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1 Zusammenfassung 

 

Aufgrund des Klimawandels erwärmen sich die Meere überall auf der Welt, insbesondere 

in den Polarregionen. Tiere in der Antarktis sind stenotherm und somit spezialisiert auf einen 

eingegrenzten Temperaturbereich. Untersuchungen der Anpassungsfähigkeit von polaren 

stenothermen Tieren sind äußerst interessant. Aufgrund ihrer häufig erst späten 

Geschlechtsreife und langen Reproduktionszeiten ist eine schnelle Adaption fragwürdig. Die 

Frage ist, ob und wie schnell sich diese stenothermen Tiere in einer wärmeren Umgebung 

anpassen können und ob sie höhere Temperaturen überleben. Vorherige Untersuchungen 

zeigen limitierte Anpassungsfähigkeiten. Jedoch mit längeren Inkubationszeiten verschiebt 

sich die kritische Temperatur, in der Tiere noch mit Einschränkungen über einen gewissen 

Zeitraum überleben können, nach oben. Deshalb werden mehr und mehr 

Langzeitexperimente durchgeführt. 

In der vorliegenden Studie wurde die Fähigkeit der Antarktischen Napfschnecke Nacella 

concinna (Strebel, 1908) am Substrat zu haften (im weiteren Verlauf „Tenacity“ genannt) an 

Tieren untersucht, die seit drei Jahren bei 0°C, +1.5°C und +3°C gehältert wurden. Zusätzlich 

wurden Metaboliten Profile im Fußmuskel der Tiere aus den einzelnen Gruppen untersucht, 

um Temperaturbedingte Veränderungen im Stoffwechsel zu dokumentieren.  

Die Tenacity von Napfschnecken wird als Parameter eingesetzt, um die Fitness von 

Napfschnecken zu untersuchen. Aufgrund der „Thermal Reaction Norm“ sollte sich  die 

Tenacity verlängern bei steigender Temperatur bis ein Maximum bei der optimalen 

Temperatur erreicht ist. Danach verkürzt sich die Tenacity bei weiterhin steigender 

Temperatur. Tiere die sich nicht akklimatisieren konnten haben eine kürzere Tenacity als 

Tiere die sich akklimatisieren konnten. Obwohl vorherige Versuche dies zeigen konnten, 

wurde in dieser Studie nach drei Jahren keine signifikante Veränderung der Tenacity-Dauer 

gefunden. 

Metaboliten spielen eine wichtige Rolle im Metabolismus von Organismen und 

repräsentieren die funktionelle Antwort einer Zelle. Wenn Umweltfaktoren wie die 

Temperatur sich verändern, können Variationen im Metabolismus und mögliche 

Anpassungen an Umweltherausforderungen mittels „Metabolites Profiling“, interpretiert 

werden. Die ungerichtete NMR (Kernspinresonanz) –Spektroskopie an Geweben ist eine 

elegante Methode um Veränderungen im Metaboliten Profil zu verfolgen. In dieser Arbeit 
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wurde die Methode eingesetzt und Siebenunddreißig Metaboliten im Fußmuskel von N. 

concinna nachgewiesen. 

In den Veränderungen der Metabolitenkonzentrationen fiel besonders auf, dass 2016 

deutlich geringere relative Konzentrationen hatte als 2017 und 2019. Eine mögliche Ursache 

kann sein, dass die Napfschnacken durchgängig hohe Mengen Futter ab 2017 zur Verfügung 

hatten und vorher während der Schiffsfahrt auf der Polarstern von der Antarktischen 

Halbinsel zum Alfred-Wegener-Institut sich von geringen Mengen ernähren mussten.   

Zwischen den Temperaturen konnten die meisten signifikant unterschiedlichen 

Metaboliten im akuten Versuch 2016 beobachtet werden. 2017 und 2019 sahen sich ähnlich, 

und nur geringe unterschiedliche Konzentrationen konnten ausgemacht werden. Jedoch gab 

es 2019 eine Beobachtung zwischen den  +3°C Proben. Diese teilten sich in zwei Gruppen auf 

in der eine sehr hohe und die andere sehr niedrige relative Metabolitenkonzentrationen 

hatte.     

Die Tiere konnten über drei Jahre bei +3°C problemlos überleben und zeigten in der 

Tenacity eine nicht signifikante jedoch optisch sichtbare Verbesserung. Es konnte gezeigt 

werden, dass die Napfschnecken sich an +3°C Wasser akklimatisieren können, wenn sie 

genug Nahrung zur Verfügung haben.   

2 Abstract 

 

Due to climate change seas all over the world are becoming warmer, especially in Polar 

Regions. Animals in the Antarctic are stenothermic and thus specialised to deal with 

temperature in a narrow range. Research of the ability to acclimate in polar stenothermal 

animals is very interesting. Because of their late maturity and long reproduction period, 

quick adaptation is questionable. The question is whether those stenothermic animals can 

acclimatise to a warmer environment and survive higher temperatures. Previous 

experiments show limited acclimation capacities. However, with longer incubation periods 

the upper critical temperature limit shifts to a higher level. The critical temperature is the 

temperature where animals can survive with restrictions for a specific time.  Therefore, 

more and more long-term experiments are being conducted.  

In the present study, the ability to remain attached to the substratum (called tenacity in 

the further course) was observed in individuals of the Antarctic limpet Nacella concinna 
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(Strebel, 1908) which were held at 0°C, +1.5°C and +3°C over three years. Additionally, 

metabolite profiles of the foot muscles of the limpets at the different temperatures were 

examined to document temperature-dependant changes in their metabolism.   

Tenacity experiments are a technique to investigate the fitness of limpets. Because of the 

thermal reaction norm, the tenacity should be prolonged with increasing temperature until 

it reaches a maximum at the optimal temperature, then shorten again with a further 

increase in temperature. Animals which are not acclimated have a shorter tenacity duration 

whereas acclimated limpets have a longer tenacity duration. Although previous tests showed 

a positive result, in this experiment no significant differences were found in the tenacity 

duration after three years.  

Metabolites play an important role in the metabolism of an organism and represent the 

functional responses of a cell. Environmental factors like temperature change, variations in 

the metabolism and possible acclimation to environmental challenges can be interpreted by 

metabolic fingerprints. The use of untargeted nuclear magnetic resonance (NMR) 

spectroscopy with tissue samples is an elegant method to trace changes in metabolite 

profiles. In this study thirty-seven different metabolites were identified by using that 

method.  

By examining the changes of the metabolites over the years, the lower relative 

concentrations of the samples in 2016 compared to 2017 and 2019 stand out. A possible 

reason could be the amount of food. Whereas limpets in 2016 fed microalgae during the 

cruise on the Polarstern from the Antarctic Peninsula to the Alfred-Wegener-Institute, 

limpets in 2017 and 2018 fed macroalgae ad libitum.  

Between the temperatures, the most significant metabolites were found in the acute trial 

in 2016. 2017 and 2019 looked similar and only small differences in the metabolite 

concentrations could be found. However, the +3°C samples in 2019 looked interestingly 

because the samples were divided in two groups where one has relatively lower 

concentrations and the other relatively higher concentrations. 

The animals survived at +3°C without problems over three years. Additionally, the results 

showed a change in mean tenacity duration at +3°C. This study showed that limpets can 

acclimate to +3°C water if they feed ad libitum.  
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3 Introduction 

3.1 Stenothermic animals 

 

The Antarctic is an extreme habitat both on land and in the water. In contrast to the 

temperatures on land, the temperatures in the water are relatively stable. The surrounding 

waters of the Antarctic have a low temperature (-1.8°C in winter to +1°C in summer) and 

have exhibited almost no variation within the last 10 million years (Peck 2005a). The 

intertidal zone, however, can show a daily difference in temperature of 7°C (in rare 

occasions up to 18°C) within six hours (Waller et al. 2006a). The sublittoral zone also exhibits 

small changes in temperature from -1.9°C in winter to +1.8°C in summer (Clarke et al. 2008).  

As part of climate change an average increase of approximately 2°C in temperature is 

assumed in all oceans (Peck 2005b). The IPCC SRES climate scenarios for 2080 estimate even 

an increase for the Southern Ocean by 0.0 – 2.8°C in summer and 0.5 – 5°C in winter 

(Thornes 2002).  

Because Antarctic animals are stenothermic (the optimal temperature range where a live 

without restriction is possible is very small), they can only survive a narrow range of 

temperatures. As an environmental factor, temperature influences organisms in all their life 

functions. Those influences contain changes in the rates of biochemical and physiological 

processes as well as the stability of biomolecules (Sokolova 2003). Temperature changes are 

especially crucial for aquatic ectotherms, because their body temperature depends on their 

habitat temperature (Sokolova 2003).  

Physiological studies with Antarctic, ectothermic invertebrates show a limited adaptability 

within a warming environment over a longer time period (Peck und Conway 2000; Peck et al. 

2004; Peck et al. 2010).  Peck et al. (2004) ascertained that some organisms like the mussel 

Adamussium colbecki (E. A. Smith, 1902) in the Southern Ocean reduce their activity when 

the water temperature increases by 2°C. This behaviour could lead to a loss of species.  

Peck (2005b) postulated three different strategies on how species could cope with 

changing environmental conditions. One possibility is to use internal physiological flexibility 

like Antarctic terrestrial species which cope with extreme temperature fluctuations of 25°C 

daily. However, benthic species in the Antarctic are believed to be very slow at acclimating 

because of their low rates of growth, development and metabolism (Peck 2005b). Most 
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studies with acclimation periods of less than two months showed weak or no acclimation to 

higher temperatures in Antarctic invertebrates (Peck et al. 2004). Therefore, it is likely not a 

suitable possibility for those animals (Peck 2005b). A second mechanism is to evolve new 

adaptations which guarantee survival in a changing world e.g expanding the range of 

biological capacity to encompass the new environmental range (Peck 2005a). In this case 

many factors play an important role.  The most important factor is the time in which 

modifications occur in the genetic code (Peck 2005b). Because Antarctic invertebrates have a 

long lifespan of 40 – 50 years and often reach their sexual maturity late, the chance to 

evolve their genetics as quickly as climate change is happening is low (Peck 2005a). Another 

factor is that eggs of Antarctic animals tend to be bigger than in temperate species and the 

number of eggs per spawning is reduced. This could lead to less opportunities for selective 

pressure to produce adaptive evolutionary changes (Peck 2005a). Another strategy is to flee 

from the warming and migrate to higher latitudes. This is not a possibility for Antarctic 

animals either because the continent only extend over a few latitudinal lines (Peck 2005a). 

The Antarctic limpet Nacella concinna (Strebel, 1908) is a typical inhabitant of the 

Antarctic coastal line. These animals are easy to collect and exist in a high abundance (Picken 

1980) in the intertidal as well as in the subtidal zone. Several studies about the pedal mucus 

(Peck et al. 1993), ecology (e.g. Picken 1980; Brêthes et al. 1994; Figueiredo und Lavrado 

2013) physiology (e.g. Peck 1989; Peck und Veal 2001; Hawes et al. 2010) and DNA (Hoffman 

et al. 2010; González-Wevar et al. 2011) of the limpet can be found. As a species that lives 

also in the intertidal zone it is relatively robust considering the variable disturbances in that 

zone e.g. desiccation due to tidal cycles, temperature fluctuations and wave exposure 

(Obermüller et al. 2011). Animals which live in the upper water layers are exposed to 

fluctuating environmental conditions in contrast to animals from deeper waters, which are 

protected by the surrounding water masses that function as a buffer for fast temperature 

changes (Obermüller et al. 2011). The impact of climate change on littoral and sublittoral 

species is a current object of research. In the present study limpets from the sublittoral zone 

were used and previous studies showed no differences between the intertidal population 

and the subtidal population at the Antarctic Peninsula neither genetically (Hoffman et al. 

2010; González-Wevar et al. 2011) nor in their tenacity (Morley et al. 2011; Morley et al. 

2012). However, physiologically differences including tolerance to freezing (Waller et al. 

2006b), metabolic response to air exposure (Weihe und Abele 2008) and righting ability 
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(Morley et al. 2010) have been documented. The collecting parameters and the stress 

factors that occur regularly in the habitat of N.concinna make it a good model organism to 

examine a possible adaptation to warming in an exothermic animal.  

 

3.2 The distribution and biology of Nacella concinna 

3.2.1 The occurrence of N. concinna 

  

N. concinna lives in rugged sub- and eulittoral zones of the Antarctic Peninsula and 

adjacent Islands (Figure 1). In their habitat the limpets live up to a depth of 110 m (Picken 

1980).  Walker (1972) described the occurrence of two different N. concinna populations. He 

ascertained that individuals longer than 2 cm reach a greater shell height in the intertidal 

zone than those living in the sublittoral zone. In general, observations show that animals 

within the higher intertidal zone have a greater shell height with a smaller shell 

circumference, and limpets below the mean low water level have a smaller shell height with 

a bigger circumference (Walker 1972; Nolan 1991; Kim 2001).  

 

Fig 1: Shown is as an overview of the Antarctic Peninsula region and the adjacent Islands in detail (1 
Esperanza Bay, 2 Covadonga Bay, 3 Anvers Is., 4 Galindez Is., 6 Stonington Is.), South Georgia, South 
Orkney Is., South Shetland and Ryder Bay (southern Adelaide Is.) (Suda et al. 2015).   
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3.2.2 Thermal tolerance and temperature effects 

 

Water temperatures on the Antarctic Peninsula vary over the year in the sublittoral zone 

from -1.9°C to +1.8°C (Peck 2005a; Clarke et al. 2008). In the intertidal zone higher 

temperature differences occur during the low tide because the areas fall dry. In this situation 

the temperature ranges from -1°C to +17°C (Waller et al. 2006a). Originally scientists had 

thought that N.concinna migrates in winter to inter- and subtidal depths and comes back in 

summer (Walker 1972). However, Waller et al. (2006b) found some individuals in the 

intertidal zone during winter.  

The thermal range Nacella concinna survives in South Georgia is estimated to be between 

-12.9°C (frozen in ice (Hargens and Shabica 1973)) and +15°C (Davenport 1997).  

The upper thermal limit is the highest temperature that the animals survive after 

exposure over a few days (Peck et al. 2002). The surrounding temperature increases 

gradually until the animals show no reaction to external stimuli (Peck et al. 2014). The upper 

thermal limit of N. concinna was examined by Morley et al. (2011) and Peck et al. (2009; 

2014). An accurate upper thermal limit could not be determined due to different results. The 

results varied (Table 1) depending on the length of time the animals were acclimated to a 

higher water temperature. After five months of acclimation the upper thermal limit 

increased both in 0°C and +3°C (Peck et al. 2014). The value at +3°C even became higher 

than at 0°C. However, after nine months of acclimation the upper thermal limit tested by 

Morley et al. (2011) was lower than after five months of acclimation. Still, at +2.9°C the value 

was higher than at -0.+3°C. Peck et al. (2010) postulated a species would be fully acclimated 

if the upper thermal limit had increased.     
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Tab. 1: The range of the upper thermal limit of N. concinna after different acclimation duration and 

temperatures. 

Duration 
(months) 

Temperature 
(°C) 

Upper thermal 
limit (°C) 

Sampling site and 
water depth 

Rate of 
increased 

temperature 

source 

0 -1 a +10 to +14 Antarctic Peninsula 1°C day-1 (Peck et al. 2014) 

1 0 +10 to +13 Antarctic Peninsula 
(Rothera,5-25m) 

1°C day-1 (Peck et al. 2009) 

5 0 +14 to +17 Antarctic Peninsula 1°C day-1 (Peck et al. 2014) 

5 +3 +15 to +18 Antarctic Peninsula 1°C day-1 (Peck et al. 2014) 

9 -0.3 +6.9 ± 0.4 b Antarctic Peninsula 
(Rothera, 6m) 

1°C day-1 (Morley et al. 2011) 

9 +2.9 +8.1 ± 0.3 b Antarctic Peninsula 
(Rothera, 6m) 

1°C day-1 (Morley et al. 2011) 

a: temperature at the sampling site  b: mean ± standard error 

 

 Other studies examined physiological and behavioural changes within a temperature 

increase. Limpets were observed to move within a range of -1.9°C and +2°C. As the 

temperature increases the movement speed becomes slower until +14°C is reached, at 

which point the limpet stops moving (Davenport 1997). At +2°C, Peck et al. (2004) observed 

that 50% of observed individuals of Adelaide Island lost their righting ability.  

In the year 1976 Shabica examined the heart rate of N.concinna when exposed to 

different water temperatures. The measured heart rate of N. concinna was 1.65 beats min-1 

between -0,8°C and 0°C (Shabica 1976). When the temperature was decreased to -2.6°C the 

measured heart rate was 1 beat 10min-1. After a small increase to -2.1°C the heart rate 

started to normalise again. At a temperature increase to +10°C the heart rate increased to 

30.2 min-1 within one hour (Shabica 1976). 

Another study by Morley et al. (2014) showed that the rasping rate (rasps sec-1) rose 

linearly with the temperature until the rasping stopped at +12.+3°C, a temperature still 

below the upper thermal limit of N.concinna. 
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3.3 Long-term experiments 

  

For a realistic prediction of how climate change will influence Antarctic organisms, long-

term experiments are needed (Barnes und Peck 2008). Several approaches were tested to 

estimate the acclimation capacity to temperature changes of stenothermic animals 

(Davenport 1997; Peck et al. 2002). For example, the temperature was increased 1°C every 

hour, day or week and the reaction of the animals would be observed. A disadvantage of this 

experiment type in a laboratory is that the temperature increases very fast in a relatively 

short time. These extreme temperature changes within a few hours, days or weeks are 

unrealistic according to (Seebacher et al. 2005). The only result shown is that the animals 

cannot acclimate so quickly and therefore an exaggerated vulnerability can be assumed 

(Seebacher et al. 2005). However, because of the tide in the intertidal zone, the limpets 

experience regular crucial temperature changes up to +7°C (or sometimes even +17°C) a day 

for 6 hours and can survive (Waller et al. 2006a). Barnes and Peck (2008) have mentioned 

that the animals likely only survive because the temperature rose for 6 hours and then 

returned to 0°C. If the temperature remained high for a longer period, the Antarctic animals 

would suffer more (Barnes and Peck 2008; Peck et al. 2009) due to heat stress induced 

changes in metabolism and damaged proteins (Pörtner 2002; Sokolova et al. 2012).  

Previous long-term experiments usually lasted two months (Morley et al. 2011). In 2010 

Peck et al. held six different Antarctic species for 60 days in 0°C and +3°C water. Five out of 

six species showed no response to external stimuli in the higher temperature and thus were 

described as not acclimated to a higher temperature (Peck et al. 2010). One of the first 

longer trials was conducted by Morley et al. (2011). Their long-term experiment with N. 

concinna lasted 9 months. The limpets were held in -0.+3°C and +2.9°C water and after the 

nine months Morley and his colleagues observed a change in duration of tenacity. Based on 

these results Morley et al. (2011) suggested that Antarctic marine ectotherms require 

periods longer than two months to acclimate to a higher temperature. Another long-term 

experiment with N.concinna was conducted by Peck et al. (2014). After 5 months of 

acclimation to warmer water, Peck et al. (2014) found a shift of the upper thermal limit for 

N.concinna between 0°C (+14°C to +17°C) and +3°C (+15°C to 18°C). Therefore, long-term 

experiments are worthwhile to use if examining the impact of climate change on Antarctic 

stenothermal animals (Barnes und Peck 2008).  
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3.4  Objective & Hypotheses 

 

The objective of this thesis is to investigate the impact of a warmer environment on an 

Antarctic stenothermal organism and whether the duration of acclimation changes the 

ability of a limpet to remain attached on the substratum, and the contained metabolites 

within the foot muscle. For this reason, both tenacity experiments and untargeted 1H 

nuclear magnetic resonance spectroscopy were conducted over three years.  

Based on previous research the following hypotheses were formulated:  

 The tenacity of N. concinna is dependent upon temperature and acclimation time. 

 With a longer period of acclimation to warmer water, the tenacity duration of the 

test animals will increase again. 

 

Limpets showed a longer tenacity after nine months of acclimation to warmer water 

than control limpets (Morley et al. 2011) which can be attributed as an indicator of 

acclimation. 

 

 Metabolite profiles of N. concinna will change with acclimation temperature and 

duration. 

 

The metabolism depends upon temperature and different pathways are activated by 

different temperatures. If the animals can acclimate their physiology to a higher 

temperature after a longer period, the “stressed” metabolism should normalise 

again.  
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4 Material & Methods 

4.1 Collection & maintenance of Nacella concinna  

 

The limpets of the species N. concinna were collected by SCUBA divers at the British 

Antarctic Survey’s Rothera Research Station (67°34’S 68°08′W) in the Antarctic autumn of 

2016. They were shipped to the Alfred-Wegener-Institute in Bremerhaven and arrived in 

August 2016. Since then, the limpets were held in aquariums at three different 

temperatures: 0 ± 0.2°C, 1.5 ± 0.2°C and 3 ± 0.2°C. The aquariums were supplied with 

seawater from Helgoland with a salinity of ~ 33 permil and aerated with ambient air. 

N.concinna was fed with Laminaria sp. ad libitum. The water quality was checked regularly 

and the water was changed if needed. 

 

4.2 Animal labelling 
 

Limpets were given a small label with numbers on their shell for separation (Figure 2). For 

the tenacity trials a small patch of gauze was glued on the shell apex (Pattex Ultra gel) in 

which a fishing line was knotted. The fishing line was approximately 20 cm long. On the 

other end of the fishing line the label was glued. The label and the fishing line were coiled on 

a small wire.   

 

Fig. 2: A labelled limpet where the label is coiled on a wire and glued on the shell apex. 
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4.3 Tenacity experiments 
 

In tenacity experiments scientists scrutinize the ability of limpets to stay attached to the 

substratum. Older studies concentrated on the needed strength to detached limpets from 

the surface (Branch 1981; Davenport 1997; Flammang et al. 2002). In more recent studies 

the duration the limpets remained attached if a specific weight is pulling on them was more 

important (Morley et al. 2011; Morley et al. 2012). These experiments enable the 

examination of how “fit” the limpets are if different factors lead to stress e.g. increasing 

temperature. Additionally, this technique is non-lethal and can be used for all limpets across 

latitudes (Morley et al. 2011). 

Tenacity tests are a good technique to measure physical response at higher temperatures 

because staying attached on a surface is crucial to survival whereas the occasion that a 

limpet loses their contact to the substratum and has to right itself up is more rarely (Barnes 

und Peck 2008).  

 

4.3.1 Experimental set-up 

 

For the tenacity measurement a frame was constructed with multiple metal rods. Two 

rods were fixed upright on a plate. On each rod was a second rod clamped at a 90° angle, 

both at the same height. Clamped between those two rods was a rod for stabilization. The 

two horizontal rods each held a rope and pulley system. The rope was to connect the limpets 

with a 125 g weight. The frame stands next to the tank of the animals (Figure 3).  
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Fig. 3: Schematic drawing of the experimental set-up. The frame stands behind the tank where the 
limpet is set on a plate. Under the plate a camera was put to film the foot during the trials. The 
limpet is connected with via a wire to a 125 g weight.  

 

Consequently, the limpets were tested in their usual water and temperature. In three 

different temperatures were tested; 0°C, 1.5°C and +3°C. N .concinna was set on a 

transparent plate. A ring-formed weight was fixed on the plate as a fence so the limpets 

could not move away from the plate. Next to the ring a centimeter scale was glued. Under 

the plate a GoPro Hero 5 black was put to film the trials (Figure 4). Movie frames were used 

to calculate the foot area using ImageJ (Fiji) by drawing around the foot with the aid of the 

scale next to the ring.   

 

Fig. 4: Left: A tank where N. concinna animals lived. In front of the tank is the frame to see. Over the 
orange wheels laid the rope that connected the limpets with the weight. Right:   A view inside a tank 
where the camera laid on the ground. Above the camera is the transparent plate with the ring-
formed weight and a limpet.  
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4.3.2 Experimental procedure 

 

After setting the limpet within the ring, the glued fishing line was knotted to the rope. 

Thereafter N. concinna was left alone for 15 minutes to allow the animal to re-attach its 

foot. Then the rope was pulled three times gently, to check if the limpet was really attached 

to the surface. If the limpet stayed on the plate, the weight was slowly lowered until it was 

fully borne by the limpet. During the experiment the limpets were always submerged by a 

water layer of approximately 10 cm. The time until the limpet detached was then recorded. 

1 hour and 15 minutes was decided as the maximum trial time. If a limpet reached that time, 

the weight was taken away and the limpet was detached manually. After each trial the plate 

was cleaned with a paper towel and seawater to remove the mucus.  

 

4.4 Nuclear magnetic resonance (NMR) spectroscopy 

 

Nuclear magnetic resonance spectroscopy was be used as a metabolite profiling tool to 

examine molecular structures, biochemical reactions, and metabolic profiling. It applies a 

magnetic field to nuclei and then measures the amount of energy that is necessary to put 

several nuclei in resonance. This is possible because nuclei have different quantities of 

neutrons and protons and different spins, and therefore behave like magnets. Isotopes with 

an odd number of neutrons and even number of protons like 1H, 13C, 15N and 31P are 

detectable by NMR. Due to the naturally occurring presence of 1H protons in almost all 

organic molecules, many studies using metabolic profiling choose 1H-NMR spectroscopy 

(Krishnan et al. 2005).  

When a probe is put into the magnetic field of the NMR, the protons align with it. Then a 

certain radio frequency pulse is sent in to change the proton alignment by adding energy. 

After the radio frequency pulse stops, the protons return to their original conformation. 

When the protons switch from a higher energy level to a lower energy level, a free induction 

decay (FID) is recorded. The resulting resonances of the FID can be detected as a function of 

time by a receiver. With the Fourier Transformation the NMR-spectrum of the FID function 

can then be calculated.  
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An internal standard will be added to the samples as a reference for the measured 

magnetic properties of the protons. The position of the internal standard peak will be set to 

zero in the spectrum. As a result of different local chemical environments of the protons the 

produced peaks are characterized by their magnetic resonance frequency, intensity and fine 

structure (Gribbestad et al. 2005; Krishnan et al. 2005). The different magnetic resonance 

frequencies can be observed at several positions in the spectrum and are called a chemical 

shift (δ) (Fan 1996; Gribbestad et al. 2005). A metabolite can have more than one peak and 

those peaks can appear as a singlet, doublet, triplet or multiplet. Thus, each molecule or 

chemical group has its own chemical shifts and can be identified.  

 

4.4.1 Tissue sampling 

 

Foot tissue samples were taken for the untargeted metabolite profiling. The whole foot 

was removed from the limpet with a scalpel. The cut had to be made as quickly and cleanly 

as possible. Preferably only muscle tissue was cut without destroying the organs within the 

visceral hump. The foot tissue was laid on aluminium foil and freeze-clamped in liquid 

nitrogen. Afterwards the limpet was cut through the head to kill the animal immediately. 

The frozen tissue was stored in a - 80°C freezer until it was processed further.  

 

4.4.2 Methanol-chloroform extraction 

 

The frozen foot muscle tissue was prepared with a methanol-chloroform extraction for 

untargeted metabolite profiling based on NMR spectroscopy as described by Wu et al 

(2008). For that liquid nitrogen, ice, methanol, chloroform, Mili-Q water, and deuterated 

water (D2O) were needed. Tissue samples were kept on ice during the whole preparation to 

prevent thawing.  

Approximately 45 mg of muscle tissue was weighed and transferred into a 

homogenization tube. 400 µl of methanol and 125 µl Mili-Q water were added and the 

homogenization tubes were kept on ice until they were mixed in a Precellys chilled to 0 ° - 

4°C (Precellys 24, Bertin Technologies, France). The Precellys is a benchtop instrument for 
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grinding, lysis and homogenization of biological samples and is ideal for the homogenization 

of animal tissues, even difficult samples like muscle tissue because of its high speed and 

special movement. The Precellys was cooled down with an external nitrogen thermostat 

(Cryolys, Bertin Technologies, France). Then the Precellys was programmed to 2 cycles of 20 

seconds at 6000rpm. After a one minute pause the process was repeated four times to 

receive an optimal homogenization of the hard muscle tissue. After, 400 µl ice cold 

chloroform and 400 µl ice cold Mili-Q were added. Then the tubes were vortexed for 15 

seconds and incubated on ice for 10 minutes. To retrieve the metabolites for NMR 

spectroscopy, the homogenization tubes were centrifuged for 10 minutes at 3000 rcf at 4°C. 

After centrifugation three phases were visible. The upper layer was the methanol layer with 

the polar metabolites. This phase was transferred to a new Eppendorf tube and dried by a 

vacuum centrifuge at room temperature overnight. The lower phase was the chloroform 

layer with lipids and the thin layer in between were cell debris and proteins. The chloroform 

layer was transferred into a brown glass vial and dried in a fume hood at room temperature. 

The glass vial containing lipids could be suspended with deuterated chloroform for testing 

with NMR spectroscopy as well. The solid phase of cell debris and proteins was discarded.    

 

4.4.3 1H-NMR spectroscopy measurements 

 

For the 1H-NMR spectroscopy measurements the dried polar metabolites from the upper 

layer were suspended with 45 µl D2O (99,9%) which contained 0.05 wt.% of 3-

(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt (TSP) as an internal standard marker 

(Sigma Aldrich, St. Louis, USA). The TSP functioned as a chemical shift reference and D2O 

provided a deuterium lock. The refilled Eppendorf tubes were vortexed until the dried 

metabolite pellet was dissolved completely. Afterwards 40 µl of the solvent was transferred 

with a 100 µl Hamilton syringe into a NMR capillary (1,7mm TXI B1/S 2 1H 13C 15 N). The 

solution inside the NMR capillary should be bubble free and then the NMR capillary was 

closed airtight with Parafilm. 

The 1H-NMR spectroscopy was carried out at 400 MHz using a Bruker spectrometer 9.4T 

(Avance III HD 400 WB, Bruker-BioSpin GmbH, Germany) at room temperature.  The 

sequence used was Carr-Purcell_Meiboom-Gill (cpmg) with the following parameters: flip 
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angle 90°, acquisition time 4.01 s, relaxation delay 4 s, sweep width 8803 Hz, 32 scans with 4 

dummy scans.   

For processing the spectra and identifying the metabolites the Chenomx NMR Suite 8.4 

software (Chenomx inc., 2018) was used (see next paragraph). 

 

4.4.4 Spectra processing with Chenomx  

 

The first step was to process the spectra in Chenomx Processor by multiplying the 

Fourier-transformed spectra with an exponential weighing function corresponding to a line 

broadening of 0.5 Hz. Then the spectra were manually corrected for phase and baseline, and 

referenced to the TSP at 0 ppm. The TSP concentration was 3.3 mM.  

The adjusted spectra were analysed using Chenomx Profiler (Figure 5). The chemical shifts 

of the NMR signals in relation to the internal standard were aligned to the NMR signals of 

specific metabolites depicted from an internal database within the Chenomx profiler. In this 

way, the correct metabolites could be identified. Missing metabolites inside the database 

were manually added in Chenomx Compound Builder. For example Strombine and Alanopine 

were measured at a known concentration in the NMR and so the resulting peaks within 

those spectra build together in Chenomx Compound Builder and are saved in the Chenomx 

library.   Furthermore, the concentration of the assigned metabolites was calculated by the 

Chenomx software through the concentration of the internal standard TSP. 

After profiling of all identified metabolites, an Excel-table was extracted. Those Excel-

tables were altered to upload them to MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) 

for statistical analysis (see 4.5 Statistical analysis).    
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Fig. 5: An extract of a processed spectrum in Chenomx Profiler. The signal of internal TSP standard is 
set to 0.0 ppm. The black line belongs to the processed spectrum. The red line shows fitted peaks of 
possible metabolites. 

 

4.5 Statistical analysis 
 

The statistical analysis was conducted with the online website MetaboAnalyst 4.0 and the 

statistical program R (www.r-project.org/) using RStuduio (https://rstudio.com/).  

MetaboAnalyst is an online web server designed to process and analyse NMR-based 

metabolite profiling data, amongst others. The data processing is coded with R.   

The .csv files with metabolite concentrations were uploaded to MetaboAnalyst 4.0. The 

first step is the data integrity check. Missing values were detected and by default replaced 

by a small value. In the next step the data was normalized by log or cube root 

transformation and data scaling. The resulting graphs in MetaboAnalyst 4.0 were identified 

as normally distributed by visual inspection. Afterwards, different univariate (t-test, Volcano 

Plot, and ANOVA) and multivariate (Principal Component Analysis, partial least-squares 

discriminant analysis) analyses were conducted. Principal Component Analysis (PCA) is often 

used to identify differences between two or more groups. Therefore, it represents hundreds 

of variables (spectral data points) in relatively few numbers (PC scores). The advantage is 

that the PC scores can be plotted and make it visually easy to see similarities and differences 

between the samples (Picone et al. 2011). Partial least-squares discriminant analysis (PLS-

DA) is used to predict the class membership (Y) by using multivariate regression techniques 

that extract that information via linear combination of original variables (X). Other than the 
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PCA, the PLS-DA considers the correlation between dependent and independent variables. 

The tested groups become more separated than in the PCA because the PLS-DA obtains a 

maximum separation among classes by rotating the PCA components (Rebelein et al. 2018).  

Dendograms or heatmaps were created in MetaboAnalyst 4.0 as hierarchical clustering. 

Heatmaps and dendograms are a visual aid to cluster different samples.  For all dendograms 

and heatmaps, the Euclidean distance was used for the similarity measurement and ward.D 

(Ward’s minimum variance method) for clustering algorithm (clustering to minimize the sum 

of squares of any two clusters). 

The residual/remaining data was processed in RStudio. In the beginning the data was 

checked for normal distribution by using Shapiro Wilk test. If the data was not normally 

distributed, it was normalized by log or cube root transformation. For testing the 

homogeneity of variance a Bartlett test was conducted. Possible differences of the test 

groups were evaluated by using ANOVA and its post-hoc test TukeyHSD. For all statistical 

analysis the p-value threshold was > 0.05. 

5 Results 

5.1 Duration of tenacity 

5.1.1 Duration of tenacity between temperatures in 2016 

and 2019 

 

The parametric as well as the non-parametric tests used to test the tenacity between the 

years showed no significant difference. Therefore, there is no difference between the 

duration tenacity tests in 2016 and 2019 (Kruskal Wallis, p = 0.12; ANOVA, p = 0.06). 

Furthermore, there is also no significance between duration of tenacity and temperature 

(Kruskal Wallis, p = 0.1; ANOVA, p = 0.12). In Figure 6 is a box-plot with the duration tenacity 

and the temperatures between the years. Shown is the median with its first and third 

quantile as well as the minimum and maximum duration tenacity. In 2016 the minimum and 

maximum and the median in 0°C and +3°C are similar. The result for the 1.5°C animals differs 

strongly. In this acute trial the 1.5°C animals stayed attached at minimum as long as 75 % of 

all animals in 0°C and +3°C. At maximum in 1.5 °C the 4500 sec border was reached what is 
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determined as sufficient and the test was ceased manually. In 2019 the 0°C boxplot has the 

shortest duration tenacity. Only one animal remained attached for 4500 sec. The other two 

temperatures have the same minimum and maximum values, but the median and its 

quantile differ conspicuous. Whereas 75% of tested animals in +3°C hold 2500 sec, the same 

amount of animals hold 4022 sec in 1.5°C.  

Fig. 6: The measured tenacity in seconds between the three different temperatures 0°C, 1.5°C and 
+3°C in the years 2016 and 2019, respectively. 

 

5.2. Foot area of Nacella concinna 

5.2.1 Foot area compared to duration of tenacity 

 

As size of the animals might influence their tenacity, a comparison of foot area and 

duration tenacity was conducted. The linear regression between foot area and duration of 

tenacity shows no correlation (R2 = -0.058, p = 0.57) (Figure 7). However, the foot area was 

only measured in 2019. For comparison of foot area and duration tenacity for 2016 and 

2019, a linear regression between measured foot area and computed shell area was 

performed to see if there is a correlation between foot area and shell area. Figure 8 shows 

the log-transformed data in a linear regression. Because of the existent correlation (R2 = 
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0.878, p = > 0.01) between foot area and shell area, a linear regression between shell area 

and duration tenacity for both years was used to see if there is a correlation between shell 

area and duration of tenacity. The cube root transformed data of tenacity and shell area is 

shown in Figure 9. In this linear regression is no significant correlation between the shell 

area and tenacity duration (R2 = 0.033, p = 0.141).    

 

Fig. 7: The cube root transformed tenacity (y-axis) against the cube root transformed foot area (x-
axis) with 2019 samples. The sample points are randomly dispersed. There is no correlation between 
the shown data. 

 

Fig. 8:  The log-transformed areas compared to each other. On the x-axis is the shell area, on the y-
axis the foot area. With an R2 = 0.88 there is a high correlation between these areas. Furthermore, 
the p-value >> 0.05 shows a significant correlation.    
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Fig. 9: The cube root transformed tenacity (y-axis) against the cube root transformed shell area (x-
axis) for 2016 and 2019 samples. The sample points are randomly dispersed. There is no correlation 
between the shown data. 

 

5.3 Metabolite profiling data analysis 

 

NMR spectra of this study show the metabolites profiling of muscle tissue extracts. The 

different metabolites measured in the foot muscle tissue are represented by several peaks 

with their characteristic chemical shift. 

Thirty-seven metabolites within the foot muscle tissue could be identified (see Appendix 

Table I) from different classes like free amino acids (e.g. valine, leucine, isoleucine, etc.), 

organic osmolytes (e.g. homarine, betaine, taurine, etc.), and organic acids (e.g. acetate, 

lactate, succinate etc).  

The various metabolites lay in three different regions within an NMR spectrum. Those 

regions are named aliphatic (0.00 – 2.5 ppm), hydroxylic (2.5 – 6 ppm) and aromatic (6 – 9 

ppm) region (Picone et al. 2011). In the aliphatic region are mostly signals of organic acids, 

side-chains of amino acids or lipids. Lipids, however, are almost not present in aqueous 

extracts. For measuring lipids the chloroform layer of the methanol-chloroform extraction is 

better suited. In the hydroxylic region are mainly peaks belonging to alcohols and poly-

alcohols like sugars. Furthermore, alpha amino acids and unsaturated compounds are there. 

The third region, the aromatic region, comprises signals of (poly) phenols and other 

aromatics made up of purine derivatives such as ATP and its catabolites (Picone et al. 2011).  
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Figure 10 presents a typical 1H-NMR spectrum from 0 ppm to 5 ppm of a limpet foot 

muscle tissue under control conditions (0°C). The pattern of the peaks did not differ in 

spectra of +3°C samples. For better illustration of the smaller peaks different regions were 

cut out and vertical scales were increased (Figure 10).   

As in other gastropods, the most prominent signals in all spectra were organic osmolytes 

homarine, betaine and taurine (Lu et al. 2016; Tripp-Valdez et al. 2017)  in the area between  

2.64 ppm and 4.35 ppm. Furthermore, one peak of unknown identity (unassigned 1, 1.1 

ppm) was conspicuous in many spectra.  

In the aliphatic region following free amino acids could be identified: alanine, β-alanine, 

glutamate, glutamine, isoleucine, leucine, methionine and valine. Additionally, organic acids 

included in this region were acetate, lactate and succinate. 

The signals within the hydroxylic region were difficult to identify because many signals 

which had partly the same chemical shift overlapped. Those signals belonged to alpha amino 

acids, alcohols, polyols and saccharides. Nonetheless, various metabolites were found 

because of their distinctive pattern. This included metabolites for lipid metabolism such as 

choline, O-phosphocholine and sn-glycero-3-phosphocholine, the organic osmolyte betaine, 

the amino acid glycine and the sugars glucose and UDP-glucose. 

Assigned peaks within the aromatic region belonged to adenosinedipohsphate (ADP), 

trigonelline and hormarine.  

Besides of the unassigned peak, multiple signals at 1.2 ppm, 1.6 ppm and 2.7 ppm stayed 

unknown. First, the unknown peak was considered to be a compound of the pedal mucus. 

However, different metabolite profiling investigations found also an unknown peak at 1.1 

ppm in bivalves molluscs tissue (Tikunov et al. 2010; Aru et al. 2017).  

In all samples the same composition of metabolites was found independent of the water 

temperature. Only the absolute and relative concentrations of the compounds differed.  



31 
 

 

Fig. 10: A typical 1H NMR spectrum of a muscle tissue extract of a control limpet at 0°C divided into 
three parts for better illustration of smaller peaks. 
A:  Shown is the aliphatic region from 0.0 ppm to 2.4 ppm. At 0.0 is the TSP standard marker. Peaks: 

1) unassigned 1, 2) many different amino acids, and organic acids. B: Shown is the hydroxylic region 

from 2.5 ppm to 5.0 ppm. Peaks: 3) amongst others carnitine, betaine, taurine, 4) betaine, 5) 

homarine. C: Shown is the aromatic region 6.5 ppm to 9.0 ppm. Peaks: 6) homarine and trigonelline, 

7)homarine, 8) trigonelline.  
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5.3.1 Metabolite profiling data analysis for 2016 

 

To investigate if animals with similar metabolite concentrations cluster, a Principal 

Component Analysis (PCA) plot was generated (Figure 11). Most of the samples within each 

group gather together. However, there are two samples further away from the residual 

samples in the control group. In the 0°C group the outliers are sample Sam4_0 and 

Sam6_add_0.   

Moreover, for examining potential differences in metabolite concentrations between 

both groups a partial least square discriminant analysis (PLS-DA) was conducted. The two 

groups are in the PLS-DA scores plot fully separated but not far away from each other 

(Figure12).  

To ascertain which metabolite concentrations changed significantly between the two 

groups in the year 2016, a t-test was conducted. Six out of thirty-seven metabolites were 

identified by t-test and volcano plot which is significantly different between the control 

animals in 0°C and those in +3°C (Table 2).  

Tab. 2: Important metabolites identified by t-test and volcano plot between both groups in 2016. 

 Compounds Concentration change p-value 

1 Homarine 0°C < +3°C 0.002 

2 Leucine 0°C > +3°C 0.004 

3 Sarcosine 0°C < +3°C 0.004 

4 

5 

6 

Carnitine 

Methionine 

Trimethylamine 

0°C > +3°C 

0°C < +3°C 

0°C > +3°C 

0.004 

0.01 

0.02 

 

For further visual differences hierarchical clustering was used. In Figure 13 is a 

dendogram showing similar clustering between 0°C and +3°C water temperature as the PCA 

scores plot before. The same outliers as in the PCA are separated from the residual samples. 

The remaining samples are almost only grouped together with the samples from the same 

temperature. 

In Figure 14 is a heatmap with the two groups. The red and green rectangles on top 

indicate 0°C and +3°C water temperature, respectively. Each row stands for one metabolite 
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and the colours dark blue to light blue to light red to dark red show the relative 

concentration. The metabolites are ordered in classes. The first twelve rows are amino acids, 

the next seven rows from betaine to trimethylamine N-oxide are osmolytes, the next six 

rows are metabolites that play a role in energy metabolism, then succinate that belongs to 

the Krebs cycle, then three phospholipid related compounds and the residual metabolites 

are miscellaneous with partly more than one function. In this result the samples 

samcon_3_0 from 0°C water and con23_3 from +3°C are outliers in many metabolite 

concentrations.  

The relative concentrations of almost all amino acids in the 0°C samples are higher than in 

the +3°C samples. Only methionine (p = 0.01) has in the warmer samples a higher 

concentration than in the colder samples. β-alanine and L-arginine are more or less even in 

both temperatures.  The difference of leucine is even significant tested by the t-test (p < 

0.01). In the organic osmolytes the concentration between the temperatures changed from 

a lower concentration at 0°C to a higher concentration at +3°C for four out of seven 

metabolites. In the other three cases is it the opposite. The relative concentration for the 

energy related compounds are diverse. No obvious trend is observable. The succinate 

concentration is lower in the +3°C samples as well as the concentration of phospholipid 

related compounds. The metabolites classed as miscellaneous have a higher concertation in 

the +3°C samples but the concentration of carnitine is lower. Both outliers within the 

heatmap are excluded from the concentration change observation.  
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Fig. 11: PCA Scores 2D Plot 
for the limpets from 2016. 
Red triangles are animals 
held in 0°C water and green 
crosses are animals in +3°C 
water. This scores plot is 
between PC1 and PC2. The 
explained variances are 
shown in brackets. In total 
54.5 % of variance is 
explained by PC1 and PC2. 
The ellipses correspond to a 
confidence interval of 95% 
for each group. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: PLS-DA 2D Scores 
Plot for the limpets from 
2016. Red triangles are 
animals held in 0°C water and 
green crosses are animals in 
+3°C water. This scores plot is 
between PC1 and PC2. The 
explained variances are 
shown in brackets. In total 
48.8 % of variance is 
explained by PC1 and PC2. 
The ellipses correspond to a 
confidence interval of 95% 
for each group. 
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Fig. 13: Dendogram 
showing clustering result. 
Red sample names are 
animals in 0°C water and 
green sample names are 
animals in +3°C water.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Heatmap with 
limpets from 2016 held 
in 0°C (red rectangles on 
top) and +3°C (green 
rectangles on top) 
water.  
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5.3.2 Metabolite profiling data analysis for 2017  

 

The samples from 2017 didn’t differentiate much between both groups. The ellipses in 

the PCA score plot lay above each other. Three samples, 3_0 from the control group, 5_3 

and 8_3 from the +3°C group, were further away from the centrum than the residual 

samples (Figure 15). 

A partial least square discriminant analysis (PLS-DA) was conducted for examining 

potential differences in metabolite concentrations between both groups. The two groups in 

the PLS-DA scores plot are not fully separated from each other (Figure 16).   

The t-test found three significant metabolites where the amount of metabolites changed 

between 0°C and +3°C in 2017 (Table 3).  

Tab. 3: Important metabolites identified by volcano plot between 0°C and +3°C in 2017. 

 Compounds Concentration change p-value 

1 Trimethylamine N-oxide (TMAO) 0°C < +3°C 0.017 

2 Lysine 0°C < +3°C 0.018 

3 β-Alanine 0°C > +3°C 0.040 

 

For further visual differences hierarchical clustering was used again. The dendogram in 

Figure 17 shows two main groups where samples of both temperatures are mixed together.  

In Figure 18 is a heatmap with the two groups. The red and green rectangles on top 

indicate 0°C and +3°C water temperature, respectively. Each row stands for one metabolite 

and the colours dark blue to light blue to light red to dark red show the relative 

concentration. The metabolites are in the same order like in the previous heatmap. There is 

no distinguishable pattern between the two groups. Individual metabolites like glutamate 

and N-Acetylglutamine have a relatively lower concentration at +3°C than at 0°C. Only 

sample 4_4 and 5_3 have many metabolites in different concentrations than the remaining 

samples.   
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Fig. 15: PCA Scores 2D Plot for 
the limpets from 2017. Red 
dots are animals held in 0°C 
water and green dots are 
animals in +3°C water. This 
scores plot is between PC1 
and PC2. The explained 
variances are shown in 
brackets. In total 64.4 % of 
the variance is explained by 
PC1 and PC2. The ellipses 
correspond to a confidence 
interval of 95% for each 
group. 

 

 

 

 

 

 

 

 

Fig. 16: PLS-DA 2D Scores 
Plot for the limpets from 
2017. Red triangles are 
animals held in 0°C water 
and green crosses are 
animals in +3°C water. This 
scores plot is between PC1 
and PC2. The explained 
variances are shown in 
brackets. In total 59.6 % of 
variance is explained by 
PC1 and PC2. The ellipses 
correspond to a confidence 
interval of 95% for each 
group. 
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Fig. 17: Dendogram from 2017. 
Red sample names are animals in 
0°C water and green sample 
names are animals in +3°C water. 
There is no full separation 
between the different 
temperatures. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Heatmap with 
results from 2017. Red 
rectangles on top 
indicate 0°C water and 
green rectangles on 
top indicate +3°C 
water. No real pattern 
between 0°C and +3°C 
exists. The sample 5_3 
from the +3°C group 
has outstanding 

metabolite 
concentrations in many 
cases.  
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5.3.3 Metabolite profiling data analysis for 2019 

 

In the PCA scores plot for the data from 2019 the 0°C samples have a smaller ellipse that 

is located within the green ellipse of the +3°C samples (Figure 19).  

Figure 20 shows a PLS-DA for the different temperatures in 2019. Both groups are fully 

separated. The red ellipse of the 0°C samples is smaller than the green ellipse. 

The t-test could identify three metabolites with different concentrations between the 

temperatures in the year 2019 (Table 4).   

Tab. 4: Important metabolites identified by volcano plot between 0°C and +3°C in 2019.  

 Compounds Concentration change p-value 

1 N-Acetylglutamine 0°C > +3°C 0.007 

2 Strombine 0°C < +3°C 0.015 

3 β-Alanine 0°C > +3°C 0.030 

 

In the dendogram for 2019 are the samples of 0°C grouped together but surrounded by 

two groups of +3°C samples (Figure 21).  

In Figure 22 is the heatmap of the relative metabolite concentrations of the different 

temperatures in 2019 shown. All metabolites are in the same order from amino acids to 

organic osmolytes to miscellaneous. Like in the dendogram, the +3°C samples are divided 

into two groups. One group with relatively higher concentrations in almost all metabolites 

compared to one group with lower concentrations. The relative concentration of the 0°C 

samples are mixed between different metabolites. However, for one metabolite almost all 

samples at 0°C have a steady concentration distribution. The amino acids concentration at 

0°C is either lower or higher than in the two +3°C groups. The same applies for the 

osmolytes. Metabolites for the energy metabolism look in 0°C samples almost like the 

second group of the +3°C samples with lower concentrations. The same is true for the 

metabolites classed as miscellaneous.  
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Fig. 19: PCA Scores 2D 
Plot for the limpets from 
2019. Red dots are 
animals held in 0°C water 
and green dots are 
animals in +3°C water. 
This scores plot is 
between PC1 and PC2. 
The explained variances 
are shown in brackets. In 
total 59.6 % of the 
variance is explained by 
PC1 and PC2. The ellipses 
correspond to a 
confidence interval of 
95% for each group. 

 

 

 

 

 

 

 

Fig. 20: PLS-DA 2D Scores 
Plot for the limpets from 
2019. Red triangles are 
animals held in 0°C water 
and green crosses are 
animals in +3°C water. This 
scores plot is between PC1 
and PC2. The explained 
variances are shown in 
brackets. In total 49.7 % of 
variance is explained by PC1 
and PC2. The ellipses 
correspond to a confidence 
interval of 95% for each 
group. 

 

 

 



41 
 

 

 

Fig. 21: Dendogram from 2019. 
Red sample names are animals 
in 0°C water and green sample 
names are animals in +3°C 
water. The 0°C samples are 
grouped together. The +3°C 
samples are split into two 
halves. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22: Heatmap 
with results from 
2019. Red rectangles 
on top indicate 0°C 
water and green 
rectangles on top 
indicate +3°C water. 
The samples in 0°C 
have similar 
concentrations. The 
samples in +3°C are 
separated into two 
groups.  
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5.3.4 Change of metabolite concentrations over the years 

in 0°C trial 

 

Metabolite concentration changes over the years were estimated using One-way ANOVA. 

Twenty-five metabolites which changed are listed in table II with the results of the post-hoc 

analysis with Fischer’s LSD that shows exactly where the differences are (Appendix, Table II). 

The PCA in Figure 23 shows the scores plot between the three 0°C groups in 2016, 2017 

and 2019. 2016 is mostly separated from 2017 and 2019, whereas the ellipses of 2017 and 

2019 are overlapping.  

The PLS-DA for the control data over the years is shown in Figure 24. All three groups are 

fully separated from each other. The green of 2017 is much bigger than the other two 

ellipses. 

The hierarchical cluster is shown again as a dendogram and heatmap. Both figures have a 

similar pattern for the samples between the years. In the dendorgram the samples from 

2016 seem to differentiate from the other two years, but one sample from 2016 is located 

between green samples of 2017. The animals from 2019 are split into two halves (Figure 25).  

The heatmap shows a lower relative concentration for the 2016 data compared the other 

two years. The order of the metabolites is the same like before in previous heatmaps. 2017 

and 2018 is no distinguishable pattern visible (Figure 26). Most relative metabolite 

concentrations are higher in 2017 and 2019 than in 2016. The concentration of 

Trimethylamine did not change vary a lot over the years. The concentration of UDP-glucose 

decreased after 2016. The concentrations of N-methylhydantoin, Sarcosine, unassigned 1 

and unassigned 3 increased in 2017 and decreased in 2019 again. However, the change for 

sarcosine was not that big than in the others. The sample Samcon_3_0 from 2016 and 

2_0.17 are noticeably different than the residual samples in their years. A few samples in all 

years have exceptionally high or low concentrations in particular metabolites like the β-

alanine concentration of sample Sam5_con_0 in 2016, the trimethylamine concentration of 

5_0.17 in 2017 and the leucine concentration on 4_0.19 in 2019.  
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Fig. 23: PCA 2D Scores 
Plot for the 0°C limpets 
over the years. Red 
triangles are animals from 
2016, green crosses are 
animals from 2017, and 
blue x’s are animals from 
2019. The red ellipse is 
mostly distinguishable 
from the other two. This 
scores plot is between 
PC1 and PC2. The 
explained variances are 
shown in brackets. In 
total, 61.1 % of the 
variance is explained by 
PC1 and PC2. The ellipses 
correspond to a 
confidence interval of 
95% for each group. 

 

 

 

 

Fig. 24: PLS-DA 2D Scores 
Plot for the 0°C limpets 
over the years. Red 
triangles are animals from 
2016, green crosses are 
animals from 2017, and 
blue x’s are animals from 
2019. This scores plot is 
between PC1 and PC2. The 
explained variances are 
shown in brackets. In total 
59.1 % of variance is 
explained by PC1 and PC2. 
The ellipses correspond to 
a confidence interval of 
95% for each group. 
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Fig. 25: Dendogram from  0°C 
over the years. Red sample 
names are animals from 2016, 
green sample names are 
animals from 2017 and blue 
sample names are animals 
from 2019. With one 
exception all samples of 2016 
are grouped together. The 
residual samples are divided 
into three groups but grouped 
together against 2016. The 
ellipses correspond to a 
confidence interval of 95% for 
each group. 

 

 

 

 

 

Fig. 26: Heatmap from 
0°C over the years. 
The rectangles on top 
indicate the different 
years (red = 2016, 
green = 2017, blue = 
2019). 2016 shows a 
different pattern from 
2017 and 2019. 2017 
has a few samples 
with prominent higher 
concentrations. 
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5.3.5 Change of metabolite concentrations over the years 

in +3°C trial 

 

The same procedure as for the 0°C trial was proceeded for the +3°C trial. At first, 

distinctions between 2016, 2017 and 2019 were analysed with One-way ANOVA and the 

post-hoc Fisher’s LSD (Appendix, table III). Twenty-two important metabolites were found.  

Second, a PCA was conducted. The 2016 samples (red triangles) lay next to each other. 

Their ellipse is small. The samples from 2017 (green crosses) and 2019 (blue x’s) are more 

scattered. The centrums of the green and blue ellipses overlap each other (Figure 27).  

For a possibly more separated pattern, a PLS-DA was again conducted (Figure 28). The red 

ellipse with samples from 2016 is fully separated from the other two years. The green (2017) 

ellipse and blue (2019) ellipse lay party above each other.  

Fourth, the hierarchical clustering was implemented and shown in a dendogram and a 

heatmap (Figure 29 & 30). In the dendogram the red samples from 2016 are grouped 

together. The data from 2017 and 2019 are mixed into two groups surrounding the 2016 

samples.  

The heatmap shows that samples in 2016 have a lower concentration in almost all 

metabolites and is clearly separated from the other two years. There is no difference in the 

pattern of 2017 and 2019. However, there are a few samples that have particular 

metabolites in exceptionally high concentrations like sample 1_3.17 in Leucine in 2017 and 

sample 2_3.17 in N-acetylglutamine in 2017.  The concentrations of N-acetylglutamine and 

sarcosine are highest in 2017. The concentration of UDP-glucose decreased over the years. 

Furthermore, it seems that a sample has either a relatively high or low concentration in all 

metabolites. All metabolites are in the same order like in previous heatmaps from amino 

acids to phospholipid related compounds to miscellaneous. 
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Fig. 27: PCA Scores 2D 
Plot for the +3°C limpets 
over the years. Red 
triangles are animals from 
2016, green crosses are 
animals from 2017, and 
blue x’s are animals from 
2019. The red ellipse is 
the smallest one. No 
ellipse is fully separated 
from another. This scores 
plot is between PC1 and 
PC2. The explained 
variances are shown in 
brackets. In total 63.6 % 
of the variance is 
explained by PC1 and 
PC2. The ellipses 
correspond to a 
confidence interval of 
95% for each group. 

 

 

 

 

Fig. 28: PLS-DA 2D 
Scores Plot for the +3°C 
limpets over the years. 
Red triangles are 
animals from 2016, 
green crosses are 
animals from 2017, and 
blue x’s are animals 
from 2019. This scores 
plot is between PC1 and 
PC2. The explained 
variances are shown in 
brackets. In total 55.8 % 
of variance is explained 
by PC1 and PC2. The 
ellipses correspond to a 
confidence interval of 
95% for each group. 
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Fig. 29: Dendogram for  +3°C 
over the years. Red sample 
names are animals from 
2016, green sample names 
are animals from 2017 and 
blue sample names are 
animals from 2019. The 2016 
samples are grouped 
together but surrounded by 
the 2019 and 2017 samples 
which are mingled.  

 

 

 

 

 

 

 

 

Fig. 30: Heatmap for 
the +3°C animals 
over the years. The 
rectangles on top 
indicate the different 
years (red = 2016, 
green = 2017, blue = 
2019). The samples 
from 2016 show a 
different pattern 
from 2017 and 2019. 
Concentrations vary 
within 2017 and 
2019. 
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6 Discussion 

 

The ongoing climate change has many possible influences on weather conditions, ocean 

characteristics and organisms all over the world (Thornes 2002; Hoegh-Guldberg, 2018). 

Temperature is one of the most potent factors, especially for biological functions (Peck 

2016). As Antarctic invertebrates are stenothermal, a warmer world could have severe 

impacts (Peck 2005b). This study investigated the effects of a warmer environment in an 

acute state and after one and three years of acclimation by testing the tenacity duration and 

examining metabolic patterns, with the goal to determine potential acclimation capacities in 

the Antarctic limpet Nacella concinna. There was neither a significant difference between 

the tenacity duration of the limpets at 0°C and at +3°C in 2016 nor in tenacity duration at 

+3°C after one and three years of acclimation. In all tissue samples the same metabolites 

were found but with different concentrations. The greatest number of significantly different 

metabolites was found between 0°C and +3°C in 2016. In 2017 and 2019 only three 

metabolites differed between 0°C and +3°C.  The present results indicate a change in the 

metabolism. 

 

6.1 No alteration of tenacity duration 

 

During the acute trial in 2016, the mean duration of tenacity did not change drastically 

between 0°C and +3°C. The mean duration as well as the maximum duration of the +1.5°C 

animals was almost twice as long (Figure 6). However, only three out of six test animals in 

+1.5°C reattached after replacing them on the plate and could be measured. Thus, only three 

animals stayed attached so long (mean: 2640 sec = 44 min). A similar tenacity result at 0°C 

and +3°C shows that at least 50 % of the limpets could cope with a spontaneous increase in 

temperature. A few limpets stayed attached even longer at +3°C (max: 2580 sec = 43 min) 

than at 0°C (max: 2295 sec = 38 min 15 sec). This tolerance to a warmer environment might 

be because N. concinna lives both in the intertidal and subtidal zones. Animals in the 

intertidal zone experience temperature variances daily up to + 17°C (Waller et al. 2006a). 

Limpets used in this study were collected from at last 6 m depth and therefore count in the 
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population that lives in the subtidal zone. These animals should not be accustomed to high 

temperatures that occur in the intertidal zone during low tide.  

Additionally, the animals were collected in the late summer of the Antarctic. The water 

temperature in summer at Adelaide Island is between 0°C and +1.8°C (Clarke et al. 2008) and 

in the subtidal at the British Antarctic Survey’s Rothera Research Station is the summer 

temperature -1.3°C to +1.7°C (Morley et al. 2012).  Therefore, the limpets could have been 

acclimatised to their summer conditions and showed the best performance in +1.5°C water. 

In 2011, Obermüller et al. showed that the upper lethal temperature and righting ability 

differ between N. concinna winter and summer individuals. The upper lethal temperature 

was higher for the limpets that were collected in summer and the righting ability was best at 

their seasonal ambient temperature. Another study by Peck and Veal (2001) showed the 

effects of acute starvation also differed between seasons in N. concinna and Bayne and 

Scullard (1977) have shown seasonal differences in the effects of starvation in the mussel 

Mytilus edulis. Those results were interpreted as evidence for seasonal acclimatisation to 

changing temperatures (Fraser et al. 2002; Obermüller et al. 2011). Morley et al. (2012) 

found the best tenacity duration in acute trials for N. concinna at +1°C. If the metabolisms of 

the tested limpets in this study were acclimatised to their summer conditions, the question 

remains why only half of the tested animals in +1.5°C in 2016 stayed attach and the duration 

of tenacity could be measured. The result at +1.5°C must be handled with caution because of 

the small N of 6 whereof only 3 were tested, which is not representative. 

The duration of tenacity did not significantly increase after three years of acclimation in 

+3°C water. However, the mean tenacity duration increased from 841 sec (14 min 1 sec) in 

2016 at +3°C to 1903 sec (31 min 43 sec) in 2019. Still, there was no indication that limpets 

acclimated for three years at a higher temperature showed a better tenacity than limpets at 

0°C in 2016 (ANOVA; p = 0.3, TukeyHSD; p = 0.76) or limpets at 0°C in 2019 (ANOVA; p = 0.3, 

TukeyHSD; p = 0.98). Furthermore, this study found no differences in tenacity duration and 

temperature in 2016 (t-test; p = 0.43) or in 2019 (t-test; p = 0.52). The lack of significance 

cloud be due to the small sample size (N2016 = 9, N2019 = 7, each at 0°C and +3°C). However, 

Morley et al. (2011) found significance between temperature and tenacity both at the 

control temperature (-0.3°C: F2, 24 = 6.0, p <0.01) as well as at the tested temperature 

(+2.9°C: F2, 18 = 6.1, p = 0.01). The individual number at -0.3°C that showed the best tenacity 

performance at -1.0°C was 14 whereof 9 stayed attached long enough for the tenacity test. 
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The number of warmer water acclimated limpets (+2.9°C) was 7 and all seven individuals 

could be used for the tenacity test. So both studies had N = 7 or 9. Still, the results in 2011 by 

Morley and his colleagues were significant, because the SE range of the mean duration of 

tenacity was narrower for all tested limpets (Morley et al. 2011). A difference between the 

tenacity tests of Morley et al. (2011) and this study is that the animals consumed different 

food. Where the limpets in 2011 were fed with microalgae, N. concinna in this experiment 

were fed with Laminaria sp (macro brown algae). More detailed discussion about possible 

influences by food source is in the next chapter “6.3 Identified metabolites and their 

concentration changes” (see below). In another tenacity experiment by Morley et al. (2012), 

they used a 200 g weight (instead of 125 g like in the present study) which could cause 

shorter tenacity duration. Furthermore, the fact that the limpets by Morley et al. (2012) 

where tested in the Antarctic and therefore were not shipped for several months could lead 

to less stressed individuals due to a shorter captivity. However, in that acute trial in 2012 the 

best tenacity duration for N. concinna was observed at +1°C, which supports the results of 

2016 in this study.       

Previous studies postulated a positive correlation between foot area and tenacity for 

limpets (Branch 1981; Smith 1991). Other studies showed a correlation between peak force 

required to detach animals from the substratum and contact area for different echinoderms 

(Flammang et al. 2002; Santos und Flammang 2007). The present study observed no 

significant correlation between foot area (R2 = -0.058, p = 0.57) or shell area (R2 = 0.033, p = 

0.141) and duration of tenacity for all individuals (Figure 7 and 9). Shell area was used 

instead of foot area because the foot area was measured only for limpets in 2019. There was 

a significant correlation between foot area and shell area (R2 = 0.878, p < 0.01) (Figure X). 

Limpets with larger shells also had a greater foot area. Morley et al. (2011) showed that the 

tenacity was significantly correlated with foot area (F1, 46 = 6.6, p = 0.13, R2 = 0.13).  

As tenacity of limpets results from the size of the animal and therefore the foot area as 

well as their mucus (mucopolysaccharide secretion from the sole of the foot) (Branch 1981; 

Smith 1991; Morley et al. 2011), in the same ambient temperature the larger limpets should 

have stayed attached to the substratum longer than the smaller limpets. However, this was 

only the case for limpets in +3°C water (R2 = 0.224, p = 0.037). The 0°C limpets showed no 

significant correlation between shell area and duration of tenacity (R2 = -0.082, p = 0.77). 

Wells et al. (1998) considered that limpets in more sheltered areas should be larger than 
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those in exposed areas due to greater strength and therefore better tenacity. However, they 

found the opposite. One reason why the foot size is important is that the area which touches 

the substratum establishes a greater suction force if it is larger (Smith 1991). Because the 

foot shape is maintained by muscular activity, one suggestion is that the tenacity duration 

depends on the muscle energy status (Morley et al. 2011). Muscle structures and enzyme 

activities can be influenced by temperature and are known to alter with acclimation (Pörtner 

2002) which could affect the muscle energy status (Morley et al. 2011). However, the 

tenacity mechanism in the foot muscle of limpets resembles the catch mechanism of 

bivalves (Frescura and Hodgen 1990). The catch mechanism is a persistent state of tension in 

molluscan smooth muscles that uses little energy (Castellani et al. 1983; Frescura and 

Hodgen 1990). In the limpet’s foot, the musculature is a system of muscle fibre bundles 

containing thin actin and thick paramyosin filaments and sheathed in collagen. The collagen 

stiffens the foot muscle which may support the rigidity of the foot and thus enhance the 

tenacity (Frescura and Hodgen 1990).    

The secretion of the mucus was found to differ between animals. Those who clamped 

tight to the substratum and held on for a longer period produced less and thicker mucus 

than animals that did not reattached their foot to the substratum or quickly lost contact 

(personal observation). Grenon und Walker (1981) described three different conditions of 

limpet mucus from rather vicious mixture to an inviscid liquid. Previous tenacity tests which 

measured the needed force to remove limpets from the substratum observed that limpets 

which moved shortly before the trials started needed less force to be detached (Branch 

1981). Furthermore, Peck et al. (1993) noticed that limpets which were more mobile 

produced more mucus. The mucus is thought to assist the tenacity by acting as a viscoelastic 

glue or as Stefan adhesive (two layers are so close together that the viscosity of the 

intervening fluid abides their separation) (Smith 1991). However, Smith (1991) witnessed 

that the Stefan adhesive theory is incorrect and only thick mucus supports tenacity by 

preventing the inrush of water and therefore promotes a better suction of the foot to the 

substratum.      
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6.2 Change of metabolite concentrations over the years 

 

Many studies have examined metabolite changes due to thermal impacts using 1H nuclear 

magnetic resonance (NMR) spectroscopy e.g Tripp-Valdez et al. (2017), Aru et al. (2017) and 

Rebelein et al. (2018). 1H NMR spectroscopy is an advantageous tool because it can detect a 

large amount of different metabolites simultaneously (Beckonert et al. 2007).  

An obvious change occurred in both the control animals and warmed animals over the 

years. Although thought that the metabolites would not change in the 0°C animals because 

they were always under comparable conditions, twenty-five out of thirty-seven metabolites 

changed significantly between 2016, 2017 and 2019 (Appendix, Table II). These metabolites 

contained organic osmolytes like homarine and betaine, organic acids like acetate and 

lactate, and amino acids like alanine, valine and L-arginine. A possible explanation for this 

alteration are differences in maintenance and holding conditions in particular the different 

food sources the limpets were fed between 2016 (microalgae) and 2017 and 2019 

(macroalgae). Clarke und Haselden (2008) explained that 1H NMR spectroscopy is very 

sensitive and can detect possible dietary changes. However, the main metabolism fuel for N. 

concinna are proteins (Fraser et al. 2002; Obermüller et al. 2011) which exist in their natural 

food sources like diatoms (Shabica 1976) and other microphytobenthos (Brêthes et al. 1994) 

but also in Laminaria sp which was their only food at the AWI. The ratio of protein to lipids in 

Laminaria sp. is 5:1 (Maehre et al. 2014). Therefore, the different food source should have a 

minor impact.  

More important is the amount of food that the limpets had at their disposal (Sokolova, 

personal communication). Whereas it is more costly for the limpets to graze a high quantity 

of microalgae, it was very convenient to feed ad libitum on Laminaria sp. This situation that 

the limpets had always more than enough food is highly unrealistic in the nature and could 

easily be displayed in their metabolite concentrations. Due to these circumstances a 

comparison between the metabolite concentrations over the years is less suitable and the 

following interpretation of the results will concentrate on comparisons between the 

different temperatures within one year. Furthermore, there will not be a discussion about 

every found metabolite. 
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6.3 Identified metabolites and their concentration changes 
 

In 2016 four important compounds were identified by t-test and two more by volcano 

plot between 0°C and +3°C (Table 2). These six metabolites were homarine, trimethylamine 

(organic osmolyte), leucine, methionine (amino acids), sarcosine (miscellaneous, possible 

organic osmolyte) and carnitine (miscellaneous, amongst others energy-related compound). 

The PLS-DA (Figure 12) showed the two groups separated whereas the PCA (Figure 11) 

showed two ellipses, but at 0°C not all samples were mixed together because of outliers. 

Also the dendogram (Figure 13) showed no complete separation between the two 

temperatures and the relative concentrations in the heatmap (Figure 14) also presented an 

indistinguishable pattern.  

The amino acids concentrations at +3°C had a lower concentration than at 0°C even 

though it is only significant for leucine and methionine. As mentioned before, the main fuel 

for the metabolism of N. concinna are proteins, which are built of amino acids. Therefore, 

the concentration of amino acids decreases when more energy is needed for the metabolism 

due to a higher temperature causing stress. Heat stress can lead to the damaging or 

denaturing of important proteins in organisms. Heat shock proteins (HSP) have the task to 

repair, refold or eliminate those destroyed proteins (Mayer und Bukau 2005). Different kinds 

of HSPs were found in N. concinna (Clark et al. 2008; Clark und Peck 2009). The production of 

HSPs as well as their work requires energy (Sokolova et al. 2012) plus amino acids.  

Organic osmolytes play an important role in the process of osmotic regulation in marine 

mollusks (Lu et al. 2016). Previous studies showed a relation between changes in homarine 

concentrations and stressful conditions like warming, hypoxia, starvation and pathogen 

infection (Lu et al. 2016; Rosenblum et al. 2005). The homarine concentrations at +3°C 

increased significantly. Also the concentrations of the other osmolytes increased at +3°C 

compared to the samples at 0°C significantly by t-test for two organic osmolytes and 

sarcosine, which can function as an osmolyte (Yancey et al. 1982). The salinity did not 

change in the trials. However, previous research observed that high concentrations of amino 

acids in marine mollusks support the intracellular osmolarity (Yancey et al. 1982; Viant et al. 

2003; Venter et al. 2018). Therefore, the increase of the osmolytes at +3°C could be due to 

the decreasing amino acid concentrations. Viant et al. (2003) suggested that homarine 
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concentration rises as a compensation for the reduction of the amino acids in the 

intracellular milieu.  

Bremer (1983) wrote in his review about carnitine metabolism and function that carnitine 

functions as a carrier for fatty acids through the mitochondrial membrane. Thus, it has an 

important role in the mitochondrial fatty acid oxidation which generates energy (Bremer 

1983). The carnitine concentration at +3°C is lower than at 0°C and might be caused by the 

higher energy-requirement.  

In 2017 no metabolites were identified by t-test but the volcano plot found three 

significant compounds (Table 3). These three metabolites were trimethylamine N-oxide 

(TMAO, organic osmolyte), lysine and β-alanine (amino acids). Also the PCA (Figure 15) could 

not fully separate the two groups and even the PLS-DA (Figure 16) did not shown a distinct 

separation of 0°C and +3°C samples. This pattern appears also in the denodogram and in the 

heatmap (Figure 17 + 18). Thus, the animals in 2017 were similar in both temperatures. This 

happened most likely because the animals had more than enough food, which alleviates the 

impact of the warmer water (Brêthes et al. 1994; Fraser et al. 2002; Obermüller et al. 2011). 

The two amino acids, which were significantly different by volcano plot, seem more similar 

in concentration in the heatmap (Figure 18). Only the relative concentration of 

trimethylamine N-oxide was visibly higher in samples at +3°C than at 0°C.  

Trimethylamine N-oxide (TMAO) is known as a compatible solute meaning it has no 

perturbing effects on cellular macromolecules and even counteracts perturbation by urea 

(Yancey 2005). Urea disturbs macromolecules by destabilizing their structures and it inhibits 

functions such as ligand binding (Yancey 2005). Clarke (1990) observed that ammonia was 

the predominant nitrogenous excretion in starved animals. Actively feeding limpets 

produced significant amounts of urea but the urea level decreased after 23 days of 

starvation again (Clarke et al. 1994). The excreted urea in N. concinna comes likely from the 

elimination of amino acids and/ or products of nucleic acid metabolism (Clarke et al. 1994). 

Because the limpets at the AWI never starved, their urea level could stay high. Therefore, 

the TMAO concentration could also be increased. However, the TMAO concentration is at 

+3°C higher than at 0°C even though limpets at both temperatures fed ad libitum. Other 

studies showed that N. concinna feeds less in winter than in summer (Fraser et al. 2002; 

Obermüller et al. 2011). The limpets at +3°C fed more (personal observation) and thus 

produced more urea. Additionally, Yancey (2005) wrote in his article about organic 
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osmolytes that the concentration of TMAO in an organism is higher when there is a 

perturbing present like urea and high temperature.   

The t-test found no significant metabolites in 2019 but the volcano plot selected three 

compounds (Table 4). These three metabolites were N-acteylglutamine and β-alanine (amino 

acids), and strombine (energy-related compound). The PCA showed for the 0°C samples a 

much smaller ellipse and thus a smaller 95% confidence interval than for +3°C samples. The 

ellipse for the 0°C samples lay within the ellipse of the +3°C samples (Figure 19). However, 

the PLS-DA showed two fully separated ellipses. The ellipse of the +3°C samples is still many 

times bigger than the ellipse for the 0°C samples (Figure20). The dendogram and heatmap 

showed an interesting pattern (Figures 21 + 22). The +3°C samples were separated into two 

groups, where one group was more similar to the 0°C group. Two out of the three samples 

with much higher relative concentrations at +3°C were most likely more stressed while the 

preparation for the dissection, because the shell was accidently removed during the 

sampling.  

The relative amino acid concentrations were lowest in one of the two +3°C groups, and 

highest in the other +3°C group. The 0°C samples had an intermediate concentration of 

amino acids. However, N-acetylglutamine was the only amino acid which had higher relative 

concentration at 0°C. It seems there is no research that revealed the presence of N-acetyl-

glutamine in mollusks. N-acetylglutamine is a modified amino acid that produces glutamine 

by deacetylation (Bergana et al. 2000) and is present in human urine (Racine et al. 2004). 

Glutamine is an amino acid that acts as osmolyte in abalone gastropods (Venter et al. 2018). 

Furthermore, high glutamine concentrations were found while ammonia accumulation in 

mollusks was also high (Tikunov et al. 2010; Venter et al. 2018) and thus could act as a 

nitrogen store (Venter et al. 2018). If this was the case in this study remains the question, 

why limpets at 0°C produced much more ammonia than at +3°C. β-alanine is also an amino 

acid that functions often as an osmolyte in mollusks (Yancey et al. 1982; Tikunov et al. 2010).  

Strombine is an end-product of anaerobic pathways (Kan-no et al. 1999). When the 

oxygen level decreases critically, anaerobic pathways switch on and supply energy. If that 

would be the case in this study, concentrations of lactate, alanopine and strombine, 

succinate and alanine were increased (Venter et al. 2018). In this study the aquariums were 

always fully aerated and therefore anaerobic metabolism should not have been activated. 
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However, the heatmaps showed different alanopine and strombine concentrations at 0°C 

and +3°C over the years, mostly after 2016.  

 

6.4 Conclusions  

 

The present study aimed to investigate the influence of a warmer environment of the 

tenacity duration and the metabolism of the Antarctic limpet Nacella concinna. Specific 

areas in the Antarctic like the northern Island South Georgia experienced since 1925 a 

temperature increase of approximately 1°C in winter and 2°C in summer in 0 – 100 m deep 

(Whitehouse et al. 2008). The Antarctic Peninsula is the most pronounced region in 

Antarctica that will be affected by global warming (Thornes 2002). The temperature during 

this study did influence the tenacity duration of the Antarctic limpet Nacella concinna like 

already examined in a previous study. Additionally, in the present study, the tenacity 

experiment showed an altered duration of tenacity with longer acclimation time to a higher 

temperature. After nine month of acclimation the mean tenacity duration tested by Morley 

et al. (2011) increased at +2.9°C higher compared to the mean duration tenacity at -0.3°C. 

After three years of acclimation, the mean tenacity duration at +3°C increased again.  

The metabolite profiles did change with temperature and acclimation time. The 

difference between the temperatures within one year became less after the acute trial in 

2016. Consequently, the samples at 0°C and +3°C had similar metabolite concentrations in 

the years 2017 and 2019 and thus the “stressed” metabolism at +3°C in 2016 acclimated 

after one year.  

However, the amount of food that the animals had plays an important role in the 

metabolism. The good food resources could also helped with increasing the tenacity 

duration at +3°C again after three years. Because the animals did not starve at any time, they 

had fewer problems to deal with the warmer water and could show an overall better fitness 

(Obermüller et al. 2011). Based on the fact that in the other studies with N. concinna the 

limpets either starved or fed microalgae from the walls of the tanks, it is difficult to compare 

these data with the present results. What is clearly shown is that Nacella concinna can 

acclimate at +3°C when they have enough food.  
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To improve the present investigation and achieve a better understanding, the experiment 

conditions need to be changed. In other studies with N. concinna the animals will be held in 

a 12h:12h light:dark regime and fed with only microalgae that grows on the aquarium walls 

(e.g. Clark et al. 2018). A seasonal temperature change with a slow increase in each season 

over a few years could also be interesting to observe more realistic responses. Another 

suggestion is an investigation of impacts by warming of gill tissue using untargeted 

metabolic profiling because the gill is affected sooner than the foot muscle and is important 

for respiration and osmoregulation.    
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Appendix 

 

Table I: List of compounds identified within the 1H-NMR spectrum of the foot muscle tissue 

extract of N. concinna and corresponding chemical shifts. (s: singlet, d: doublet, dd: double 

doublet, t: triplet, q: quartet, m: multiplet) 

Metabolite Chemical shift (ppm) 

Amino acids 

Alanine 1.48 (d), 3.78 (m)  

β-Alanine 2.56 (t), 3.18 (t) 

L-Arginine 1.68 (m), 1.92 (m), 3.23 (t), 3.78 (t) 

Glutamate 2.05 (m),2.13 (m), 2.35 (m), 3.76 (m)  

Glutamine 2.12 (m), 2.15 (m), 2.43 (m), 2.46 (m)  

N-Acetylglutamine  

Glycine 3.56 (s) 

Isoleucine 0.94 (t), 0.99 (d) 

Leucine 0.95 (d), 0.97 (d) 

Lysine 1.45 (m), 1.69 (m), 1.89 (m), 3.1 (t), 3.74 (t) 

Methionine 2.14 (s) 

Valine 0.97 (d), 1.05 (d), 1.92 (m), 3.05 (d) 

Organic osmolytes 

Betaine 3.25 (s), 3.87 (s) 

Homarine 4.35 (s), 7.95 (dd), 8.02 (d), 8.53 (dd), 8.71 (d) 

Hypotaurine 2.64 (t), 3.34 (t) 

Taurine 3.26 (t), 3.43 (t) 

Trigonelline 8.04 (m), 8.86 (m), 9.15 (s) 

Trimethylamine 2.88 (s) 

Trimethylamine-N-oxide 3.27 (s) 

Energy metabolism 

ADP 4.58 (m), 6.15 (d), 8.27 (s), 8.52 (s) 

Alanopine Pure substance 

Glucose 4.65 (d), 5.24 (d) 

Lactate 1.33 (d), 4.11 (q) 
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UDP-glucose 5.98 (d), 5.99 (d), 7.94 (d) 

Strombine Pure substance  

Krebs cycle intermediates 

Succinate 2.41 (s) 

Phospholipid related compounds 

Choline 3.19 (s) 

O-Phosphocholine 3.21 (s) 

Sn-Glycero-3-phosphocholine 3.23 (s) 

Miscellaneous 

Acetate 1.91 (s) 

Carnitine 3.23 (s), 3.43 (m), 3.45 (m), 4.58 (m) 

Dimethyl sulfone 3.16 (s) 

Methanol 4.78 

N-methylhydantoin 2.92 

Sarcosine 2.73 (s) 

Unassigned 1  

Unassigned 3 1.1 (s) 
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Table II: List of Important metabolites in 0°C trials over the years identified by One-way 

ANOVA and post-hoc analysis.  

 Compounds p-value Fisher’s LSD 

1 Homarine 0.00 2017 - 2016; 2019 - 2016 

2 Trigonelline 0.00 2017 - 2016; 2019 - 2016 

3 Taurine 0.00 2017 - 2016; 2019 - 2016; 2017 - 2019 

4 Unassigned 3 0.00 2017 - 2016; 2019 - 2016; 2017 - 2019 

5 Betaine 0.00 2017 - 2016; 2019 - 2016 

6 Trimethyl N-oxide 0.00 2019 - 2016; 2019 - 2017 

7 Glutamine 0.00 2017 - 2016; 2019 - 2016; 2019 - 2017 

8 Carntitine 0.00 2017 - 2016; 2019 - 2016 

9 Alanine 0.00 2017 - 2016; 2019 - 2016 

10 O-Phosphocholine 0.00 2017 - 2016; 2019 - 2016 

11 Valine 0.00 2017 - 2016; 2019 - 2016 

12 L-Arginine 0.00 2019 - 2016; 2019 - 2017 

13 Lactate 0.00 2017 - 2016; 2019 - 2016 

14 Acetate 0.00 2017 - 2016; 2019 - 2016 

15 Dimethyl sulfone 0.00 2017 - 2016; 2017 - 2019 

16 β-Alanine 0.00 2017 - 2016; 2019 - 2016 

17 ADP 0.00 2016 - 2017; 2019 - 2017 

18 Glycine 0.01 2017 - 2016; 2017 - 2019 

19 Methanol 0.01 2017 - 2016; 2019 - 2016 

20 N-Acetylglutamine 0.01 2017 - 2016; 2019 - 2016 

21 Isoleucine 0.01 2017 - 2016; 2019 - 2016 

22 Succinate 0.02 2017 - 2016 

23 N-Methylhydantoin 0.02 2016 - 2019; 2017 - 2019 

24 Lysine 0.03 2019 - 2017 

25 UDP-glucose 0.03 2016 - 2017; 2016 - 2019  
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Table III: List of Important metabolites in +3°C trials over the years identified by One-way 

ANOVA and post-hoc analysis. 

 Compounds p-value Fisher’s LSD 

1 Carnitine 0.00 2017 - 2016; 2019 - 2016; 2019 - 2017 

2 Glutamine 0.00 2017 - 2016; 2019 - 2016; 2019 - 2017 

3 Homarine 0.00 2017 - 2016; 2019 - 2016 

4 Dimethyl sulfone 0.00 2017 - 2016; 2019 - 2016; 2017 - 2019 

5 Sn-Glycero-3-phosphocholine 0.00 2017 - 2016; 2019 – 2016 

6 Trimethylamine 0.00 2017 - 2016; 2017 - 2019 

7 Taurine 0.00 2017 - 2016; 2019 – 2016 

8 Acetate 0.00 2017 - 2016; 2019 – 2016 

9 Trimethylamine N-oxide (TMAO) 0.00 2017 - 2016; 2019 – 2016 

10 L-Arginine 0.00 2019 - 2016; 2019 - 2017 

11 Alanine 0.00 2017 - 2016; 2019 – 2016 

12 O-Phosphocholine 0.00 2017 - 2016; 2019 – 2016 

13 Choline 0.00 2019 - 2016; 2019 - 2017 

14 Trigonelline 0.00 2017 - 2016; 2019 – 2016 

15 Sarcosine 0.00 2017 - 2016; 2017 – 2019 

16 ADP 0.00 2016 - 2017; 2019 – 2017 

17 Unassigned 3 0.00 2017 - 2016; 2019 – 2016 

18 Methanol 0.00 2017 - 2016; 2019 – 2016 

19 Lysine 0.00 2017 - 2016; 2019 – 2016 

20 Valine 0.00 2017 – 2016 

21 Leucine 0.01 2017 - 2016; 2019 - 2016 

22 Strombine 0.01 2019 - 2016; 2019 - 2017 
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