

Coupled ocean-sediment model REcoM/MEDUSA

Ying Ye, Guy Munhoven, Christoph Völker, Martin Butzin, Peter Köhler

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

17 December 2019, Bremen

Project Management Agency

Why a sediment model?

- fluxes between ocean and sediment particularly important for more realistic parameterisation of iron source
- \blacktriangleright sediment accumulation \rightarrow lithosphere
- and long-term climate impact through weathering

Heinze et al. 1999, Glob. Biogeochem. Cycles

Composition of sediment and processes regulating fluxes

Boudreau, 1996, Diagenetic Models and their Implementation

Reactions in sediment

Microbial remineralization of organic matter \rightarrow typical sequence of redox zones (different electron acceptors):

- oxic remineralization
- denitrification
- Fe/Mn reduction
- Sulfur reduction ...

Dissolution of $CaCO_3$: depends on local pH, TAlk, DIC, pressure, dominant $CaCO_3$ form

Dissolution of biogenic opal depends on lokal Si(OH)₄

Sarmiento & Gruber 2006

REcoM uncoupled with MEDUSA

- sinking flux of POC, PON, calcite, opal and lithogenic particles into benthic layer
- release of dissolved components: proportional to microbial degradation of POM in benthic layer and dissolution of calcite and opal

$$\left. \epsilon \frac{\partial A}{\partial z} \right|_{z=-H} = \begin{cases} d^C \cdot \operatorname{POC}_{sed} + d^{CaCO_3} \cdot \operatorname{CaCO}_{3\,sed} & \text{for } A = \operatorname{DIC} \\ d^N \cdot \operatorname{PON}_{sed} & \text{for } A = \operatorname{DIN} \\ (1+1/16) \cdot d^N \cdot \operatorname{PON}_{sed} + 2d^{CaCO_3} \cdot \operatorname{CaCO}_{3\,sed} & \text{for } A = \operatorname{TA} \\ d^{Si} \cdot \operatorname{Si}_{sed} & \text{for } A = \operatorname{DSi} \\ q^{Fe} \cdot d^C \cdot \operatorname{POC}_{sed} & \text{for } A = \operatorname{DFe} \\ 0 & \text{for } all \text{ other tracers} \end{cases}$$

- calcite dissolution independent of Ω
- bottom water O₂ and different redox processes not involved
- no permanent burial

ŀ

MEDUSA = layered sediment model

A 1-dimensional sediment column defined at each horizontal grid point

- diffusive boundary layer on top (optional)
- reactive layer, with prescribed porosity profile and bioturbation depth
- consolidated sediment for recording old states (optional)

Components and reactions considered

Solids	POM (particulate organic matter) CaCO ₃ (calcite only, no aragonite) SiO ₂ (diatom frustules) lithogenic particles
Solutes	carbonate system NO_3^- , Si(OH) ₄ , O ₂
Reactions	oxic remineralization denitrification CaCO ₃ and SiO ₂ dissolution dissolved chemical equilibria

Interaction between sediment and water column

$\underline{\text{REcoM}} \rightarrow \underline{\text{Medusa}}$

- bottom water T, S, p
- bottom DIC, TAlk, O₂, NO₃⁻, Si(OH)₄
- sinking fluxes: CaCO₃, SiO₂, POC, PON, dust

$\underline{\mathsf{Medusa}} \to \mathsf{REcoM}$

diffusive fluxes: DIC, TAlk, O₂, NO₃⁻, Si(OH)₄

To close the system

- ▶ permanent burial of CaCO₃ and SiO₂ → terrestrial input (e.g. riverine)
- denitrification and PON burial
 nitrogen fixation/atmospheric N input

Coupled run

at time step 0, MEDUSA first calculating until equilibrium

First results: CaCO₃

left: Seiter et al. 2004, right: REcoM/Medusa

- mainly distributed in Atlantic, Indian Ocean and part of South Pacific
- Iower fraction in dust regions

First results: opal

left: Seiter et al 2004, right: REcoM/Medusa

- mainly in high latitudes and equatorial Pacific
- data: also elevated in Indian Ocean

First results: particulate organic matter

- model: too high in coastal regions and too low in open ocean
- sinking and remineralisation in water column? degradation in sediment?

First results: oxygen utilization in sediment

left: Jahnke 1996, right: REcoM/MEDUSA

- high in coastal regions
- ▶ data: higher in open ocean e.g. Atlantic and equatorial Pacific →sinking?

First results: oxygen utilization in sediment

left: Jahnke 1996, right: REcoM (increased sinking)

- clear change in high latitudes, EP and small change in northern IO
- \blacktriangleright nutrients and DIC in water column also affected \rightarrow NPP
- sediment model provides additional constraints and requires more tests

- Further analysis of the first simulation, e.g. comparing with uncoupled model run
- other components and processes, e.g. C isotopes and Fe, balancing denitrification and burial
- validation for present-day and then LGM and transition run
- coupling with FESOM

Thanks for your attention!

- Further analysis of the first simulation, e.g. comparing with uncoupled model run
- other components and processes, e.g. C isotopes and Fe, balancing denitrification and burial
- validation for present-day and then LGM and transition run
- coupling with FESOM

Thanks for your attention!