarctica is the most 
abundant pelagic fish in the high Antarctic coastal regions, 
with an extended range to the South Shetland and South 
Orkney Islands (Eastman and Hubold 1999; La Mesa et al. 
2004; Donnelly and Torres 2008; Van de Putte 2008). It is 
an important prey species for many fish species and (East-
man 1985) and top predators, including flying birds (Van 
Franeker et al. 2001), seals (Southwell et al. 2012 and refer-
ences therein) and penguins (Ainley et al. 1998; Cherel and 
Kooyman 1998),

Reported and measured average energy density values of 
Pleuragramma antarctica ranged from 21.7 to 27.9 kJ g−1 
DW (both summer Ross Sea). In East Antarctica, the energy 
density increased with age, from 21.8 to 25.5 kJ g−1 DW in 
small (52–95 mm) and large, adult (> 105 mm) individuals, 
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respectively (Van de Putte et al. 2010). The water content 
showed an opposite trend and was higher in the younger 
group (87.9%) compared to the older one (70.2%; Van de 
Putte et al. 2010). The energy density of juvenile fish showed 
a lot of variation, possibly attributed to variability in forag-
ing success (Van de Putte et al. 2010). Therefore, despite dif-
ferences between size classes, there was no (linear) relation-
ship between size and energy density within the small group. 
An overview of recorded average energy density measure-
ments of Pleuragramma antarctica including, where possi-
ble, values expressed in kJ g−1 WW can be found in Table 2.

The relatively low energy density of young Pleura-
gramma antarctica could possibly be due to their small 
size. The energy density of adult Pleuragramma antarctica 
is closer to that of the myctophid fishes, and evidence sug-
gest that the energy density of adults would be even higher 
in fully grown individuals (Van de Putte et al. 2010). This 
suggestion is supported by a relatively high energetic density 
of larger fish from the Ross Sea (Lenky et al. 2012). This 
increased energy density could be a result of increased lipid 
content, which increases with age and size. This increase 
is suggested to be needed for buoyancy, to compensate for 
increasing weight, rather than an energy storage, as it is 
assumed that sufficient copepod and euphausiid prey are 
available for Pleuragramma antarctica year-round, and 
because large lipid stores were still found in this fish after 
winter (Gon and Heemstra 1990; Friedrich and Hagen 1994; 
Hubold and Hagen 1997). However, there is also evidence 
that Pleuragramma antarctica is cannibalistic from a study 
conducted in late spring (Eastman 1985). The difference in 
energy density between juvenile and adult fish can also be 
explained by the higher investment in protein growth rather 
that lipid accumulation, which is a common phenomenon in 
fish (Shul’man 1974). No data on energy density are availa-
ble for the spawning season, presumably occurring in winter 
and spring, with a possible extended season into December 
in the Ross Sea (Vacchi et al. 2004).

Other nototheniidae

High energy densities of 29.9 and 29.4 kJ g−1 DW were 
reported for Dissostichus mawsoni (Antarctic toothfish) 
and Dissostichus eleginoides (Patagonian toothfish), 
respectively (Durand and Nicolle 1980; Lenky et  al. 
2012). Dissostichus mawsoni occurs mainly in high Ant-
arctic waters. Dissostichus eleginoides is more distributed 
in the northern parts of the Southern Ocean, particularly 
around the sub-Antarctic islands, and around the southern 
tip of South America (Duhamel et al. 2014). A signifi-
cant proportion of the diets of Dissostichus spp. consist 
of other fish (Kock 1992). Dissostichus spp. is of great 
commercial interest and is harvested using longlines. 
All notothenioids lack a swim bladder. Most species are Ta
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heavier than sea water, but still relatively light in weight 
compared to other teleosts (Eastman and DeVries 1982). 
Together with Pleuragramma antarctica and likely Aeth-
otaxis mitopteryx, D. mawsoni accumulates lipids to 
achieve neutral buoyancy (Eastman and DeVries 1982; 
Kock 1992; Lenky et  al. 2012). Juvenile D. mawsoni 
gradually becomes more buoyant with increasing size 
until they reach neutral buoyancy with adulthood at an 
approximate length of 81 cm SL (Near et al. 2003).

The energy density of other nototheniid species found 
in the literature ranged from 18.6 kJ g−1 DW for Tremato-
mus scotti to 26.8 kJ g−1 DW for Trematomus lepidorhi-
nus (proximate composition, Lenky et al. 2012), both 
caught in the Ross Sea during summer. Of the species 
listed in Lenky et al. (2012), Lepidonotothen squamifrons, 
Trematomus bernacchii, Trematomus hansoni, Tremato-
mus pennelli and T. scotti are benthic species (Eastman 
and DeVries 1982; Lenky et al. 2012). Therefore, they 
are suggested to have less lipids and a higher proportion 
of ash (Hagen et al. 2000; Lenky et al. 2012). Further-
more Trematomus spp., Notothenia coriiceps and Gobi-
onotothen gibberifrons mainly feed on benthic organisms 
which can have a relatively low energetic value such as 
polychaetes, molluscs and amphipods (Kock 1992; Lenky 
et al. 2012). Trematomus lepidorhinus feeds away from 
the bottom and possibly has more fat to increase buoy-
ancy, explaining its higher energetic density (Lenky et al. 
2012), although L. squamifrons has also been suggested to 
feed on both benthic and pelagic organisms (Kock 1992). 
Similar to Pleuragramma antarctica, the lipid content of 
T. lepidorhinus is known to increase with increasing size 
and weight (Friedrich and Hagen 1994).

Champsocephalus gunnari and Chaenocephalus acera-
tus have a northerly distribution usually occurring close 
to the APF, while the distribution of Channichthys spp. is 
limited to the Kerguelen Plateau (Duhamel et al. 2014). 
These species have similar energetic densities while they 
utilize different food sources (Kock 1992). An overview 
of recorded average energy density measurements of 
nototheniid fish species including, where possible, val-
ues expressed in kJ g−1 WW can be found in Table 3. Due 
to recent changes in the classification, former separate 
families are now included in the family Nototheniidae 
and the new proposed sub-families of the fish are given 
in brackets in the table (Duhamel et al. 2014). The energy 
densities of gonad, liver and muscle tissue of several 
nototheniid fish were measured separately using bomb 
calorimetry by Vanella et al. (2005). In most investigated 
species, the AFDW energy densities were highest in the 
liver (Vanella et al. 2005).

Electrona antarctica

Electrona antarctica is a circumpolar, widely distrib-
uted mesopelagic species found at and south of the APF 
(Duhamel et al. 2014). It has been found to be an important 
prey species for flying birds in the Weddell and Scotia Seas 
(Ainley et al. 1991). Records of the average energy density 
of E. antarctica showed a range between 18.9 kJ g−1 DW, for 
fish from the Scotia Sea during spring (proximate composi-
tion, Donnelly et al. 1990), and 34.3 kJ g−1 DW, for fish from 
the Kerguelen plateau during winter (bomb calorimetry; Lea 
et al. 2002). The lower range of values found in the literature 
were usually estimates made using proximate composition. 
Average recorded energy density measurements of E. ant-
arctica including, where possible, values expressed in kJ g−1 
WW are listed in Table 4.

The energy content of E. antarctica generally increased 
with increasing size (Donnelly et al. 1990; Van de Putte 
et al. 2006, 2010). Van de Putte et al. (2006) showed that the 
energy density of E. antarctica strongly increased with size 
in age class 0, and slows down from the second year onward 
while the variation increases. This trend is confirmed in fish 
from East Antarctica and the Lazarev Sea in several seasons 
(Fig. 2a). This size–energy density relationship suggests that 
the small fish invest more of their energy in growth com-
pared to the older individuals, probably due to the need to 
grow quickly to avoid predation (Van de Putte et al. 2006).

Donnelly et al. (1990) found an increase in lipid and 
energy content from spring to autumn, and from autumn 
to winter (Table 4), and suggested that this might be due to 
the accumulation of reserves for winter and early spring. 
In contrast, however, the data from the Lazarev Sea sug-
gest highest energy densities in summer, decreasing towards 
autumn and winter. In general, energy density of E. antarc-
tica was higher in the Lazarev Sea compared to East Antarc-
tica and Macquarie Island (Fig. 2a). Available measurements 
of individual fish, depicted in Fig. 2, allowed for a statisti-
cal comparison. The energy density of fish from the Laza-
rev Sea in summer was significantly higher than all other 
data (ANOVA F(24, 254) = 36.8, p < 0.001; Tukey’s HSD, 
p < 0.0001), while the energy density of fish caught in East 
Antarctica in autumn was significantly lower than all other 
locations (Tukey’s HSD, p < 0.03). Based on current avail-
able science, E. antarctica is assumed to spawn year-round 
with a peak in late summer/early autumn, or late spring/sum-
mer (Donnelly et al. 1990). In contrast, Gon and Heemstra 
(1990) suggested a peak spawning season in autumn/winter. 
However, the energetic content of maturing gonads does not 
appear to contribute significantly to the total energy content 
of the fish (Donnelly et al. 1990). Therefore, the main driver 
for differences in energy density is probably food composi-
tion, which differs for E. antarctica depending on area and 
season (Flores et al. 2008). The relationship between DW 
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Table 3  Overview of the average energy density of several nototheniid species

Sub-families are given in brackets. Energy densities were measured using bomb calorimetry (BC) and proximate composition (PC). Energy 
densities in italics represent values that were converted using information from the given sources. n represents the number of samples measured. 
Where this expresses samples of pooled individuals, this is indicated with (p). The standard error (SE) or standard deviation (SD) as given in the 
original source is added where available (±). The mean size is given in standard length (SL) unless otherwise indicated
a Measured in total length (TL)
b Crude protein measurement used
3 Carbohydrates not measured

Season Location n Mean size (mm) Water content (% 
WW)

Mean energy density Method Source

kJ g−1 WW kJ g−1 DW

Champsocephalus gunnari (Channichthyinae)
 Autumn Kerguelen 3 311.7 ± 16.1 SD 76.7 ± 2.0 SD 5.4 ± 0.3 SD 23.2 ± 0.6 SD BC Lea et al. (2002)

Scotia Sea 3 437a ± 15 SD 81.0 ± 0.4 SE 4.65 24.74 PCb,c Oehlenschläger (1991)
 Spring/summer Kerguelen 80.1 4.74 23.84 PCc Durand and Nicolle 

(1980)
Chaenocephalus aceratus (Channichthyinae)
 Autumn Scotia Sea 10 497a ± 34 SD 81.2 ± 0.8 SE 4.56 24.24 PCb,c Oehlenschläger (1991)

Channichthys rhinoceratus (Channichthyinae)
 Spring Kerguelen 82.8 3.97 23.09 PCc Durand and Nicolle 

(1980)
Dissostichus mawsoni (Dissostichinae)
 Spring McMurdo 1 68.6 9.4 29.94 BC Lenky et al. (2012)

Dissostichus eleginoides (Dissostichinae)
 Spring/summer Kerguelen 69.4 9.00 29.42 PCc Durand and Nicolle 

(1980)
Pagothenia borchgrevinki (Trematominae)
 Spring McMurdo 2006 1 (p) 182a ± 3 SE 77.2 5.6 24.56 BC Lenky et al. (2012)

McMurdo 2006 4 205a± 26 SE 77.6 ± 3.1 SE 5.3 ± 1.3 SE 23.66 BC Lenky et al. (2012)
McMurdo 2007 4 235a ± 27 SE 76.0 ± 2.5 SE 5.7 ± 1.1 SE 23.75 BC Lenky et al. (2012)

Trematomus bernacchii (Trematominae)
 Spring McMurdo 2006 (p) 146a ± 18 SE 78.3 4.7 21.66 BC Lenky et al. (2012)

McMurdo 2007 (p) 164a ± 25 SE 77.4 5.0 22.12 BC Lenky et al. (2012)
McMurdo 2007 4 189a ± 22 SE 76.2 ± 3.0 SE 5.5 ± 1.3 SE 23.11 BC Lenky et al. (2012)

Trematomus hansoni (Trematominae)
 Spring McMurdo Sound 7 211a ± 262 SE 76.7 ± 2.0 SE 5.4 ± 0.9 SE 23.18 BC Lenky et al. (2012)

Trematomus pennellii (Trematominae)
 Spring McMurdo Sound 1 (p) 141a ± 16 SE 78.3 4.6 21.20 BC Lenky et al. (2012)

Trematomus eulepidotus (Trematominae)
 Summer Ross Sea (p) 196a ± 31 SE 75.6 5.7 23.36 BC Lenky et al. (2012)

Trematomus lepidorhinus (Trematominae)
 Summer Ross Sea (p) 274a ± 56 SE 71.3 7.7 26.83 BC Lenky et al. (2012)

Trematomus scotti (Trematominae)
 Summer Ross Sea (p) 129a ± 7 SE 78.5 4.0 18.60 BC Lenky et al. (2012)

Lepidonotothen squamifrons (Trematominae)
 Summer Ross Sea (p) 224a ± 317 SE 81.3 4.0 21.39 BC Lenky et al. (2012)
 Spring/summer Kerguelen 79.8 4.78 23.67 PCc Durand and Nicolle 

(1980)
5.00 Goldsworthy et al. 

(2001)
Notothenia rossi (Nototheniinae)
 Spring Kerguelen 76.7 6.07 26.07 PCc Durand and Nicolle 

(1980)
Notothenia neglecta (Nototheniinae)
 Autumn Scotia Sea 3 317a ± 51 SD 78.4 ± 1.0 SE 5.35 24.77 PCb,c Oehlenschläger (1991)

Gobionotothen gibberifrons (Gobinototheninae)
 Autumn Scotia Sea 13 377a ± 17 SD 79.8 ± 0.4 SE 4.85 24.05 PCb,c Oehlenschläger (1991)
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(in %WW) and wet weight energy density was similar in fish 
from all seasons and regions (ANCOVA, p > 0.05; Fig. 2b).

Gymnoscopelus braueri

Gymnoscopelus braueri is also a circumpolar, widely dis-
tributed species found between de SAF and the SACCF 
(Duhamel et al. 2014). Recorded average energy densities 
of G. braueri ranged from 19.9 kJ g−1 DW in fish from the 
Scotia Sea during spring (proximate composition, Donnelly 
et al. 1990) to 39.0 kJ g−1 DW in fish from the vicinity of 
Macquarie Island during summer (bomb calorimetry, Tier-
ney et al. 2002). An overview of recorded average energy 
density measurements of G. braueri including, where possi-
ble, values expressed in kJ g−1 WW can be found in Table 5.

Tierney et al. (2002) found a strong difference in calorific 
value between size classes in summer. Fish < 40 mm had 
a significantly higher dry weight energy density compared 
to larger individuals, which is in contrast to E. antarctica. 
Interestingly, the small fish also had a significantly higher 
water content (Tierney et al. 2002). This pattern was, how-
ever, not confirmed by data from the Lazarev Sea in autumn 
where the dry-weight energy density did not differ in dif-
ferent sized fish (Van de Putte et al. 2006). Within the size 
classes found in Tierney et al. (2002), there was no (linear) 
relationship between size and dry-weight energy density 
(Fig. 3a). The data from Macquarie Island (Tierney et al. 
2002) and the Lazarev Sea (Van de Putte et al. 2006 and 
PS81) allowed for statistical comparison, which showed that 

the energy density of G. braueri > 40 mm did not vary sig-
nificantly between seasons and regions, even in the relatively 
small fish from winter (ANOVA, F(3,35) = 0.288, p = 0.83).

In fish > 40 mm, the relationship between water content 
and wet-weight energy density of G. braueri from the Laz-
erev Sea in April and the Macquarie region in January show 
similar slopes (Fig. 3b) suggesting that there is no evidence 
that tissues replacing the body water are markedly different 
between seasons and/or regions (ANCOVA, p > 0.05). As 
the small fish from the Macquarie region have a relatively 
high energy density, the intercept of this regression is sig-
nificantly higher compared to regressions of the other data 
(ANCOVA, p < 0.05).

Other myctophids

The average energy density of other myctophid species 
reported in the literature range from 17.1 kJ g−1 DW of Prot-
omyctophum tenisoni and Protomyctophum bolini caught in 
the Scotia Sea during winter (proximate composition, Don-
nelly et al. 1990) to 39.3 kJ g−1 DW of Protomyctophum 
andriashevi caught in the vicinity of Macquarie Island dur-
ing summer (bomb calorimetry, Tierney et al. 2002). Simi-
lar to G. braueri, Tierney et al. (2002) found several, but 
not all, other myctophid species in which small individu-
als (< 40 mm SL, approximately) had a significantly higher 
dry-weight energy density such as Gymnoscopelus fraseri, 
P. andriashevi, P. bolini and Lampanyctus archirus. In con-
trast to the other species, the water content of G. fraseri 

Fig. 2  Electrona antarctica; a the relationship between  dry weight 
(DW) and energy density  g−1 DW including the parameters for the 
linear regression of ln(y) = a + bln(x), and the corresponding power 
function y = xb ea and, b the relationship between DW (%WW) and 
energy density g−1 wet weight (WW) including regression parameters 
of the linear regression lines y = ax + b. Regression parameters are 
depicted in the figures. Data were obtained from Tierney et al. (2002) 

(Macquarie Island), Van de Putte et al. (2010) (East Antarctica, Feb-
ruary–March), Van de Putte et al. (2006) (Lazarev Sea, April), Van de 
Putte 2008 (Lazarev Sea, June/July) or collected during PS89 (Laza-
rev Sea, December). All measurements were done using bomb calo-
rimetry. The legend, depicted in B, indicates month and location of 
data collection. No regression was fitted for the December-Lazarev 
Sea data in b, due to two individuals that had divergent dry weights
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and P andriashevi did not differ significantly between size 
classes (Tierney et al. 2002). An overview of recorded aver-
age energy density measurements of myctophid fish species 
including, where possible, values expressed in kJ g−1 WW 
is listed in Table 6.

Of the species listed, P. tenisoni, Electrona carlsbergi, 
G. fraseri and Gymnoscopelus piabilis occur mainly in the 
sub-Antarctic zone, while the other species occur south of 
the PF or have a more wide distribution. Protomyctophum 
tenisoni, E. carlsbergi, Gymnoscopelus ophistopterus, and 
Gymnoscopelus microlampas have relatively low energy 
densities considering what can be assumed for lipid-rich 
myctophid species. Lea et al. (2002) found that P. tenisoni 
had a relatively low lipid content compared to other investi-
gated myctophid fishes. Electrona carlsbergi was, however, 
lipid-rich in this study (Lea et al. 2002).

Bathylagus antarcticus

Of the two main species of Bathylagidae (Bathylagus ten-
uis and Bathylagus antarcticus) found in the meso- and 
bathypelagic zones of the Southern Ocean, B. antarcticus 
has the more southern distribution (Duhamel et al. 2014). 
Recorded average energy densities of B. antarcticus ranged 
from 14.8 kJ g−1 DW, estimated in fish from the winter Sco-
tia sea using proximate composition (Donnelly et al. 1990), 
to 22.8 kJ g−1 DW measured in fish from the spring Ross 
Sea using bomb calorimetry (Lenky et al. 2012). Average 
recorded energy density measurements of B. antarcticus 
including, where possible, values expressed in kJ g−1 WW 
are listed in Table 7.

The dry-weight energy density of B. antarcticus caught 
in the Lazarev Sea in April (Van de Putte et al. 2006) did not 
differ significantly from fish caught in the vicinity of Mac-
quarie Island in January (Tierney et al. 2002), even though 
the latter fish were larger (Fig. 4a). In both seasons/regions, 
the energy density did not change with changing sizes. 
Water content of B. antarcticus was significantly higher in 
April than it was in January, resulting in a lower wet weight 
energy density in the Lazarev Sea in April compared to the 
Macquarie region in January. The relationship between wet-
weight energy density and proportional dry-weight found by 
Van de Putte et al. (2006) suggested that water is replaced 
with low energy tissue. This relationship is, however, dif-
ferent in the fish from Tierney et al. (2002), where energy 
density is relatively low compared to other fish species from 
the same study, but the wet-weight energy density increases 
relatively fast with decreasing water content (Fig. 4b).

Other fishes

An overview of recorded average energy density measure-
ments of five fish species other than the ones listed above Ta
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including, where possible, values expressed in kJ g−1 WW 
can be found in Table 8. The families to which the species 
belong are given in the table. Among these fishes, Parad-
iplospinus gracilis had the highest mean energy density of 
25.6 kJ g−1 DW. The lowest values were found in Notolepis 
coatsi from autumn and winter in the Weddell–Scotia Seas 
sector (14.9 and 15.6 kJ g−1 DW, respectively). Both meas-
urements were done using proximate composition. Ciancio 
et al. (2007) list another nine species of which the distri-
bution in the Southern Ocean is limited to the Patagonian 
shelf. Their energy density (measured using bomb calorim-
etry) ranged from 16.2 kJ g−1 DW for Genypterus blacodes 
(Ophidiidae) to 26.2 kJ g−1 DW for Eleginops maclovinus 
(Eleginopidae; Ciancio et al. 2007).

Other species

Squid

Squid are often a part of, or even dominate in some sea-
sons, the diet of many top predators (Klages 1989; Ainley 
et al. 1991; Cherel et al. 1996; Kirkman et al. 2000; Van 
Franeker et al. 2001). Therefore, an indication of their 
energy density is highly relevant in trophic and ecosys-
tem studies. Although measurements of squid are limited, 
reported values suggest that the energy density of squid 
increases with increasing latitudes (from the tropics to 
Southern Ocean), and that the energy density of squid in 
the Southern Ocean is comparable with that of nototheniid 

fish. Squid are difficult to catch with scientific sampling 
gear (Rodhouse et al. 2014), explaining the limited amount 
of measurements on this group (Table 9). Therefore, we 
have included some energetic density measurements from 
regions other than the Southern Ocean in this section for 
comparison.

Croxall and Prince (1982) provide an overview of energy 
densities of cephalopods from different locations. The 
reported values ranged from 14.9 to 19.9 kJ g−1 DW. The 
cephalopods listed in Croxall and Prince (1982) belong to 
the families Loliginidae, Octopodidae, Ommastrephidae, 
Onychoteuthidae and Sepiidae. Of the reported species, only 
the squid Doryteuthis gahi occurs south of the STF, over the 
Patagonian shelf in the sub-Antarctic region (Rodhouse et al. 
2014). It had an energy density of 16.2 kJ g−1 DW (Ferreyra 
in Pandit and Magar 1972). Ciancio et al. (2007) reported 
an energy density of 21.2 kJ g−1 DW for D. gahi. They, fur-
thermore, reported the energy density of Illex argentinus, 
also caught over the Patagonian shelf (Table 9; Ciancio et al. 
2007).

Moroteuthis ingens is a very abundant species in the 
Southern Ocean. The mantle and tentacles of M. ingens, 
collected from the stomach contents of king penguins   
(Aptenodytes patagonicus) at Possession Island in summer, 
had an energy density of 23.5 kJ g−1 DW, measured using 
bomb calorimetry (Cherel and Ridoux 1992). Proximate 
composition values of M. ingens caught near New Zea-
land (Vlieg 1984) result in an estimated energy density of 
24.0 kJ g−1 DW. The mantle, fins and tentacles of M. ingens, 

Fig. 3  Gymnoscopelus braueri; a the relationship between  dry 
weight (DW) and energy density  g−1 DW and, b the relationship 
between  DW (%WW) and energy density  g−1 wet weight (WW) 
including parameters of the linear regression lines y = ax + b. Regres-
sion parameters are depicted in the figure. Data were obtained from 
Tierney et  al. (2002) (Macquarie Island, January) and Van de Putte 

et  al. (2006) (Lazarev Sea, April). Due to significant differences in 
energetic density, data from Tierney et  al. (2002) were separated in 
individuals < 40 and > 40  mm. All measurements were done using 
bomb calorimetry. Legend indicates month and location of data col-
lection
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Table 6  Overview of the average energy density of several myctophid species

Season Location n Size (mm) Water content (% 
WW)

Mean energetic density Method Source

kJ  g−1 WW kJ  g−1 DW

Gymnoscopelus ophistopterus
 Autumn Weddell Sea 6 108.8 80.1 ± 3.3 SD 4.58 23.02 PC Donnelly et al. 

1990d

Gymnoscopelus fraseri
 Summer Macquarie 18 (p) 35–78 73.1 ± 4.0 SD 7.89 29.32 ± 8.62 SD BC Tierney et al. (2002)
 Winter Kerguelen 5 66.2 ± 7.1 SD 62.6 ± 10.1 SD 10.2 ± 3.5 SD 27.0 ± 2.9 SD BC Lea et al. (2002)

Gymnoscopelus piabilis
 Winter Kerguelen 5 187.6 ± 32.0 SD 68.5 ± 3.0 SD 9.5 ± 1.7 SD 30.0 ± 30.0 SD BC Lea et al. (2002)

Gymnoscopelus nicholsi
 Summer Elephant Island 3 76.7 ± 0.7 SE 5.82 ± 0.22  SEa 24.98 PC Ishii et al. (2007)
 Autumn 67 8.43 25.55 PC VNIRO (2000)

66.4 9.58 28.51 BC Green and Gales 
(1990

 Winter Kerguelen 1 128 66.8 9.80 28.00 BC Lea et al. (2002)
Scotia Sea 1 148 59.6 11.75 29.08 PC Donnelly et al. 

(1990)
 Spring Ross Sea (p) 149b ± 7 SE 64.9 10.3 29.34 BC Lenky et al. (2012)

Gymnoscopelus microlampas
 Summer Macquarie 6 (p) 84–122 74.7 ± 1.3 SD 5.72 22.62 ± 1.14 SD BC Tierney et al. (2002)

Electrona subaspera
 Summer Macquarie 6 (p) 10–117 72.1 ± 1.7 SD 7.41 26.56 ± 1.15 SD BC Tierney et al. (2002)
 Winter Kerguelen 3 92.7 ± 7.5 SD 72.3 ± 1.6 SD 7.4 ± 1.0 SD 26.6 ± 2.1 SD BC Lea et al. 2002

Electrona carlsbergi
 Summer South Georgia 3 71.2 ± 0.3 SE 6.57 22.84 PC Clarke and Prince 

(1980)
72.7 5.87 21.50 PC VNIRO (2000)

Possession Island 3 78.8 ± 4.6 SD 70.2 ± 0.4 SD 7.0 ± 0.2  SDc 23.5 ± 0.4  SDc BC Cherel and Ridoux 
(1992)

Elephant Island 3 73.8 ± 0.7 SE 6.92 ± 0.13 SE 26.41 PC Ishii et al. (2007)
Macquarie 6 (p) 26–97 76.7 ± 5.2 SD 5.05 21.67 ± 3.17 SD BC Tierney et al. (2002)

 Winter Kerguelen 6 84.7 ± 3.6 SD 67.0 ± 3.2 SD 8.6 ± 1.2 SD 25.9 ± 3.2 SD BC Lea et al. (2002)
 Spring Ross Sea (p) 72 ± 6  SEb 73.9 6.1 23.37 BC Lenky et al. (2012)

Krefftichthys anderssoni
 Summer Possession Island 2 47.7 ± 9.2 SD 69.3 ± 1.4 SD 8.1 ± 0.3  SDc 26.4 ± 0.1  SDc BC Cherel and Ridoux 

(1992)
Macquarie 18 (p) 40–69 69.8 ± 1.9 SD 8.32 27.54 ± 2.75 SD BC Tierney et al. (2002)

 Autumn 66.6 10.12 30.30 BC Green and Gales 
(1990)

Protomyctophum tenisoni
 Summer Macquarie 6 (p) 43–51 73.2 ± 1.1 SD 5.50 20.53 ± 0.65 SD BC Tierney et al. (2002)
 Winter Kerguelen 1 45 74.6 6.1 24.2 BC Lea et al. (2002)

Scotia Sea 3 47 72.2 ± 0.6 SD 4.75 17.09 PC Donnelly et al. 1990
Protomyctophum andriashevi
 Summer Macquarie 12 (p) 23–51 75.7 ± 5.3 SD 9.54 39.26 ± 21.48 SD BC Tierney et al. (2002)

Protomyctophum bolini
 Summer Macquarie 18 (p) 29–61 73.5 ± 3.9 SD 7.42 28.00 ± 10.61 SD BC Tierney et al. (2002)
 Winter Scotia Sea 6 48.3 74.6 ± 1.4 SD 4.34 17.09 PC Donnelly et al. 

(1990)
Protomyctophum parallelum
 Summer Macquarie 6 (p) 20–48 70.9 ± 3.6 SD 8.23 28.27 ± 12.28 SD BC Tierney et al. (2002)
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had a similar energy density of approximately 23 kJ g−1 
DW. The energy density of the inner organs was higher 
(25.7 kJ g−1 DW), which is probably caused by ingested 
food residing in the stomach (Vlieg 1984) or lipids stored in 
the digestive gland (Phillips et al. 2001).

Two species of squid that are not known to reside in sub-
Antarctic or Antarctic waters (Rodhouse et al. 2014), but 
which have been found in the stomachs of penguin species, 
had energy densities of 24.7 kJ g−1 DW (Sepiotheuthis aus-
tralis) and 23.4 kJ g−1 DW (Nototodarus gouldi; Green and 
Gales 1990).

Clarke et al. (1985) measured the energy density of sev-
eral species of squid caught in the north–east Atlantic Ocean. 
The energy value ranged from 17.5 kJ g−1 DW (1.8 kJ g−1 
WW; Mastigoteuthis sp.) to 21.5 kJ g−1 DW (2.7 kJ g−1 
WW; Histioteuthis sp.). The energy value per gram WW was 
highly variable due to different types of buoyancy regulation 
used by different squid species, resulting in large differences 
in water content between species. This did, however, not 
result in large differences in the energy density per gram 
DW, the range of which was limited (Clarke et al. 1985).

Gelatinous zooplankton

A large biomass component of marine ecosystems is formed 
by gelatinous zooplankton (McInnes et al. 2017). The gelati-
nous zooplankton includes for instance Ctenophora, or comb 
jellies, and Cnidaria, including Scyphozoa and Hydrozoa. 
The latter class contains the order Siphonophora from which 
species such as Diphyes antarctica can dominate the epipe-
lagic layer particularly during autumn and winter (Flores 
et al. 2014). Gelatinous species have often been viewed as an 
unimportant prey item for many organisms, due to both their 
low energetic value and the difficulty in detecting gelatinous 
prey with conventional diet assessments methods (e.g. stom-
ach content analysis, leading to potential underestimation 
of their prevalence as a prey item; McInnes et al. 2017). 

However, they have been found to be more than an incidental 
part of the diet of many larger animals (Fig. 5), including 
albatrosses and Adélie penguins (Pygoscelis adeliae) in the 
Southern Ocean (Jarman et al. 2013; Thiebot et al. 2016; 
McInnes et al. 2017; Thiebot et al. 2017;). Although second-
ary ingestion cannot be excluded when using DNA analysis, 
results suggest that they are common prey item (Jarman et al. 
2013; McInnes et al. 2017). Video observations captured 
Adélie penguins feeding on jellyfish, even when other preys 
were available (Thiebot et al. 2016, 2017). Certain jellyfish 
species are regularly invested with parasitic amphipods, 
and although there was no evidence that the penguins were 
targeting these, they may prove to be a profitable addition 
(Thiebot et al. 2016).

Two species of Scyphozoa were measured from both the 
winter Weddell Sea (PS81) and the summer Lazarev Sea 
(PS89) using bomb calorimetry (Table 10). The energetic 
density of Periphylla periphylla was 20.4 kJ g−1 DW during 
winter. Samples consisted of one small individual (93.5 g 
WW) and several larger individuals, with a WW ranging 
from 470 to 499 g. The average winter energy density of P. 
periphylla was higher compared to 10.8 kJ g−1 DW during 
summer. The latter measurements were, however, performed 
on small individuals with an average WW of 7.0 g. This sug-
gests that season has an influence on the energy density of 
P. periphylla, although there could also be an influence of 
size. No difference was found in the energy density of Atolla 
spp. between seasons. The average energy density of Atolla 
spp. was 11.0 kJ g−1 DW during winter and 12.3 kJ g−1 DW 
during summer. The water content of the Scyphozoa caught 
during both winter and summer was similar and usually in 
between 90 and 95% WW. It should be kept in mind that 
these individuals were weighed after having been frozen. 
Due to the potential error in that measurement, energy den-
sities are not given in kJ g−1 WW. High ash contents may 
have resulted in an underestimation of the dry weight energy 
densities of these Scyphozoa.

Energy density measurement were done using bomb calorimetry (BC) and proximate composition (PC). Energy densities in italics represent 
values that were converted using information from the given sources. n represents the number of samples measured. Where this expresses sam-
ples of pooled individuals, this is indicated with (p). The standard error (SE) or standard deviation (SD) as given in the original source is added 
where available. The mean size is given in standard length (SL) unless otherwise indicated
a A lipid factor of 39.6 kJ g−1 used for energy density estimation
b Measured in total length (TL)
c Sample taken from bird stomach contents, in which the energetic value is potentially overestimated due to water removal in stomach
d A factor of 4.19 was used to convert calories to joules

Table 6  (continued)

Season Location n Size (mm) Water content (% 
WW)

Mean energetic density Method Source

kJ  g−1 WW kJ  g−1 DW

Lampanyctus archirus
 Summer Macquarie 18 (p) 35-147 78.5 ± 3.4 SD 6.12 28.47 ± 14.43 SD BC Tierney et al. (2002)
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Observations showed that Adélie penguins often attacked 
the gonads and/or oral arms of jelly fish specifically, and 
that there was a relationship between the penguin attacks 
and the visible presence of gonads (Thiebot et al. 2016). 
Gonads from P. periphylla caught in the summer Lazarev 
Sea showed a higher energetic density than other body parts 
(Table 11). Doyle et al. (2007) and Milisenda et al. (2014) 
also found that gonads had a higher energy content than 
oral arm or bell tissue, with the exception of one species in 
which the oral arms yielded a similar energy density as the 
gonads (Doyle et al. 2007). The energy densities of the bell 
and collar tissue of P. periphylla were very low and likely 
unrealistic (Table 11; Doyle et al. 2007). These tissues also 
had very high ash contents (Table 11), although ash content 
was high in general when compared to other animals.

A measurement using bomb calorimetry on a sample of 
pooled anterior nectophores of the siphonophore Diphyes 
antarctica from winter Weddell Sea (PS81) resulted in an 
energy density of 12.0 kJ g−1 DW (4.0 kJ g−1 WW). The ash 
content of D. antarctica has been reported to be close to 60% 
(Donnelly et al. 1994).

Proximate compositions of ctenophore and cnidarian spe-
cies were measured by Clarke et al. (1992) and Donnelly 
et al. (1994), which included the species Beroe spp. (Clarke 
et al. 1992), Pleurobrachia sp. (Clarke et al. 1992), Calycop-
sis borchgrevinki (Clarke et al. 1992; Donnelly et al. 1994), 
Botrynema brucei (Clarke et al. 1992), Diphyes antarctica 
(Clarke et al. 1992; Donnelly et al. 1994) P. periphylla (Don-
nelly et al. 1994) and Atolla wyvillei (Clarke et al. 1992; 
Donnelly et al. 1994). The water content of all species was 
> 95% WW, while the ash content ranged between 50 and 
73% DW (Clarke et al. 1992; Donnelly et al. 1994). Apart 
from residual water, there is evidence that suggests that 
gelatinous species also contain a proportion of amino-car-
bohydrate which is missed by conventional assay techniques. 
Furthermore, a proportion of the protein potentially con-
sists of glycoproteins that can be missed or underestimated 
depending on the technique used (Clarke et al. 1992). This 
could explain why energy density calculated using proxi-
mate composition is far lower than the energy density of 
carbohydrates, and is an unreliable method for estimating 
energy density of gelatinous species (Clarke et al. 1992; 
Donnelly et al. 1994).

Pelagic tunicates, or salps, that occur in the Southern 
Ocean are widely distributed and can form an important 
part of the total metazoan biomass, particularly in relatively 
warm water masses (Pakhomov 2004; Pakhomov et  al. 
2011). The proximate composition of the pelagic tunicates 
Salpa fusiformis, Salpa thomsoni and Ihlea racovitzai were 
measured by Clarke et al. (1992), Donnelly et al. (1994), 
Dubischar et al. (2006) and Dubischar et al. (2012). Despite 
similar complications as for other gelatinous zooplankton, 
some of the sources report an energy density estimate. Ta
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Dubischar et al. (2012) estimated the WW energy density 
of S. thompsoni and I. racovitzai to be 0.2 and 0.4 kJ g−1 
(using the conversion factors 4.1 kcal g−1 for protein and 
9.3 kcal g−1 for lipids), which would correspond to 3.1 and 
6.7 kJ g−1 DW, respectively. They did find that the energy 
density of I. racovitzai was approximately twice as higher 

than that of S. thompsoni, mainly due to differences in the 
amount of protein. The amount of protein found by Don-
nelly et al. (1994) was a lot lower. The proximate composi-
tion did not markedly differ between seasons in both studies, 
suggesting that lipids are not accumulated (Donnelly et al. 
1994; Dubischar et al. 2012). Clarke et al. (1992) calculated 

Fig. 4  Bathylagus antarcticus; a the relationship between  dry 
weight (DW) and dry-weight energy density and, b the relationship 
between  DW (%WW) and energy density  g−1 wet weight (WW) 
including parameters of the linear regression lines y = ax + b. Regres-
sion parameters are depicted in the figure. Data were obtained from 

Tierney et  al. (2002) (Macquarie Island, January) and Van de Putte 
et al. (2006) (Lazarev Sea, April). All measurements were done using 
bomb calorimetry. Legend indicates month and location of data col-
lection

Table 8  Overview of the average energy density of several fish species

Families are given in brackets. Energy density measurements were done using bomb calorimetry (BC) and proximate composition (PC). Energy 
densities in italics represent values that were converted using information from the given sources. n represents the number of samples measured. 
Where this expresses samples of pooled individuals, this is indicated with (p). The standard deviation (SD) is given where available. The mean 
size is given in standard length (SL)
a Sample taken from bird stomach contents, in which the energetic value is potentially overestimated due to water removal in stomach
b A factor of 4.19 was used to convert calories to joules

Season Location n Mean size (mm) Water 
content (% 
WW)

Mean energy density Method Source

kJ  g−1 WW kJ  g−1 DW

Notolepis coatsi (Paralepididae)
 Autumn Weddell Sea 5 62.4 82.2 ± 2.7 2.65 14.89 PC Donnelly et al. (1990)b

 Winter Scotia Sea 5 63.4 79.4 ± 3.4 3.22 15.63 PC Donnelly et al. (1990)
 Summer East Antarctica 3 168 ± 52 79.8 ± 1.3 4.42 ± 0.33 21.90 ± 0.73 BC Van de Putte et al. (2010)

Paradiplospinus gracilis (Gempylidae)
 Summer Possession Island 1 168.7 78.9 4.6a 21.8a BC Cherel and Ridoux (1992)
 Winter Scotia Sea 2 325.5 69.1 ± 2.4 7.92 25.63 PC Donnelly et al. (1990)

Antimora rostrata (Moridae)
 Summer Macquarie 2 (p) 227–225 80.1 ± 1.0 4.33 21.75 ± 2.28 BC Tierney et al. (2002)

Stomias gracilis (Stomiidae)
 Summer Macquarie 18 (p) 130–278 77.8 ± 3.1 5.15 23.20 ± 2.99 BC Tierney et al. (2002)

Micromesistius australis (Gadidae)
Patagonia 3 140–150 78.5 4.54 21.12 BC Ciancio et al. (2007)
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an energy density of 4.6 kJ g−1 DW for S. fusiformis. When 
comparing solitary forms with aggregate forms of S. thomp-
soni measured from the Bellinghausen Sea in autumn, the 
amount of protein and lipids was higher in the former, which 
would result in a higher energy density for the solitaries 
when converted (5.3 kJ g−1 DW as opposed to 3.2 kJ g−1 
DW; Dubischar et al. 2006). The reported energy densities 
for salps are also lower than that of carbohydrates (Clarke 
et al. 1992). Questions still remain regarding the digestibility 
of salps. It is suggested that they can be digested entirely 
but also only partly due to the cellulose-like tunicin present 
in the tunica (Dubischar et al. 2012 and references therein). 
Gili et al. (2006) proposed that the salps’ stomach may be 
the main source of energy when preyed upon.

Chaetognaths, polychaetes and gastropods

Other pelagic zooplankton species for which reported energy 
densities were found, included chaetognaths, polychaetes 
and a gastropod (Table S4 of the electronic supplement). 

Table 9  Overview of the average energy density of Southern Ocean squid species

In the ‘method’ column the method used for energetic value determination is indicated, where BC is bomb calorimetry and PC is proximate 
composition. Energetic values in italics represent values that were converted using the energetic values, wet weights and dry weights from the 
given source. n represents the number of samples measured
a Based on measurements of water content, lipids (× 39.7 kJ g−1) and crude protein
b Mantle and tentacles
c Based on crude protein

Season Location n Body length (mm) Water con-
tent (%)

Mean energy density Method Source

kJ g−1 WW kJ g−1 DW

Doryteuthis gahi
80.9 3.09a 16.18 PC Pandit and Magar (1972)

Patagonia 8 60–90 76.6 4.95 21.16 BC Ciancio et al. (2007)
Moroteuthis ingens
 Summer Possession Island 1 76.0 5.6b 23.51b BC Cherel and Ridoux (1992)

New Zealand 6 356 80.3 4.73c 24.02c PC Vlieg (1984)
Illex argentinus

Patagonia 4 210–415 76.7 5.01 21.52 BC Ciancio et al. (2007)

Fig. 5  Antarctic Petrels (Thalassoica antarctica) feeding on gelati-
nous species in the Lazarev Sea during summer (© Jan Andries van 
Franeker)

Table 10  Average energy density of scyphozoans ± standard deviation

Measurements were done using bomb calorimetry. n represents the number of samples measured

Season Location n Mean DW (mg) Water content (%) Energy density 
(kJ g−1 DW)

Method Source

Periphylla periphylla
 Winter/spring Weddell Sea 8 22.0 ± 9.1 93.6 ± 1.7 20.42 ± 1.13 BC This study (PS81)
 Summer Lazarev Sea 9 0.8 ± 0.9 89.0 ± 6.1 10.85 ± 2..57 BC This study (PS89)

Atolla sp.
 Winter/spring Weddell Sea 5 1.57 ± 0.7 93.0 ± 2.7 11.16 ± 3.79 BC This study (PS81)
 Summer Lazarev Sea 16 1.01 ± 0.3 93.2 ± 1.6 12.29 ± 1.41 BC This study (PS89)
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Chaetognaths, such as Eukrohnia hamata, Sagitta gazellae 
and Sagitta marri, can form a major part of the mesope-
lagic zooplankton community and are important carnivorous 
predators (Pakhomov et al. 1999; Flores et al. 2014). These 
three species are the most abundant in the epipelagic and 
have a wide, circumpolar distribution (David 1958). Their 
distribution in the water column has been found to follow 
increased abundances of their prey, larval krill and copepods 
(David et al. 2017).

Estimated energy density using proximate composition is 
available for the three species of chaetognaths and two spe-
cies of polychaetes in Donnelly et al. (1994). The dry-weight 
energy density of chaetognaths ranged between 5.0 kJ g−1 
DW of S. gazellae caught in autumn and 11.7 kJ g−1 DW 
of E. hamata caught during winter. The energy densities 
of E. hamata and S. gazellae were higher in winter than in 
autumn. Seasonal changes in energy content are suggested to 
be a result of trophodynamics (Donnelly et al. 1994). Sagitta 
marri had a winter energy density of 11.3 kJ g−1 DW. All 
chaetognath species had high water and ash contents.

The polychaetes Vanadis antarctica and Tomopteris 
carpenteri are both oceanic species that can be found in 
the entire water column (Boysen-Ennen and Piatkowski 
1988; Fernández-Álamo and Thuesen 1999). They had esti-
mated energy densities of 14.2 kJ g−1 DW during autumn 
and 9.2 kJ g−1 DW during winter, respectively (Donnelly 
et al. 1994). The energy density of T. carpenteri was also 
estimated from individuals caught near South Georgia. The 
reported value of 12.4 kJ g−1 DW was calculated using the 
values 39.5 kJ g−1 for lipids and 23.9 kJ g−1 for protein 
(Clarke et al. 1992).

A proximate composition estimate of the pelagic gastro-
pod Clione limacina antarctica from the McMurdo Sound 
yielded an energy density of 24.8 kJ g−1 DW (Bryan et al. 
1995). This gastropod can be very abundant in certain sea-
sons or areas, and contains defensive chemicals to defend 
itself against predation (Bryan et al. 1995).

Benthic invertebrate species

McClintock (1987, 1989) and McClintock et al. (2004, 2006) 
reported energy densities of benthic echinoderms, sponges 
and a tunicate. All estimates of the energy density of these 
species were done using proximate composition. The sea 
stars Granaster nutrix and Neosmilaster georgianus were 
investigated in McClintock et al. (2006). Measurements were 
done on the pyloric caeca and body wall separately which 
yielded 24.8 and 8.5 kJ g−1 DW for G. nutrix, and 26.5 and 
14.1 kJ g−1 DW for N. georgianus, respectively. The energy 
densities of the body walls of 13 echinoderm species from 
McMurdo Sound ranged from 10.5 (Odontaster meridiona-
lis) to 18.2 (Porania antarctica) kJ g−1 DW (McClintock 
1989). The proximate composition of different body parts of 
the aforementioned study can be found in McClintock and 
Pearse (1987). The energy densities of 17 species of ben-
thic sponges from McMurdo Sound ranged from 5.1 kJ g−1 
DW (Sphaerotylus antarcticus) to 17.4 kJ g−1 DW (Den-
drilla membranosa; McClintock 1987). The energy density 
of the benthic tunicate Distaplia cylindrica was estimated 
at 14.7 kJ g−1 DW (McClintock et al. 2004). This benthic 
tunicate had a lower water content and higher protein con-
tent compared to the pelagic tunicates (Donnelly et al. 1994; 
McClintock et al. 2004; Dubischar et al. 2012).

An energy density of 21.8 kJ g−1 DW was estimated 
using proximate composition for the nemertean Parbor-
lasia corrugatus, collected in the McMurdo Sound during 
spring (Heine et al. 1991). Three bivalve species from the 
Patagonian shelf, Aulacomya atra, Perumytilus purpuratus 
and Mytilus edulis, yielded energy densities of 19.2, 20.0 
and 17.9 kJ g−1 DW, respectively. Animals were measured 
without shells using bomb calorimetry (Ciancio et al. 2007).

Discussion

Data gaps

There is a focus on certain species, but the Southern Ocean 
is composed of different biogeographical regions that can 

Table 11  The energy 
density ± standard deviation 
of different body parts from 
the scyphozoan Periphylla 
periphylla, caught in the 
summer Lazarev Sea

Measurements were done using bomb calorimetry. Replicate measurements were performed on the body 
parts of a single individual

Mean WW (g) Mean DW (g) Water 
content 
(%)

Ash (% DW) Energy density

kJ g−1 DW kJ g−1 AFDW

Intestine 385.27 18.31 95.25 66.27 ± 0.39 6.73 ± 0.27 19.96
Gonads 113.12 7.66 93.23 41.57 ± 2.52 13.28 ± 0.12 22.73
Bell 94.46 3.66 96.12 74.90 ± 0.93 1.15 ± 0.28 4.59
Tentacles 123.02 5.61 95.44 55.89 ± 4.47 8.06 ± 2.32 18.27
Collar 259.09 75.30 ± 0.51 1.47 ± 0.33 5.97
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have a distinct biodiversity and community structure, and 
specific key species. For instance, for euphausiids many 
studies focus on Euphausia superba, but other species can 
be of high importance in certain areas. In the continental 
shelf region, Euphausia crystallorophias is an important 
food source, for instance for Adélie penguins in the Ross 
Sea and at Adélie Land (Ainley et al. 1998; Cherel 2008), 
and for minke (Balaenoptera acutorostrata) and blue whales 
(Balaenoptera musculus; Laws 1977; Ishii et al. 1998). The 
euphausiid Euphausia vallentini can be a major food source 
for many sea birds in particular biogeographic regions, for 
instance at Heard Island and the Crozet Islands (Ridoux 
1994; Deagle et al. 2007). Several amphipod species are 
found in the diet of many bird species (Hindell 1989; Ridoux 
1994; Van Franeker et al. 2001), although their contribution 
to the diet varies significantly between regions. The hyperiid 
amphipod Themisto gaudichaudii, for example, has a wide 
distribution and is found in variable amounts in the diet of 
many species, but seems to be an important prey item in the 
region of the Kerguelen Islands particularly (Bocher et al. 
2001). Similarly, the copepod Paraeuchaeta antarctica has 
been found to be abundant in the diet of bird species in the 
Kerguelen region (Bocher et al. 2002).

A better seasonal or regional coverage of the energy 
density of species is desirable as it can give insight into a 
species life cycle and behaviour, because several top preda-
tor species show a change in diet between seasons (Ridoux 
1994). For example, the fish feeding Cape petrel (Daption 
capense) switches to a squid dominated diet in the Weddell/
Scotia Sea in autumn (Ainley et al. 1991), while the Arctic 
tern (Sterna paradisaea) feeds mainly on Electrona antarc-
tica in spring, but on Antarctic krill in autumn (Ainley et al. 
1991). Adélie penguins in the Ross Sea, feeding mainly on 
krill at the start of the season, increased their proportion of 
fish in the diet together with their foraging trip duration. 
This is likely a result of a change in food availability due 
to increased predation pressure by the penguins themselves 
(Ainley et al. 2015).

There are many species groups that are overlooked as 
they are not known to be an important part of the diet of top 
predators, but which can reach high numbers and biomasses 
in certain habitats or seasons and are, therefore, important 
parts of the Southern Ocean food web. These include pre-
viously mentioned groups such as salps (Pakhomov et al. 
2002), chaetognaths, siphonophores, ctenophores, gastro-
pods (Hunt et al. 2008; Flores et al. 2011, 2014), other small 
krill species such as Euphausia frigida, but also benthic 
species such as bivalves and limpets (Favero et al. 1997; 
Ainley et al. 2003). Furthermore, a better coverage of the 
energy density of Southern Ocean species can help to pre-
dict what happens if prey distribution changes. For example, 
research has shown that areas dominated by Antarctic krill 
may be replaced with a dominance of salps due to warming 

waters (Pakhomov et al. 2002; Atkinson et al. 2004; Ross 
et al. 2014), which may have significant food web implica-
tions. An effect of food availability on annual fledging mass 
of Macaroni penguin chicks (Eudyptes chrysolophus) was 
shown at Bird Island, South Georgia (Waluda et al. 2012). 
The fledging mass of penguin chicks could be related to the 
energy density of the prey in combination with prey size and 
mobility, and was highest in years where E. superba domi-
nated the diet, and lowest when there were large proportions 
of fish and other crustaceans, such as T. gaudichaudii and 
E. frigida (Waluda et al. 2012). In contrast, male Adélie 
penguin chicks had a higher proportion of fish in the diet 
and were growing faster than female chicks, which ate higher 
proportions of krill (Jennings et al. 2016). Model simula-
tions also suggested that penguin chicks that supplemented 
their diet with fish (Pleuragramma antarctica), instead of 
feeding solely on Antarctic krill, would be heavier and more 
likely to recruit (Chapman et al. 2011). The quantity of milk 
fat of fur seals (Arctocephalus gazella) at Kerguelen was 
found to be influenced by the proportion of myctophids in 
the diet (Lea et al. 2006).

The energy density of a prey species might change as 
consequence of warming temperatures. Oxygen consump-
tion and metabolic rate have been found to increase with 
increasing temperature across species (Brockington and 
Clarke 2001). This could not only lead to smaller sized 
individuals (Atkinson 1994; Daufresne et al. 2009; Baudron 
et al. 2014), but also to changes in community structure due 
to a need for increased consumption leading to, for example, 
changes in predator–prey interactions or intraspecific com-
petition (Bruno et al. 2015). The reduction in body size with 
increasing temperature has been found for many myctophid 
fish species, which could potentially lead to these fish shift-
ing to a different size of prey or becoming a less valuable 
food source for predators (Saunders and Tarling 2018). In 
addition, the energy allocation (for instance, towards growth 
or build-up of reserves) has been found to change under 
different temperature conditions in a study on zoarcid fish 
species (Brodte et al. 2006).

Although for all types of studies using a species-specific 
energy density value it would be preferable to use an esti-
mate that is specific for, e.g. region, season and body size, a 
generalized estimate of the energy density of a species could 
be useful in cases where this is not available. For many spe-
cies, however, only a single record of their energy density 
exists. Many records also often consist of one individual 
or a single-pooled sample. Therefore, more measurements 
are necessary to validate and generalize energy densities of 
species, and sources of variation within species. For E. ant-
arctica there are relatively many individual records (284), 
which yield a mean energy density of 30.26 kJ g−1 DW and 
8.94 kJ g−1 WW. Results have shown, however, that sources 
of variation include size and region. Another way to estimate 
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a mean value could be using a median value of all recorded 
mean energy densities, which would result in median values 
of 29.61 kJ g−1 DW and 9.08 kJ g−1 WW for E. antarctica 
and 21.9 kJ g−1 DW and 5.01 kJ g−1 WW for E. superba. 
For the latter species it is, however, clear that the energy 
densities differ between sexes and developmental stages, 
while regional differences are uncertain. For aforementioned 
estimates only bomb calorimeter measurements were used.

Measuring energy density using bomb calorimetry and 
proximate composition are time consuming. Therefore, 
increased information on relationships between energy 
density and other, more easy to measure, parameters could 
be helpful. These may include insights in the effect of size/
age/maturity on energy density within species and variation 
between seasons and regions. Also, relationships between 
water content or proportion of body carbon and energy den-
sity, including more information on differences and simi-
larities between, for example, species, families and classes, 
would be useful to evaluate the accuracy of values used. 
In addition, it would increase the precision of studies and 
models based on energy density, when using values that take 
interspecific variation into account. Currently, regressions 
are generally limited to certain fish species and on an indi-
vidual basis for Antarctic krill (Färber-Lorda et al. 2009a). 
To obtain such correlations, measurements on individuals 
are most useful. A standard bomb calorimeter needs, how-
ever, quite a large dry weight sample and thus for measuring 
small animals it is necessary to have access to a micro-bomb 
calorimeter.

Size/age–energy density relationships

Relationships between size and dry-weight energy density 
are found for fish, but differ between species. A positive 
relationship between size and dry weight energy density was 
found for the myctophids Gymnoscopelus piabilis, Electrona 
carlsbergi (Lea et al. 2002) and E. antarctica. For other fish 
species such as Bathylagus antarcticus (Tierney et al. 2002; 
Van de Putte et al. 2006), Pleuragramma antarctica (Van de 
Putte et al. 2010) and other fish from the study of Lea et al. 
(2002), no relationship was found, and fish had the same 
dry-weight energy density regardless of size. In addition, 
Tierney et al. (2002) found negative relationships between 
size and dry weight energy density. Most relationships are, 
however, not linear, but show differences between size 
classes. Therefore, as recommended by Van de Putte et al. 
(2006), it is useful to separate energy densities in age or size 
classes, using distinct energy densities for each age group. 
In particular, in trophodynamic studies and research on prey 
utilization of species, as predators are known to often feed 
on a particular prey size (Van Franeker et al. 2001). How-
ever, again more data are needed to see if size/energy density 

relationships show a general trend rather than an incidental 
occurrence, and if differences are found, to be able to charac-
terize the size classes between which differences occur. The 
available data on Gymnoscopelus braueri show an example 
where there is a (negative) relationship in one dataset, but 
none in the other (Tierney et al. 2002; Van de Putte et al. 
2006). Furthermore, it is currently unclear how energy den-
sity in young fish is allocated because not all small speci-
mens show increased energy density with decreasing water 
content, as would be expected (Tierney et al. 2002).

In krill, and most likely other crustaceans, there are 
marked differences in energy density between developmental 
stages. Predators have been found to have a higher propor-
tion of female krill in their diet, probably also due to their 
larger size (Reid et al. 1996). It would be useful to gain 
information on the energy densities of krill based on size, 
as predators also prey upon particular sizes, and sizes of 
different developmental stages usually overlap. For instance, 
fulmarine petrels consume krill of approximately 35 mm 
(Van Franeker et al. 2001), which is a size including both 
juvenile and sub-adult krill (Siegel 1987, 2012). For species 
other than E. superba and fish, size or developmental stage 
specific data are lacking completely, although data suggest 
that there may be differences in energy density between size 
classes, for example in the jelly fish Periphylla periphylla.

Water content–energy density relationships

The relationship between water content and energy content 
(in kJ g−1 WW) can help estimating the energy density based 
on water content (usually expressed in DW as a percent-
age of WW), in which case only the determination of wet 
weight and dry weight or water content is needed (Hart-
man and Brandt 1995). The relationship between water con-
tent and energy density (WW) of E. antarctica was similar 
between seasons and regions, and thus a single-regression 
model, using all available individual measurements, should 
give good, generally useful parameters for the estimation 
of energy density on a WW basis given the water content:

 where  EDWW represents the energy density in kJ g−1 WW 
and PDW the dry weight as a percentage of WW.

Using the available individual data of G. braueri, a gen-
eralized regression model would yield similar parameters:

This model does, however, exclude the smaller fish 
(< 40 mm) from Tierney et al. (2002) which had a signifi-
cantly higher energy density than the larger fish, for which 
the cause remains unclear. The slopes of the models for E. 
antarctica and G. braueri differed significantly from each 
other (ANCOVA, p = 0.006).

EDWW = 0.393 × PDW−2.977 (R2 = 0.93, n = 252),

EDWW = 0.344 × PDW−1.539 (R2 = 092, n = 33).
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Differences in regression slopes between fish species 
(Van de Putte et al. 2006, 2010) reveal that the relation-
ship between water content and energy density (WW) dif-
fer between families at least. Hartman and Brandt (1995) 
suggested that similar models can be used for fish within 
the same order or family, but recommended using species-
specific models when available, especially in species which 
show marked seasonal changes in energy density. In this 
review, individual data on Bathylagus antarcticus showed 
that the relationship can also differ between seasons and 
or regions. Furthermore, the different feeding habitats and 
wide range of energy densities of nototheniid fishes suggest 
that there might be large differences in water content/energy 
density relationships between species of the same family. 
Similar modelling was done by Ciancio et al. (2007), includ-
ing crustaceans, fish and cephalopods. They also found 
that same genus models would produce similar results as 
species-specific models, although this was not the case for 
some groups which were less well represented by aggregated 
models and for which species-specific models were recom-
mended. Therefore, more individual data are needed to 
establish regression models for different species, to compare 
the relationship between water content and energy density 
within families and to evaluate if the established regression 
models can be used in a general manner, also for taxa other 
than fish.

Conclusion

A large amount of data are available on the energy density 
of potential prey species in the Southern Ocean. The avail-
able data are, however, strongly skewed towards a few large, 
abundant and relatively easily accessible taxa. Furthermore, 
information on the seasonal and regional variability of 
energy densities is still limited in most species. This infor-
mation, however, would be key to the improvement of bio-
energetic models and food web models. Bomb calorimetry 
is hitherto regarded as the most accurate method for energy 
density measurements. However, proximate composition 
analysis at various levels can provide a range of additional 
parameters often used in ecological studies. Important taxa 
for the energy flux of Antarctic food webs remain under-
sampled. In a changing Southern Ocean, smaller zooplank-
ton and gelatinous species may become more abundant. 
Such a shift would likely change food web energetics sig-
nificantly at various levels, affecting the carrying capacity 
of the ecosystem for top predators and harvesting of living 
resources. It will, therefore, become increasingly important 
to include small and gelatinous zooplankton in energy flux 
models and ecosystem studies, warranting the need for more 
energetic measurements of these organisms.
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