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cluding remarks. This study was partially funded by the Research Council of Norway (Arctic
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216537/E10).
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Glossary and abbreviations

ArW Arctic water
AT atom percent
ATE atom percent excess
AW Atlantic water
C carbon
CI - CV copepodite stage I-V
Chl a chlorophyll a
CSIA compound specific isotope analysis
DAGE diacylglycerol ether
DMSP dimethylsulphoniopropionate
EFA essential fatty acid
FA fatty acid
Falc fatty alcohol
FAME fatty acid methyl ester
FAS fatty acid signature
FATM fatty acid trophic marker
GC gas chromatography
IRMS isotope ratio mass spectrometry
LC MUFA long chain monounsaturated fatty acid
NAC Norwegian Atlantic Current
PUFA polyunsaturated fatty acid
QFASA quantitative fatty acid signature analysis
SST sea surface temperature
TAG triacylglycerol
TAW transformed Atlantic water
TL total lipids (sum of fatty acids and fatty alcohols)
WE wax ester
WSC west Spitsbergen current
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Summary

The Arctic pelagic food web is characterized by a high seasonality in terms of light and there-

fore primary production. To cope with the long winter periods of low food availability, many

species have developed the ability to store large amounts of lipid reserves. These high-energy

compounds are of major importance in different processes such as somatic growth, survival,

development, reproduction and metabolism independently on ambient food levels. In the Arc-

tic pelagic food web, zooplankton plays a crucial role linking primary production and higher

trophic levels. The efficiency of zooplankton species to transfer lipids and fatty acids in the

food web depends on a combination of ecological and physiological aspects such as distribu-

tion, life cycle strategies, lipid content and lipid assimilation rapidity. In the context of climate

warming, severe shifts in the phyto- and zooplankton communities, and thus changes in trophic

interactions, are expected. It is therefore essential to better understand the lipid and fatty

acid turnover in the in the lipid-driven Arctic food web. This study aims at evaluating the

role of zooplankton in the transfer of lipids from primary producers to higher trophic levels. It

combines field observations and experimental work to fill the gaps of knowledge in the ecology

and lipid biochemistry of Arctic zooplankton key species, i.e. the copepods Calanus glacialis,

Pseudocalanus minutus and Oithona similis, the thecosome pteropods Limacina helicina and

L. retroversa and the gymnosome pteropod Clione limacina.

The life cycle and the distribution of thecosome pteropods were investigated by field obser-

vations that were conducted year-round in 2012 and 2013 in Svalbard waters. These studies

aimed at relating the distribution of L. helicina and L. retroversa to environmental parameters

and examining the growth of veligers and juveniles. To study the metabolic capacities of key

zooplankton species in terms of lipid and fatty acid turnover, feeding experiments were con-

ducted with animals that were collected in Svalbard waters during the late productive season

(summer/early autumn) in 2014 and 2015. Consumers of the first trophic level were fed a 13C

labeled diatom-flagellate mixed diet for one week (thecosome pteropods) and for three weeks

(copepods). The consumer representing the second trophic level, i.e. C. limacina, was fed 13C

labeled Limacina spp. for 3 weeks. The 13C incorporation into fatty acids and alcohols was

monitored by compound specific isotope analyses (CSIA). The use of CSIA in combination

with labeling experiments allowed for a precise evaluation of the lipid and fatty acid turnover

in zooplankton organisms.
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The results showed that lipid and fatty acid assimilation rates of zooplankton species clearly

reflect their life cycle strategies. The Arctic herbivorous species C. glacialis and P. minutus

exhibited a rapid total lipid turnover (1.3 and 2.6% d−1), combined with a high de novo syn-

thesis of wax esters (1.2 and 3.3% d−1). This reflects that these species need to quickly store

large energy reserves to successfully complete their life cycle. These species assimilated diatom

fatty acids trophic markers (FATM) (2.4 and 4.6% d−1) at a much higher rate than flagellate

FATM (1.2 and 1.3% d−1), suggesting a high importance of this food source. The omnivorous

species O. similis and L. helicina showed lower total lipid turnover rates (0.1 and 0.5% d−1),

reflecting a life strategy that is less dependent on lipid reserves than that of the herbivorous

species. L. retroversa exhibited a surprisingly rapid lipid turnover considering that its feeding

strategy is similar to that of L. helicina. Omnivorous zooplankton de novo synthesized signif-

icant amounts of long-term energy storage, such as fatty alcohols (O. similis : 0.2% d−1) and

long chain monounsaturated fatty acids (MUFA) (thecosome pteropods: 0.3-0.5% d−1). O.

similis and L. helicina had similar ingestion/assimilation rates of flagellate and diatom FATM

(O. similis : 0.7 vs. 0.5% d−1, L. helicina: 0.1 vs. 0.1% d−1), indicating an opportunistic

feeding strategy. In contrast, L. retroversa seemed to prefer flagellates over diatoms (5.3 vs.

0.2% d−1). The carnivorous species C. limacina exhibited a very slow lipid turnover (0.07%

d−1), which in this study may have been related to the investment of energy into metabolism

but not into storing reserves after a long period of starvation. C. limacina de novo synthesized

substantial amounts of odd chain fatty acids (0.03% d−1) that may be used as long-term en-

ergy reserves to overcome the variability of the presence of its unique food source Limacina spp..

The lipid assimilation rates of zooplankton organisms assessed in this study are representa-

tive only for the investigated stages and only for the late productive season in the Arctic.

Lipid turnover may, however, be characterized by pronounced variability with highest rates in

spring and lowest rates during overwintering. Also, energetic needs vary quantitatively and

qualitatively among developmental stages since processes such as growth, reproduction, and

metabolism during food scarcity require different amounts of lipids as well as specific com-

pounds. Essential fatty acids (EFA) that are synthesized by primary producers are largely

transferred by zooplankton species to higher trophic levels. During the late productive season

the transfer are mainly facilitated by calanoid copepods as a result of their high lipid content,

efficient lipid turnover and high abundances. Pteropods, however, provide different essential

fatty acids to higher trophic levels, suggesting their complementary function in the food web.
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Global changes that will occur in the Arctic pelagic ecosystem will affect the primary production

of lipids and fatty acids since the phytoplankton community will likely shift to a dominance of

small cells. Therefore, particularly herbivorous zooplankton species will be affected by a change

of their diet. Species such as C. glacialis and P. minutus, which preferentially ingest/assimilate

diatoms may decrease in abundance while species feeding on flagellates may thrive. In addition,

thecosome pteropod species may disappear since there are highly vulnerable to acidification.

These future changes in zooplankton population dynamics and community composition may

negatively impact the transfer of lipids and specific EFA to higher trophic levels. It is hence of

major importance to conduct detailed studies on lipid turnover capacities of Arctic zooplankton

and higher trophic levels to better assess the vulnerability of the lipid-driven Arctic pelagic food

web to its changing environment.
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Zusammenfassung

Das arktische Nahrungsnetz zeichnet sich durch eine starke Saisonalität des Lichteinfalls und der

damit verbundenen Primärproduktion aus. Viele Arten haben daher die Fähigkeit entwickelt,

große Mengen an Lipiden zu speichern und so lange Phasen ohne Nahrung zu überdauern. Im

Pelagial nimmt das Zooplankton eine zentrale Rolle als Bindeglied zwischen den Primärproduze-

nten und den höheren trophischen Ebenen ein. Dabei hängt die Effektivität, mit der Lipide

und Fettsäuren zwischen den Komponenten des Nahrungsnetzes transferiert werden, von einer

Reihe ökologischer und physiologischer Aspekte ab, zum Beispiel der geographischen Verteilung,

dem Lebenszyklus, dem Lipidgehalt und davon, wie schnell Lipide assimiliert werden können.

Aufgrund der Klimaerwärmung werden sich die Zusammensetzung sowohl der Phyto- als auch

der Zooplanktongmeinschaften und damit die trophischen Interaktionen ändern. Es ist daher

essentiell, den Lipid- und Fettsäureumsatz des arktischen pelagischen Nahrungsnetzes besser

zu verstehen. Die vorliegende Studie untersucht die Rolle des Zooplanktons für den Lipidtrans-

fer zwischen Primärproduzenten und höheren trophischen Ebenen. Um Wissenslücken in der

Ökologie und Lipidbiochemie von einiger Schlüsselarten des arktischen Zooplanktons und zwar

Calanus glacialis, Pseudocalanus minutus und Oithona similis (Copepoda), Limacina helicina

und L. retroversa (thecosome Pteropoden) und Clione limacina (gymnosomen Peteropoden) zu

schließen, wurden Felduntersuchungen mit Experimenten und biochemischen Methoden kom-

biniert.

Der Lebenszyklus und die Verteilung der thecosomen Pteropoden wurden im Rahmen von

Feldstudien, die 2014 und 2015 in den Küstengewässern Spitzbergens durchgeführt wurden,

untersucht. Diese Untersuchungen hatten zum Ziel, die Verteilung von L. helicina und L.

retroversa mit Umweltparametern zu korrelieren und das Wachstum von Veligern und Juve-

nilen zu erfassen. Um die Fähigkeiten verschiedener Zooplanktonarten, Lipide und Fettsäuren

umzusetzen, zu untersuchen, wurden mehrere Nahrungsexperimente durchgeführt. Die Tiere

wurden dazu am Ende der produktiven Jahreszeit im Sommer und im frühen Herbst gefangen.

Konsumenten erster Ordnung wurden eine Woche (thecosome Pteropoden), beziehungsweise

drei Wochen (Copepoden), mit einer Mischung aus 13C-markierten Diatomeen und Dinoflagel-

laten gefüttert. Der Konsument zweiter Ordnung - C. limacina - wurde drei Wochen lang mit

13C-markierten Limacina-Arten gefüttert. Die Aufnahme von 13C in Fettsäuren und Alkohole

wurde mithilfe der isotopenanalytischen Methode CSIA (Compound Specific Isotope Analy-

ses) erfasst. Diese Kombination von CSIA und Markierungsexperimenten erlaubte eine genaue
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Analyse der Lipid- und Fettsäureumwandlung in zooplanktischen Organismen.

Die Ergebnisse der vorliegenden Studie zeigen, dass die Lipid- und Fettsäureassimilation der

Zooplanktonarten deren Lebenszyklus wiederspiegeln. Die arktischen herbivoren Arten C.

glacialis und P. minutus setzten Lipide sehr schnell um (1,3 bzw. 2,6% d−1) und synthetisierten

de-novo Wachsesther mit relativ hohen Raten (1,2 bzw. 3,3% d−1). Die spiegelt wieder, dass

diese Arten in kurzer Zeit große Energiereserven anlegen müssen, um ihren Lebenszyklus er-

folgreich abschließen zu können. Beide Arten nahmen bevorzugt die Fettsäurebiomarker der

Diatomeen (2,4 bzw. 4,6% d−1 versus 1,2 bzw. 1,3% d−1 Fettsäurebiomarker der Flagellaten)

auf bzw. assimilieren diese, was die hohe Wichtigkeit der Diatomeen als Nahrungsquelle unter-

streicht. Im Vergleich dazu zeigten die omnivoren Arten O. similis und L. helicina geringere

Lipidumsatzraten (0,1 bzw. 0,5% d−1), was eine von Lipidreserven unabhängigere Lebensstrate-

gie wiederspiegelt. L. retroversa hingegen setzte Lipide überraschend schnell um, obwohl die

Strategie der Nahrungsaufnahme dieser Art der von L. helicina entspricht. Durch De-novo-

Synthese bildeten alle omnivoren Zooplankter bedeutende Mengen an Langzeitenergiespeich-

ern, zum Beispiel Fettalkohole (O. similis : 0,2% d−1) und langkettige einfach ungesättigte

Fettsäuren (thecosome Pteropoden: 0,3-0,5% d−1). O. similis und L. helicina nahmen Fettsäure-

biomarker in gleichem Maße aus Flagellaten und Diatomeen auf bzw. assimilierten diese

(O.similis : 0,7 vs. 0,5% d−1, L. helicina: 0,1 vs. 0,1% d−1), was ihre opportunistische

Nahrungsstrategie reflektiert. Im Gegensatz dazu bevorzugte die subarktische Art L. retro-

versa Flagellaten im Vergleich zu Diatomeen (5,3 vs. 0,2% d−1). Bei der carnivoren Art C.

limacina wurde ein sehr langsamer Umsatz der Lipide gemessen (0,07% d−1), der damit erklärt

werden kann, dass nach der langen Hungerperiode in dieser Studie die Energie nur für den

Stoffwechsel und nicht zur Speicherung von Lipiden genutzt wurde. Durch De-novo-Synthese

bildete C. limacina substantielle Mengen an ungeradzahligen Fettsäuren (0,03% d−1), die als

Langzeitenergiereserven verwendet werden könnten, um die Schwankungen im Vorkommen der

einzigen Nahrungsquelle Limacina spp. zu überstehen.

Die Daten dieser Studie repräsentieren nur die Lipidassimilation der untersuchten Entwick-

lungsstadien und nur am Ende der produktiven Jahreszeit. Wahrscheinlich unterliegt jedoch

der Lipidstoffwechsel ausgeprägten jahreszeitlichen Schwankungen. Es ist davon auszuge-

hen, dass die höchsten Lipidumsatzraten im Frühjahr und die niedrigsten Raten während der

Überwinterung zu messen sind. Ebenso sind Abweichungen zwischen verschiedenen Entwick-

lungsstadien von Zooplanktonorganismen wahrscheinlich, da sich deren Bedürfnisse an den

x



Energiegehalt und an spezifischen Komponenten, die über die Nahrung aufgenommen werden,

unterscheiden.

Die essentiellen Fettsäuren, die die Primärproduzenten synthetisieren, werden durch das Zoo-

plankton an Konsumenten höherer Ordnungen weitergegeben. Diesen Transfer gewährleisteten

in meiner Studie am Ende der produktiven Zeit in der Arktis hauptsachlich die calanoiden

Copepoden, da sie sich durch einen hohen Lipidgehalt, einen effizienten Lipidumsatz und hohe

Abundanzen auszeichneten. Pteropoden lieferten andere essentielle Fettsäuren als die Copepo-

den und könnten damit eine komplementäre Funktion im Nahrungsnetz bekleiden.

Es ist möglich, dass aufgrund von Klimaveränderungen in Zukunft die kleinen Algenarten

die Phytoplanktongemeinschaft dominieren. Besonders das herbivore Zooplankton wäre von

Veränderungen an der Basis des Nahrungsnetzes betroffen. Die Abundanzen von Arten wie C.

glacialis und P. minutus, die bevorzugt Diatomeen aufnehmen/assimilieren, könnten sinken,

während die Abundanzen von Arten, die Flagellaten als Nahrungsquelle nutzen, zunehmen

könnten. Zusätzlich könnten die thecosomen Pteropoden aufgrund der Ozeanversauerung völlig

aus dem Ökosystem verschwinden. Diese Veränderungen hätten große Auswirkungen auf den

Transfer von Lipiden und essentiellen Fettsäuren im pelagischen Nahrungsnetz. Es ist es-

sentiell, dass die Kapazitäten des arktischen Zooplanktons, Lipide aufzubauen und trophis-

chen Ebenen verfügbar zu machen, detailliert untersucht werden, um die Anfälligkeit des auf

Lipiden basierenden pelagischen Nahrungsnetzes gegenüber veränderten Umweltbedingungen

besser beurteilen zu können.
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INTRODUCTION

1.1 Importance of lipids in the Arctic pelagic food web

1.1.1 The Arctic pelagic food web

Primary production in the Arctic marine food web is supported by algae growing under the

sea ice and phytoplankton in the open sea. Arctic primary producers are mainly composed of

diatoms and flagellates (Bursa 1963, Gradinger 1999, Leu et al. 2011). The secondary pro-

duction of the food web is performed by zooplankton species, of which copepods, amphipods

and, at times, pteropods are the most abundant (Iken et al. 2005, Wȩs lawski et al. 2007,

Blachowiak-Samolyk et al. 2008) (Fig.1). While some zooplankton species are herbivorous

and feed strictly on phytoplankton, others are omnivorous to carnivorous and feed on organic

matter and smaller zooplankton species (Graeve et al. 1994a). Zooplankton is a major food

source for various higher levels of consumers. Dominant fish species such as Arctic char feed on

zooplankton as well as on smaller fish species (Runge 1988, Heath and Lough 2007). Birds (i.e.

little auk, guillemot and kittiwake) also rely on zooplankton for their survival (Karnovsky et

al. 2008). Whales depend particularly on large amounts of copepods and pteropods (Meisen-

heimer 1905, Gilmer and Harbison 1991, Moore and Laidre 2006) while seals mainly feed on

fish (Finley and Evans 1983) and are preyed upon by the apex predator of the Arctic food web,

the polar bear (e.g. Stirling and Øritsland 1995).
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Polar bear 

Seal 

Birds 

Fish 

Whales 
Pteropods 

Copepods 

Phytoplankton 

Detritus 

Figure 1: Schematic representation of the Arctic pelagic food web. Arrows represent the transfer of
energy.

The Arctic food web is characterized by low species richness as compared to that of lower

latitudes (Rosenzweig 1995, Gaston and Blackburn 2000, Willig et al. 2003). The poor diversity

in Arctic ecosystems may be the result of complex interactions between various biotic and

abiotic factors. The reduced availability of energy is considered to be among the main drivers

of these interactions (Rohde 1992). In addition, the slow evolutionary speed caused by low

temperatures combined with the relatively young age of Arctic ecosystems result in a short

time for diversification (Rohde 1992, Mittelbach et al. 2007). The fact that only few species

channel the bulk of food to top predators implies that each species occupies an essential place

in the food web (Smetacek and Nicol 2005). Specifically, zooplankton plays a crucial role

as the link between primary producers and higher trophic levels (Tande and B̊amsted 1985,

Falk-Petersen et al. 1990, Gradinger et al. 2010, Bluhm et al. 2011).

1.1.2 Seasonality in high latitude ecosystems and adaptations of or-

ganisms

High latitude environments are characterized by an extreme seasonality of the light regime,

with midnight sun in summer and darkness in winter. In the high Arctic (>70 ◦N), the sun

first rises mid-February and sets in late October. The summer period, from mid-April to mid-

August, is characterized by continuous light (Fig.2). The increase of light intensity in spring
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1.1. IMPORTANCE OF LIPIDS IN THE ARCTIC PELAGIC FOOD WEB

triggers an intense bloom of primary producers. Ice algae begin to grow at low light intensity in

March and continue to grow until their sea ice substrate melts, in April/May (Hegseth 1998).
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Figure 2: Sun graph for the region of Longyearbyen, Svalbard (78 ◦N).

Pelagic phytoplankton production starts after the ice break-up and reaches maximal concentra-

tions in May/June (Falk-Petersen et al. 2000, Madsen et al. 2001, Ringuette et al. 2002, Hansen

et al. 2003). A temporal succession of different dominant taxa is observable, since diatoms dom-

inate in spring (April/May) and flagellates are most abundant in summer (July/August) (Leu

et al. 2006, Søreide et al. 2010, Hegseth and Tverberg 2013). Due to nutrient depletion and

decreasing light intensity in autumn (September/October), phytoplankton concentrations de-

crease to negligible levels that persist throughout winter (Vader et al. 2015).

The dominant factor to which Arctic species have to adapt is the extreme seasonality in food

supply (Clarke 1983). Most species from polar regions can withstand long periods of starvation

with the help of lipid reserves (Lee et al. 1971, Lee and Hirota 1973). Particularly zooplankton

species exhibit a large diversity of energy storage, which reflects their contrasting life strategies

(Sargent and Falk-Petersen 1988, Scott et al. 1999, Hagen and Auel 2001) (Box.1). Whether

their efficiency to assimilate lipids also varies depending on life strategies remains however un-

known.

Excess of available food during the short production period is converted into depot lipids by

zooplankton species, and largely transferred up the food web to the highest trophic levels (Scott
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et al. 1999, Dahl et al. 2003, Thiemann et al. 2007, 2008). This energy storage is utilized

by organisms to fuel metabolism and major life events, independently of ambient food levels

(Kattner and Hagen 1995). The survival of all trophic levels depends on their ability to store

sufficient amounts of energy from their diet in which zooplankton occupies a large fraction

(Dalsgaard et al. 2003, section 1.1.1).

Box 1: Lipid diversity and strategy of adaptations of Arctic zooplankton during food scarcity periods.
Modified from Wilhelm Hagen and Holger Auel.

Seasonal m
igration 

Diapause 
Extreme reduction  
of metabolism  

Long chain  
fatty acids/  

alcohols 

Energy storage 
  (wax esters) 

Constancy 
No reduction  
of metabolism 

   Short chain fatty 
acids/ alcohols 

  

   and/or 
 opportunistic feeding  

Variable fatty acid  
composition 

Flexibility 

  

     Reduction of  
metabolism 

Energy storage 
(TAG, DAGE,  

wax esters) 

Small  
  energy reserves  
    (wax esters, TAG) 

Opportunistic 
   feeding 

•  Herbivorous 
copepods 

•  Herbivorous 
copepods 

 
•  Monophagous 

pteropods 

•  Omnivorous 
copepods 

 
•  Omnivorous 

pteropods 

e.g. O. similis, L. 
helicina, L. retroversa 

e.g. C. limacina, P. 
minutus* 

e.g. C. glacialis, P. 
minutus* 

*P. minutus exhibits an intermediate strategy as it does not enter in true diapause  

1.1.3 Biosynthesis of lipids reserves

Types of storage lipids

Storage lipids provide energy for various processes such as ontogenic development, gonad mat-

uration, reproduction and metabolism during periods of low food supply (Kattner and Hagen

1995, Lee et al. 2006). The high-energy content of lipids (ca. 39 kJ g−1) offers an advantage

over proteins and carbohydrates (both ca. 17 to 18 kJ g−1) (Hagen and Auel 2001). Four typ-

ical classes of storage lipids are found in marine zooplankton: phospholipids, triacylglycerols

(TAG), wax esters and diacylglycerol ethers (DAGE) (Fig.3) (Lee et al. 2006). Phospholipids
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are key components of biomembranes. In zooplankton these polar lipids consist of 3 major

fatty acids: 16:0, 20:5(n-3) and 22:6(n-3) (Box.2), which are always present in high amounts in

organisms, independently of dietary changes (Lee et al. 1971, Falk- Petersen et al. 2000). A

portion of these phospholipids is also used as reserves, fueling for example gonad development

in copepods (Jónasdóttir et al. 2009).

Triacylglycerol (TAG) 

Wax ester 

Diacylglycerol ether (DAGE) 

Phospholipid 

Figure 3: Chemical structures of the four major lipid classes in zooplankton: phospholipid (16:0
and 22:6 fatty acids); triacylglycerol (TAG) (16:0, 18:4 and 18:1 fatty acids); wax ester (22:1 alcohol
and 18:4 fatty acid); diacylglycerol ether (DAGE) (16:0 alcohol, 22:6 and 17:1 fatty acids). Modified
from Lee et al. (2006).

TAG are the most common storage lipids in animals and are usually used as short term energy

reserves. They are characterized by a glycerol backbone esterified with 3 fatty acids (Lee et

al. 2006). Wax esters are major long term storage lipids in high latitude species. They consist

of simple esters of one long chain alcohol and one long chain fatty acid. DAGE are composed

of one ether-linked alkyl chain and 2 fatty acid esters at the glycerol backbone. Among Arctic

zooplankton, DAGE have been mainly found in the gymnosome pteropod C. limacina, in which

they reach considerable amounts (Lee 1974, 1975, Phleger et al. 1997, Falk- Petersen et al.

2001, Böer et al. 2005). They are used as long term energy reserves and are considered to be

de novo synthesized (Kattner et al. 1998, Böer et al. 2007). The composition of DAGE of C.
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limacina is unique, comprising a very large portion of odd chain fatty acids, such as 15:0, 17:0

and 17:1(n-8).

Box 2: Nomenclature of fatty acids and fatty alcohols.

Fatty acids and their radicals are named according to the IUPAC 
(International Union of Pure and Applied Chemistry) rules for the 
Nomenclature of Organic Chemistry. 
Fatty acids are always numbered with the carboxyl group as C1. 
 
For unsaturated fatty acids, the number of double bounds is 
indicated just after the numbering of carbon atoms. The position of 
double bonds is indicated in the form (n-x) where n represents the 
number of carbon atoms in the chain and x is the xth carbon bond 
counting from the terminal methyl end. For example, the position of 
the double bonds of stearidonic acid (trivial nomenclature), may be 
given as (n-3). 
 
 
 
 
 
 
 
 
 
 
 
Long-chain alcohols and the radicals derived from them are 
designated according to systematic nomenclature, but not by trivial 
names that are derived from those of fatty acids. 
 
  
 

methyl group 

carboxyl group 

Transfer of lipids in the food web

Ice algae and phytoplankton constitute the primary energy source in the Arctic pelagic food

web (Parsons 1963). They produce high-quality food that is best at the onset of their blooms,

when the irradience is low to moderate and the water characterized by high nutrient concen-

trations (Skerratt et al. 1995, Reuss and Poulsen 2002, Leu et al. 2011, Hessen et al. 2008).

These primary producers biosynthesize all of their constituents de novo, including a large por-

tion of fatty acids (Sargent and Henderson 1995, Cook 1996). Fatty acids in ice algae and

phytoplankton mainly consist of even numbered, saturated or unsaturated compounds with 12

to 24 carbon atoms (Pohl and Zurheide 1979, 1982, Wood 1988, Cobelas and Lechado 1989,
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Harwood and Jones 1989, Kayama et al. 1989). Among them, the polyunsaturated fatty acids

(PUFA) (n-6) and (n-3), which are only biosynthesized by primary producers, are essential

fatty acids (EFA) for heterotrophic organisms (Pohl and Zurheide 1979, Gurr and Harwood

1991, Cook 1996, Smith and Fitzpatrick 1996). The concentration of (n-3) and (n-6) PUFA in

primary producers and subsequent levels of the food web is therefore an important food quality

indicator (Jónasdóttir et al. 1995, Müller-Navarra 1995, Müller-Navarra et al. 2000, Wacker

and von Elert 2001). Previous studies reported a strong seasonality of fatty acid composition

in Arctic phytoplankton (Mayzaud et al. 1989, Skerratt et al. 1995, Reuss and Poulsen 2002).

This temporal dynamic is mainly driven by the succession of algal taxa, which are characterized

by different fatty acid profiles (Leu et al. 2006). Diatoms are enriched in 16:1(n-7), C16 PUFA

and 20:5(n-3) while flagellates contain high amounts of C18 PUFA and 22:6(n-3) (Kates and

Volcani 1966, Harrington et al. 1970, Fernandez-Reiriz et al. 1989, Volkman et al. 1989).

Most fatty acids are transferred without modification from primary producers to zooplankton

storage lipids and are referred to as trophic markers (FATM), as first described by Lee et al.

(1971). Herbivorous species exhibit a FATM signature that clearly reflects their diet (Sargent

and Henderson 1986). Therefore, the proportion of, for example, 16:1(n-7) and 18:4(n-3) in their

storage lipids can be used to evaluate the relative importance of diatoms and dinoflagellates in

their diet (Graeve et al. 1994b, Scott et al. 1999). Omnivorous and carnivorous species have

much more complex diets, resulting in more diverse lipid signatures than herbivorous species

(Daalsgard et al. 2003). A typical marker of these feeding strategies is however, the presence

of the fatty acid 18:1(n-9) in high amounts (Falk-Petersen et al. 2000). Some zooplankton

species are capable of de novo synthesizing specific lipid compounds (Daalsgard et al. 2003),

(Box.3). For example, the large Arctic calanoid copepods synthesize high amounts of long

chain monounsaturated fatty acids and fatty alcohols with 20 and 22 carbon atoms (Sargent

and Henderson 1986). These compounds are recognized as markers for a calanoid-dominated

diet in higher trophic levels, specifically fish and birds (Graeve et al. 1994a, 1994b, Kattner et

al. 2007). The gymnosome pteropod C. limacina also has the capacity to de novo synthesize

fatty acids. It is the only known zooplankton taxa to synthesize odd chain fatty acids (Kattner

et al. 1998, Falk-Petersen et al. 2001, Böer et al. 2005).

The lipid compounds that are assimilated and de novo synthesized by zooplankton (Lee 1975,

Sargent and Henderson 1986, Falk-Petersen et al. 1987, 2000, Lee et al. 2006) are transferred

through the food web without major modification (Falk-Petersen et al. 1990, 2004, Dahl et al.

2003). While the crucial role of zooplankton in the lipid-based Arctic pelagic food web is well
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Box 3: Fatty acid biosynthesis of Arctic phytplankton and zooplankton. Diatom FATM are indicated
in green and flagellate FATM in blue. Elongation (E), β−oxidation (S) and desaturation (∆) are the
main processes involved in fatty acid modifications in organisms. Fatty acids are elongated by an
elongase enzyme. Desaturation is done by a fatty acid desaturase enzyme. The number associated
to ∆ indicates the position where a double bond is created, from the carboxyl end. Fatty acids
are broken down by means of β−oxidation, primarily facilitated by the mitochondrial trifunctional
enzyme complex. Modified from Martin Graeve.

14:0 
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recognized, there is nearly no information about how quickly the community is able to transfer

lipids from primary producers to higher trophic levels (but see Graeve et al. 2005).

1.2 A changing Arctic

The Arctic region is experiencing intense warming (ACIA 2004, Kaplan and New 2006, Chepurin

and Carton 2012), which has accelerated during the last decades (Comiso et al. 2008). Since

1982, a warming of 0.5 ◦C per decade has been reported for Arctic sea surface temperatures

(SST) (Timmermans and Proshutinsky 2015, 2016). Particularly the European part is warming

at a rate 2-3 times faster than the global average trend (Manabe et al. 1992, ACIA 2004, IPCC

2007). Rising air temperatures, increasing precipitation and higher river inflows are leading

to a large and rapid change in the upper Arctic ocean layers (Li et al. 2009). This change is

accelerated by the decrease of surface albedo due to ice and snow melt (Overpeck et al. 1997)

and the elevated inflow of abnormally warm Atlantic waters by the intensified North Atlantic

Current over the past decades (Dickson et al. 2000, Hansen et al. 2004, Holliday et al. 2008,

2009).
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The dramatic losses of ice include a decrease of the perennial sea ice cover by 9-14% per decade

(Johannessen et al. 1999, Comiso 2002, Nghiem et al. 2007, Serreze et al. 2007, AMAP 2011,

Stroeve et al. 2012). The full ice cover, i.e. the combination of perennial and seasonal sea ice,

has also been decreasing, at the lower rate of 3% per decade (Bjorgo et al. 1997, Parkinson et

al. 1999, Parkinson and Cavalieri 2002). Reduction in sea ice thickness and area will alter the

current primary production regime due to earlier ice break-up and earlier onset of the phyto-

plankton bloom (Tremblay et al. 2006, Arrigo et al. 2008, Pabi et al. 2008, Søreide et al. 2010).

Also, as the period with available light becomes longer in the water, an earlier and enhanced

primary production can be expected throughout the year (Kahru et al 2011). However, the

combination of warmer SST and increased inflow of freshwater in the surface layers will cause

a stronger stratification. Phytoplankton may hence be affected by a depletion of nutrients in

surface waters, resulting in a lower primary production (Li et al. 2009). Also the community

composition may change: under low nutrient conditions, small cells may thrive as they are more

efficient to assimilate nutrients than larger cells due to their larger surface area/volume ratio

(Li et al. 2009, Tremblay et al. 2009). In future decades, the Arctic ecosystem may hence be

characterized by a low production and biomass of large phytoplankton cells such as diatoms and

a high abundance of smaller cells such as flagellates (Li et al. 2009, Ardyna et al. 2011). These

changes will likely have large consequences on the quantity and quality of lipid compounds avail-

able for zooplankton, with possible repercussions on the energy transfer to higher trophic levels.

The increased temperatures combined with the elevated Atlantic inflow result in the introduc-

tion of non-native species to the Arctic ecosystem (Bollens et al. 2002 and references therein).

The thecosome pteropod community for example, might shift from a dominance of the Arctic

L. helicina towards a dominance of the smaller Atlantic species L. retroversa (Bauerfeind et al.

2014). Another aspect of the changing Arctic is the acidification of seawater. Anthropogenic

CO2 is absorbed in the water and induces a decrease in pH and carbonate ion concentration (Orr

et al. 2005, McNeil and Matear 2008), which will reduce the calcite and aragonite saturation

state. Local observations as well as modeled projections suggest that Arctic surface waters will

become regionally and/or seasonally under-saturated within less than a decade (Orr et al. 2005,

Steinacher et al. 2009, Yamamoto-Kawai et al. 2009). Ocean acidification has been proved

to affect calcification, growth, development and metabolism of several marine species, such as

calcifying phytoplankton, echinoderms, bivalves, coral and crustaceans (e.g. Riebesell et al.

2000, Kurihara 2008, Pörtner 2008). In the Arctic pelagic food web, thecosomes pteropods are

expected to be the most vulnerable organisms to acidification due to their aragonite shell (Lalli
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and Gilmer 1989, Orr et al. 2005, Seibel et al. 2007). A possible decline in the population may

have large impacts on their predators and therefore on the entire lipid-based food web as well

as on the biogeochemical cycling of carbon.

1.3 The studied species

1.3.1 Copepods

Copepods constitute one of the major zooplankton taxa in Arctic seas (Iken et al. 2005,

Wȩs lawski et al. 2007). While large copepod species of the genus Calanus are dominant with

regard to biomass (Conover and Huntley 1991, Mauchline 1998, Ringuette et al. 2002, Nielsen

et al. 2007, Søreide et al. 2008), small copepods species such as Pseudocalanus minutus and

Oithona similis prevail in terms of abundance (Auel and Hagen 2002, Hopcroft et al. 2005,

Svensen et al. 2011). The copepod community plays a key role in the Arctic pelagic food web

and hence largely influences the energy flow and functioning of productive marine ecosystems

(Tande 1991, Longhurst 1998). This section briefly describes the species and their life cycle

characteristics. Information about their lipid strategies is gathered in Table 1.

Calanus glacialis

C. glacialis is one of the three major large calanoid copepods (maximum size of 3.5-5.2 mm)

(Fig.4) in the Arctic Ocean, together with C. hyperboreus and C. finmarchicus (Conover and

Huntley 1991, Ringuette et al. 2002, Søreide et al. 2008). Among zooplankton species in the

Arctic shelf seas, C. glacialis prevails, accounting for up to 80% of the zooplankton biomass

(Tremblay et al. 2006, Blachowiak-Samolyk et al. 2008, Søreide et al. 2008).

0.5 mm 
Lauris Boissonnot 

Figure 4: The Arctic calanoid copepod Calanus glacialis.
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C. glacialis is a herbivorous filter-feeder that mainly feeds on diatoms (Falk-Petersen et al.

2009, Søreide et al. 2010). The species has a 1 to 3 year life cycle and reproduces in April-

June. It relies on the phytoplankton bloom to support its growth from nauplii to copepodites,

mainly during spring and summer. In late summer, the species descends to deep waters to

survive the long and dark food-depleted winter in diapause (Hirche 1998, Freese 2015). The

main overwintering stages are copepodite stages CIV and CV (Falk-Petersen et al. 2009).

Overwintering individuals develop into females in mid-winter and ascend to surface waters in

spring to feed and reproduce (Kosobokova 1999).

C. glacialis is one of the only 3 species (together with C. hyperboreus and C. finmarchicus) for

which lipid turnover rates have been investigated, from a diet exclusively composed of diatoms,

and estimated at about 3% d−1 (Graeve et al. 2005).

Pseudocalanus minutus

P. minutus is a calanoid copepod that reaches a maximum size of 1.4-2.2 mm (Fig.5). It is

mainly distributed in the Arctic Ocean with southward extensions in the western North Atlantic

and western North Pacific (Grainger 1965, Frost 1989). In Arctic shelf seas the species is very

numerous, contributing to 75% of the total zooplankton abundance at times (Hopcroft et al.

2010).

0.5 mm 
Russ Hopcroft 

Figure 5: The Arctic calanoid copepod Pseudocalanus minutus.

P. minutus is described as a mainly herbivorous filter feeder (Corkett and McLaren 1979,

Norrbin et al. 1990) that feeds on diatoms in spring and summer and on flagellates and small

metazoans in autumn and winter (Lischka and Hagen 2007). The species is characterized by

11



1. INTRODUCTION

short developing season in spring-summer and a long resting period in winter. The life cycle is

considered to last 1 to 1.5 years (Norrbin 1991, Lischka and Hagen 2005). Reproduction occurs

during the phytoplankton bloom in May-June (Marshall 1949, Pertsova and Kosobokova 1996,

Lischka and Hagen 2005). Food supplies appear to be essential for egg production and spawning

(Corkett and McLaren 1979, Niehoff and Runge 2003). P. minutus overwinters mainly as

copepodite stages CIII-CV (Kwasniewski 1990, Norrbin 1991, Lischka and Hagen 2005). The

species does not enter true diapause, but feeds omnivorously throughout the winter although

with a considerably reduced metabolism (Davis 1976, 1984, Norrbin et al. 1990, Norrbin 1994).

Migration toward deep layers has been observed between November and January (Lischka and

Hagen 2005).

Oithona similis

O. similis is a cyclopoid copepod that reaches a maximum size of 0.7-1.0 mm (Fig.6). It is

one of the most frequently reported species in the Arctic (Auel and Hagen 2002, Walkusz et al.

2003, Møller et al. 2006, Daase and Eiane 2007, Madsen et al. 2008), contributing up to 40%

of the total zooplankton abundance (Kosobokova and Hirche 2000). It can hence constitute a

significant part of copepod biomass and secondary production (Nielsen and Andersen 2002).

This small copepod is an ambush feeder and has an omnivorous to carnivorous feeding mode

(Drits and Semenova 1984, Nielsen and Sabatini 1996). It feeds preferentially on motile preys

such as flagellates and protists (Drits and Semenova 1984, Svensen and Kiørboe 2000). In

addition, some studies suggest that it could feed on suitably shaped diatoms (Kattner et al.

2003, Lischka and Hagen 2007).

0.2 mm 
Janne E. Søreide 

Figure 6: The Arctic cyclopoid copepod Oithona similis.
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The species is considered to have a 1 year life cycle (Lischka and Hagen 2005). Its life strat-

egy differs from that of the Arctic calanoid copepods, as does not overwinter in diapause, but

stays active in the upper layer of the water column (Conover and Huntley 1991, Lischka et al.

2007). In the high Arctic, the species shows a continuous reproduction with two major repro-

ductive events, one in June and one in August/September (Lischka and Hagen 2005, Narcy

et al. 2009). Hence, two generations co-occur: the first generation appears in July as stages

CI-CIII and complete its development until August/September (Corkett and McLaren 1986).

The second generation occurs as nauplii and early copepodites in November and develops to

adults until May (Lischka and Hagen 2005). Such fairly rapid completion of a single generation

cycle of O. similis has also been described by Grainger (1959).

1.3.2 Pteropods

In Arctic waters, holoplanktonic mollusks are only represented by few species of the class

Gastropoda (Lalli and Gilmer 1989). They include the shelled pteropods (thecosomes), which

are commonly known as “sea butterflies” and the naked pteropods (gymnosomes), usually

referred to as “sea angels”. Even though these organisms can reach high biomass and have

significant impacts on the ecology of pelagic Arctic communities (Dadon 1990, Hunt et al.

2008), they are little studied. The distribution and life cycle strategies of the species are

described in this section Their lipid strategies are summarized in Table 2 for easier comparison

with those of copepods (Table 1).

Thecosome pteropods - Limacina helicina and L. retroversa

Thecosome pteropods are significant contributors to marine biogeochemical cycles. They fix

inorganic carbon in surface waters by producing an aragonite shell and export it to the sea floor

by sinking after death (Berner 1977, Fabry 1990). They can reach high abundances at times,

and trend to gather in large swarms due to processes that remain poorly understood (Sakthivel

1972, Gilmer and Harbison 1991, Falk-Petersen et al. 2001, Karnovsky et al. 2008). The

two species L. helicina and L. retroversa are the only thecosome pteropods observed in Arctic

waters (Borchgrevink 1905, Lalli 1970, Conover and Lalli 1972, Smidt 1979, Boysen-Ennen and

Piatkowski 1988, Lalli and Gilmer 1989, Kattner et al. 1998) (Fig.7). While L. helicina reaches

a maximum size of 8 mm (Gannefors et al. 2005), L. retroversa is much smaller and does not

grow larger than 3 mm (Hsiao 1939, Katter et al. 1998, Lischka et al. 2012). L. helicina is
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1.3. THE STUDIED SPECIES

a polar species and can occur in high densities in Arctic marine ecosystems (Kerswill 1940,

Kobayashi 1974, Lalli and Gilmer 1989, Cooney et al. 2001). In contrast, L. retroversa is a

boreal species and is usually associated, in the Arctic, to Atlantic water inflow (Chen and Bé

1964, van der Spoel 1967, Bé and Gilmer 1977, Hopkins 1985, 1987).

Modified from Russ Hopcroft 

1 mm 

a. b. 

Figure 7: The thecosome pteropods (a.) Limacina helicina and (b.) L. retroversa.

Both L. helicina and L. retroversa are omnivorous and feed by excreting a mucous web, in

which food particles become entangled (Gilmer 1972, Harbison and Gilmer 1992). Their diet

mainly consists of diatoms and flagellates, but also of detritus and small zooplankton (Gilmer

and Harbison 1991, Gannefors et al. 2005). They graze at high rates and can thus impact

phytoplankton biomass (Perissinotto 1992, Bernard and Froneman, 2009).

The life cycle duration of L. helicina is still under debate. Some studies suggest that individuals

reach maturity in one year and die after reproduction (Fabry 1989, Gannefors et al. 2005, Hunt

et al. 2008) while others suggest a longer life span, with at least two overwintering periods

(Kobayashi 1974, Bednars̆ek et al. 2012). L. helicina develops into adults in summer and

reproduces in late summer/autumn (Gannefors et al. 2005). Veligers and juveniles constitute

the main overwintering stages. Whether or not they grow and develop during this period or

during the following spring/summer remains unclear (Gannefors et al. 2005, Lischka et al.

2012, Bednars̆ek et al. 2012). The life cycle of L. retroversa is poorly understood. Some

studies conducted in sub-polar environments suggested a 1 year life cycle, with a reproductive

event in spring (Hsiao 1939) or in autumn (Meinecke and Wefer 1990). More likely however,

they reproduce constantly through the light season, with peaks in spring and autumn (Lebour

1932, Dadon and De Cidre 1992). Whether or not L. retroversa is only an expatriate or able

to complete its life cycle successfully in Arctic waters is still unknown (Lischka et al. 2012).
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1. INTRODUCTION

Gymnosome pteropods - Clione limacina

Clione limacina is a bipolar species (Fig.8). It is the only representative of gymnosome

pteropods in Arctic waters and its distribution extends southwards into sub-Arctic waters in

both the North Atlantic and the North Pacific (Lebour 1931). It can reach a maximum size of

70-80 mm (Böer et al. 2005). C. limacina is considered as a monophagous species, feeding ex-

clusively on L. helicina in Arctic waters and on L. retroversa in Atlantic waters (Meisenheimer

1905, Lalli 1970, Conover and Lalli 1972, Hopkins 1985). In turn, C. limacina constitutes an

important food source for baleen whales, seabirds and planktivorous fish (Lebour 1931, Lalli

1970).

When hunting, C. limacina swims in circles around its prey, with its 6 buccal cones everted,

which are to capture the shell of Limacina spp. (Lalli and Gilmer 1989). Once the prey

captured, C. limacina holds the shell with these buccal cones and inserts chitinous hooks,

evaginated from paired sacs, in combination with its radula to extract Limacina spp. from its

shell (Conover and Lalli 1972). C. limacina has never been observed to feed on dead Limacina

spp. or empty shell, suggesting that the trigger of predation behavior involves chemical pro-

cesses and/or a response to the wing movements of the prey (Lalli and Gilmer 1989).

Alexander Semenov 
1 mm 

Figure 8: The gymnosome pteropod Clione limacina. Illustration of the buccal cones evagination,
typical of a hunting behavior.

The life cycle of C. limacina is poorly understood, but may last at least 2 years in the high Arc-

tic (Böer et al. 2005). The species seems to reproduce at low levels throughout the entire year,

with an intense peak of spawning in spring/summer (Mileikovsky 1970). However, while most

16



1.3. THE STUDIED SPECIES

of the stages are present year-round, the overall population structure shows a clear change from

larvae in spring to adults in summer, with the largest specimens occurring in autumn (Böer et

al. 2005).
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1.4. AIMS AND OUTLINES OF THIS THESIS

1.4 Aims and outlines of this thesis

In a context of climate warming, Arctic seas are affected by several changes at physical, chem-

ical and biological levels, possibly leading to dramatic shifts in the lipid-driven pelagic food

web. It is therefore essential to better understand how lipids are transferred from the base

of the food web up to high trophic levels, via zooplankton. The capacity of zooplankton to

efficiently transfer lipids within the food web depends on several aspects, including the impor-

tance of species in terms of abundance and biomass, their life cycle strategies, ingestion rates,

and rapidity to convert food into lipid reserves. Several gaps exist in the comprehension of

the ecology and biochemistry of main zooplankton species. Regarding their distribution and

life cycle strategies, several studies focused on the large copepods of the genus Calanus and,

at a lower level, on the small copepods P. minutus and O. similis. However there is a major

lack of knowledge regarding the life history of pteropods. Their population structure, life span

and growth rates are poorly understood and still under debate. Regarding zooplankton lipid

biochemistry, the time that organisms need to turnover their fatty acids and fatty alcohols has

only been determined for Calanus spp. (Graeve et al. 2005). No previous effort has been made

to evaluate the lipid turnover rates of other main components of the zooplankton community,

namely small copepods and pteropods.

This study combines field observations and experimental work with innovative methods to fill

the gaps of knowledge in the ecology and lipid biochemistry of zooplankton. It ultimately aims

at better comprehending the overall zooplankton capacity to transfer lipids in the Arctic pelagic

food web. The main objectives of this thesis are:

I. To relate the lipid turnover of the small copepods species P. minutus and O. similis to their

life-cycle strategies (Manuscript I)

Feeding experiments with copepods were conducted during 3 weeks, using a 13C labeled diatom-

flagellate mix diet. The lipid and fatty acid assimilation was investigated by compound specific

isotope analyses (CSIA). The underlying hypothesis was that herbivorous copepods such as P.

minutus exhibit a more efficient lipid turnover than omnivorous copepods such as O. similis.

II. To investigate the distribution and life-cycle patterns of the Arctic thecosome pteropods L.

helicina and L. retroversa (Manuscript II)

Field observations were conducted during 2 complete years in a Svalbard fjord. The aim was
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1. INTRODUCTION

to relate the distribution of L. helicina and L. retroversa to environmental parameters and to

investigate annual growth of veligers and juveniles. This study was based on the hypothesis

that L. helicina is present year-round and fulfills its life cycle in Svalbard whereas L. retroversa

is only advected by Atlantic water masses and cannot reproduce in high latitudes.

III. To understand the lipid turnover of the thecosome pteropods L. helicina and L. retroversa

and estimate the transfer of lipids to their predator C. limacina (Manuscript III)

Feeding experiments with thecosome pteropods were conducted during one week, using the same

protocol as in the experiment with copepods. In addition, C. limacina was fed 13C labeled L.

retroversa during 3 weeks. The lipid and fatty acid assimilation was analyzed by CSIA. The

hypothesis was that both L. helicina and L. retroversa have a low lipid turnover corresponding

to their omnivorous feeding strategy whereas the monophagous C. limacina exhibits a very

efficient lipid turnover.
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2

MATERIAL AND METHODS

This chapter gives a brief overview of the sampling procedure, experimental work and analytic

methods, which were used in this thesis. Detailed descriptions are given in the respective

manuscripts (I - III).

2.1 Study area

This study is based on field observations and sampling performed in fjords on the west coast

of Svalbard and in the Arctic Ocean, north of Svalbard. Svalbard archipelago is located at

76-80 ◦N and surrounded by the Fram Strait, the Barents Sea, the Arctic Ocean, and the

Norwegian Sea (Fig.9). The major import of heat is the West Spitsbergen Current (WSC), the

northernmost branch of the Norwegian Atlantic Current (NAW), which forms a continuation

of the Gulf Stream (Aagaard et al. 1987, Schauer et al. 2004). The WSC flows northward

along the continental shelf of West Spitsbergen (Schauer et al. 2004). It transports Atlantic

water (AW) that is characterized by a temperature >3 ◦C and a salinity >34.9 psu (Swift and

Aagaard 1981, Swift 1986, Hopkins 1991, Daase and Eiane, 2007). The other major water mass

around Svalbard is the cold and less saline Arctic water (ArW), which flows northward in a

west coastal current (Schauer et al. 2004). ArW is characterized by a temperature <1 ◦C and

a salinity <34.7 psu (Svendsen et al. 2002, Daase and Eiane, 2007).

The shelves are normally dominated by ArW, whereas off-shelf and deep waters are often
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2. MATERIAL AND METHODS

Barents Sea 

Arctic Ocean 

Norwegian 
Sea 

Fram Strait 

Figure 9: Map of Svalbard showing the major currents. Off the coast of western Spitsbergen is the
West Spitsbergen Current (WSC, red) and the Arctic coastal water (ArW, blue). The dashed black
line indicates the frontal area between the two currents.

strongly influenced by AW (Løyning 2000, Sundfjord et al. 2008). However these water masses

are substantially modified by different processes including mixing, atmospheric heating and

cooling, ice freezing and melting, precipitation and evaporation (Pfirman et al. 1994). As a

result of mixing, AW circulating near shores and entering in the fjords is colder and less saline

(1<T<3 ◦C, 34.7<S<34.9 psu) than the water in the core of the WSC and is considered as

Transformed Atlantic Water (TAW) (Svendsen et al. 2002). During summer, ice melting, river

runoff and precipitations create an additional water mass that is referred to as surface water

(SW). This layer is characterized by low salinity (S<34.3 psu) (Loeng 1991, Harris et al. 1998).

AW and ArW are a major driving force in controlling the distribution of species and the trophic

structure of the marine ecosystem of Svalbard and the Barents Sea (Wassmann et al. 2006).

2.2 Fieldwork

Fieldwork was conducted year round in 2012/2013 for the thecosome distribution study and

in summer/autumn in 2014 and 2015 for feeding experiments and lipid investigations. Table 3

gives an overview of all samples collected in the frame of this thesis, both for field observations

and feeding experiments.
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2. MATERIAL AND METHODS

2.2.1 Distribution study of thecosome pteropods

The zooplankton community was sampled every month (when the meteorological conditions

allowed) in 2012 and 2013, in Isfjorden/Adventfjorden, at IsA station (78.26 ◦N, 15.54 ◦E)

(Fig.10). Sampling was done on board of a PolarCirkel from UNIS, using a WP2 net (60 µm

mesh size, 0.25 m2 aperture) for vertical hauls (65-0 m).

Adven&jorden	
  

Is-orden	
  

Figure 10: Map of Isfjorden and Adventfjorden showing the sampling station IsA (78.26 ◦N, 15.54
◦E) and the meteorological station Svalbard Lufthavn (78.24 ◦N, 15.50 ◦E).

The water mass properties (salinity, temperature, and density) and fluorescence were measured

vertically at each sampling event at IsA station, from bottom to surface using a hand-held CTD

with a fluorometer attached (CTD, SAIV A/S). The data of air temperature, precipitation, wind

direction and wind speed were provided by the Norwegian Meteorological Institute. This data

set includes measurements conducted every 6 hours from January 2012 to December 2013 at

the station Svalbard Lufthavn, (78.24 ◦N, 15.50 ◦E) (Fig.10).

2.2.2 Sampling for feeding experiments and lipid investigations

C. glacialis was sampled in Billefjorden, at BAB station (78.66 ◦N, 16.74 ◦E) (Fig.11), on board

of a PolarCirkel from UNIS, by vertical hauls from 100 m to surface using a WP2 net (200 µm

mesh size, 0.25 m2 aperture). P. minutus and O. similis were sampled on 29 July 2014 at BAB

station, following the same protocol as for C. glacialis but using a 60µm mesh size WP2.
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2.2. FIELDWORK

Kongsfjorden 

a. b. 

Figure 11: Sampling stations (a.) BAB in Billefjorden (78.66 ◦N, 16.74 ◦E), IsA in Isfjor-
den/Adventfjorden (78.26 ◦N, 15.54 ◦E) and (b.) KB3 in Kongsfjorden (79.00 ◦N, 11.23 ◦E).

The thecosome pteropods L. retroversa (adults) and L. helicina (juveniles and adults) were

sampled in 2014 and 2015, in Kongsfjorden, at KB3 station (79.00 ◦N, 11.23 ◦E) and in Isfjor-

den/Adventfjorden, at IsA station (Fig.11).

The field campaign for thecosome pteropods started in early July 2014. No thecosome was

found until 14 August of the same year despite an intensive sampling in Isfjorden, using WP2

and WP3 nets on board of a PolarCirkel. From this date on, L. retroversa was sampled mainly

in Grønnfjorden where its presence was relatively constant. Regular sampling of L. retroversa

continued until October 2014, and the specimens were used for various preliminary feeding

experiments (see section 2.3.2). Specimens sampled for the feeding experiment based on 13C

labeled diet were captured on 23 September in Kongsfjorden, at KB3 station (Fig.11) on board

of RV Helmer Hanssen, by vertical hauls (100-0 m) using a WP3 net. In turn, specimens that

were used as food for C. limacina were sampled following the same procedure, in Isfjorden,

every 3-4 days from 20 September to 10 October. During the entire field campaign of 2014,

only one single specimen of L. helicina adult was observed (27 July, Billefjorden).

In contrast to 2014, 2015 was characterized by high abundances of L. helicina and almost no

L. retroversa (3 specimens in total). L. helicina adults appeared in Isfjorden as early as May

2015, but for logistic reasons, sampling started in early July. Adults were at first sampled

with WP3 nets, by oblique trawling (80-0 m during 15 min.), but this method was abandoned
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2. MATERIAL AND METHODS

due to extremely high mortality of animals apparently caused by damaged shells. Horizontal

trawling with WP3 was also tried and abandoned due to similarly high mortalities. Finally,

L. helicina adults were sampled by snorkeling, using a scoop net, in Adventfjorden on 28 July

2015 (Fig.11). Further specimens used as food for C. limacina were captured with the same

procedure in Adventfjorden, in July/August. L. helicina juveniles were found from mid-August

on and were sampled at IsA station (Fig.11) on board of a PolarCirkel on 22-29 September,

using WP2 nets since they were less fragile than the adults.

The gymnosome pteropod C. limacina was very rarely found in Isfjorden in 2014, despite

intensive sampling on board of a PolarCirkel, from early July to mid-October. Only three

animals were captured in total, by oblique trawling with WP3 on 15 July 2014. In 2014, most

C. limacina individuals were therefore sampled in the Arctic Ocean, north of Svalbard, in July

2014 on board of RV Lance, by vertical hauls from bottom to surface with a MIK net (method

Isaac Kid; opening 3.14m2, mesh size 1.5 mm and net bag 7 m long).

In 2015, C. limacina individuals were regularly observed in Isfjorden in summer-autumn. They

were sampled for a feeding experiment based on L. helicina adults on 28 July 2015 on board

of a PolarCirkel by oblique trawling with WP3 net (80-0 m during 15 minutes).

2.3 Experimental work

Feeding experiments with the copepods C. glacialis, P. minutus and O. similis and the pteropods

L. helicina, L. retroversa and C. limacina were conducted in UNIS laboratories in 2014 and

2015. All experiments but one consisted in a 2-levels food web with a primary producer repre-

sented by a flagellate-diatom mix and a primary consumer, i.e. copepod or thecosome pteropod.

The only exception was a feeding experiment with a 3-levels food web including the algal mix-

ture, a thecosome pteropod and C. limacina.

2.3.1 Algal cultures

Single cultures of diatoms (Chaetoceros debilis and Contricribra weissflogii) and flagellates

(Rhodomonas salina and Dunaliella salina) were grown under similar conditions for all feeding

experiments in 2014 and 2015. Light conditions were set at a 12h light:12h dark day cycle

(50 µmol m−2 s−1 for the light period incident radiation was measured with surface reference

sensor in air LI-190, LI-COR). R. salina and C. debilis were kept at 4 ◦C, C. weissflogii and
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2.3. EXPERIMENTAL WORK

D. salina were kept at 15 ◦C since they were growing faster than at 4 ◦C. All algae were grown

in a medium constituted of 0.7 µm filtered seawater enriched with f/2 Guillard medium (15

mL L−1). Extra silicate was added to the medium for diatoms (2 mL L−1) to ensure optimal

growth. The culture medium was labeled with 13C sodium bicarbonate prior addition to the

algal cultures, with a concentration that was decreased between the experiments conducted

in 2014 and the ones of 2015. This is discussed into more details in section 4.1. Prior to

feeding of the animals, algal cells were counted with a haemacytometer (Schoen 1988) and Chl

a concentrations were measured by fluorometry using methanol as the extracting solvent (Holm-

Hansen and Riemann 1978). Thereafter algal cultures were added to the bottles containing the

animals in excess concentrations and with a ratio 1:1 of flagellate cells:diatom cells. In addition,

samples for lipid analyses were taken by filtrating duplicates of 5 mL of each algal culture on

0.7 µm GF/F filters.

2.3.2 Set up of feeding experiments

Immediately after arrival at UNIS, living and clearly active (swimming behavior) animals were

sorted using a methodology summarized in Table 4.

Similar experimental conditions were set up for all feeding experiments with copepods and

pteropods, in terms of diet (see section 2.3.1), light regime (24:24 h, 50 µmol m−2 s−1) and

temperature (3-4 ◦C).

One experiment was set up with 50 O. similis females and 25 P. minutus CV, which were trans-

ferred together into 15 glass bottles containing 1 L of 0.7 µm filtered seawater (three replicates

for each of the five sampling dates). Another experiment was set up with 15 C. glacialis that

were also transferred into 15 glass bottles. For these two experiments, three in situ replicates

(Day 0) with the same number of copepods were immediately frozen at -80◦C (without any

preservative). (Table 5). Two thirds of the water in all bottles was changed every 3-4 days

in order to feed the copepods and maintain ambient oxygen concentrations. Simultaneously

(from Day 6-7 on), 3 of the bottles were completely emptied and the animals were counted and

deep-frozen in triplicates at -80 ◦C for subsequent lipid analyses (Table 5). The experiments

lasted 21 days in total.

Thecosome pteropods were less easy to handle in experimental conditions than copepods. At

first, in August 2014, L. retroversa adults were transferred into aquaria containing 110 L of 1 µm
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2. MATERIAL AND METHODS

filtered seawater (Fig.12). These aquaria were specifically designed to culture pteropods, with a

pump system creating a continuous circular flow intended to keep the animals in suspension (see

Howes et al. 2014). However, massive mortalities occurred in this system (no survival after 24h,

nthecosome = 200), independently of the flow speed that was progressively decreased from 120 to

80 L h−1. A further trial was done, with the addition of antibiotics in the water ((JBL Ektol

bac, JBL GmbH & Co. KG, 1 mL 100 L−1)), as recommended by Howes et al. (2014). This

treatment induced even higher mortalities of the thecosomes with the totality of individuals

dying in less than 10 hours (nthecosome = 200). This culturing method was therefore abandoned.

Instead, thecosome pteropods were kept in 1 L glass bottles, with as little disturbances as

possible. Since survival rates were much improved, at least for 5-6 days, this method was

selected.

Pump 

Circular flow 

Figure 12: Schematic representation of the aquaria designed for culturing pteropods. The arrows
represent the flux of water generated by the pump.

A successful first experiment was conducted with L. retroversa adults, starting on 23 Septem-

ber 2014 and lasting 6 days. At Day 0, three in situ replicates of 5 animals were frozen at

-80 ◦C (Table 5). Two thirds of the water in all bottles were changed every other day to feed

the thecosomes with the labeled algal mix-diet and to maintain high oxygen concentrations. In

parallel, three bottles were emptied and the animals deep-frozen in triplicates for lipid analyses.

The same experimental protocol was followed in 2015 in the experiments with L. helicina adults

and juveniles (Table 5).

C. limacina were transferred in the 110 L aquaria (40-50 animals x 3 aquaria) and were kept in

filtered sea water while waiting for feeding with Limacina spp. In 2014, due to the adjustments

of L. retroversa culturing as explained in the previous paragraph, C. limacina were kept without
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food for 10 weeks. During this period, half of the water was renewed twice a week to maintain

high oxygen concentrations. During the 10 weeks of starvation, mortality was quasi-negligible

in aquaria. A side trial using antibiotics (JBL Ektol bac, JBL GmbH & Co. KG, 1 mL 100

L−1) was done with 5 C. limacina that were each kept in a glass bottle containing 1 L of filtered

seawater, bu as with thecosomes, survival was higher without antibiotics.

Feeding started on 23 September 2014 with L. retroversa that had been previously fed with

labeled algae for 3 days. To keep track of the feeding success, C. limacina were individually kept

into glass bottles containing 1 L of 0.7 µm filtrated seawater. Five (on 23 and 25 September)

and thereafter three (on 8,10 and 13 October) active L. retroversa were transferred into each

bottle. C. limacina showed an aggressive predator behavior, feeding on most of the offered

preys. The ones that were not eaten were removed when not swimming anymore since C.

limacina apparently only feeds on active pteropods (Lalli 1970). Feeding rates were determined

by counting the number of emptied shells after 24 h and 48 h. The feeding experiment lasted

for 23 days. Each ndividual was frozen 3 days after the last feeding episode (Table 5). In 2015,

an additional experiment was conducted, feeding C. limacina with L. helicina adults. The

same set up as in 2014 was used, but the behavior of C. limacina was completely different.

Few animals showed a predator behavior (ca. 20%), and among the ones that did, ca. half

successfully caught their prey. No C. limacina fed on more than 1 L. helicina and none survived

more than 2 days after ingestion of their unique prey. The feeding experiment therefore lasted

for 3 days, since individuals were frozen only 1 day after their last feeding episode (Table 5).

2.4 Analytical work

2.4.1 Distribution and growth rates of thecosome pteropods

This section gives a brief overview of the methods used to investigate the thecosome population

structure and life cycle in the Arctic environment. A comprehensive description can be found

in manuscript II.

Since L. retroversa and L. helicina look alike during the first development stages (see Tab. 4),

species determination of the small individuals (<0.5 mm shell diameter) was done with molec-

ular tools, based on the Nuclear Histone 3 marker (H3), which contains a diagnostic nucleotide

to distinguish L. helicina from L. retroversa (Kohnert, unpublished data).
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Investigation of the environmental forcing on the thecosomes distribution patterns was done

with multivariate analyses, using the R package FactoMineR (Lê et al. 2008).

Frequency distributions of the shell diameter of L. helicina were modeled as mixture distribu-

tions for which parameters (mean values, and standard deviations of sub-distributions) were

estimated by the Kernel density estimation. At this step, generations were identified and used

as a basis for estimation of growth rates. The shell size distribution of L. retroversa was too

heterogeneous to reflect different generations.

2.4.2 Analyses of fatty acids and fatty alcohols

Total lipids of copepods and pteropods were extracted and analyzed following the method de-

tailed in manuscript I. No pre-treatment was done on the algae/animals prior to lipid extraction

except for C. limacina, whose guts were removed to exclude non-assimilated contents since the

prey was clearly visible and occupying 1/3 of the body volume. Total lipids were extracted

according to Folch et al. (1957) with slight modifications, and separated using a gas chromato-

graph (HP 6890N, Agilent Technologies Deutschland GmbH & Co. KG). The chromatograms

were evaluated using ChemStation software (Agilent Technologies Deutschland GmbH & Co.

KG). Total lipid mass per individual was calculated by summing up single fatty acid and fatty

alcohol masses.

2.4.3 Compound specific isotope analyses

The same protocol of CSIA was used for all samples. A detailed explanation of the method is

presented in manuscript I. The 13C isotopic enrichment in fatty acids and fatty alcohols of al-

gae, copepods and pteropods was measured using a Thermo GC-c-IRMS (gas chromatography-

combustion-isotope-ratio mass spectrometry) system (Thermo Scientific Corporation, Bremen,

Germany). The chromatographic peak areas and carbon isotope ratios were obtained with the

instrument-specific software Isodat 3.0.

Isotopic ratios of each fatty acid and fatty alcohol are normally expressed in δ notation accord-

ing to the formula (1).

δ13C (h) = (
Rsample

Rstandart

− 1)× 1000 (1)
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where R is the ratio 13C/12C, and the commonly used standard is Vienna Pee Dee Belemnite

(V-PDB): Rstandard = 0.0112372.

For this study, δ-values of labeled samples were converted to atom percent (AT), which is more

appropriate than relative values to express isotope data in terms of isotope concentrations.

Conversion was made according to the equation (2).

AT (%) =
Rsample

Rsample + 1
× 100 (2)

AT includes the enrichment of samples as well as their natural background (Brenna et al. 1997).

To exclude the natural enrichment and consider only the experimental one, the atom percent

excess (ATE) was calculated according to (3).

ATE (%) = ATt=i − ATt=0 (3)

where t=i is the number of days since the beginning of the 13C feeding experiment and t=0,

the starting day of the experiment. ATt=0 is therefore an average of the background AT in all

fatty acids.

Since the dietary fatty acids were composed of both 13C and 12C, to calculate the percentage of

carbon (13C + 12C) assimilated by the consumers in their fatty acids and fatty alcohols (PA),

their ATE was divided by the diet AT (4).

PA (% fatty acid mass ) =
ATE

AT (diet)
(4)

For copepods and thecosome pteropods, average fatty acid AT of the algae mixture was used

in the calculation:

– AT(algae, 2014)copepods expmt = 15.28%

– AT(algae, 2014)thecosomes expmt = 13.7%

– AT(algae, 2015)thecosomes expmt = 3.7%

Average AT of L. retroversa fatty acids at Day 3 was used to estimate the portion of carbon

assimilated by C. limacina:

– AT(L. retroversa, Day 3) = 2.2%
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To estimate the assimilation of carbon (Cassi) as mass (µg Cassi ind−1) (5) by consumers, PA

was multiplied by the mass of each fatty acid and fatty alcohol (B) expressed as carbon mass

(in µg C ind−1). B was derived from the number of moles of fatty acid and fatty alcohol in

the consumers. The molecular mass of each labeled fatty acid and fatty alcohol was calibrated

by its AT to incorporate the carbon mass according to the 13C/12C ratio (De Troch et al. 2012).

Cassi (µg C ind−1) = B × PA = B × ATE

AT (diet)
(5)

The relative assimilation of fatty acids and fatty alcohols by consumers was calculated as (6).

RelativeCassi (% total fatty acid assimilated ) =
Cassi

TL
× 100 (6)

where TL is the total lipid mass (sum fatty acids and fatty alcohols).

Finally, the capacity of zooplankton communities to provide fatty acids and fatty alcohols for

higher trophic levels was calculated as (7).

Cprovided (µg C d−1 m−3) = Cassi × abundancespecies/stage (7)

where the abundances of species/stages (ind m−3) were derived from literature and from this

study’s results.

2.4.4 Statistics

All statistical analyses were performed using the free software R 3.2.1 (team RDC, 2010).

To test data for normal distribution, a Shapiro-Wilk test was applied. Significance of the re-

sults was tested with one-way ANOVA followed by a Fisher test and Tukey HSD tests that were

respectively performed on linear regressions (growth rates of L. helicina, manuscript II) or poly-

nomial regressions of degree 2 (lipid assimilation, manuscript I, III). Portions were arcsin(
√
x)

transformed prior to tests. The significance level was set at 5% (alpha = 0.05). Results were

referred to as statistically significant and the null hypothesis was rejected if the P-value was

lower than the alpha-level.

Principal component analyses (PCA) were performed to explore multivariate datasets (manuscripts

II, III). To investigate the influence of environmental data on biological data (manuscript II),

PCA were done using the R package FactoMineR (Lê et al. 2008). The environmental data
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were computed as active variables while biological data were added as supplementary variables.

Missing values were estimated with the package missMDA (Husson and Josse 2010), using

the relations between all variables, from 2 dimensions of the PCA. The R package mixdist

(Macdonald and Du 2012) was used to fit mixture distribution models to the shell diameter

distributions of L. helicina and L. retroversa, using the Kernel density estimation.
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This study aimed at understanding how life-cycle strategies of the primarily herbivorous Pseudocalanus minutus and
the omnivorous Oithona similis are reflected by their lipid carbon turnover capacities. The copepods were collected
in Billefjorden, Svalbard, and fed with 13C labeled flagellates and diatoms during 3 weeks. Fatty acid (FA) and fatty
alcohol compositions were determined by gas chromatography, 13C incorporation was monitored using isotope ratio
mass spectrometry. Maximum lipid turnover occurred in P. minutus, which exchanged 54.4% of total lipid, whereas
9.4% were exchanged in O. similis. In P. minutus, the diatom markers 16:1(n-7), 16:2(n-4) and 16:3(n-4) were almost
completely renewed from the diet within 21 days, while 15% of the flagellate markers 18:2(n-6), 18:3(n-3) and 18:4
(n-3) were exchanged. In O. similis, 15% of both flagellate and diatom markers were renewed. P. minutus exhibited
typical physiological adaptations of herbivorous copepod species, with a very high lipid turnover rate and the ability
to integrate FAs more rapidly from diatoms than from flagellates. O. similis depended much less on lipid reserves
and had a lower lipid turnover rate, but was able to ingest and/or assimilate lipids with the same intensity from
various food sources, to sustain shorter periods of food shortage.

KEYWORDS: Oithona similis; Pseudocalanus minutus; fatty acids and alcohols; 13C labeling; lipid assimilation

INTRODUCTION

The Arctic Ocean is characterized by an extreme seasonal
variability in solar radiation, inducing a short and intense
period of primary production during summer and an
extended period of food scarcity in winter, especially for
marine herbivorous species (Lee et al., 2006; Falk-Petersen

et al., 2009). High-latitude zooplankton have developed
specific adaptive biochemical pathways to cope with this
strong seasonality (Sargent and Henderson, 1986; Hagen,
1999; Lee et al., 2006), allowing them to deposit neutral
lipids, either wax esters or triacylglycerols, as energy
reserves that may be used for maintenance during winter
and for reproductive processes (Lee et al., 1971a; 1971b;
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Clarke, 1983; Kattner and Hagen, 1995). Fatty acids (FA)
and alcohols biosynthesized by zooplankton are rapidly
transferred through the food web and supply higher
trophic levels with the required calories (Falk-Petersen
et al., 1990). This lipid-based flux of energy is central in
the lipid-driven Arctic food web. The various biochemical
processes, that produce lipid reserves of different composi-
tions, enable species to utilize different ecological niches,
and are major determinants of biodiversity in polar zoo-
plankton (Falk-Petersen et al., 2000). FAs can also be used
as trophic markers (FATM) and thus capture changes in
feeding behavior (Dalsgaard et al., 2003 and references
therein). In herbivorous species, mainly calanoids, it is
generally accepted that phytoplankton FATM are incor-
porated largely unchanged, making it possible to deter-
mine their recent diet (Sargent and Henderson, 1986;
Graeve et al., 1994b). In contrast, omnivorous species
have a much more complex diet, resulting in more diverse
lipid signatures than herbivorous species.

The calanoid copepod Pseudocalanus minutus mainly
inhabits arctic-boreal seas (Peters et al., 2004; Lischka
and Hagen, 2007). The cyclopoid Oithona similis has
been described as the most abundant and ubiquitous
copepod species in the world’s oceans (Gallienne and
Robins, 2001). Both species prevail in Arctic shelf seas
in terms of abundance (Nielsen and Andersen, 2002;
Daase and Eiane, 2007). Also considering their high
population turnover rates, these species play an import-
ant role in Arctic marine food webs, despite their small
size (McLaren and Corkett, 1978; Auel and Hagen,
2002; Hopcroft et al., 2005). Particularly in autumn,
when the larger herbivorous copepods of the genus
Calanus leave the upper layers of the water column to
overwinter at depth, a niche is created for smaller cope-
pods (Svensen et al., 2011), “niche” being defined as
“the actual place and role in an ecosystem an organism
or species occupies” (Lawrence, 1989). Thus particu-
larly in autumn and winter, the smaller species are eco-
logically important, restructuring the grazer chain and
ensuring a continuous food supply for higher trophic
levels (Conover and Huntley, 1991; Hansen et al., 1999;
Møller et al., 2006; Zamora-Terol et al., 2013). Due
to their suitable size they are also important food
items of various predators such as fish larvae (Hubold,
1985; Kellermann, 1987). P. minutus is a herbivorous
species (Corkett and McLaren, 1979; Norrbin et al.,
1990), mainly feeding on diatoms in spring and on fla-
gellates in summer, autumn and winter (Lischka and
Hagen, 2007). Correspondingly, its FA composition is
dominated by 16:1(n-7), 18:0, 18:1(n-9), 20:5(n-3) and
22:6(n-3). Fatty alcohols such as 14:0 and 16:0 are
synthesized de novo and esterified with dietary FAs to
wax esters (Lischka and Hagen, 2007). During the

winter season, P. minutus continues feeding, although
this is combined with a reduced metabolism and the
utilization of wax esters (Davis, 1976; Norrbin et al.,
1990, 1991). O. similis is an ambush feeder and has an
omnivorous to carnivorous feeding mode (Drits and
Semenova, 1984; Nielsen and Sabatini 1996). Its FA
composition is highly dominated by 18:1(n-9) and 22:6
(n-3) and reflects a diet based on flagellates and me-
tazoans (Kattner et al., 2003; Lischka and Hagen
2007). Lischka and Hagen (2007) suggested that wax
esters, mainly composed of 14:0 and 16:0 but also 20:1
(n-9) alcohols, are accumulated during summer in
Kongsfjorden and are largely used to fuel the reproduc-
tion peak in May/June, while the reproduction peak in
August/September is mainly fueled by direct dietary
input. During winter, consumption of protozooplankton
allows the individuals to maintain a rather high meta-
bolic activity (Zamora-Terol et al., 2013).
Most investigations on lipid metabolism have been

carried out on primary producers and biomass-
dominating zooplankton organisms such as the large
Arctic Calanus species (Turner, 2004; Graeve et al.,
2005). In contrast, few studies exist on the lipid
biochemistry of small copepods such as P. minutus and
O. similis (Fraser et al., 1989; Narcy et al., 2009). Lischka
and Hagen (2007) monitored in situ FA and fatty alcohol
compositions of both species over the course of a year,
but no study focused on the turnover of lipid carbon. As
reported for the Southern Ocean, the annual produc-
tion of small copepods seems to be higher than that of
the biomass-dominant copepod species (Fransz and
Gonzalez, 1995; Metz, 1995). Since the role of small
copepods in lipid carbon turnover in the Arctic remains
largely unknown, food web models may underestimate
their contribution to carbon flux. It is therefore of great
interest to understand the significance of these smaller
copepod species and their ecophysiological capacities
with regard to their lipid synthesis and energy transfer
to higher trophic levels. This will allow a better percep-
tion of ecosystem dynamics and improve modeling
approaches in the light of climate change, especially in
the rapidly changing Arctic. Since the different life-cycle
strategies of both P. glacialis and O. similis are likely to
influence their carbon assimilation capacities, this study
aims at elucidating the abilities of these small-sized
copepods to channel lipid carbon from their food. Until
recently, 14C was used to label food when monitoring
the lipid biosynthesis of various zooplankton species
(Sargent and Lee, 1975; Dall et al., 1993; Cowie and
Hedges, 1996). In this study, a 13C labeled diatom-
flagellate mix was fed to the copepods during 3 weeks to
follow carbon FA assimilation and possible de novo syn-
thesis of FAs and alcohols.
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METHOD

Sampling
Copepods were collected in Billefjorden (78°66 N,
16°74 E), an Arctic sill fjord, part of the larger
Isfjorden, on the west coast of Spitsbergen (Norway).
The fjord consists of two basins. An 80 m deep sill sepa-
rates the outer basin of Billefjorden from Isfjorden. The
maximum depth of this basin is around 230 m. The
inner basin, separated by a 45 m deep sill from the outer
basin, has a maximum depth of 190 m (Arnkvaern et al.,
2005; Nilsen et al., 2008).
The two copepod species P. minutus and O. similis

were sampled in the inner basin on board of a small
boat from UNIS (University Centre in Svalbard) on 29
July 2014. Animals were collected by vertical hauls from
100 to 0 m using WP2 nets (200 µm mesh size, 0.25 m2

net opening). Live specimens were transferred to con-
tainers filled with filtered seawater (at 4°C) and brought
back to UNIS laboratory within 5 hours for subsequent
experiments and analyses. They were kept in thermos
boxes at close to in situ temperatures during transporta-
tion to the laboratory.

Experimental set-up
Immediately after arrival at UNIS, living and healthy-
looking P. minutus and O. similis were sorted under a dis-
secting microscope. Identification of species and stages
was based on morphology and size criteria (Lischka and
Hagen, 2005). The most dominant stage of each species
was chosen for the experiment, i.e. females of O. similis
and copepodite stage V (CV) of P. minutus. The cope-
pods were immediately transferred in groups of 50 O.
similis females together with 25 P. minutus CV in 15 glass
bottles containing 1 L of 0.7 µm filtered seawater (three
replicates for each of the five sampling dates) and kept
at 4°C. In addition, three in situ replicates (t0) with the
same number of copepods were immediately frozen at
−80°C (without any preservative).
During the 21 days experiment, the copepods were

fed with a mixture of diatoms (Chaetoceros debilis and
Contricribra weissflogii) and flagellates (Rhodomonas salina
and Dunaliella salina) at concentrations ≫ 1000 cells
mL−1 (≫ 20 µg Chl a L−1). Algal cells were counted
with a haemacytometer (Schoen, 1988) and Chl a con-
centrations were measured by fluorometry, using metha-
nol as the extracting solvent (Holm-Hansen and
Riemann, 1978). The copepods were fed with the same
cell concentrations of flagellates and diatoms, which
exceeded those of a typical spring bloom (Sakshaug
et al., 2009), ensuring surplus feeding conditions despite

high numbers of copepods per bottle. Algae were cul-
tured in 0.7 µm filtered seawater with f/2 Guillard
medium (15 mL L−1) and labeled with 13C sodium
bicarbonate (15 mg L−1). Extra silicate was added to the
medium for diatoms (2 mL L−1) to ensure optimal
growth. C. debilis and R. salina were kept at 4°C, C. weiss-
flogii and D. salina at 15°C for faster growth than at 4°C.
All cultures were grown at a 12 h light:12 h dark cycle.
Samples for lipid analyses were taken by filtrating 5 mL
duplicates of each algal monoculture on filters (0.7 µm
pore diameter), at each feeding date.

The copepods were kept under continuous light to
imitate ambient conditions, i.e. polar day. Light inten-
sity was around 50 µmol m−2 s−1 (incident radiation
measured with surface reference sensor in air (LI-190,
LI-COR). Two-thirds of the water in all bottles was
changed every 3–4 days in order to feed the copepods
and maintain high oxygen concentrations.
Simultaneously (from Day 6 on), three of the bottles
were emptied completely and the animals counted and
deep-frozen in triplicates at −80°C for subsequent lipid
analyses. Mortality rates of P. minutus were constant over
time, at 1.3 ± 0.8% day−1. Mortality rates of O. similis
were highest during the first 9 days (3.1 ± 0.7% day−1)
and low thereafter until termination of the experiment
(0.9 ± 0.5% day−1). Overall, the average mortality of O.
similis was 3.0 ± 0.8% day−1. Samples for lipid analyses
contained between 14 and 25 specimens of P. minutus
and between 11 and 50 specimens of O. similis. Despite
the small size of the individuals, their number in each
sample was sufficient for lipid analyses, providing a lipid
content that was detectable with the methods we used.

Analyses of FAs and fatty alcohols
Total lipid was extracted by homogenizing animal tissues
and filters in a solution of dichloromethane : methanol
(2:1,v:v), modified after Folch et al. (1957). As internal
standard, a known amount of the tricosanoic acid methyl
ester (23:0) was added to each sample. A 0.88% solution
of KCl (potassium chloride) was added to easily differen-
tiate the biphasic system. Trans esterification of the lipid
extracts was performed by heating the samples with 3%
sulfuric acid H2SO4 in methanol for 4 h at 80°C under
nitrogen atmosphere. The fatty acid methyl esters
(FAME) were extracted with cyclohexane. FAME and
fatty alcohols were determined using a gas chromato-
graph (HP 6890N, Agilent Technologies Deutschland
GmbH & Co. KG) equipped with a 30m × 0.25mm i.d.
wall-coated open tubular capillary column (film thickness:
0.25 µm; liquid phase: DB-FFAP), a split/splitless injector
(250°C) and a flame ionization detector (280°C),
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according to the method of Kattner and Fricke (1986).
The oven program was set from 60 to 160°C with a rate
of 30°Cmin−1, reaching a final temperature of 240°C at
1.5°Cmin−1. Helium 5.0 was used as carrier gas at a
flow rate of 1.0 mLmin−1. To identify unknown peaks,
additional GC-mass spectrometry runs were carried out.
The chromatograms were evaluated using the ChemSta-
tion software from Agilent. Total lipid mass per individ-
ual was calculated by summing up FA and fatty alcohol
masses. The percentage of wax esters in total lipid was
calculated from the proportion of alcohols on a mole
basis, assuming that copepods contain no free fatty alco-
hols (Kattner and Krause, 1989).

Carbon isotopic ratios
The 13C isotopic enrichment in FAs and fatty alcohols
was measured using a Thermo GC-c-IRMS (gas
chromatography-combustion-isotope-ratio mass spectrom-
etry) system, equipped with a Trace GC Ultra gas chro-
matograph, a GC Isolink operated in combustion mode at
1000°C and a Delta V Plus isotope ratio mass spectrom-
eter connected via a Conflo IV interface (Thermo Scien-
tific Corporation, Bremen, Germany). The FAME and
alcohols, dissolved in cyclohexane, were injected (1 µL) in
splitless mode and separated on a DB-FFAP column
(60m, 0.25mm I.D, 0.25 µm film thickness). The column
flow was set to constant flow mode. Helium 5.0 was used
as carrier gas at a flow rate of 1.6mLmin−1. Injector and
FID-detector temperature was set to 250°C. Temperature
programming started at 80°C for 2 min, increased by
20°Cmin−1 to 160°C, and with 2°Cmin−1 to the final
temperature of 240°C, with a final hold for 15 min.

Linearity and precision of the mass spectrometer were
checked with a series of reference gas pulses (CO2). The
isotopic composition of different amounts of reference gas
(CO2, δ 35.08 vs. PDB) within a concentration interval
resulting in a response of mass 44 from 400 to 6000mV
were measured in five to seven repetitions per concentra-
tion step. For each analytical run, two reference gas
pulses were used for data calibration at the start and at
the end together with the internal 23:0 FAME (δ −32.50
vs. PDB). The chromatographic peak areas and carbon
isotope ratios were obtained with the instrument-specific
software (Isodat 3.0) and the reference standards 14:0
and 18:0 FAME (Iowa University) were used with known
δ-values for further calculations.

Isotopic ratios of each FA and fatty alcohol are normally
expressed in δ notation according to the formula (1):

⎡⎣ ⎤⎦( )δ ( ) = − × ( )C R R‰ 1 1000 113
sample standard

where R is the ratio 13C/12C, and the commonly used
standard is Vienna Pee Dee Belemnite (V-PDB):
Rstandard = 0.0112372.
For this study, δ-values of labeled samples were con-

verted to atom percent, which is more appropriate than
relative values to express isotope data in terms of isotope
concentrations. Conversion was made according to the
following equation (2):

( ) = + × ( )R
R

AT atom percent
1

100 2sample

sample

This equation’s result includes the atom percent of
enriched samples as well as their natural background
(Brenna et al., 1997).
To only consider the enrichment that resulted from

the assimilation of labeled food, the atom percent excess
(ATE) was calculated according to (3):

( ) = − ( )= =ATE % AT AT 3t i t 0

where t = i is the number of days since the beginning of
the 13C feeding experiment and t = 0, the starting day
of the experiment. ATt = 0 is therefore an average of the
AT in all FAs and alcohols in situ.
Since the dietary FAs did not only contain 13C but

also 12C, to calculate the proportion of carbon assimi-
lated in the copepods FAs and alcohols (PA), the ATE
was divided by the total average labeling in algal FAs, L
(atom%), which was constant during the experiment
(L = 15.28%) (4):

= ( )
L

PA
ATE

4

To estimate the assimilation of carbon (Cassi) as mass
(μg Cassi ind

−1) (5), the proportion of carbon assimilated
(PA) was multiplied by the mass of each FA and alcohol
(B) expressed as carbon mass (in μg C ind−1). The carbon
mass was derived from the number of moles of FAs and
alcohols in the copepods. The molecular mass of each
labeled FA and alcohol was calibrated by its carbon atom
percentage to incorporate the carbon mass variation
according to the 13C/12C ratio (De Troch et al., 2012):

(µ ) = × = × ( )−C C B PA B
L

g ind
ATE

5assi
1

Statistics
Statistical analyses were performed using the free soft-
ware R 3.2.1 (team RDC, 2010). Normal distribution
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was tested with Shapiro–Wilk test. One-way ANOVA
followed by Tukey HSD tests were performed on polyno-
mial regressions (degree 2). FA and alcohol proportions
were arcsin transformed prior to tests. The significance
level was set at 5% (α = 0.05). Results were referred to as
statistically significant and the null hypothesis was
rejected if the P-value was lower than the α-level.

RESULTS

FA compositions and labeling of algal
cultures
Major FAs in the algal food were 16:0 (13.7%), 20:5(n-
3) (21.1%) and 22:6(n-3) (10.3%), reflecting a contribu-
tion of diatoms and flagellates to these FA masses at a
ratio of ~70 vs. 30%, respectively (Table I). In addition,
the monounsaturated 16:1(n-7) (16.2%) and the polyun-
saturated (PUFA) 16:2(n-4) (3.6%) and 16:3(n-4) (7.2%)
were almost exclusively provided by diatoms (>99% of
FA mass). The PUFA 18:3(n-3) (7.5%) and 18:4(n-3)
(7.5%) were largely synthesized by flagellates (>80.7%
of FA mass), while 18:1(n-9) (1.8%) and 18:2(n-6) (1.3%)
were exclusively found in flagellates. On average,
5533 µg C lipid L−1 was made available to the copepods
at each feeding event.

The uptake of 13C in the algae was rapid and aver-
aged 15.3 ± 0.9 atom% after 5 days. It remained stable
throughout the entire copepod feeding experiments
(P > 0.05). Maximum enrichment occurred in 16:3(n-3)
with 23.3 atom%, the minimum was detected in 18:0,
with 2.3 atom% labeled.

Carbon uptake by P. minutus
Total lipid mass of P. minutus CV did not vary signifi-
cantly over time (P > 0.05), averaging 2.8 ± 0.6 µg C
ind−1.

Carbon assimilation in total lipid occurred through-
out the experiment, and the amount of assimilated car-
bon reached 1.4 ± 0.1 µg Cassi ind

−1, which represented
54.6 ± 0.1% of the total lipid carbon, when the experi-
ment was terminated. Thus, the assimilation rate of
labeled carbon into copepod total lipid carbon was
2.6% day−1.

Major FAs of P. minutus were 16:0, 16:1(n-7), 18:0,
18:1(n-9), 18:3(n-3), 20:5(n-3) and 22:6(n-3), together
contributing 74% of the FAs (Table II). Most FAs had
stable masses during the experiment (Supplementary
Table SII). Only the relative and absolute concentra-
tions of 16:1(n-7) and 16:3(n-4) increased significantly
(P < 0.01). Main fatty alcohols were 14:0 and 16:0 (69%

Table I: Absolute and relative FA compositions of the algae cultures used as food for the copepods.
Contribution of diatoms (Chaetoceros debilis and Contricribra weissflogii) and flagellates
(Rhodomonas salina and Dunaliella salina) to the overall FA compositions. Labeling expressed as
atom% (AT%) during the experimental time. The presented values are calculated means ± standard devi-
ation from single algae cultures (n = 8)

Mass (µg C L−1) Relative mass (%TL)

Contributions to FA (%)

Diatoms Flagellates AT%

FA
14:0 165.8± 15.6 3.0± 5.1 54.7 45.3 13.4± 4.1
15:0 24.8 ± 17.6 0.4± 0.4 100.0 0.0 16.6± 1.1
16:0 757.2± 313.3 13.7 ± 4.7 73.6 26.4 13.5± 4.8
16:1(n-7) 896.4± 621.3 16.2 ± 10.7 99.0 1.0 14.3± 3.2
16:2(n-4) 198.7± 140.5 3.6± 7.9 100.0 0.0 16.9± 2.6
16:3(n-3) 1.1 ± 0.8 0.1± 0.3 0.0 100.0 23.3± 2.2
16:3(n-4) 399.4± 282.4 7.2± 5.0 100.0 0.0 17.1± 3.0
16:4(n-1) 54.5 ± 33.4 1.0± 6.5 93.4 6.6 13.5± 0.4
16:4(n-3) 8.1 ± 5.7 0.1± 1.8 0.0 100.0 23.0± 1.3
18:0 185.9± 52.8 3.4± 2.3 64.6 35.4 2.3± 0.8
18:1(n-7) 58.9 ± 41.7 1.1± 1.4 0.0 100.0 13.8± 6.3
18:1(n-9) 100.6± 71.1 1.8± 2.4 0.0 100.0 13.1± 6.2
18:2(n-6) 73.6 ± 52.0 1.3± 2.5 0.0 100.0 13.4± 6.3
18:3(n-3) 416.3± 182.7 7.5± 17.8 12.3 87.7 16.5± 6.6
18:3(n-6) 4.0 ± 2.8 0.1± 0.9 0.0 100.0 22.9± 1.8
18:4(n-3) 413.5 ± 277.7 7.5 ± 12.3 1.5 98.5 10.9 ± 4.2
18:5(n-3) 23.7 ± 16.7 0.4± 0.9 0.0 100.0 10.3± 4.1
20:5(n-3) 1167.4 ± 504.5 21.1 ± 10.0 74.6 25.4 14.4± 4.5
22:6(n-3) 571.0± 190.3 10.3 ± 5.4 63.6 36.4 14.5± 6.4

AT%: 13C atom percent; FA, fatty acid; TL, total lipid.
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of the fatty alcohols). All fatty alcohols showed stable
portions during the course of the experiment (P > 0.05).
The wax ester content was also stable with an average
of 60%.

The assimilation of FAs and alcohols, expressed as µg
Cassi per individual, is presented in Table III. Maximum

carbon assimilation was determined in 18:1(n-9) with
242.8 × 10−3 ± 84.3 × 10−3 µg Cassi ind

−1 after 21 days
(P < 0.001). 16:1(n-7) and 20:5(n-3) had the second
highest carbon assimilation, with 202.4 × 10−3

± 50.7 × 10−3 µg Cassi ind
−1 and 180.1 × 10−3

± 38.5 × 10−3 µg Cassi ind
−1, respectively (P < 0.001). In

fatty alcohols, maximum carbon assimilation was deter-
mined in 16:0, with 248.9 × 10−3 ± 129.4 × 10−3

µg Cassi ind
−1 (P < 0.01), followed by 14:0 with

190.4 × 10−3 ± 75.8 × 10−3 µg Cassi ind
−1 (P < 0.01).

Main FAs 16:0, 18:0, 20:5(n-3) and 22:6(n-3) were
assimilated at a linear rate (Fig. 1). By Day 21, around
75.6 ± 6.9% of carbon was renewed in 20:5(n-3), and
this exchange reached 45.7 ± 4.7% in 16:0 and
46.9 ± 6.9% in 22:6(n-3) (P < 0.001). In 18:0,
4.2 ± 1.2% of carbon was assimilated (P < 0.05).
Diatom FATM were assimilated at a very high rate
(Fig. 2), as after 21 days almost all carbon was renewed
in 16:1(n-7), 16:2(n-4) and 16:3(n-4) (P < 0.001).
Flagellate markers did not show such intense carbon
turnover rates, despite a linear increase (P < 0.01). At
the end of the feeding experiment 54.3 ± 14.9% were
assimilated in 18:1(n-9), and in the C18 PUFA assimila-
tion ranged between 9.5 ± 4.5% and 22.9 ± 3.4%. In
the fatty alcohols (Fig. 1), a linear carbon exchange
occurred, reaching between 62.6 ± 11.7% and
76.7 ± 9.6% after 21 days (P < 0.001).

Table II: P. minutus and O. similis.
Changes in FA and alcohol compositions
(mean of mass% ± standard deviation of total
FAs and fatty alcohols, respectively) and in
wax ester content (% of total lipid) at the
beginning (t = 0 d) and at the end (t = 21 d)
of the feeding experiment (n = 3 each)

Relative mass (% FA and % FAlc)
P. minutus O. similis

t = 0 t = 21 t = 0 t = 21

FA
14:0 1.3 ± 0.3 1.2 ± 0.1 2.6 ± 0.6 2.3 ± 0.7
15:0 0.9 ± 1.5 – 1.1 ± 0.2 –

16:0 6.7 ± 2.2 8.9 ± 4.2 20.5 ± 1.7 18.0 ± 0.9
16:1(n-5) – – 0.5 ± 0.4 0.6 ± 0.5
16:1(n-7) 5.7 ± 1.4 12.3 ± 1.1 1.8 ± 0.7 0.9 ± 0.2
16:2(n-4) 3.4 ± 2.4 1.8 ± 0.2 – –

16:3(n-4) 0.4 ± 0.4 3.8 ± 0.8 0.2 ± 0.3 –

16:4(n-1) 2.8 ± 3.9 0.9 ± 0.6 – –

17:0 0.5 ± 0.9 – 1.0 ± 0.1 0.5 ± 0.4
18:0 7.1 ± 1.8 9.2 ± 1.2 28.3 ± 15.2 33.7 ± 14.3
18:1(n-5) 0.6 ± 0.0 0.8 ± 0.1 0.2 ± 0.4 0.6 ± 0.5
18:1(n-7) 1.3 ± 0.5 1.8 ± 0.1 0.9 ± 0.8 1.5 ± 1.3
18:1(n-9) 25.1 ± 11.6 24.5 ± 3.1 14.1 ± 3.7 12.7 ± 4.7
18:2(n-6) 5.0 ± 1.8 3.6 ± 1.9 3.3 ± 1.6 2.7 ± 2.1
18:3(n-3) 7.7 ± 1.2 3.1 ± 1.8 0.8 ± 0.8 0.6 ± 0.5
18:3(n-6) 0.5 ± 0.9 – – –

18:4(n-3) 1.5 ± 0.8 3.0 ± 1.7 0.5 ± 0.5 0.8 ± 0.1
20:0 1.1 ± 0.6 0.6 ± 0.7 0.5 ± 0.4 0.6 ± 0.5
20:1(n-7) 0.6 ± 0.8 – – –

20:1(n-9) 0.7 ± 1.0 0.4 ± 0.4 0.8 ± 0.7 3.2 ± 1.9
20:1(n-11) 0.4 ± 0.4 0.2 ± 0.3 0.2 ± 0.4 0.2 ± 0.4
20:3(n-6) 1.8 ± 3.2 – – –

20:4(n-3) 3.9 ± 1.2 1.7 ± 0.2 1.3 ± 0.4 0.9 ± 0.8
20:4(n-6) 0.5 ± 0.2 – – –

20:5(n-3) 10.3 ± 3.3 12.5 ± 0.3 6.7 ± 1.4 6.0 ± 2.3
22:1(n-7) 0.3 ± 0.6 – – 0.2 ± 0.4
22:1(n-9) 0.3 ± 0.4 0.4 ± 0.4 0.2 ± 0.3 1.2 ± 0.4
22:1(n-11) 0.9 ± 1.1 – – 0.2 ± 0.4
22:5(n-3) 0.7 ± 0.3 0.7 ± 0.1 1.0 ± 1.0 1.7 ± 0.7
22:6(n-3) 11.3 ± 3.1 7.9 ± 1.0 11.8 ± 2.4 8.4 ± 3.0
FAlc
14:0 21.3 ± 7.1 51.7 ± 30.1 16.4 ± 2.6 9.3 ± 9.1
16:0 48.0 ± 5.9 63.4 ± 16.3 57.8 ± 11.0 36.2 ± 17.7
18:1(n-7) 2.5 ± 1.6 1.8 ± 2.0 – –

18:1(n-9) 19.5 ± 2.8 8.8 ± 4.6 11.3 ± 1.3 4.8 ± 4.6
20:1 (both

isomers)
6.9 ± 10.0 0.9 ± 1.0 14.5 ± 13.6 49.7 ± 30.7

22:1 (both
isomers)

1.9 ± 1.2 0.8 ± 0.8 – –

WE (% TL) 61.3 ± 3.5 57.9 ± 19.2 27.3 ± 7.7 32.6 ± 15.4

FA, fatty acid; FAlc, fatty alcohol; WE, wax ester; –, below detection limit.

Table III: P. minutus and O. similis.
Carbon assimilation into main copepod FAs
and alcohols (mean ± standard deviation
expressed as 10–3 µg Cassi ind-

1) at the end of
the feeding experiment.

P. minutus O. similis

n C assi (10−3 µg C ind−1) n C assi (10−3 µg C ind−1)

FA
16:0 3 71.1 ± 33.9 3 0.5 ± 0.4
16:1(n-7) 3 202.4 ± 50.7 1 0.2
16:2(n-4) 3 34.9 ± 7.7 –

16:3(n-4) 3 81.1 ± 24.3 –

18:0 3 6.9 ± 2.2 3 0.5 ± 0.4
18:1(n-9) 3 242.8 ± 84.3 3 1.6 ± 1.8
18:2(n-6) 3 5.2 ± 1.2 3 0.1 ± 0.1
18:3(n-3) 3 14.2 ± 9.2 1 0.4
18:4(n-3) 3 12.9 ± 9.0 2 0.2 ± 0.1
20:5(n-3) 3 180.1 ± 38.5 3 3.2 ± 2.3
22:6(n-3) 3 70.3 ± 9.9 3 1.6 ± 1.2
FAlc
14:0 3 190.4 ± 75.8 1 0.3
16:0 3 248.9 ± 129.4 2 1.1 ± 0.7
18:1(n-7) 1 8.4 – –

20:1 (both
isomers)

2 9.8 ± 5.0 2 0.1 ± 0.0

FA, fatty acid; FAlc, fatty alcohol; –, below detection limit.
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Carbon uptake by O. similis
The total lipid content of O. similis females increased
from 0.8 × 10−1 ± 0.03 × 10−1 to 2.2 × 10−1 ± 0.1
× 10−1 µg C ind−1 (P < 0.01). By Day 21, the amount of
assimilated total lipid carbon, calculated from the label-
ing results, reached 0.2 × 10−1 ± 0.1 × 10−1 µg C ind−1

(P < 0.01), which corresponded to 9.4 ± 0.2% of the
total lipid mass. Overall, the daily carbon turnover rate
of total lipid was 0.9 × 10−3 µg C day−1, that is 0.5% of
total lipid per day.
Major FAs of O. similis comprised 16:0, 18:0, 18:1(n-

9) and 22:6(n-3), together contributing 80% to the FA
mass (Table II). Most FA masses were constant during
the experiment (P > 0.5) (Table IIs), except for 18:0 and

18:4(n-3), which increased in absolute but not in relative
masses (P < 0.01). Dominant fatty alcohols were 14:0,
16:0 and 20:1 (both isomers), corresponding to 92% of
the fatty alcohols. All fatty alcohols had constant masses
over time (P > 0.05), together with a stable wax ester
content (average of 30%).

The assimilation of carbon in FAs is presented in
Table III. Maximum values occurred in 20:5(n-3) with
3.2 × 10−3 ± 2.3 × 10−3 µg Cassi ind

−1 (P < 0.01). It was
followed by 18:1(n-9) (1.6 × 10−3 ± 1.5 × 10−3) and
22:6(n-3) (1.6 × 10−3 ± 1.2 × 10−3 µg Cassi ind

−1). Fatty
alcohol assimilation was in the same range compared to
that of the FAs and the increase of assimilated carbon
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Fig. 1. P. minutus and O. similis. Proportion of carbon assimilated into
main FAs and alcohols (expressed as % of FA and alcohol carbon
mass) during the experiment (21 days of feeding).
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Fig. 2. P. minutus and O. similis. Proportion of carbon assimilated into
FATM (expressed as % of FA carbon mass) during the experiment (21
days of feeding).
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was significant (P < 0.05). At the end of the experiment,
1.1 × 10−3 ± 0.7 × 10−3 µg Cassi ind

−1 were assimilated
in 16:0 and 0.3 × 10−3 µg Cassi ind

−1 (n = 1) in 14:0.
Initial assimilation in FAs was not yet detected at Day 6
(Fig. 1). By Day 21, around 25.9 ± 4.5% of carbon was
assimilated in 20:5(n-3). The portion of assimilated car-
bon reached 8.3 ± 3.9% in 16:0 and 9.3 ± 1.6% in
22:6(n-3) (P < 0.01). In 18:0, only negligible amounts of
carbon were assimilated (0.8 ± 0.5%, P > 0.05). The
portion of carbon assimilated into the diatom FATM
16:1(n-7) reached 16.6% (n = 1) after 21 days (P
< 0.001) (Fig. 2), whereas the other diatom FATM 16:2
(n-4) and 16:3(n-4) had masses below the detection limit.
Regarding the flagellate FATM at the end of the feed-
ing experiment, 24.6% (n = 1) were assimilated in 18:3
(n-3) and 9.1 ± 6.8% in 18:4(n-3). In 18:1(n-9), only
5.0 ± 3.7% were assimilated, and 3.9 ± 3.1% in 18:2(n-
6). Carbon exchange in the fatty alcohols was very low
(Fig. 1), reaching only 5.2% (n = 1) in 14:0 and
4.7 ± 2.3% in 16:0 (P < 0.05).

DISCUSSION

To study carbon transfer in lipid-driven food
chains, Lee et al. (1971b) introduced the concept of FAs
as trophic biomarkers being transferred from phyto-
plankton origin to higher trophic levels. Investigations
using gas chromatography allow changes in the FA
masses to be quantified. This analytical approach can
be applied in either long-term dietary studies or feeding
experiments with animals that rapidly accumulate
extensive amounts of lipids, such as the large Calanus
species (Graeve et al., 2005). In the present study on
smaller copepod species, processes of lipid carbon
exchange did not involve major mass changes and were
therefore not elucidated by the above method alone. To
overcome this limitation, the food items were labeled
with 13C and their transfer into copepods was followed
by compound specific isotope analysis (CSIA). This
method was introduced to marine science in the early
1990s (Meier-Augenstein, 1999; Boschker and
Middelburg, 2002). Combined with experiments using
labeled food, e.g. phytoplankton, this approach allows
tracking the dietary carbon assimilation in specific com-
pounds, e.g. proteins or lipids (Graeve et al., 2005). Such
biochemical processes and pathways can only be
revealed by experiments with labeled material.

The two copepod species were offered the same
phytoplankton food, supplied in excess to ensure that
the copepods were not food-limited (Sakshaug et al.,
2009). Since the copepods were fed a mixed diet only,
food selectivity could not be studied in detail. Even

though diatoms and flagellates were offered in similar
concentrations, the copepods could have eaten the two
taxa in different proportions. A higher assimilation rate
of a specific FATM could therefore be the result of pre-
ferred ingestion and/or more efficient assimilation.
In the algal cultures 16:1(n-7) and C16 PUFA were

mainly synthesized by the diatoms, whereas flagellates
accumulated high amounts of C18 PUFA, which is in
agreement with previous studies (Ackman et al., 1968;
Graeve et al., 1994a; Falk-Petersen et al., 1998). The
monounsaturated 18:1(n-9), a major product of the FA
biosynthesis, was an important component in flagellates
and hence referred to as a flagellate marker in this
study. At higher trophic levels, this FA is usually consid-
ered as a marker for carnivory, since it is a major FA of
most marine animal lipids (Falk-Petersen et al., 1990).
All algal FAs were sufficiently labeled (15 atom%). Only
18:0 showed very low concentrations of 13C label (two
atom%) in all algal cultures and throughout the experi-
ment, resulting in an underestimation of the uptake of
this FA by the copepods. Low labeling of 18:0 has previ-
ously been observed in other studies (B. Lebreton,
La Rochelle, personal communication), and may be due
to physiological processes, possibly related to very high
turnover rates. This may result in 18:0 being rapidly
desaturated or elongated and therefore not stored
unchanged (Li et al., 2014).
Calculations of carbon assimilation were based on the

average atom percentage in algal FAs, since even
though one dietary FA in the copepods mainly origi-
nates from the same algal compound, smaller amounts
may be elongated and/or desaturated from other FAs
(Dalsgaard et al., 2003). The CSIA method does not
provide information about the exact biosynthetic
pathway of each FA. Hence, depending on the respect-
ive pathway, the assimilation of some FAs may have
been slightly over- or underestimated in P. minutus and
O. similis.

Turnover rates of total lipid
After 6 days of feeding, assimilation of labeled lipids was
already detected in P. minutus but not yet in O. similis.
The uptake of label by O. similis in the initial phase (until
Day 9) was probably below the detection limit of the
GC-IRMS. The fact that mortality, probably caused by
handling, was high during the first 9 days for O. similis
may also explain the low assimilation in the beginning.
Another explanation of the low initial lipid assimilation
may be that O. similis needed some time to adapt to new
food conditions.
At the end of the feeding experiment (21 days), more

than half of the total lipid carbon in P. minutus was
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derived from ingested algal carbon, whereas only 10%
of total lipid carbon was assimilated by O. similis.
Overall, the daily rate of carbon assimilation was five
times higher in P. minutus than in O similis.
The lipid carbon assimilation rate of P. minutus

revealed by this study (2.6% day−1) is comparable with
those of Calanus species. Calanus glacialis, the main grazer
in Arctic shelf seas, has a daily assimilation rate of 3.0%,
compared to a rate of 2.7% day−1 for C. finmarchicus
(Graeve et al., 2005). This pronounced efficiency in lipid
assimilation seems to be a typical adaptive mechanism
of herbivorous species in high-latitude environments to
make full use of the productive season. In winter, when
phytoplankton food becomes scarce, the large Calanus
species hibernate at depth in a resting stage (diapause)
with very limited utilization of their lipid reserves, as
these are needed to fuel reproductive processes in early
spring (Sargent and Falk-Petersen, 1988; Hagen, 1999;
Hagen and Auel, 2001; Lee et al., 2006). In contrast, P.
minutus do not overwinter in a true diapause. Thus, they
rely partially on their lipid deposits for metabolic main-
tenance that they supplement by opportunistic feeding
(Kwaniewski, 1990; Lischka et al., 2007). Considering
this more flexible feeding mode, their efficiency to
assimilate dietary lipids is quite high and suggests that
lipid reserves play an important role in their life
strategy.
The slow turnover rate of total lipid carbon in O. simi-

lis (0.5% day−1) may be explained by their omnivorous
feeding mode. The species maintains its metabolic activ-
ity throughout the year, feeding on a wide variety of
organisms from small flagellates to copepod nauplii and
faecal pellets (Franz, 1988; Kattner et al., 2003; Lischka
and Hagen, 2007). Hence, extensive lipid accumulation
does not play a crucial role in their life-cycle strategy
and therefore, a high turnover efficiency of lipid reserves
is probably not of major importance. Assuming that
O. similis accumulates limited stores of wax esters and
triacylglycerols, the turnover rate of 0.5% day−1 may
approximately correspond to the turnover of polar
lipids. However, the increase of total lipid mass in O.
similis was surprisingly high, considering the limited
assimilation of FAs, alcohols and therefore total lipid.
This may be due to a natural high variability in the lipid
content among these copepods, as indicated by the high
standard deviation of the FA contents. June and
August/September are considered the two main repro-
duction periods for O. similis in Svalbard (Lischka and
Hagen, 2005). Narcy et al. (2009) did an individual-
based lipid study on O. similis in Kongsfjorden and
found huge individual differences in lipid contents
among the females in September. The high variability
may be associated with the overlap of two cohorts:

newly molted and lipid-rich females that did not start to
reproduce yet and the older less lipid-rich females that
are actively reproducing and thus invest energy in eggs.
The apparent lipid increase in our study could therefore
potentially be caused by a non-homogeneous division of
the two cohorts of O. similis in the experimental bottles.

Assimilation of dietary FAs
This study showed that consistent amounts of carbon
were assimilated in the copepods’ main FAs, with O.
similis exhibiting a much less intense assimilation than P.
minutus. In both species, carbon turnover was substantial
in 16:0, 20:5(n-3) and 22:6(n-3). Less carbon exchange
was detected in 18:0, but this was probably an under-
estimation due to poor labeling in the algae. The FAs
16:0, 18:0, 20:5(n-3) and 22:6(n-3) are major elements
of phospholipids, which are structural components of all
biomembranes and essential for copepods (Lee et al.,
1971b; Albers et al., 1996). Rapid assimilation of these
FAs is not surprising, as phospholipid turnover occurs at
a high rate in most animal cells, almost half of them is
exchanged every one or two cell divisions (Van den
Bosch, 1980; Dawidowicz, 1987). Earlier studies sug-
gested that this intense turnover is related to the main-
tenance of cellular viability (Dawson ,1973).

A comparison of carbon assimilation in FATM
between the two copepod species revealed clear differ-
ences in their lipid biosynthetic capacities. Pseudocalanus
minutus assimilated diatom FATM at a much higher rate
than flagellate FATM. At the end of the experiment, the
entire original carbon pool in 16:1(n-7) and C16 PUFA
was replaced by dietary carbon from the experiment.
Two processes may explain these differences. Firstly,
P. minutus is a selective particle filter feeder (as many
copepods) and seems to prefer diatoms over flagellates,
due to, for example, size range selection (Poulet, 1974).
Secondly, P. minutus fed equally on both sources, but FA
assimilation was more efficient from diatoms than from
flagellates. It is suggested that P. minutus is particularly
adapted to feed efficiently on diatoms and to accumu-
late energy reserves from them (Norrbin et al., 1991).
On the contrary, O. similis in this study appeared to be
equally efficient in ingesting and/or assimilating FAs
from diatoms and flagellates, but generally at a much
lower rate than P. minutus. The feeding preferences of O.
similis are still under discussion. Some studies indicate
that O. similis prefers motile prey (Drits and Semenova,
1984; Svensen and Kiørboe, 2000) while other studies
suggest that O. similis could feed on diatoms (Kattner
et al., 2003; Lischka and Hagen, 2007). The experimen-
tal design of our study does not allow distinguishing
between the two possibilities, and we therefore
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encourage additional studies, maybe via high-speed
cinematography, to solve this aspect of selective feeding
versus preferential accumulation of specific FAs.

Wax ester biosynthesis
It is well established that wax ester biosynthesis in cope-
pod species usually relies on dietary input for the FA
moieties, whereas the fatty alcohols are biosynthesized de
novo (Sargent et al., 1977; Lee et al., 2006). In P. minutus,
more than half of the lipids were deposited as wax esters
(59%), which is consistent with the observations
of Lischka and Hagen (2007). Unlike O. similis, P. minutus
synthesized large amounts of fatty alcohols (respectively
wax esters). P. minutus uses wax esters mainly to support
winter survival, which contrasts with other herbivorous
copepods that use their wax ester deposits primarily for
reproductive processes (Scott et al., 2000; Lee et al.,
2006). P. minutus is known to synthesize shorter-chain
fatty alcohols (Fraser et al. 1989; Lischka and Hagen
2007). This was reflected in high portions of renewed
carbon (63%) in 16:0 and 18:1(n-7) alcohols. However,
20:1 fatty alcohols were also assimilated. It has been
suggested that small copepod species are not able to
produce these long-chain FAs de novo (Kattner et al.,
2003). Their presence in small copepods would there-
fore originate from potential feeding on Calanus or fish
faecal pellets that contain high amounts of long-chain
monounsaturated fatty alcohols (Prahl et al., 1984; 1985;
Harvey et al., 1987; Lischka and Hagen, 2007). As our
experiment was only based on algal food, P. minutus
must be able to biosynthesize these fatty alcohols de novo
or via elongation of shorter-chain saturated precursors
(e.g. 14:0 and 16:0).

In O. similis, the very low assimilation of labeled car-
bon into fatty alcohols combined with a steady lipid car-
bon mass confirms that the fatty alcohols (respectively
wax esters) were not used for metabolism nor replaced
by dietary input. Apart from buoyancy aspects, utiliza-
tion of wax esters may be an additional energetic strat-
egy for O. similis to buffer the poor food supply in winter
and to fuel reproductive processes (Lischka and Hagen,
2007). In our study, the lipids of O. similis comprised on
average 30% of wax esters (max. 59%), which is a rather
high portion for a non-diapausing omnivorous species
(Graeve et al., 1994a). In the Southern Ocean, O. similis
females accumulated on average 15% wax esters (max.
23%) in autumn (Kattner et al., 2003), while in
Kongsfjorden females had an average of 18% (max.
37%) in September (Narcy et al., 2009). Only a few of
the O. similis females used for our experiment were car-
rying eggs, suggesting that reproduction was about to
happen (Lauris Boissonnot, Longyearbyen, personal

observation). Therefore, the low fatty alcohol biosyn-
thesis may be explained by the fact that wax esters had
already reached their maximum levels (Lischka and
Hagen, 2007). This energy may, at least partially, be
required for the reproduction peak in August/
September.

CONCLUSIONS

The contrasting life strategies of P. minutus and O. similis
are clearly reflected by differences in their capacities to
ingest and/or assimilate lipids from dietary sources.
Pseudocalanus minutus is a herbivorous species that relies
on lipid depots, possibly to fuel its metabolism during
overwintering. The species exhibited a very high lipid
turnover rate, comparable to that of the biomass-
dominating herbivorous Calanus species. Also, P. minutus
is able to feed more intensively and/or assimilates FAs
more efficiently from diatoms than from flagellates.
Short-chain as well as long-chain fatty alcohols are
synthesized de novo, combined with dietary FAs and
stored as wax esters in relatively high proportions, indi-
cating that they play a major role for maintenance dur-
ing overwintering and for reproductive processes. In
contrast, O. similis, as an omnivorous species, does not
depend to such a large extent on the accumulation of
lipid reserves. However it may use its lipid stores during
periods of major metabolic demands such as reproduc-
tion or as an energy buffer during short periods of poor
food supply. O. similis assimilates dietary lipids at a lower
rate than P. minutus. It is able to synthesize FAs from
diverse food sources such as diatoms and flagellates,
with no apparent preference between the two algal taxa.
O. similis does not synthesize fatty alcohols at high rates,
but contained almost 30% wax esters, suggesting that
energy depots for important metabolic processes were
already replenished.
In conclusion, P. minutus is much more efficient than

O. similis to channel lipids through the Arctic food web,
regardless of whether the food source is dominated by
diatoms or flagellates. This study highlights the import-
ance of small copepods in the Arctic lipid-driven pelagic
food web. We recommend further work on the lipid
metabolism and energetic strategies of these particular
copepods, especially in view of the rapidly changing
Arctic environment.

SUPPLEMENTARY DATA

Supplementary data can be found online at
http://plankt.oxfordjournals.org.



JOURNAL OF PLANKTON RESEARCH j VOLUME  j NUMBER  j PAGES – j 

 at A
lfred-W

egener-Institut fÃ
¼

r Polar- und M
eeresforschung on O

ctober 24, 2016
http://plankt.oxfordjournals.org/

D
ow

nloaded from
 

3.1. MANUSCRIPT I

47



ACKNOWLEDGEMENTS

Thanks go to the logistic team of UNIS for their excel-
lent support in Longyearbyen and during the field cam-
paigns of 2014. We are indebted to Urban Tillmann
and Henrieke Tonkes for providing us algae cultures
and to Elodie Terwagne and Mandy Kiel for their help
in the laboratory. We also thank three anonymous refer-
ees for their helpful comments. Lauris Boissonnot is
grateful for the support provided by the Helmholtz
Graduate School for Polar and Marine Research.

FUNDING

Research Council of Norway (Arctic Field Grant,
Svalbard Science Forum, project ID 235913/E10 and
CLEOPATRA II, project ID 216537/E10).

REFERENCES
Ackman, R. G., Tocher, C. S. and McLachlan, J. (1968) Marine phy-
toplankter fatty acids. J. Fish. Res. Board Can., 25, 1603–1620.

Albers, C. S., Kattner, G. and Hagen, W. (1996) The compositions of
wax esters, triacylglycerols and phospholipids in Arctic and
Antarctic copepods: evidence of energetic adaptations. Mar. Chem.,
55, 347–358.

Arnkværn, G., Daase, M. and Eiane, K. (2005) Dynamics of coexisting
Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus popula-
tions in a high-Arctic fjord. Polar Biol., 28, 528–538.

Auel, H. and Hagen, W. (2002) Mesozooplankton community struc-
ture, abundance and biomass in the central Arctic Ocean. Mar. Biol.,
140, 1013–1021.

Boschker, H. T. S. and Middelburg, J. J. (2002) Stable isotopes
and biomarkers in microbial ecology. FEMS Microbiol. Ecol., 40,
85–95.

Brenna, J. T., Corso, T. N., Tobias, H. J. and Caimi, R. J. (1997)
High precision continuous flow isotope ratio mass spectrometry.
Mass Spectrom. Rev., 16, 227–258.

Clarke, A. (1983) Life in cold water: the physiological ecology of polar
marine ectotherms. Oceanogr. Mar. Biol., 21, 341–453.

Conover, R. J. and Huntley, M. (1991) Copepods in ice-covered seas -
distribution, adaptations to seasonally limited food, metabolism,
growth patterns and life cycle strategies in polar seas. J. Mar. Syst.,
2, 1–41.

Corkett, C. J. and McLaren, I. A. (1979) The biology of Pseudocalanus.
Adv. Mar. Biol, 15, 1–231.

Cowie, G. L. and Hedges, J. I. (1996) Digestion and alteration of the
biochemical constituents of a diatom (Thalassiosira weissflogii) ingested
by an herbivorous zooplankton (Calanus pacificus). Limnol. Oceanogr.,
41, 581–594.

Daase, M. and Eiane, K. (2007) Mesozooplankton distribution in nor-
thern Svalbard waters in relation to hydrography. Polar Biol., 30,
969–981.

Dall, W., Chandumpai, A. and Smith, D. M. (1993) The fate of some
14C-labelled dietary lipids in the tiger prawn Penaeus esculentus. Mar.
Biol., 115, 39–45.

Dalsgaard, J, St. John, M., Kattner, G., Müller-Navarra, D. and
Hagen, W. (2003) Fatty acid trophic markers in the pelagic marine
environment. Adv. Mar. Biol., 46, 225–340.

Davis, C. C. (1976) Overwintering strategies of common planktic cope-
pods in some north Norway fjords and sounds. Astarte 99, 37-42.

Dawidowicz, E. A. (1987) Dynamics of membrane lipid metabolism
and turnover. Annu. Rev. Biochem., 56, 43–57.

Dawson, R. M. (1973) The exchange of phospholipids between cell
membranes. Subcell. Biochem, 2, 69–89.

De Troch, M., Boeckx, P., Cnudde, C., Van Gansbeke, D.,
Vanreusel, A., Vincx, M. and Caramujo, M. J. (2012)
Bioconversion of fatty acids at the basis of marine food webs:
insights from a compound-specific stable isotope analysis. Mar. Ecol.
Prog. Ser., 465, 53–67.

Drits, A. V. and Semenova, T. N. (1984) Experimental investigations
of the feeding of Oithona similis Claus. Oceanology, 24, 755–759.

Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A. and Sargent,
J.R. (2000) Lipids, trophic relationships, and biodiversity in Arctic
and Antarctic krill. Can. J. Fish. Aquat. Sci., 57, 178–191.

Falk-Petersen, S., Hopkins, C. C. E. and Sargent, J. R. (1990) Trophic
relationships in the pelagic, Arctic food web. In Barnes, M. A. and
Gibson, R.N. (eds), Proceedings of the 24th European Marine Biology
Symposium. Aberdeen University Press, Aberdeen, pp. 315-333.

Falk-Petersen, S., Mayzaud, P., Kattner, G. and Sargent, J. R. (2009)
Lipids and life strategy of Arctic Calanus. Mar. Biol. Res., 5, 18–39.

Falk-Petersen, S., Sargent, J. R., Henderson, J., Hegseth, E. N., Hop,
H. and Okolodkov, Y. B. (1998) Lipids and fatty acids in ice algae
and phytoplankton from the Marginal Ice Zone in the Barents Sea.
Polar Biol., 20, 41–47.

Folch, J., Lees, M. and Sloane-Stanley, G. H. (1957) A simple method
for the isolation and purification of total lipids from animal tissues.
J. Biol. Chem., 226, 497–509.

Fransz, H. G. (1988) Vernal abundance, structure and development of
epipelagic copepod populations of the eastern Weddell Sea
(Antarctica). Polar Biol., 99, 107–114.

Fransz, H. G. and Gonzalez, S. R. (1995) The production of Oithona
similis (Copepoda: Cyclopoida) in the Southern Ocean. ICES J. Mar.
Sci., 52, 549–555.

Fraser, A. J., Sargent, J. R. and Gamble, J. C. (1989) Lipid class and
fatty acid composition of Calanus finmarchicus (Gunnerus),
Pseudocalanus sp. and Temora longicornis Muller from a nutrient-
enriched seawater enclosure. J. Exp. Mar. Biol. Ecol., 130, 81–92.

Gallienne, C. P. and Robins, D. B. (2001) Is Oithona the most import-
ant copepod in the world’s oceans? J. Plankton Res., 23, 1421–1432.

Graeve, M., Albers, C. and Kattner, G. (2005) Assimilation and bio-
synthesis of lipids in Arctic Calanus species based on feeding experi-
ments with a 13C labelled diatom. J. Exp. Mar. Biol. Ecol., 317,
109–125.

Graeve, M., Hagen, W. and Kattner, G. (1994a) Herbivorous or
omnivorous? On the significance of lipid compositions as trophic
markers in Antarctic copepods. Deep-Sea Res., 41, 915–924.

Graeve, M., Kattner, G. and Hagen, W. (1994b) Diet-induced
changes in the fatty acid composition of Arctic herbivorous cope-
pods: experimental evidence of trophic markers. J. Exp. Mar. Biol.
Ecol., 182, 97–110.



L. BOISSONNOT ET AL. j LIPID TURNOVER SMALL-SIZED ARCTIC COPEPODS

 at A
lfred-W

egener-Institut fÃ
¼

r Polar- und M
eeresforschung on O

ctober 24, 2016
http://plankt.oxfordjournals.org/

D
ow

nloaded from
 

3. MANUSCRIPTS

48



Hagen, W. (1999) Reproductive strategies and energetic adaptations
of polar zooplankton. Invertebr. Reprod. Dev., 36, 25–34.

Hagen, W. and Auel, H. (2001) Seasonal adaptations and the role of
lipids in oceanic zooplankton. Zoology, 104, 313–326.

Hansen, B. W., Nielsen, T. G. and Levinsen, H. (1999) Plankton com-
munity structure and carbon cycling on the western coast of
Greenland during the stratified summer situation. III.
Mesozooplankton. Aquat. Microb. Ecol., 16, 233–249.

Harvey, H. R., Eglinton, G., O’Hara, S. C. M. and Corner, E. D. S.
(1987) Biotransformation and assimilation of dietary lipids by Calanus
feeding on a dinoflagellate. Geochim. Cosmochim. Acta, 51, 3031–3040.

Holm-Hansen, O. and Riemann, B. (1978) Chlorophyll a determin-
ation: improvements in methodology. Oikos, 30, 438–447.

Hopcroft, R. R., Clarke, C., Nelson, R. J. and Raskoff, K. A. (2005)
Zooplankton communities of the Arctic’s Canada Basin: the contri-
bution by smaller taxa. Polar Biol., 28, 198–206.

Hubold, G. (1985) Stomach contents of the Antarctic silverfish
Pleuragramma antarcticum (Antarctica). Polar Biol., 5, 3–48.

Kattner, G., Albers, C., Graeve, M. and Schnack-Schiel, S. B. (2003)
Fatty acid and alcohol composition of the small polar copepods,
Oithona and Oncaea: indication on feeding modes. Polar Biol., 26,
666–671.

Kattner, G. and Fricke, H. S. (1986) Simple gas-liquid chromato-
graphic method for the simultaneous determination of fatty acids
and alcohols in wax esters of marine organisms. J. Chromatogr. A,
361, 263–268.

Kattner, G. and Hagen, W. (1995) Polar herbivorous copepods - dif-
ferent pathways in lipid biosynthesis. ICES J. Mar. Sci., 52,
329–335.

Kattner, G. and Krause, M. (1989) Seasonal variations of lipids (wax
esters, fatty acids and alcohols) in calanoid copepods from the North
Sea. Mar. Chem., 26, 261–275.

Kellermann, A. (1987) Food and feeding ecology of postlarval and
juvenile Pleuragramma antarcticum (Pisces; Notothenioidei) in the sea-
sonal pack ice zone off the Antarctic Peninsula. Polar Biol., 7,
307–315.

Kwasniewski, S. (1990) A note on zooplankton of the Hornsund Fjord
and its seasonal changes. Oceanografia, 12, 7–27.

Lawrence, E. (1989) Henderson’s Dictionary of Biological Terms. Longman
Scientific & Technical, Harlow Essex, UK, pp. 637.

Lee, R. F., Hagen, W. and Kattner, G. (2006) Lipid storage in marine
zooplankton. Mar. Ecol. Prog. Ser., 307, 273–306.

Lee, R. F., Hirota, J. and Barnett, A. M. (1971a) Distribution and
importance of wax esters in marine copepods and other zooplank-
ton. Deep-Sea Res., 18, 1147–1165.

Lee, R. F., Nevenzel, J. C. and Paffenhöfer, G. A. (1971b) Importance
of wax esters and other lipids in the marine food chain: phytoplank-
ton and copepods. Mar. Biol., 9, 99–108.

Li, H. Y., Lu, Y., Zheng, J. W., Yang, W. D. and Liu, J. S. (2014)
Biochemical and genetic engineering of diatoms for polyunsaturated
fatty acid biosynthesis. Marine Drugs, 12, 153–166.

Lischka, S. and Hagen, W. (2005) Life histories of the copepods
Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis
(Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol., 28,
910–921.

Lischka, S., Giménez, L., Hagen, W. and Ueberschär, B. (2007)
Seasonal changes in digestive enzyme (trypsin) activity of the

copepods Pseudocalanus minutus (Calanoida) and Oithona similis
(Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol., 30,
1331–1341.

Lischka, S. and Hagen, W. (2007) Seasonal lipid dynamics of the cope-
pods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida)
in the Arctic Kongsfjorden (Svalbard). Mar. Biol., 150, 443–454.

McLaren, I. A. and Corkett, C. J. (1978) Unusual genetic variation in
body size, development times, oil storage, and survivorship in the
marine copepod Pseudocalanus. Biol. Bull., 155, 347–359.

Meier-Augenstein, W. (1999) Applied gas chromatography coupled to
isotope ratio mass spectrometry. J. Chromatogr. A, 842, 351–371.

Metz, C. (1995) Seasonal variation in the distribution and abundance
of Oithona and Oncaea species (Copepoda, Crustacea) in the south-
eastern Weddell Sea, Antarctica. Polar Biol., 15, 187–194.

Møller, E. F., Nielsen, T. G. and Richardson, K. (2006) The zoo-
plankton community in the Greenland Sea: composition and role in
carbon turnover. Deep-Sea Res., Part I, 53, 76–93.

Narcy, F., Gasparini, S., Falk-Petersen, S. and Mayzaud, P (2009)
Seasonal and individual variability of lipid reserves in Oithona similis
(Cyclopoida) in an Arctic fjord. Polar Biol., 32, 233–242.

Nielsen, T. G. and Andersen, C. M. (2002) Plankton community struc-
ture and production along a freshwater-influenced Norwegian fjord
system. Mar. Biol., 141, 707–724.

Nilsen, F., Cottier, F., Skogseth, R. and Mattsson, S. (2008) Fjord–
shelf exchanges controlled by ice and brine production: the inter-
annual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf
Res., 28, 1838–1853.

Nielsen, T. G. and Sabatini, M. (1996) Role of cyclopoid copepods
Oithona spp. in North Sea plankton communities. Mar. Ecol. Prog. Ser.
, 139, 79–93.

Norrbin, M. F. (1991) Gonad maturation as an indication of seasonal
cycles for several species of small copepods in the Barents Sea. Polar
Res., 10, 421–432.

Norrbin, M. F., Olsen, R. E. and Tande, K. S. (1990) Seasonal vari-
ation in lipid class and fatty acid composition of two small copepods
in Balsfjorden, northern Norway. Mar. Biol., 105, 205–211.

Peters, J., Tuschling, K. and Brandt, A. (2004) Zooplankton in the
Arctic Laptev Sea - feeding ecology as indicated by fatty acid com-
position. J. Plankton Res., 26, 227–234.

Poulet, S. A. (1974) Seasonal grazing of Pseudocalanus minutus on parti-
cles. Mar. Biol., 25, 109–123.

Prahl, F. G., Eglinton, G., Corner, E. D. S. and O’Hara, S. C. M.
(1985) Faecal lipids released by fish feeding on zooplankton. J. Mar.
Biol. Assoc. U.K., 65, 547–560.

Prahl, F. G., Eglinton, G., Corner, E. D. S., O’Hara, S. C. M. and
Forsberg, T. E. V. (1984) Changes in plant lipids during passage
through the gut of Calanus. J. Mar. Biol. Assoc. U.K., 64, 317–334.

Sakshaug, E., Johnsen, G. H. and Kovacs, K. M. (2009) Ecosystem
Barents Sea. Tapir Academic Press, Trondheim, Norway.

Sargent, J. R. and Falk-Petersen, S. (1988) The lipid biochemistry of
calanoid copepods. Hydrobiologia, 167/168, 101–114.

Sargent, J. R., Gatten, R. R. and McIntosh, R. (1977) Wax esters in
the marine environment - their occurrence, formation, transform-
ation and ultimate fates. Mar. Chem., 5, 573–584.

Sargent, J. R. and Henderson, R. J. (1986) Lipids. In: Corner, E. D. S.
and O’Hara, S. C. M. (eds.), The Biological Chemistry of Marine
Copepods, Clarendon Press, Oxford, pp. 59–108.



JOURNAL OF PLANKTON RESEARCH j VOLUME  j NUMBER  j PAGES – j 

 at A
lfred-W

egener-Institut fÃ
¼

r Polar- und M
eeresforschung on O

ctober 24, 2016
http://plankt.oxfordjournals.org/

D
ow

nloaded from
 

3.1. MANUSCRIPT I

49



Sargent, J. R. and Lee, R. F. (1975) Biosynthesis of lipids in zooplankton
from Saanich Inlet, British Columbia, Canada. Mar. Biol., 31, 15–23.

Schoen, S. (1988) Cell counting. In: Lobban, C. S., Chapman, D. J.
and Kremer, B. P. (eds.), Experimental Phycology: A Laboratory Manual.
Cambridge University Press, Cambridge, pp. 16–22.

Scott, C. L., Kwasniewski, S., Falk-Petersen, S. and Sargent, J. R.
(2000) Lipids and life strategies of Calanus finmarchicus, Calanus glacialis
and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar
Biol., 23, 510–516.

Svensen, C. and Kiørboe, T. (2000) Remote prey detection in Oithona
similis: hydromechanical versus chemical cues. J. Plankton Res., 22,
1155–1166.

Svensen, C., Seuthe, L., Vasilyeva, Y., Pasternak, A. and Hansen, E.
(2011) Zooplankton distribution across Fram Strait in autumn: are

small copepods and protozooplankton important? Prog. Oceanogr.,
91, 534–544.

team RDC (2010) R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing. Retrieved
from http://R-project.org.

Turner, J. T. (2004) The importance of small planktonic copepods
and their roles in pelagic marine food webs. Zool. Stud., 43,
255–266.

Van den Bosch, H. (1980) Intracellular phospholipases A. Biochim.
Biophys. Acta, Biomembr., 604, 191–246.

Zamora-Terol, S., Nielsen, T. G. and Saiz, E. (2013) Plankton com-
munity structure and role of Oithona similis on the western coast of
Greenland during the winter-spring transition. Mar. Ecol. Prog. Ser.,
483, 85–102.



L. BOISSONNOT ET AL. j LIPID TURNOVER SMALL-SIZED ARCTIC COPEPODS

 at A
lfred-W

egener-Institut fÃ
¼

r Polar- und M
eeresforschung on O

ctober 24, 2016
http://plankt.oxfordjournals.org/

D
ow

nloaded from
 

3. MANUSCRIPTS

50



3.2. MANUSCRIPT II

3.2 Manuscript II

Year-round population dynamics of Limacina helicina and L. retroversa in a high-

Arctic fjord

Lauris Boissonnot1,2, Janne E. Søreide2, Barbara Niehoff1, Peter Kohnert3, Eike Stübner2,
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Abstract 
The thecosome pteropods Limacina helicina and L. retroversa are important contributors of the 

zooplankton community in high-latitude environments but little is known about their distribution 

and life cycle. We collected the small-size fraction of the population in 2012 and 2013 in 

Adventfjorden (78° N). The temporal distribution of these 2 species was investigated in parallel 

to physical and biological environmental parameters in order to understand their variability in 

abundance and size. Young stages of L. helicina were widespread in terms of time and space. 

Hatching occurred at 0.05 mm, in late summer/autumn. Growth occurred during all seasons, but 

was slow during the first year of development (0.02 mm day-1) and accelerated in the second 

year of development (0.05 mm day-1). Our study suggests that L. helicina overwinter the first 

year as a small (<1 mm) juvenile and that this species need at least 2 years to reach maturation. 

In comparison, L. retroversa was only found in low numbers with a heterogeneous size 

distribution. This more temperate species was most likely advected with Atlantic water masses 

since our results did not support that L. retroversa reproduce in high-Arctic environments. 

 

Key words. Limacina helicina, L. retroversa, juveniles, distribution, growth rate 

3. MANUSCRIPTS

52



 2 

Acknowledgements 
The present study was partially funded by the Research Council of Norway (Arctic Field Grant, 

Svalbard Science Forum, project ID 235913/E10 and CLEOPATRA II, project ID 216537/E10). 

Thanks go to the logistic team of UNIS for their excellent support in Longyearbyen and during 

the field campaigns of 2012 and 2013. We are also grateful for the support provided by the 

Helmholtz Graduate School for Polar and Marine Research.  

3.2. MANUSCRIPT II

53



 3 

Introduction 
Shelled pteropods (thecosomes) are significant components of polar marine ecosystems. They 

can dominate the zooplankton community at times and are key species in the pelagic food web. 

They effectively graze on phytoplankton and small particles (Perissinotto 1992; Noji et al 1997; 

Bernard and Froneman 2009) and are in turn preyed upon by large zooplankton, birds, fish and 

marine mammals (Hopkins and Torres 1989; Lalli and Gilmer, 1989; Lancraft et al. 1991; Hunt 

and al 2008). Thecosomes also have a significant role in the production and export of organic 

matter and calcium carbonate (Berner and Honjo 1981; Fabry 1990; Bathmann et al. 1991; Hunt 

et al. 2008). During productive periods, they may contribute up to 72% of the organic carbon 

export in the Southern Ocean (Manno et al. 2010). Part of this flux is related to the production of 

feacal pellets that sink to deeper layers (Gilmer and Harbison 1991; Accornero et al. 2003). 

Pseudo-faeces are also produced, as the result of the degradation of mucus nets that individuals 

use for grazing (Harbison and Gilmer 1986). Due to their aragonite shells that rapidly sink after 

death, thecosomes are also responsible for a large portion of calcium carbonate flux in polar 

waters (Byrne et al. 1984; Tsurumi et al. 2005).  

 

In Arctic ecosystems, two species of thecosome pteropods are present, Limacina helicina and L. 

retroversa (Kattner et al. 1998; Hop et al. 2006; Bauerfeind et al. 2014). Both species are 

restricted by a narrow range of temperature and salinity, which makes them useful as biological 

indicators of water masses and environmental changes. L. helicina inhabits polar waters and is 

adapted to temperature between -1.6 and 4 °C. L. retroversa is a boreal species and is usually 

associated to Atlantic water masses. The species thrives at temperatures ranging from 2 to 7 °C 

(Chen and Bé 1964; van der Spoel 1967; Lalli 1970; Conover and Lalli 1972; Bé and Gilmer 

1977; Hopkins 1985, 1987). L. helicina is a prominent member of the Arctic zooplankton 

community while L. retroversa occurs episodically when introduced to the system by Atlantic 

water masses (Hop et al. 2006; Walkusz et al. 2009). The last decade a shift from a dominance of 

L. helicina to L. retroversa has been observed in the Fram Strait as a consequence of climate 

warming due to increased of a warm Atlantic water inflow (Bauerfeind et al. 2014).  
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L. helicina reaches a maximum size of 8 mm (Gannefors et al. 2005). It develops to adults in 

summer and reproduces in late summer/autumn (Gannefors et al. 2005). Veligers/juveniles 

constitute the main overwintering stages. Whether or not they grow and develop during this 

period or during the following spring/summer remains unclear (Gannefors et al. 2005; Bednaršek 

et al. 2012; Lischka et al. 2012). The duration of L. helicina’s life cycle is still under debate. 

Some studies suggest that individuals reach maturation in 1 year and die after reproduction 

(Fabry 1989; Gannefors et al. 2005; Hunt et al. 2008) while others suggest a longer life span, 

with possibly more than one reproductive event (Kobayashi 1974; Bednaršek et al. 2012). The 

life cycle of L. retroversa (maximum size of 3 mm, Hsiao 1939) has been less studied than that 

of L. helicina. Some studies conducted in sub-polar environments suggested a one-year life 

cycle, with one reproductive event in spring (Hsiao 1939) or in autumn (Meinecke and Wefer 

1990). However, constant reproductive activity throughout the year has been considered the most 

likely, with an intense event in spring and another in autumn (Lebour 1932; Dadon and De Cidre 

1992). Whether or not L. retroversa is only an expatriate or able to complete its life cycle 

successfully in Arctic waters is still unknown (Lischka et al. 2012).  

 

A growing body of literature focused on the impact of climate change on thecosomes due to the 

high sensitivity of their aragonite shell to acidification (e.g. Comeau et al. 2012; Bednaršek et al. 

2012, 2014; Lischka et al. 2012; Lischka and Hagen 2016). The combination of temperature rise 

and pH decrease is expected to lead to a decline of the population in the next decades and might 

impact the entire Arctic pelagic food chain (Lischka et al. 2011). Although the response of 

Limacina spp. to climate change is now better understood, there is a major lack of knowledge 

regarding their life history. The population structure, the longevity of individuals and the growth 

rates are parameters that are poorly known and still under debate. One limitation to the 

understanding of the life cycle differences between L. helicina and L. retroversa has been that 

veligers and early juveniles are morphologically indiscernible (Lischka, pers. comm.). However, 

they can be clearly identified using molecular markers (Kohnert, unpublished data). 

 

The goal of this study was to fill the gap in knowledge concerning the life history of thecosomes 

in Arctic fjords by (1) applying barcoding methods for the identification of Limacina spp. early 

3.2. MANUSCRIPT II

55



 5 

stages, (2) investigating the occurrence of L. helicina and L. retroversa in relation to 

environmental parameters and (3) investigating the annual growth of veligers and juveniles.  

 

Material and methods 

Weather and oceanographic data 
The study was conducted from January 2012 to December 2013 in Adventfjorden, a small side-

fjord of Isfjorden, on the west coast of Svalbard (78 °N) (Fig.1). The fjord is 8.3 km long, 3.4 km 

wide and less than 100 m deep. It is exposed to inflow from the Atlantic-derived, warm West 

Spitsbergen Current and the Arctic-derived, cold East Spitsbergen Current (Węsławski et al. 

1999; Zajączkowski et al. 2010). Two larger and several smaller rivers discharge freshwater and 

sediments. Thus, Adventfjorden is strongly influenced by brackish water and fine sediment 

particles during the main melting season in summer (Leikvin and Evenset 2009). 

 

 
Figure 1. Map of the sampling station IsA (78.261 °N, 15.542 °E), and the meteorological 

station Svalbard Lufthavn (78.242 °N, 15.502 °E). The dashed arrow represents the influence of 

the Arctic water masses and the plain arrow represents the general influences of Atlantic water 

78.22°N 

78.24°N 

78.26°N 

78.28°N 

78.30°N 

15.52°E 15.72°E 15.32°E 

IsA 

Svalbard 
    Lufthavn 
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masses. Open arrows indicate fresh water influences from rivers into Adventfjorden (from 

Stübner et al. 2016). 

 

The hydrography (salinity, temperature, and density) and fluorescence were measured vertically 

at each sampling event at IsA station (78.261 °N, 15.542 °E, Fig.1), from bottom to surface using 

a hand-held CTD with a fluorometer attached (CTD, SAIV A/S). 

 

The data of air temperature, precipitation, wind direction and wind speed were provided by the 

Norwegian Meteorological Institute. The data set includes measurements conducted every 6 

hours from January 2012 to December 2013 at the station Svalbard Lufthavn, (78.242 °N, 15.502 

°E, Fig.1). The data was analyzed using the free software Ocean Data View (Schlitzer 2005). 

 

Sampling 
The zooplankton community was sampled at IsA station (Fig.1), (78.261 °N, 15.542 °E), on 

board a small boat (PolarCirkel, Akva Group) from UNIS (University Centre in Svalbard) in 

2012 and 2013. Sampling was carried out on a monthly basis when the weather conditions 

allowed it. Animals were collected by vertical hauls from 65 to 25 m (deep layer) and 25 to 0 m 

(surface layer) using a WP11 net (63 µm mesh size, 0.25 m2 net opening). The use of these nets 

only allows capturing Limacina spp. of small size. Individuals with a shell diameter larger than 

1-2 mm seem to be able escape from them (Harris et al. 2000; pers. obs.). 

Live specimens were immediately fixed in a seawater/formaldehyde (4%) solution for later 

determination of the species and size composition. Additional samples were fixed in an ethanol 

(70%) solution and frozen at -80 °C for subsequent molecular analyses. 

Limacina spp. specimens were measured (shell diameter) and counted under a Leica MZ12 

Stereomicroscope. Identification to the species level was done in parallel to counting for 

specimens larger than 0.5 mm, considering that L. retroversa has a pointed spiral shell while L. 

helicina has a flat shell (van der Spoel and Dadon 1999). Morphological identification was not 

possible for specimens smaller than 0.5 mm since first life stages of both L. retroversa and L. 

helicina have a flat shell (Lischka, pers. comm).  
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Molecular analyses 
To determine the smallest individuals to species level, 52 veliger (0.11 - 0.41 mm) were 

randomly picked from the samples fixed in 70% ethanol (Tab.1). Molecular analyses were 

performed at the Bavarian State Collection of Zoology (ZSM Munich). 

 

Table 1. Samples collected for the molecular identification of L. helicina and L. retroversa. 

Date # individuals size range (mm) Depth 
6 September 2012 6 0.11 - 0.34 25-0 m 
6 September 2012 6 0.15 - 0.24 65-25 m 
19 September 2012 6 0.13 - 0.33 25-0 m 
19 September 2012 6 0.23 - 0.34 65-25 m 
18 October 2012 6 0.24 - 0.42 25-0 m 
18 October 2012 6 0.20 - 0.50 65-25 m 
12 December 2012 6 0.14 - 0.38 25-0 m 
12 December 2012 10 0.15 - 0.38 65-25 m 

 

 

Due to the small size of investigated specimens, whole individuals were used to extract genomic 

DNA. We followed the CTAB extraction method (Knebelsberger and Stöger 2012) with a 

modified collection of dissolved DNA in a spin column from a NucleoSpin Tissue set 

(Macherey-Nagel GmbH & Co) to assure maximum DNA recovery (Kohnert unpublished data). 

Nuclear Histone 3 marker (H3) contains a diagnostic nucleotide to distinguish between L. 

helicina and L. retroversa, as base 307 is G in L. helicina and T in L. retroversa (Kohnert, 

unpublished data). H3 was amplified in 0,2 ml illustraTM PuReTaqTM Ready-To-GoTM PCR tubes 

(GE Healthcare) with 23 µl molecular water, 1 µl of template DNA and 0.5 µl of forward and 

reverse primer (10 pm/µl), respectively. We used the primers H3aF: 5'-ATG GCT CGT ACC 

AAG CAG ACV GC-3' and H3aR: 5'-ATA TCC TTR GGC ATR ATR GTG AC-3' (Colgan et 

al. 2000) with following PCR settings: initial denaturation for 5 min. at 94 °C followed by 36 

cycles of denaturation for 45 s at 94 °C, annealing for 50 s at 45 °C, elongation and extension at 

72 °C for 200 s and a final elongation step at 72 °C for 10 min. Successful amplicons were 

purified using a DNA Clean & Concentrator Kit (ZYMO Research) according to the 

manufacturer's manual with a final elution volume of 15 µl.  
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Sequencing was performed at the Genomic Service Unit of Department of Biology, Ludwigs-

Maximilians-Universität Munich, using Big Dye 3.1 with 5µl diluted (2 pm/µl) amplification 

primers and 2 µl of purified PCR-product. Sequences were edited in Geneious R8 (8.1.7.) 

(www.geneious.com, Kearse et al. 2012) and aligned with the implemented Mafft plugin (Katoh 

et al. 2009). As a reference, Limacina spp. sequences generated from clearly identifiable adult 

specimens of the respective species were included. Latter samples were collected in Svalbard (L. 

helicina) and Bergen (L. retroversa). Genetic vouchers are stored at the ZSM Munich.   

 

A 336 bp long sequence was successfully amplified for 39 specimens. 11 samples failed in PCR 

or resulted in sequences that could not be assembled/aligned, rendering a success rate of 78%. 

Among all samples, only 1 individual was identified as L. retroversa (6 September 2012, deep 

layer), indicating that the community was composed at 98% of L. helicina.   

 

Analyses of distribution patterns 
Statistical analyses were performed using the free software R (team RDC 2010). To assess the 

environmental forcing on the thecosomes abundances in the entire water column, 2 principal 

component analyses (PCA) were performed using the R package FactoMineR (Lê et al. 2008). 

The environmental data (water properties and meteorology) as well as time (expressed as day of 

the year) were computed as active variables. Biological data (thecosomes abundances) were 

added as supplementary variables. Seawater densities were not included in the PCA because they 

were computed from T and S, and the strong correlation among these variables could artificially 

alter PCA results. Missing values were estimated with the package missMDA (Husson and Josse 

2010) using the relations between all variables, from 2 dimensions of the PCA. 

 

Identification of cohorts and growth rates 
To examine the size-distribution patterns of the thecosome populations, the shell diameters of L. 

helicina and L. retroversa were combined in size-frequency histograms for each sampling date. 

Replicates from deep (65-25 m) and surface (25-0 m) layers were pooled, since no size 

difference was detectable (t-test, p>0.05). 
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The package mixdist (Macdonald and Du 2012) was used to fit mixture distribution models to 

the shell diameter distributions of L. helicina and L. retroversa. Sizes were separated in 20 

classes, from 0.1 to 1 mm. Initial values (frequency of each size class) were implemented, and 

parameters (mean values, and standard deviations of sub-distributions) were estimated by the 

Kernel density estimation.  

 

For further investigation of the growth rates, it was necessary at this stage to identify the 

different cohorts that possibly co-occurred at all sampling dates. From the Kernel density 

estimation, and in the size-range of individuals captured by our nets, three cohorts of L. helicina 

were distinguished throughout the study period. At each sampling date, one or two cohorts were 

occurring. In 2012, the first cohort of L. helicina, named H0 was present alone from 27 January 

until 19 September. At this date, the cohort H1 appeared. H0 and H1 were both found until 15 

November 2012. Thereafter, H0 disappeared from the samples, possibly due to the capacity of 

grown individuals to escape from the nets. H1 was then the only observed cohort until 13 August 

2013 when the cohort H2 appeared. Both cohorts co-occurred until the end of our study. 

 

The shell size distribution of L. retroversa was heterogeneous. Therefore, no cohorts could be 

identified. 

 

Growth rates of L. helicina were calculated based on the estimated cohorts and calculated as (1), 

according to Bednaršek et al. (2012): 

(1) 𝐺!!,!!→! =   
!!!!  !!!
!!!!!

 

where Hn is the cohort of interest, L is the mean shell diameter in mm (estimated by the Kernel 

density estimation), and t is the time (in days). 

The statistical significance of growth rates was tested with a Fisher test (ANOVA), using linear 

regressions. 
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Results 

Environmental conditions 
Water masses 
Adventfjorden was influenced by local water (LW) and transformed Atlantic water (TAW), in 

similar temporal patterns in 2012 and 2013 (Fig.2). 

 

 
Figure 2. Contour plots of environmental variables. Temperature (upper panel), salinity (middle 

panel) and fluorescence as a proxy for Chl a (lower panel) were linearly interpolated between 

measurements. Black dots indicate dates for Limacina spp. sampling.  

 

At the start of the year, until April, the fjord was mainly characterized by an inflow of 

transformed Atlantic water (T>1 °C, S>34.7 psu). During this period, a cooling of TAW 

occurred, while salinity remained high. From May to August, TAW inflow became limited while 

LW (T<1 °C, S<34.5 psu) prevailed in the fjord. Between June to September, river runoff led to 
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stratification of the water column, with a freshwater layer at the surface, characterized by high 

temperature (>8 °C) and low salinity (<33 psu). The deep layer was still characterized by the 

colder LW. In mid-august/September, a new inflow of warmer and more saline TAW occurred at 

depth. In parallel, mixing of the water column started, leading to the formation of an intermediate 

layer (IW) that remained until the end of the year (34<S<34.7 psu). 

 

Phytoplankton 
Chl a concentrations were negligible from January to mid-April. In late April, the concentrations 

increased, to reach maximum values in mid-April/May with ca. 4 µg L-1 in 2012 and ca. 7 µg L-1 

in 2013. Chl a concentrations remained high in the entire water column until June. Between July 

and September Chl a values decreased and were mainly restricted to surface layers. From 

September/October on, low winter concentrations were reached again. Outside the peak bloom 

period, cells of the <10 µm fraction dominated the phytoplankton community (Marquardt et al. 

2016). 

 

Population structure  
Abundances 
L. helicina was found in the water column throughout the entire sampling period, from January 

2012 to October 2013 (Fig.3a). In 2012, 95 individuals m-3 were found in January and February. 

In spring and summer, the abundances did not exceed 50 ind. m-3, except for July when >300 

ind. m-3 were found. In September 2012, there was a sudden increase in abundance to >1500 ind. 

m-3 whereas in October-December less than 250 ind. m-3 were counted. In 2013, the abundances 

were generally lower, varying between 0.4 and 4 ind. m-3 from January to June. In July, the 

numbers increased and the maximum abundance of 1700 ind. m-3 was found again in September. 

As in 2012, the numbers decreased in October to 270 ind. m-3. Throughout the sampling period, 

twice as many individuals were found in the surface layer (25-0m) as compared to the deeper 

layer (65-25m). In September, individuals were >20 times more abundant in surface than deep 

waters. Mortality seemed high between September and October in both years (50 ind. d-1 in 2012 

and 46 ind. d-1 in 2013) whereas it was negligible during the rest of the sampling period.  
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L. retroversa was only observed from 19 September 2012 to 11 February 2013, with an average 

of 14 ind m-3 (Fig.3b). Individuals were 2 times more abundant in deep waters as compared to 

surface. 

 

 
Figure 3. Abundances of (a.) L. helicina and (b.) L. retroversa in the surface (25-0 m) and deep 

(65-25 m) layers in Adventfjorden, in 2012 and 2013. Arrows represent the dates when no L. 

helicina was found in the samples. L. retroversa was only found between 19 September 2012 

and 11 February 2013. 

 

The first and second principal components (PC) of environmental variables explained 34% and 

16% of the variance in the dataset, respectively. All variables except salinity had positive 

loadings on PC1 (Fig.4). Salinity, fluorescence and meteorological variables (precipitation, air 
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temperature, and wind direction) were positively correlated with PC2, while water temperature 

and wind speed, as well as the time factor were negatively correlated with PC2. 

L. helicina abundances were positively placed with respect to PC1, while L. retroversa 

abundances were negatively correlated.  Both thecosome groups were negatively correlated with 

PC2. L. retroversa had no close correlation with any environmental variables.  

 

 
Figure 4. Principal component analysis of environmental variables in Adventfjorden. Biological 

data (abundances of L. helicina and L. retroversa) are imputed as supplementary variables. 

 

Size distribution and growth 
The mixed distribution model applied to the data on L. helicina shows that the population may be 

composed by either 1 or 2 cohorts (Fig.5). From January to September 2012, the population was 

characterized by a single normal distribution of size, corresponding to a cohort named H0. 

Between September and December, a bimodal distribution was observable, corresponding to the 
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cohort H0 and the new H1, characterized by smaller sizes. From January to August/September 

2013, the size structure reflected the presence of only one cohort, H1. In August, the H2 cohort 

appeared.  

 

 
Figure 5. Size-frequency histograms of L. helicina caught on 24 July 2013 and 22 August 2013 

as an example of the population structure reflected by the samples. This configuration is the 

same in 2012 and 2013, with 1 cohort present in late winter to summer and 2 cohorts in 

autumn/early winter. Overlaying solid lines are best fitting mixture models. Mean shell diameter 

values are represented by triangles. Dotted curved lines represent the different cohorts. 

 

For the H0 cohort, the modal peak of size was of 0.14 mm on 27 January, with minimum shell 

diameter of 0.11 mm (Fig.6). The size range was narrow (sd = 0.05 mm). In the winter following 

hatching (27 January to 29 March 2012), the growth rate of H0 was of 0.0002 mm d-1 (p<0.05) 

(Fig.10). By the end of winter, individuals reached sizes of 0.15 mm. The growth was still slow 

in spring/early summer (29 March to 6 July), with a rate of 0.0004 mm d-1 (p<0.05). By the end 

of spring, individuals reached sized of 0.19 mm. In summer, (6 July to 19 September), 

individuals grew at a rate of 0.0011 mm d-1 (p<0.001), reflecting an increase of shell size by a 
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factor 1.4, reaching a shell diameter of 0.24 mm. In autumn (19 September to 15 November), 

individuals showed maximum growth with a rate of 0.0066 mm d-1 (p<0.001). During this 

season, sizes were multiplied by a factor 2.5 and reached 0.80 mm in November (sd = 0.12 mm). 

Shell diameters were 6 times larger in November as compared to January. 

 

 
Figure 6. Size-frequency distribution of the H0 cohort of L. helicina, divided into different 

months between January and December 2012. The modal curve fitted to the sample plot 

represents the probability of density of each date.  

 

 

For the H1 cohort, the modal peak of size was of 0.13 mm on 19 September 2012, with minimum 

shell diameter of 0.05 mm (sd = 0.01 mm) (Fig.7). In the first autumn following hatching (19 

September to 15 November), H1 had a growth rate of 0.0012 mm d-1 (p<0.05) (Fig.10). In winter 

(31 October 2012 to 5 April 2013) and spring (5 April to 24 July), the growth rate was of 0.0003 
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mm d-1 (p<0.05). At the end of summer (8 September), animals reached 0.60 mm, i.e. 3 times 

their size at the beginning of the season (24 July), reflecting a growth rate of 0.0088 mm d-1 

(p<0.001). One year after hatching, in autumn 2013, growth rate was of 0.0044 mm d-1 

(p<0.001), i.e 4 times faster than during the first autumn. In October, individuals measured 0.73 

mm (sd = 0.19 mm), they were 6 times bigger than when newly hatched.  
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Figure 7. Size-frequency distribution of the H1 cohort of L. helicina, divided into different 

months between September 2012 and December 2013. The modal curve fitted to the sample plot 

represents the probability of density of each date.  

 

The cohort H2, hatched in August-September 2013, had a constant size range, with a modal peak 

at 0.16 mm (Fig.8). The growth rate was negligible from 22 August to 13 October 2013 (0.0002 

mm d-1, p>0.05) (Fig.10). 

 

 
Figure 8. Size-frequency distribution of the H2 cohort of L. helicina, divided into different 

months between September 2012 and December 2013. The modal curve fitted to the sample plot 

represents the probability of density of each date.  

 

L. retroversa showed a patchy distribution of size classes for all sampling dates, no modal 

distribution could be applied for this species (Fig.9). Sizes ranged between 0.48 and 1.60 mm.  
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Figure 9. Size-frequency distribution of L. retroversa, divided into different months between 

December 2011 and February 2013.  

 

Discussion  

Life cycle of L. helicina 
L. helicina has been commonly observed in Arctic waters (Kobayashi 1974; Gilmer and 

Harbison 1991; Gannefors et al. 2005). The species is known to have a patchy distribution, 

making it difficult to catch animals (Kattner et al. 1998; Gannefors et al. 2005; Howes et al. 

2015). However, these results are only based on the larger individuals (Wiborg 1954; Percy and 

Fife 1985; Østvedt 1995; pers. obs.). We observed that young stages were present throughout the 

year. Our results also suggested that individuals were evenly distributed in the fjord. A more 
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at this one unique sampling location. Our present study is hence the first which clearly 

demonstrates that veligers and juveniles are widespread, both in spatial and temporal aspects. 

The difference in distribution patterns between early life stages and adults may be related to 

biological processes as L. helicina adults trend to gather in large swarms to reproduce (Dadon 

1990; Dadon et al. 1992; Noji et al. 1997). This may be an adaption for successful reproduction, 

as it facilitates mating (Folt and Burns 1999).  

 

According to Gannefors et al. (2005), L. helicina reproduces in late summer/autumn, with a peak 

of abundance of veligers in early September. Our results confirm this timing of reproduction 

since we observed maximum abundances in parallel with the smallest size ranges of individuals 

from August to October, and considering that veligers hatch 2-6 days after spawning (Lalli and 

Wells 1978). In addition, L. helicina abundances were strongly correlated with time, as revealed 

by the PCA.  

 

It has been suggested that the timing of reproduction of Limacina spp. depends on the feeding 

conditions of adults in spring (Böer et al. 2006; Bernard and Froneman 2009). This may explain 

the earlier onset of reproduction in 2013 as compared to 2012 (August vs. September), since Chl 

a concentrations were 1.8 times higher in 2013 than in 2012. The accumulation of sufficient 

levels of lipid storage may be implicated in the timing of reproduction (Maas et al. 2011). In a 

situation of low primary production, females would need to feed longer on the available food in 

order to accumulate enough fatty acids to fuel reproduction processes (Boissonnot et al. 

submitted). 

 

Since veligers/juveniles start feeding immediately after hatching (Gannefors et al. 2005), they 

may find advantage in being present in the euphotic zone of the water column (Kobayashi 1974) 

and hence in the depth range of highest food concentration during productive months. In our 

study, maximum abundances of L. helicina in late summer were characterized by a very high 

concentration of individuals in surface layers. This confirms the results of Kobayashi (1974), 

which suggested that the veligers/juveniles concentrate in surface layers (50-0 m). However, our 

study has to be considered in the perspective of Adventfjorden being a shallow fjord (less than 

100 m deep). L. helicina is assumed to be able to seasonally migrate towards waters deeper than 
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1500 m (Kobayashi 1974). Our results therefore refer to a relatively small layer of the potential 

vertical distribution of L. helicina. This concentration of young stages in surface layers may 

suggest that reproduction occurs in surface waters and/or that hatching occurs in surface since 

spawns, which consist of free-floating eggs ribbons (Lalli and Gilmer 1989), have positive 

buoyancy due to high lipid contents (Gannefors et al. 2005; Tsurumi et al. 2005).  

 

Some studies assume that L. helicina population is composed by only one cohort at a time 

(Kobayashi 1974; Gannefors et al. 2005) while newer studies argue for an overlap of more than 2 

cohorts (Hunt et al. 2008, Bednaršek et al. 2012). In our study, we collected only small 

individuals (<1 mm) that reflected an overlap of 2-3 cohorts. In addition, mature females (>5.0 

mm, Lalli and Wells 1978) must be present for reproduction, at least in late summer/ autumn. 

Therefore, we consider our study to reflect the co-existence of at least 3 cohorts.  In an extremely 

variable environment such as the Arctic ecosystem, having a one-year life cycle with no overlap 

of cohorts would be a hazardous life-strategy (Bednaršek et al. 2012). An overlap of 3 cohorts 

guarantees a certain level of stability at the population level and allows facing the high 

variability in physical conditions. 

 

The growth rates of L. helicina are still under debate. Some studies suggest that this species 

constantly grows throughout the year (Bednaršek et al. 2012) while others suggest that growth 

depends on season. Kobayashi (1974) reported maximum growth in winter whereas Lischka et al 

(2012) found that growth ceased during this period. Our data suggest that individuals increase in 

size throughout the entire year, but with varying growth rates depending on seasons and 

developmental stages (Fig.10). Veligers started to grow directly after hatching, but at a low rate 

during overwintering. Since there is low food availability during this season, growth may be 

fueled, at least partially, by lipid reserves that individuals accumulated by feeding after hatching 

(Boissonnot et al. submitted). Maximal growth of H0 occurred in autumn 2012 while the growth 

of H1 was maximum in summer 2013 when the individuals tripled in size. Previous studies 

hypothesized that an important factor contributing to differences in growth rates is food 

availability, with a higher food supply allowing a faster development (Hunt et al. 2008; Bernard 

and Froneman 2009; Maas et al. 2011). In our study, the phytoplankton bloom reached higher 

concentrations in 2013 than in 2012, possibly fueling a faster and earlier growth of L. helicina.  
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Figure 10. Individual sizes of the 3 cohorts of L. helicina present during our study. Points 

represent measured data. Trend lines were added to visualize better the growth of each cohort. 

They represent locally weighted regressions of the size. 

 

One year after hatching, juveniles reached a size of 0.7-0.8 mm, which was 6 to 10 times their 

initial size. Our results further indicate that growth accelerates in the second year of L. helicina 

life cycle, with a growth rate 4 times higher in the second autumn than in the first following 

hatching.  

 

Given the size reached by L. helicina one year after hatching, and considering that adults reach 

an average size of 5 mm (Gannefors et al. 2005), we propose a life span of at least 3 years. This 

conclusion is in line with Bednaršek et al. (2012) who suggested that the species needs at least 2 

overwintering periods before reaching maturity. We further believe that one additional year is 

spent as veliger stage. 
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We propose an annual growth rate of 0.002 mm day-1 within the first year of development of L. 

helicina, followed by a faster rate of at least 0.005 mm day-1. In contrast, Bednaršek et al (2012) 

estimated an annual growth rate of 0.006 mm day-1, but individuals <1 mm were considered as a 

unique cohort while we suggest that they reflect 2 cohorts. Kobayashi et al. (1974) observed the 

same low growth rate as we did within the first year of development, but suggested a much faster 

growth within the second year, with individuals growing from 1 mm in September to 2.8 mm in 

November. This was not reflected by our results, since individuals reached 0.75 to 1 mm in 

October-November. However, since we did not collect individuals larger than 1 mm, growth may 

be faster at larger sizes, later in their development. Gannefors et al (2005) suggested a growth of 

0.03 mm day-1 but this result was derived from the assumption that individuals grow to 5 mm in 

only one year, which our long term and high frequency data does not support. 

 

Presence of L. retroversa 
In Svalbard waters, the sub-polar species L. retroversa has been reported to occur episodically 

and at low densities (Lalli and Gilmer 1989, Kattner et al. 1998). The species is considered as a 

marker of Atlantic waters (Lebour 1932, Morton 1954), and thrives in waters with a temperature 

range of 2 to 7 °C (Lalli 1970; Bé and Gilmer 1977). In our study, L. retroversa was observed in 

autumn 2012, when Isfjorden was mainly influenced by transformed Atlantic waters. This warm 

and saline Atlantic inflow is mainly transported in the deep layer (Svendsen et al. 2002; 

Marquardt et al. 2016). The species showed highest abundances in the 65-25 m layer, suggesting 

that the population had been advected to the fjord with inflowing Atlantic water. However, L. 

retroversa was not found in autumn 2013 despite that the fjord at this time also was influenced 

by transformed Atlantic waters. When L. retroversa was abundant in 2012, the water column 

temperature averaged 2.5 °C, which is at the lowest edge of L. retroversa temperature optimum. 

In autumn 2013, the water temperature averaged 4.6 °C which is close to the temperature 

optimum of L. retroversa but no animals were found. The patchy distribution of L. retroversa in 

its area of origin (Meinecke and Wefer 1990) is very likely to explain its irregular occurrence in 

Svalbard waters. 
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In the early 20th century, L. retroversa was regarded as a sub-polar species that only occurred 

south of 65 °N (Lebour 1932; Redfield 1939). However recently, L. retroversa expanded 

northwards and can now be found at up to 79 °N in Fram Strait and in the Barents Sea (van der 

Spoel and Heyman 1983; Meinecke and Wefer 1990; Bathmann et al. 1991; Bauerfeind et al. 

2009). A long-term study based on sediment traps in the Fram Strait even suggested a shift of the 

thecosome community, since 2005/2006, pointing towards a dominance of L. retroversa 

(Bauerfeind et al. 2014). This change would be associated with a warming of the water since 

2000 (Schauer et al. 2008, Beszczynska-Möller et al. 2012; Bauerfeind et al. 2014). Our study 

does, however, not confirm this trend. While we also observed a warm Atlantic inflow, L. 

retroversa were present only in autumn 2012 and on average 4 times less abundant than L. 

helicina.  

 

Whether or not L. retroversa reproduces in polar latitudes is unclear (Lischka et al. 2012). To our 

knowledge, no study elucidated this question. We observed a miscellaneous size distribution of 

this species. According to the size classification of Hsiao (1939) both juveniles and adults were 

present in Isfjorden during our study. No veligers were observed while previous studies indicated 

that L. retroversa has a peak of reproduction in autumn, in sub-polar areas (Lebour 1932; 

Meinecke and Wefer 1990; Dadon and De Cidre 1992). We therefore suggest that L. retroversa 

does not reproduce in Arctic waters. It has been reported that pteropods enter eddies as adults or 

juveniles and are subsequently retained (Tsurumi et al. 2005). L. retroversa would therefore be 

advected with Atlantic water masses, without being able to fulfill its life cycle in these high 

latitudes. 

 

Conclusion 
The distribution of L. helicina in Arctic waters has always been described as patchy. Our study 

reveals that this observation is only valid for adults. Veligers and juveniles are more evenly 

distributed both in time and space. We propose that the life-cycle of L. helicina lasts at least 3 

years. Hence the population reflects a co-occurrence of, at times, 3 cohorts, with 2 cohorts of 

non-mature individuals. We further suggest that juveniles grow 4 times faster in their second 

year of development as compared to their first year. Having 2 cohorts of juveniles with different 
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growth rates and therefore different metabolism has implications for physiological studies 

conducted with small-stages. It is crucial to stop considering all individuals < 1 mm as one single 

cohort. We suggest delimitation between the 2 cohorts of juveniles at 0.50 mm. 

 

In association with the warming of Svalbard water masses, a shift of the thecosome community 

to a dominance of L. retroversa is expected. Our study confirms that the species is advected in 

Svalbard fjords with Atlantic water masses. However the low numbers of individuals observed 

combined with the fact that the species does not fulfill its life cycle in high-latitudes suggest that 

L. retroversa is not taking over the thecosome community in Svalbard waters.  
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Abstract 
This study aimed at a better understanding of the fatty acid turnover in Arctic pteropods. 

Thecosome pteropods Limacina helicina (adults and juveniles) and L. retroversa (adults) were 

collected in summer/autumn in Kongsfjorden and Isfjorden (Svalbard, 78 °N) and fed with 13C 

labeled flagellates and diatoms for 6 days. Gymnosome pteropods Clione limacina were sampled 

in summer in northern Svalbard and fed with 13C labeled L. retroversa for 23 days. Fatty acid 

compositions were determined by gas chromatography and 13C enrichment of fatty acids was 

analyzed by compound-specific isotope analysis, using isotope ratio mass spectrometry. Among 

the thecosomes, maximum lipid turnover occurred in L. retroversa adults (1.3% day-1). This 

species exhibited physiological adaptations typical of sub-Arctic species, with high lipid 

assimilation rates and the ability to integrate fatty acids more rapidly from flagellates than from 

diatoms. L. helicina showed a lower lipid turnover than L. retroversa, and adults of L. helicina 

were slower than juveniles to renew their fatty acids (0.1% day-1 and 0.2% day-1, resp.). L. 

helicina adults integrated lipids from flagellates and diatoms with the same intensity, whereas 

juveniles showed a clear preference for diatoms, suggesting that feeding strategies depend also 

on the developmental stage. The lipid turnover rate of Clione limacina averaged at only 0.07% 

day-1, which is significantly lower than previously reported for this species at the same latitude. 

This suggests that during our experiment C. limacina individuals utilized dietary energy 

primarily to maintain their basic metabolism rather than investing it into lipid storage. 

 

Key words. Pteropods; 13C labeling; lipid turnover; fatty acid assimilation 
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Introduction 
The Arctic environment is characterized by extreme seasonality in light conditions, with 

continuous sunlight in summer and complete darkness during the winter period. Therefore, 

strong pulses of primary production are followed by periods of food scarcity, especially for 

herbivorous species. Abundant zooplankton species such as copepods and euphausiids are 

adapted to the seasonality of food availability by storing large amounts of lipids, as 

triacylglycerols (TAG) and/or wax esters (WE) (Lee 197, Sargent and Falk-Petersen 1988, Falk-

Petersen et al. 2000). This strategy allows them to survive during food scarce periods while 

reducing their metabolism (Hirche 1996, Hagen & Auel, 2001, Lee et al. 2006, Huenerlage et al. 

2014, Freese et al. 2015, 2016). Also pteropods have the capacity of storing lipids as 

diacylglycerol esters (DAGE) and/or TAG to cope with the strong seasonality in food supply 

(Lalli & Gilmer 1989, Gilmer & Harbison 1991, Böer et al. 2006), They are however, less 

studied than copepods and euphausiids although they can contribute more than 20% of the 

zooplankton biomass in Arctic waters (Gannefors et al. 2005, Blachowiak-Samolyk et al. 2008). 

 

In Arctic waters, Limacina helicina is the main representative of thecosome pteropods, while L. 

retroversa dominates in North Atlantic waters (Van der Spoel 1967, Lalli 1970, Conover & Lalli 

1972, Hopkins 1985, 1987). Limacina spp. reach a maximum size of 13 mm (Gilmer & Harbison 

1991, Gannefors et al. 2005). They are omnivorous and feed by excreting a mucous web, in 

which food particles become entangled (Gilmer 1972, 1990, Harbison & Gilmer 1992). Their 

diet consists of diatoms and flagellates, but also of detritus and small zooplankton (Gilmer & 

Harbison 1991, Gannefors et al. 2005). Limacina spp. are preyed upon by larger carnivorous 

zooplankton, for examples ctenophores (Larson & Harbison 1989) and gymnosome pteropods 

(Conover & Lalli 1972), as well as seabirds, and several species of fish and baleen whales 

(Meisenheimer 1905, Gilmer and Harbison 1991, Falk-Petersen et al. 2001, Karnovsky et al. 

2008).  

 

L. helicina develops to adults in summer and reproduces in late summer/autumn (Gannefors et al. 

2005). Veligers/ accumulate lipids from phytoplankton diet and probably utilize them during the 

dark period, in addition to relying on omnivorous feeding (Gannefors et al. 2005). It is, however, 
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still under debate whether their metabolism is reduced during overwintering (Hunt et al. 2008, 

Bednaršek et al. 2012). Some studies suggest that individuals reach maturation in 1 year and die 

after reproduction (Gannefors et al. 2005) ), while others hypothesize that Limacina spp. needs at 

least two years to reach maturity (Kobayashi 1974, Bednaršek et al. 2012). The life cycle of L. 

retroversa has been less studied than that of L. helicina. Some studies conducted in sub-polar 

environments suggested a one-year life cycle, with one reproductive event in spring (Hsiao 1939) 

or in autumn (Meinecke et al. 1990). However, constant reproductive activity throughout the 

year has been considered the most likely, with an intense event in spring and another in autumn 

(Lebour 1932, Dadon and De Cidre 1992).  

 

L. helicina and L. retroversa have moderate total lipid levels (<20% of the dry mass) (Falk-

Petersen et al. 2001, Gannefors et al. 2005). Storage lipids are deposited as TAG, while wax WE 

or DAGE have not been detected (Kattner et al. 1998). Major fatty acids are the saturated 16:0 

and 18:0, and the polyunsaturated fatty acids 20:5(n-3) (EPA) and 22:6(n-3) (DHA), typical 

components of membrane phospholipids. Some fatty acids can be used as trophic markers 

(FATM) and thus capture changes in feeding behavior (Dalsgaard et al. 2003 and references 

therein). Correspondingly, they portion of 16:1(n-7) is highest in spring, while the amount of 

18:4(n-3) increases in summer and autumn, reflecting a dietary change from diatoms in spring to 

primarily flagellates in summer and autumn (Gannefors et al. 2005).  

 

Many studies on Limacina spp. focus on the impact of climate change, due to the high sensitivity 

of their aragonite shell to acidification (e.g. Comeau et al. 2009, Lischka & Riebesell 2012, 

Bednaršek et al. 2012, 2014). The combination of temperature rise and pH decrease is expected 

to result in a strong decline in the population, with a cascading negative impact on the entire 

Arctic pelagic food chain (Lischka et al. 2010). The role of Limacina spp. with regard to lipid 

carbon turnover in the Arctic is largely unknown. So far, no study has focused on the differences 

in lipid turnover rates among thecosome species and developmental stages. The contribution of 

pteropods to the carbon flux in the marine food web may thus be underestimated (Lalande et al. 

2013). In the context of global change, it is therefore of great interest to understand their 

capacities in terms of fatty acid biosynthesis and energy transfer to higher trophic levels. 
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Clione limacina is the only gymnosome pteropod in Arctic waters, with a maximum size of 70-

80 mm (Conover & Lalli 1972). This species is an important food source for baleen whales, 

seabirds and planktivorous fish (Lebour 1931, Lalli 1970). It has long been considered to feed 

exclusively on Limacina spp. (Meisenheimer 1905, Lalli 1970, Conover & Lalli 1972, Hopkins 

1985). Such monophagous feeding strategy, with a strong dependency on one species with a 

patchy distribution, implies a high feeding efficiency and the need of energy reserves to survive 

long periods of food paucity (Böer et al. 2005). C. limacina is able to assimilate carbon from its 

prey at more than 90% efficiency and nitrogen at almost 100% efficiency (Conover & Lalli, 

1972, 1974). A recent molecular study, however, suggests that this species may also feed on 

copepods and amphipods (Kallevik 2013). C. limacina is characterized by high lipid contents of 

up to 50% dry mass (Ikeda 1972, Lee 1974, Phleger et al. 1997, Böer et al 2005), mainly 

deposited as TAG and DAGE (Kattner et al. 1998, Falk-Petersen et al. 2001). DAGE are used as 

long-term energy reserves, whereas TAG serve as short and medium-term energy store (Kattner 

et al. 1998). Both lipid classes are utilized to fuel growth and reproduction processes. It is under 

debate to what extent these lipids also serve as buoyancy aids (Phleger et al. 1997, Böer et al. 

2005).  

 

Major fatty acids of C. limacina are 16:0, 18:0, 20:5(n-3), and 22:6(n-3), which are key 

constituents of phospholipids (Falk-Petersen et al. 2001). An exceptional feature of C. limacina 

is the significant occurrence of odd-chain fatty acids, such as 17:0 and 17:1(n-8), which together 

with 15:0 and 16:0 alkyl moieties dominate the composition of DAGE lipids (Böer et al. 2006). 

Previous studies suggested that the de novo synthesis of odd-chain fatty acids is initiated with 

propionate (3 carbon atoms) and that this precursor may originate from 

dimethylsulfoniopropionate (DMSP), which is accumulated in Limacina spp. from its 

phytoplankton food (Kattner et al. 1998, Falk-Petersen et al. 2001, Böer et al. 2005). Propionate 

would subsequently be elongated and desaturated (Kattner et al. 1998). Adult C. limacina can 

survive without food for almost a year (Böer et al. 2006). This exceptional long-term starvation 

ability	
   is facilitated by a combination of very low metabolic activity, body shrinkage and 

utilization of lipid components (Böer et al. 2007). C. limacina also utilizes the lipid reserves to 

fuel maturation, gonad production and spawning during summer. The lipids stores are 

replenished during late summer and autumn, and they may serve as energy for metabolic 
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maintenance during winter, although it is not clear, if C. limacina ceases to feed during the dark 

period (Böer et al. 2005). The efficiency of gymnosomes to synthesize lipid components from 

their diet has not been well studied. Most studies focused on their capacity to synthesize odd-

chain fatty acids (Kattner et al. 1998, Böer et al. 2005), but the metabolic turnover of fatty acids 

remains poorly understood. 

 

This study aimed at examining the turnover of total lipid and of single fatty acids of pteropods, in 

order to better understand their role in the transfer of lipid carbon through the Arctic marine food 

web. Three major questions have been addressed: (1) How high are the total lipid turnover rates 

of the pteropods Limacina spp. and C. limacina? (2) Do L. helicina and L. retroversa differ with 

respect to dietary uptake of fatty acids? (3) To which extent does C. limacina incorporate fatty 

acids from L. retroversa? Feeding experiments were conducted with L. helicina juveniles and 

adults, L. retroversa adults, and C. limacina adults. To monitor the assimilation of dietary fatty 

acids as well as the turnover rates of carbon lipid, Limacina spp. were fed with 13C labeled algae. 

Accordingly, labeled L. retroversa were offered to C. limacina. We analyzed the 13C enrichment 

of fatty acids through compound specific isotope analysis (CSIA) following the method 

described in Graeve et al. (2005). To our knowledge, this is the first time that labeled feeding 

experiments have been successfully conducted with L. helicina, L. retroversa, and C. limacina.  

 

Material and methods 

Sampling and experimental work 
Limacina retroversa adults were sampled on 23 September 2014 in Kongsfjorden, on the west 

coast of Spitsbergen (Norway), on board RV Helmer Hanssen by vertical hauls from 100 m to 0 

m with a WP3 net (1000 µm mesh size, 1.0 m2 net opening). L. retroversa adults that were used 

as food for Clione limacina were sampled following the same procedure, in Isfjorden, a fjord 

south of Kongsfjorden, every 3-4 days from 20 September to 10 October 2014. L. helicina adults 

were sampled on 28 July 2015 in Isfjorden. They were collected in surface waters, using a scoop 

net while snorkeling because sampling from a boat with WP2 or WP3 nets damaged their shells 

and caused rapid death after collection (pers. obs.). L. helicina juveniles were sampled by 

vertical net hauls from 50 m to 0 m with a WP2 net (200 µm mesh size, 0.25m2 net opening) on 
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29 September 2015 in Isfjorden on board a small boat (PolarCirkel) from UNIS (University 

Centre in Svalbard).  

C. limacina were sampled in the Arctic Ocean, north of Svalbard, in July 2014 on board  RV 

Lance, by vertical hauls from bottom to surface with a MIK net (method Isaac Kid; opening 

3.14m2, mesh size 1.5 mm and net bag 7 m long). The organisms were kept in 20 L buckets filled 

with seawater, which was exchanged twice a week.  

 

All individuals were transferred to containers filled with 0.7 µm filtered seawater of 4°C and 

transported to the laboratories at UNIS in thermo boxes within 5 h after capture, except for adult 

L. retroversa, which were kept on board for experiments. 

 

Set up of feeding experiments 
Live pteropods are extremely fragile. We therefore handled all individuals with great care and 

disturbed them as little as possible. Previous studies advised to use antibiotics to prevent 

bacterial infections (reviewed by Howes et al. 2014), but even small concentrations induced high 

mortalities of the thecosomes in our study, hence this method was abandoned for both Limacina 

spp. and C. limacina.  
 

Feeding of Limacina helicina and L. retroversa  
Immediately after arrival at UNIS, clearly active Limacina spp. specimens were sorted with glass 

pipettes. Due to their large size, adult L. helicina were identified by eye, whereas the smaller L. 

helicina juveniles and adults of L. retroversa were sorted under a dissecting microscope. The 

identification of the two species was based on shape and size, as described by Lalli & Wells 

(1978). L. retroversa dominated the thecosome community in 2014. They were easily 

recognizable by their pointy spiral shell and adults measured more than 1.0 mm in diameter. L. 

helicina prevailed in 2015. They were distinguishable from L. retroversa by their flat-coiled 

shell. The diameter of the shells of females ranged between 5.0-7.0 mm and juveniles had a shell 

diameter of 0.2-0.4 mm. All individuals were transferred to glass bottles containing 1 L of 0.7 

µm filtered seawater. Three in situ replicates (t0) of each species/stage were immediately frozen 

at -80 °C (Table 1). 
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The thecosomes were kept at continuous light to imitate ambient conditions, i.e. polar day. Light 

intensity was approximately 50 µmol m-2 s-1 (incident radiation measured with surface reference 

sensor in air LI-190, LI-COR). Two thirds of the water in all bottles were changed every second 

day to feed the thecosomes and maintain high oxygen concentrations. In parallel, three bottles 

were emptied and the animals deep-frozen (-80 °C) in triplicates for lipid analyses (Table 1). 

Mortality rates were low during the first four days. They increased by day 5-6 and were very 

high after day 6, therefore, the experiments were stopped after six days. 

 

Table 1. Samples of Limacina helicina and L. retroversa (juveniles, adults) analyzed 

from the feeding experiments in 2014 and 2015. Number of specimens per replicate 

for each date (expressed in number of days from the beginning of the experiment). 

Time L. helicina juveniles L. helicina adults L. retroversa adults 
Day 0 40,40,40 1,1,1 5,5,5 

Day 2 45,50,52 1,1,1 8,8,9 

Day 3 - 1,1,1 - 

Day 4 49,50,56 1,1,1 10,10 

Day 6 46,50,56 1,1,1 5,5,5 

 

The thecosomes were fed with a mixture of diatoms (Contricribra weissflogii) and flagellates 

(Rhodomonas salina and Dunaliella salina). Total concentrations were higher than 10,000 cells 

mL-1 (>> 200 µg Chl a L-1), exceeding those of a typical spring bloom and ensuring excess of 

food for Limacina spp. (Howes et al. 2014). The algae were grown in a medium composed of 0.7 

µm-filtered seawater enriched with f/2 Guillard medium (15 mL L-1) and 13C sodium bicarbonate 

(15 mg L-1 in 2014 and 1.5 mg L-1 in 2015). We used lower concentration of the 13C labeled 

bicarbonate in 2015 than 2014 to adjust the labeling method. The concentration of 13C in the 

algae and subsequently in the pteropods only needs to be slightly higher than the natural 

concentration to avoid an overload of the IRMS detector (Faraday cups). Therefore, we gradually 

decreased the quantity of 13C for the algae labeling since 2005 (Graeve et al. 2005), and the 

atom% reached in the algae fatty acids was 3-4 times lower in 2015 than in 2014 (see results 

section).  
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Silicate was added to the medium for diatoms (1.5 mL L-1 of 7.5 µmol Si(OH)4 L-1) to ensure 

optimal growth. R. salina were kept at 4°C, C. weissflogii and D. salina were maintained at 

15°C, since they were growing faster than at 4°C. All cultures were grown at a 12h light:12h 

dark day cycle. Before feeding the thecosomes, algal cells were counted with a haemacytometer 

(Schoen 1988) and Chl a concentrations were measured by fluorometry using methanol as the 

extracting solvent (Holm-Hansen & Riemann 1978). On average, the Chl a values reached 40 µg 

L-1, confirming that food was provided in excess in the incubation bottles. Samples for algal lipid 

analyses were taken by filtering 2 x 5 mL of each algal culture on 0.7 µm GF/F filters 

(Whatman).  
 

Ingestion rates of L. helicina juveniles were determined immediately after sampling on 22 

September 2015. Live animals were sorted and transferred into to 1 L bottles filled with ambient 

water and sieved over 60 µm mesh to exclude larger zooplankton. Bottles contained 50, 100, and 

200 individuals (2 replicates for each density). In addition, three bottles without pteropods served 

as controls. The bottles were attached to a slowly rotating plankton wheel and incubated for 24 h 

in the dark to avoid algal growth and at the ambient temperature of approximately 5° C. At the 

end of the experiment, the juveniles were retrieved from the bottles, and mortality rates were 

very low. Chl a concentrations were determined in two subsamples of 200 mL per bottle at the 

beginning and at the end of the experiment, according to the protocol described above in three 

subsamples of 200 mL per bottle. Ingestion rate was calculated according to Frost (1972) with 

slight modifications as Chl a removal rate: (Chl a initial - Chl a final) / (number of L. helicina). 

An ingestion rate of 3.4 x 10-4 µg Chl a ind-1 d-1 (n = 2) was found for L. helicina juveniles.  

 

These ingestion rates expressed as µg Chl a ind-1 d-1 were converted to µg C lipid ind-1 d-1 using 

the measured content of Chl a per algal cell and the measured lipid content per cell. To calculate 

the lipid ingestion rates of adult L. helicina, we used 1.4 µg Chl a ind-1 d-1 as determined by 

Bernard et al. (2012). For adult L. retroversa we used 0.6 x 10-1 µg Chl a ind-1 d-1 as determined 

by Noji et al. (1997) 
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Feeding of Clione limacina 
C. limacina, which were sampled in July 2014, were kept without food for ten weeks in 110 L 

aquaria filled with 0.7 µm filtered seawater. This starvation period corresponded to the time 

necessary to successfully culture and label their prey L. retroversa, once they had appeared in the 

fjord and were sampled. Half of the water was renewed twice a week to maintain sufficient 

levels of oxygen. Pumps were installed in the aquaria to generate a slow circular flow (JBL 

ProFlow 300, water circulation set at 80 L h-1).  

 

Feeding started on 23 September 2014 with L. retroversa that had been fed with 13C labeled 

algae for three days. To keep track of the feeding success, C. limacina were individually kept in 

glass bottles containing 1 L of 0.7 µm filtered seawater. Five (on 23 and 25 September) or three 

(on 8, 10 and 13 October) active L. retroversa were transferred to the bottles. Feeding rates were 

determined by counting the number of emptied shells after 24 h and 48 h. Non-swimming L. 

retroversa specimens were removed, since C. limacina apparently feeds only on active Limacina 

spp. (Lalli 1970). The feeding experiment lasted for 23 days. Individuals were frozen three days 

after their last feeding episode (Table 2). Ingestion rates were calculated from the number of L. 

retroversa, and converted to lipid carbon, considering that L. retroversa contained on average 

3.04 µg lipid C ind-1
 (see results section). 

 

Table 2. Samples of Clione limacina from the 2014 feeding experiment, duration of 

feeding and number of adult Limacina retroversa successfully ingested. n indicates 

the number of replicates (1 individual per replicate). 

Time Number of adult L. retroversa ingested 

Day 0 0 (n=3) 

Day 11 9 (n=3), 10 (n=2) 

Day 17 5 (n=1), 9 (n=1), 10 (n=1) 

Day 20 8 (n=2), 9 (n=1) 

Day 23 7 (n=1), 9 (n=1), 10 (n=3), 17 (n=1), 18 (n=2) 
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Fatty acid analysis  
Prior to lipid extraction, we removed the gut of C. limacina to exclude non-assimilated fatty 

acids from our calculations, since L. retroversa were clearly visible in the stomachs. The size 

ratio Limacina spp./algae is much larger than that of C. limacina/Limacina spp. therefore the 

guts were not removed from Limacina spp. 

Total fatty acids of algae and pteropods were extracted according to Folch et al. (1957) with 

slight modifications, and separated using a gas chromatograph (HP 6890N, Agilent Technologies 

Deutschland GmbH & Co. KG) (see Boissonnot et al. 2016). The chromatograms were evaluated 

using ChemStation software (Agilent Technologies Deutschland GmbH & Co. KG). Total lipid 

mass per individual was calculated by summing up single fatty acid masses.  

 

Carbon isotopic ratios  
The 13C isotopic enrichment in fatty acids was measured using a Thermo GC-c-IRMS (gas 

chromatography-combustion-isotope-ratio mass spectrometry) system (Thermo Scientific 

Corporation, Bremen, Germany) (see Boissonnot et al. 2016). For each analytical run, two 

reference gas pulses were used for data calibration at the start and at the end, together with the 

internal 23:0 FAME (δ -32.50 vs. PDB). The chromatographic peak areas and carbon isotope 

ratios were obtained with the instrument-specific software (Isodat 3.0) and the reference 

standards 14:0 and 18:0 FAME (Iowa University) were used with known δ-values for further 

calculations.  

 

Isotopic ratios of each fatty acid are normally expressed in δ notation according to formula (1).  

(1) δ 13C(‰)=[(Rsample/Rstandard)−1]×1000 

where R is the ratio 13C/12C, and the commonly used standard is Vienna Pee Dee Belemnite (V-

PDB): Rstandard = 0.0112372.  

For this study, δ-values of labeled samples were converted to atom percent, which is more 

appropriate than relative values to express isotope data in terms of isotope concentrations. δ-

values were converted according to the following equation (2): 

(2) 𝐴𝑇 𝑎𝑡𝑜𝑚  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =    !!"#$%&

!!"#$%&!!
×100 
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Results include the atom percent of enriched samples as well as their natural background (Brenna 

et al. 1997).  

To only consider the enrichment that resulted from the assimilation of labeled food, the atom 

percent excess (ATE) was calculated according to (3).  

(3)  𝐴𝑇𝐸   % =   𝐴𝑇!!!   −   𝐴𝑇!!! 

where t=i is the number of days since the beginning of the 13C feeding experiment and t=0, the  

starting day of the experiment. ATt=0 is therefore an average of the AT in all fatty acids in situ. 

Since the dietary fatty acids did not only contain 13C but also 12C, to calculate the percentage of 

carbon assimilated in the pteropods fatty acids (PA), the atom percent excess (ATE) was divided 

by the total average labeling in the fatty acids of the food-source. For thecosome pteropods, 

average fatty acid atom percent in the algae mixture was used in the calculation (ATalgae, 2014 = 

13.7%, ATalgae, 2015 = 3.7%). Average AT of L. retroversa fatty acids at Day 3 was used to 

estimate the portion of carbon assimilated by C. limacina (ATL. retroversa, Day3 = 2.2%) (4). 

(4) 𝑃𝐴 =    !"#
!"(!""#)

 

To estimate the assimilation of carbon (Cassi) as mass (µg Cassi ind-1) (5), the portion of carbon 

assimilated (PA) was multiplied by the mass of each fatty acid (B) expressed as carbon mass (in 

µg C ind−1). The carbon mass was derived from the number of moles of fatty acid in the 

pteropods. The molecular mass of each labeled fatty acid was calibrated by its carbon atom 

percentage to incorporate the carbon mass variation according to the 13C/12C ratio (De Troch et 

al. 2012). 

(5) 𝐶!""# µμ𝑔  𝐶  𝑖𝑛𝑑!! = 𝐵×𝑃𝐴 =   𝐵  ×   !"#
!

 

Finally, the relative assimilation of fatty acids was calculated as (6). 

(6) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒!""# =
!!""#
!"!""#

×100 

 

Statistical analyses 
Statistical analyses were performed using the free software R 3.2.1 (team RDC 2010). Normal 

distribution of the total lipid and fatty acid turnover rates was tested with Shapiro-Wilk test. One-

way ANOVA followed by Tukey HSD tests were performed on polynomial regressions (degree 

2). Portions were arcsin transformed prior to tests.  
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Principal component analyses (PCA) were performed to explore the thecosomes fatty acid 

compositions and to determine their similarity. Variables were arcsin(√x) transformed for better 

separation of observations when analyzing portions. Fatty acids comprising <1% were removed 

and the rest recalculated to 100%. 

 

Results 

Fatty acid composition and 13C uptake of algal cultures 
In all experiments (2014 and 2015), major fatty acids of the algae mixture (diatoms and 

flagellates) were 16:0, 16:1(n-7), 20:5(n-3) and 22:6(n-3), reflecting the contribution of both 

diatoms and flagellates to the fatty acid masses at a ratio of about 60% diatoms vs. 40% 

flagellates in 2014 and 50% vs. 50% in 2015 (Table 3). The mono-unsaturated fatty acid 16:1(n-

7) and the PUFA 16:2(n-4) and 16:3(n-4) were mostly provided by diatoms (>89%). The PUFA 

18:3(n-3) and 18:4(n-3) were largely synthesized by flagellates (>88%). The fatty acid 18:2(n-6) 

was found exclusively in flagellates.  

 

On average, the algal lipid carbon added to the incubation bottles at each feeding event was 6005 

µg C L-1 in 2014 and 9863 µg C L-1 in 2015. Throughout the experiment, the 13C enrichment in 

the algae averaged at 13.7 atom% in 2014 and at 3.7 atom% in 2015 (Table 3). It remained 

constant throughout the feeding experiments with pteropods (p>0.05). In 2014, maximum 

enrichment occurred in 16:3(n-4) with 18.9 atom%. The minimum enrichment was detected in 

18:0, with 2.4 atom% being labeled. In 2015, maximum enrichment was detected in 16:2(n-4) 

(5.3 atom%) and the minimum in 18:0 (1.2 atom%). 
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Table 3. Absolute and relative fatty acid (FA) compositions of the algal food from 

the 2014 and 2015 experiments. Contribution of diatoms (C. weissflogii) and 

flagellates (R. salina and D. salina) to the fatty acid masses in the mixture. The 13C 

enrichment is expressed as atom% (AT%). The presented values are calculated from 

single algae cultures and averaged for the mixture, for the entire culture period (n = 6 

at each date, 30 days of culture). 

FA Mass (µg C L-1) Relative composition 
(% total lipid) 

Contributions to FA 
mass (%) 

AT% 

              diatoms flagellates       
2014                       
14:0 114 ± 62 1.9 ± 3.9 42.9 57.1 13.0 ± 4.4 
15:0 22 ± 19 0.4 ± 8.0 100.0 0.0 16.0 ± 0.7 
16:0 780 ± 252 12.9 ± 5.5 70.3 29.7 13.9 ± 5.4 
16:1(n-7) 1005 ± 355 16.7 ± 7.9 99.4 0.6 14.0 ± 3.6 
16:2(n-4) 262 ± 101 4.4 ± 6.3 89.6 10.4 17.4 ± 0.5 
16:3(n-4) 464 ± 299 7.7 ± 7.4 95.2 4.8 18.9 ± 0.5 
18:0 168 ± 117 2.8 ± 4.7 64.8 35.2 2.4 ± 0.8 
18:1(n-7) 75 ± 41 1.2 ± 6.0 0.0 100.0 15.0 ± 7.0 
18:1(n-9) 93 ± 63 1.5 ± 6.8 0.0 100.0 12.9 ± 6.4 
18:2(n-6) 78 ± 49 1.3 ± 6.2 0.0 100.0 13.0 ± 6.3 
18:3(n-3) 467 ± 171 7.8 ± 5.0 11.1 88.9 17.2 ± 6.7 
18:4(n-3) 475 ± 166 7.9 ± 7.1 2.5 97.5 11.7 ± 5.2 
18:5(n-3) 37 ± 8 0.6 ± 8.0 0.0 100.0 11.6 ± 5.1 
20:5(n-3) 1272 ± 484 21.1 ± 5.8 71.1 28.9 14.1 ± 4.8 
22:6(n-3) 693 ± 232 11.5 ± 5.3 56.3 43.7 14.5 ± 5.9 
                        
2015                       
14:0 215 ± 54 2.1 ± 4.5 32.1 67.9 4.2 ± 0.7 
15:0 37 ± 26 0.4 ± 8.0 100.0 0.0 5.0 ± 0.3 
16:0 1294 ± 90 12.9 ± 3.8 54.9 45.1 3.6 ± 0.4 
16:1(n-7) 531 ± 305 5.3 ± 6.9 90.6 9.4 4.0 ± 1.3 
16:2(n-4) 234 ± 165 2.3 ± 8.0 100.0 0.0 5.3 ± 0.4 
16:3(n-4) 577 ± 363 5.8 ± 7.3 94.4 5.6 4.5     
18:0 858 ± 65 8.6 ± 3.8 55.4 44.6 1.2 ± 0.1 
18:1(n-7) 258 ± 126 2.6 ± 6.2 0.0 100.0 3.0 ± 0.7 
18:1(n-9) 223 ± 86 2.2 ± 5.4 0.0 100.0 4.0 ± 0.8 
18:2(n-6) 333 ± 150 3.3 ± 5.9 0.0 100.0 4.1 ± 0.8 
18:3(n-3) 1218 ± 825 12.2 ± 7.7 2.1 97.9 4.2 ± 0.6 
18:4(n-3) 1563 ± 1008 15.6 ± 7.5 4.4 95.6 3.4 ± 1.4 
18:5(n-3) 7 ± 5 0.1 ± 8.0 0.0 100.0 1.5     
20:5(n-3) 1649 ± 206 16.5 ± 3.9 58.8 41.2 3.8 ± 1.1 
22:6(n-3) 868 ± 229 8.7 ± 4.6 31.3 68.7 3.1 ± 1.2 
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Total lipid and fatty acid composition of pteropods 
During the feeding experiments the total lipid mass as well as the fatty acid masses did not 

change significantly in Limacina spp. (juveniles and adults) and adult Clione limacina specimens 

(p>0.05).  

 

The total lipid mass of L. helicina juveniles averaged at 0.04 ± 0.01 µg C ind-1 (Table 4). Major 

fatty acids were 16:0, 18:0, 20:5(n-3) and 22:6(n-3), together contributing 57.4% to the total lipid 

mass. L. helicina juveniles also contained substantial quantities of 18:4(n-3) and of the long 

chain mono-unsaturated fatty acids (MUFA) 22:1(n-9) and 22:1(n-7) (>3.7%). The total lipid 

mass of L. helicina adults averaged at 203 ± 72 µg C ind-1. The major fatty acids 16:0, 20:5(n-3) 

and 22:6(n-3) together accounted for 65.2% of the total lipid mass. In addition, the saturated fatty 

acid 14:0 and the mono-unsaturated fatty acids 16:1(n-7) and 20:1(n-7) were present in 

considerable concentrations in the individuals (>3.0%). Total lipid mass of L. retroversa adults 

averaged at 3.0 ± 1.1 µg C ind-1. Major fatty acids were 16:0, 20:5(n-3) and 22:6(n-3), 

contributing 68.1% to the total lipid mass. Also, substantial amounts of 18:0, 20:1(n-9) and 

20:1(n-7) were detected (>2.6%). C. limacina exhibited the highest body size variability, 

reflected by total lipid masses, which ranged from 29.2 µg C ind-1 to 1234.5 µg C ind-1 with an 

average of 148 ± 255 µg C ind-1. The major fatty acids 16:0, 18:0, 20:5(n-3) and 22:6(n-3) 

accounted for 63.5% of the total lipid mass. The fatty acid composition of C. limacina differed 

from that of the thecosome pteropods due to significant amounts of 18:1(n-9), 18:2(n-6) and 

20:4(n-6) (>2.8%). Moreover, odd-chain fatty acids such as 17:0 (4.8%), and less so 17:1(n-8), 

19:0, and 19:1 (together 1.7% of total lipid mass) contributed to the total lipids of C. limacina.  
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Table 4. Fatty acid compositions of Limacina helicina juveniles, adults, L. 

retroversa adults and Clione limacina adults (% total lipid mass) during the entire 

experiment. The number of replicates is given in brackets. 

Fatty acid 
L. helicina  
juveniles (11) 

L.helicina  
adults (10) 

L. retroversa  
adults (10) 

C. limacina  
adults (23) 

14:0 1.6 ± 0.4 3.1 ± 0.7 1.5 ± 0.6 0.8 ± 0.8 
15:0 1.0 ± 0.2 0.5 ± 0.1 1.0 ± 1.1 1.7 ± 1.1 
16:0 25.0 ± 3.9 12.6 ± 3.3 12.2 ± 1.9 14.3 ± 3.3 
16:1(n-9) --     --     --     0.3 ± 0.2 
16:1(n-7) 2.0 ± 1.2 3.0 ± 1.3 1.5 ± 0.7 1.6 ± 1.1 
16:2(n-4) 2.2 ± 0.3 0.4 ± 0.1 0.8 ± 0.3 0.3 ± 0.4 
16:3(n-4) 1.8 ± 1.2 0.2 ± 0.1 0.6 ± 0.1 1.6 ± 1.5 
17:0 --     --     --     4.8 ± 1.3 
17:1(n-8) --     --     --     1.1 ± 0.6 
18:0 13.3 ± 4.0 3.0 ± 0.8 3.4 ± 1.0 14.0 ± 8.1 
18:1(n-9) 1.1 ± 0.6 2.0 ± 0.6 0.6 ± 0.1 4.1 ± 3.8 
18:1(n-7) 1.1 ± 0.7 1.0 ± 0.3 0.8 ± 0.2 1.4 ± 0.6 
18:1(n-5) --     0.1 ± 0.0 --     0.6 ± 0.4 
18:2(n-6) 0.9 ± 0.3 1.4 ± 0.4 0.6 ± 0.2 2.8 ± 2.2 
18:3(n-6) --     --     0.1 ± 0.1 0.0 ± 0.0 
18:3(n-3) 1.0 ± 0.5 1.8 ± 0.4 1.2 ± 0.3 0.5 ± 0.4 
18:4(n-3) 4.4 ± 1.4 2.7 ± 0.6 0.7 ± 0.4 0.8 ± 0.8 
19:0 --     --     --     0.3 ± 0.3 
19:1 --     --     --     0.3 ± 0.4 
20:0 3.1 ± 0.8 0.5 ± 0.2 1.2 ± 0.2 1.0 ± 0.4 
20:1(n-11) 0.8 ± 0.3 0.6 ± 0.3 1.1 ± 0.5 1.0 ± 0.4 
20:1(n-9) 2.1 ± 0.7 2.9 ± 1.1 2.6 ± 0.5 1.7 ± 0.6 
20:1(n-7) 3.1 ± 1.8 4.1 ± 1.1 3.6 ± 0.5 2.6 ± 1.0 
20:2(n-6) --     --     --     1.7 ± 0.9 
20:3(n-6) 1.4 ± 1.0 0.9 ± 0.2 2.3 ± 0.5 --     
20:3(n-3) 0.7 ± 0.5 2.1 ± 0.6 1.6 ± 0.6 --     
20:4(n-6) 0.9 ± 0.5 0.8 ± 0.2 0.9 ± 0.3 3.5 ± 2.2 
20:4(n-3) 1.2 ± 0.8 1.1 ± 0.3 1.4 ± 0.6 0.7 ± 1.2 
20:5(n-3) 10.2 ± 4.5 23.7 ± 5.9 25.9 ± 4.7 12.2 ± 5.5 
22:1(n-11) 2.1 ± 1.8 0.6 ± 0.5 0.3 ± 0.1 0.1 ± 0.3 
22:1(n-9) 4.7 ± 4.1 0.5 ± 0.2 0.8 ± 0.4 0.6 ± 0.5 
22:1(n-7) 3.7 ± 2.6 --     0.2 ± 0.1 --     
22:5(n-3) 1.6 ± 0.8 1.1 ± 0.3 2.3 ± 1.6 0.6 ± 0.9 
22:6(n-3) 9.0 ± 4.0 28.9 ± 7.2 30.0 ± 7.1 23.0 ± 10.2 
                          
Main FA 57.4 ± 8.2 68.2 ± 9.9 71.5 ± 8.8 63.5 ± 14.6 
Diat. FATM 6.0 ± 1.7 3.5 ± 1.3 2.9 ± 0.8 3.5 ± 1.9 
Flag. FATM 6.3 ± 1.5 5.9 ± 0.8 2.6 ± 0.6 4.1 ± 2.4 
LC-MUFA 16.5 ± 5.5 8.7 ± 1.7 8.7 ± 1.0 6.1 ± 1.4 
Odd-chain FA 1.0 ± 0.2 0.5 ± 0.1 1.0 ± 1.1 8.2 ± 1.9 
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To visualize the differences of fatty acid compositions related to species and developmental 

stages, a PCA was performed on L. helicina (adults, juveniles) and L. retroversa (adults) (Fig. 1). 

Two principal components explained 55.7% (PC1: 40.9%; PC2: 14.8%) of the total variance in 

the data set. Three groups, which correspond to the thecosome species and stages, were 

identified by PCA analysis. Adults of L. helicina and L. retroversa had similar compositions, 

mostly driven by the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3). L. helicina juveniles 

formed a well-differentiated group, with high concentrations of the saturated FA 16:0, 18:0 and 

20:0, as well as C16 PUFA and the long chain mono-unsaturated fatty acid 22:1 (both isomers: n-

11 and n-9). 

 

 
Figure 1. Biplot of principal component analysis of the fatty acid compositions of 

Limacina helicina juveniles, adults and L. retroversa adults. Variables are 

arcsin(sqrt) transformed. The circles indicate confidence intervals. 
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Carbon assimilation 
Total lipid  
The ingestion rate of L. helicina juveniles averaged 9.0 10-4 µg lipid C ind-1 d-1. Individuals 

assimilated 13.2% of the total lipids of the ingested food. The increase of labeled lipid carbon 

was significant (p<0.001), reaching 1.4 ± 0.03% of the total lipid mass within six days (Fig. 2).  

 

 
Figure 2. Portion of total lipid (TL) exchanged, expressed as % of total lipid mass, in 

Limacina helicina juveniles, adults, L.  retroversa adults and Clione limacina adults 

during the feeding experiment (6 days for Limacina spp., 23 days for C. limacina).  

 

The daily total lipid turnover rate was of 1.2 x 10-4 µg C ind-1 day-1, which corresponds to 0.2 ± 

0.05 % of total lipid carbon day-1. The ingestion rate of L. helicina adults, calculated from 

Bernard et al. (2012) was 3.6 µg lipid C ind-1 d-1. Individuals assimilated 1.1% of the total lipids 

of the ingested food. They had a lower carbon turnover rate than the juveniles, with only 0.3 ± 

0.0006% exchanged by Day 6 (significant increase: p<0.01). The daily rate of total lipid turnover 

was of 0.04 µg C ind-1 day-1, equaling 0.1 ± 0.001% of total lipid carbon day-1. The ingestion rate 

of L. retroversa adults, calculated from Noji et al. (1997), was 0.2 µg lipid C ind-1 d-1. They 
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assimilated 15.0% of the ingested lipids, 7.7 ± 0.5% of the total lipid carbon was replaced by 

Day 6. The portion of exchanged total lipid strongly increased during the 6 days of feeding 

(p<0.001). An average of 0.02 µg C ind-1 day-1 was assimilated as lipids, which corresponds to a 

daily rate of 1.3 ± 0.1% total lipid carbon day-1. C. limacina ingested 0.6 L. retroversa ind-1 d-1, 

which corresponded to an ingestion rate of 1.8 µg lipid C ind-1 d-1. They assimilated 1.4% of the 

ingested lipids. Only 1.5 ± 1.0% of the total lipid carbon was replaced after 23 days. The daily 

total lipid assimilation rate was 0.03 µg C ind-1 day-1, which corresponds to 0.07 ± 0.04% of total 

lipid day-1.  

 

Fatty acids 
In L. helicina juveniles, maximum carbon assimilation was found in the dominating fatty acids 

16:1(n-7), 20:5(n3) and 22:6(n-3) (51.0 ± 2.9 % of the total lipid carbon assimilated, Table 5). 

The turnover of structural fatty acids 16:0, 18:0, 20:5(n-3) and 22:6(n-3) ranged between 0.4 ± 

0.01% and 2.2 ± 0.4% by Day 6 (p<0.01) (Fig. 3). Diatom FATM were assimilated at high rates, 

especially 16:1(n-7) with 6.2 ± 1.3% by Day 6 (p<0.001). Flagellate FATM were exchanged at a 

lower rate with 0.4 ± 0.2% to 1.1 ± 0.6% by Day 6 (p<0.001). Long-chain MUFA 20:1(n-7) and 

22:1 (both isomers) were exchanged between 0.8 ± 0.03% and 4.9 ± 1.9% by Day 6 (p<0.001), 

while only traces of 20:1(n-9) were exchanged (p>0.05). The odd-chain fatty acid 15:0 was 

renewed at 1.6 ± 0.2% by Day 6 (p<0.01).  
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Table 5. Relative composition of fatty acids assimilated by Limacina helicina 

juveniles, adults, L. retroversa adults and Clione limacina adults (% total fatty acids 

assimilated). Only fatty acids that are shown in the figures of assimilation are 

presented in this table. Averages over Day 4 and 6 were calculated for Limacina spp. 

since both days reflected the same assimilation pattern. Day 23 was used for C. 

limacina. Number of replicates is shown in brackets.  

Fatty acid L. helicina juv. 
(4) 

L. helicina adult 
(4) 

L. retroversa adult 
(4) 

C. limacina    
(8) 

15:0 0.9 ± 0.3 9.0 ± 1.3 0.1 ± 0.1 1.1 ± 0.9 
16:0 37.0 ± 0.4 20.2 ± 8.1 23.8 ± 1.2 26.6 ± 4.1 
16:1(n-7) 11.7 ± 7.0 15.6 ± 4.3 1.0 ± 0.3 3.8 ± 2.8 
16:2(n-4) 0.9 ± 0.1 3.0 ± 2.1 0.3 ± 0.1 0.0 ± 0.0 
16:3(n-4) 1.2 ± 0.5 3.2 ± 3.6 0.5 ± 0.1 2.1 ± 2.5 
17:0 -     -     -     4.8 ± 1.5 
17:1(n-8) -     -     -     0.9 ± 1.1 
18:0 4.8 ± 1.4 13.9 ± 7.4 1.7 ± 0.3 6.5 ± 3.2 
18:2(n-6) 0.7 ± 0.0 1.5 ± 2.5 4.8 ± 0.6 4.6 ± 4.4 
18:3(n-3) 1.4 ± 0.4 7.3 ± 2.2 38.5 ± 0.7 19.2 ± 3.2 
18:4(n-3) 1.8 ± 2.7 14.5 ± 8.5 7.7 ± 2.9 0.8 ± 1.1 
19:1 -           -     0.9 ± 1.0 
20:1(n-7) 2.4 ± 1.2 0.0 ± 0.0 2.1 ± 0.3 3.5 ± 1.0 
20:1(n-9) 0.4 ± 0.3 1.1 ± 0.2 3.0 ± 0.0 7.2 ± 2.2 
20:5(n-3) 6.4 ± 2.2 0.3 ± 0.1 9.1 ± 1.7 11.2 ± 3.9 
22:1(n-11) 2.1 ± 0.2 -     -     0.3 ± 0.5 
22:1(n-9) 25.4 ± 9.2 -     0.1 ± 0.0 0.3 ± 1.6 
22:6(n-3) 2.8 ± 1.1 10.2 ± 2.9 7.4 ± 2.1 6.5 ± 4.9 
                          
Main FA 51.0 ± 2.9 44.7 ± 11.4 41.9 ± 3.0 50.7 ± 8.1 
Diat. FATM 13.8 ± 7.0 21.8 ± 6.0 1.8 ± 0.3 5.9 ± 3.7 
Flag. FATM 4.0 ± 2.7 23.3 ± 9.1 51.0 ± 3.0 24.5 ± 5.5 
LC-MUFA 30.4 ± 1.2 1.1 ± 0.2 5.2 ± 0.3 11.3 ± 2.9 
Odd-chain FA 0.9 ± 0.3 9.0 ± 1.3 0.1 ± 0.1 7.6 ± 2.3 

  

Maximum carbon assimilation in L. helicina adults was determined in diatom FATM (55.4 ± 

16.7% of total lipid assimilated, Table 5). The specimens exchanged small amounts of carbon in 

major fatty acids (0.3%, p<0.05) and in MUFA (traces, p>0.05) (Fig. 4). Diatom fatty acids were 

exchanged between 0.4 ± 0.1% (p<0.05) and 1.2 ± 0.4% (p<0.01) by Day 6. Flagellate markers 

were exchanged at similarly low rates as diatom markers (0.8 ± 0.4% in 18:3(n-3) and 0.5 ± 

0.2% in 18:4(n-3) exchanged by Day 6, p<0.05). The fatty acid 18:2(n-6) was not exchanged 

significantly (p>0.05). The odd-chain 15:0 was exchanged at 1.5% by Day 6 (p<0.01, n = 1 at 

Day 6).  
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Figure 3. Portion of fatty acids (FA) exchanged by Limacina helicina juveniles 

(expressed as % of fatty acid mass) during the feeding experiment (6 days).  
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Figure 4. Portion of fatty acids (FA) exchanged by Limacina helicina adults 

(expressed as % of fatty acid mass) during the feeding experiment (6 days).  

 

The highest carbon assimilation in L. retroversa adults occurred in flagellate FATM (51.0 ± 

3.0% of total lipid assimilated) (Fig. 5). By Day 6, 1.2 ± 0.1% to 5.9 ± 0.7% (p<0.001) were 

renewed in the structural fatty acids 16:0, 18:0, 20:5(n-3) and 22:6(n-3). Between 1.6 ± 0.6 and 

0.8 ± 0.7% of the diatom FATM were exchanged by Day 6 (p<0.05). Flagellate markers showed 

the highest assimilation, with 13.9 ± 0.9% (p<0.001) to 59.9 ± 0.3% (p<0.001) renewed by Day 
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6. Long-chain MUFA 20:1(n-7), 20:1(n-9) and 22:1(n-9) were exchanged between 0.4 ± 0.01% 

and 4.6 ± 2.6% (p<0.001). By Day 4, 15:0 reached 0.4 ± 0.2% carbon exchange (p<0.01) (below 

detection limit at Day 6).  

 

 

 
Figure 5. Portion of fatty acids (FA) exchanged by Limacina retroversa adults 

(expressed as % of fatty acid mass) during the feeding experiment (6 days). Please 

note the different scale used for flagellate FATM. 
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C. limacina showed the lowest carbon exchange rates of most fatty acids. However, carbon 

assimilation was detectable for most fatty acids (Fig. 6). Maximum carbon assimilation occurred 

in structural fatty acids 16:0, 18:0, 20:5(n-3) and 22:6(n-3) (50.7 ± 8.1% of total lipid 

assimilated). The exchanged carbon in these fatty acids reached between 0.1 ± 0.01% (p<0.05) 

and 1.3 ± 0.9% (p<0.001). Diatom FATM 16:1(n-7) reached 1.8 ± 1.4% (p<0.01), 16:3(n-4) had 

a lower assimilation (1.1 ± 0.9% at Day 23, p<0.01), and no assimilation was detectable in 

16:2(n-4) (p>0.05). As in L. retroversa, flagellate markers were exchanged at a high rate, 

especially 18:3(n-3) (21.9 ± 18.9% at Day 23, p<0.01). Among long-chain MUFA, only 20:1(n-

7) and 20:1(n-9) were exchanged at detectable amounts, with 2.2 ± 1.4% and 0.7 ± 0.3%, 

respectively, by Day 23 (p<0.001). Odd-chain fatty acids were also renewed, ranging between 

0.9 ± 0.4% and 1.2 ± 0.7% by the end of the experiment (p<0.01).  

 

Discussion 
Limacina species have often been in the focus of ocean acidification research due to their 

calcified shell, including mesocosm and experimental approaches. It is still very difficult to keep 

these fragile and highly sensitive organisms in culture over an extended period of time, even in 

large water volumes (Lischka et al. 2010, Niehoff et al. 2013, Howes et al. 2014). In accordance, 

mortality rates of Limacina spp. increased after six day in our experiment. During the first days, 

however, the mortality rates were low and Limacina spp. exhibited normal swimming behavior. 

All species and stages showed an exchange of fatty acids, clearly indicating that the animals 

were feeding and incorporating at least part of the dietary components into lipids. Compared to 

Arctic copepods (Graeve et al. 2005, Boissonnot et al. 2016), the lipid exchange rates in 

Limacina spp. were low, which can at least partially be attributed to their very low ingestion 

rates, when being cultured (Maas et al. 2011, Howes et al. 2014, our study). The experiments 

with L. retroversa and L. helicina were performed in different years, but essentially under the 

same laboratory conditions and diets. Therefore we believe that we can compare the assimilation 

capacities among all species and stages. 
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Figure 6. Portion of fatty acids (FA) exchanged by Clione limacina adults 

(expressed as % of fatty acid mass) during the feeding experiment (23 days). Please 

note the different scale used for flagellate FATM. 

 

The thecosomes were fed with a mixture of flagellates and diatoms at a cell number ratio of 1:1 

and at more than 800 µg C L-1, which matches ad libitum food concentrations (Howes et al. 

2014). Diatoms mainly provided the monounsaturated FA 16:1(n-7) and the C16 PUFA 16:2(n-4) 

and 16:3(n-4), while flagellates added high amounts of the C18 PUFA 18:2(n-6), 18:3(n-3) and 
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18:4(n-3), as previously reported (Ackman et al. 1968, Graeve et al. 1994, Falk-Petersen et al. 

1998).  

 

All fatty acids were sufficiently labeled, except for 18:0, which showed very low concentrations 

of 13C label (2.4 atom% in 2014 and 1.2 atom% in 2015) in all algal cultures and throughout the 

experiment. Low labeling of 18:0 has been previously observed (Boissonnot et al. 2016) and 

might be due to physiological processes, resulting in varying turnover rates (Li et al. 2014). 

 

Stage-related differences in fatty acid assimilation of L. 

helicina 
Turnover of total lipid (considered in this study as the sum of fatty acids) and specific fatty acids 

varies with developmental stage. It depends on growth rates and stage-related needs in specific 

compounds (Brett et al. 2009). It has been suggested that L. helicina feeds opportunistically on 

any food particles collected by their mucous net (Gilmer 1972, Harbison and Gilmer 1992, Falk-

Petersen et al. 2001, Gannefors et al. 2005). Our results confirm this for adults, since they 

assimilated FATM from both flagellates and diatoms in similar proportions, showing no 

preference for either algal group. In contrast, juveniles assimilated higher portions of diatom 

markers than those of flagellates (14% vs. 4% of assimilated fatty acids) even though they were 

sampled in September, when flagellates prevailed in the water column (Leu et al. 2006, Søreide 

et al. 2010, Hegseth and Tverberg 2013). This highlights the potential importance of diatom-

derived fatty acids for the development of young thecosomes. In the light of decreasing sea ice 

cover and thus possibly declining diatom spring blooms (Li et al. 2009, Gao et al. 2012, Hegseth 

and Tverberg 2013), this issue deserves further attention in Arctic marine research. 

 

Females were sampled in late July. We believe that the gonads of these females were mature 

because (1) L. helicina is known to reproduce in late summer/autumn in that area (Gannefors et 

al. 2005) and (2) veliger larvae were abundant in the water column from August on, indicating 

that spawning had occurred shortly after sampling the females. At capture, the females of L. 

helicina had significantly higher concentrations of the two omega-3 fatty acids EPA 20:5(n-3) 

and DHA 22:6(n-3) than the juveniles. In fact, their concentrations were the highest yet observed 
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in L. helicina in this season (Gannefors et al. 2005). These fatty acids are essential for gonad 

maturation processes and hatching success of copepods (Jónasdóttir et al. 2009) and it is very 

possible that they have a similar function in pteropods. Female and juvenile L. helicina also 

differed with respect to the carbon turnover of 18:4(n-3). In adults it reflected nearly 15% of the 

assimilated carbon, while it was only 2% in the juveniles. Gannefors et al. (2005) found high 

amounts of 18:4(n-3) in egg ribbons. Hence, this flagellate FATM also could be essential for 

reproductive processes.  

 

Late in the season, L. helicina females are usually lipid-depleted, suggesting that they cease 

feeding or at least reduce feeding to only fuel basic metabolic needs, and it has been reported that 

most of them die shortly after reproduction (Fabry 1989, Gannefors et al. 2005, Hunt 2008). This 

could explain why we did not find any L. helicina females in the Kongsfjord/Isfjord by the end 

of August. During our experiment, however, the females were still feeding, as indicated by the 

continuous continued exchange of their fatty acids, and at least part of the diet-derived energy 

was invested in lipid biosynthesis, although at a very low rate. It is thus possible that the 

depletion of lipids in the natural habitat is due to low food availability.  

 

Whether or whether not L. helicina juveniles grow during winter is under discussion. Lischka et 

al. (2012) suggested that growth ceases in winter and starts again in spring, at the onset of the 

phytoplankton bloom in the column water. Bednaršek et al. (2012) found that in the Southern 

Ocean L. helicina antarctica grows during winter, but at a lower rate than in spring/summer. The 

winter growth may be supported by omnivorous feeding and/or by lipid reserves (Paranjape 

1968, Lalli & Gilmer 1989). In our study, L. helicina juveniles incorporated total lipids more 

intensively compared to adults. This suggested that this energy may be stored to prepare the 

sustainment of their growth throughout autumn and winter, in addition to feeding on the low 

levels of available food. 

 

Zooplankton usually incorporates most dietary fatty acids without modifications, while other 

fatty acids are synthesized de novo. In copepods, for example, long-chain MUFA are produced 

from non-lipid dietary precursors. They serve as long-term energy reserves, usually stored as 

wax esters, and fuel winter metabolism and reproductive processes (Sargent & Falk-Petersen 
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1988, Kattner et al. 2007). Long-chain MUFA have also been found in considerable amounts in 

L. helicina from the Arctic and Southern Ocean and have been associated with feeding on 

copepods (Kattner et al. 1998, Falk-Petersen et al. 2001, Gannefors et al. 2005). We also 

detected long-chain MUFA in L. helicina and our results even show that carbon was assimilated 

into these compounds. The assimilation was statistically significant despite a high standard 

deviation of these fatty acids masses. In our incubation, copepods or copepod debris were not 

offered to the thecosomes and can thus be excluded as a source for these fatty acids. Hence, L. 

helicina may have the potential to synthesize long-chain MUFA. Such a capacity has been 

demonstrated for benthic gastropods (Ackman & Hooper 1973) and possible pathways may 

include the desaturation and elongation of dietary fatty acids. Further work is needed to address 

this question and clarify the origin of long-chain MUFA in Limacina spp. 

 

Lipid assimilation processes in Limacina helicina and L. 

retroversa - a comparison 
Sub-polar species usually have a higher metabolism compared to polar species, with faster 

developmental rates and shorter life cycles (Scott et al. 2000). Accordingly, in our study the 

North Atlantic species L. retroversa assimilated total lipids 13 times faster than the Arctic L. 

helicina in our study, indicating that they were feeding more intensely and/or assimilated lipids 

more rapidly. The difference in lipid assimilation between the two species may also be season-

specific. High-latitude species, such as the copepod Calanus hyperboreus, are particularly 

efficient to accumulate lipids during a short period of primary production, whereas sub-polar 

species are better adapted to a longer productive period (Madsen et al. 2001, Ringuette et al. 

2002, Søreide et al. 2008, Falk-Petersen et al. 2009). Therefore, L. helicina may be more 

efficient to build up lipid reserves in spring than in late summer, when the experiment was 

conducted. On the contrary, L. retroversa may be efficient to accumulate lipids during a longer 

period than L. helicina, which includes the time when the experiment was conducted. 

 

The feeding biology of L. retroversa is poorly studied. The few studies that are available 

suggested that, in contrast to the omnivorous L. helicina, L. retroversa feeds primarily on 

flagellates and additionally on diatoms of ingestible size and shape (Morton 1954, Perissonotto 
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1992). Although L. retroversa was fed in equal proportions with diatoms and flagellates in our 

study, it assimilated FATM mainly from flagellates (51% of assimilated fatty acids vs. 2% from 

diatoms), corroborating that this species fed more and/or better assimilates fatty acids from 

flagellates than from diatoms. L. helicina, in contrast, showed no preference for one or the other 

algae taxa. The deviating feeding strategies of the two species may be due to evolutionary traits 

related to their different natural environments.  

 

Also the life cycle of L. retroversa in the Arctic is not fully understood. Some studies suggest a 

one-year life span with one reproductive event in spring (Hsiao 1939) or in autumn, which would 

be similar to the life history of L. helicina (Meinecke et al. 1990). Other authors suggest that 

reproduction takes place throughout the year, with a peak in spring and in autumn (Lebour 1932, 

Dadon & De Cidre 1992). In our study, L. retroversa occurred in the fjord in mid-August and 

disappeared after mid-October. When we sampled the females for our experiments in mid 

September, they were reproducing as a parallel field study on the abundance and distribution of 

this species suggests (Boissonnot et al., unpublished data). The fatty acid compositions of adult 

L. retroversa and L. helicina were similar. L. retroversa also contained large amounts of EPA, 

DHA and the FATM 16:1(n-7), C16 PUFA and C18 PUFA (53% of the assimilated fatty acids). 

This suggests that L. retroversa females, like L. helicina, had mature gonads at capture and were 

using the FATM for egg production (Jónasdóttir et al. 2009). Another similarity between the two 

species was that L. retroversa adults disappeared from the water column in October while in. the 

experiments L. retroversa specimens continued to feed as indicated by exchanging their long-

chain MUFA. Similarly to L. helicina juveniles, L. retroversa may thus also use these long-term 

energy reserves for overwintering.  

 

Lipid transfer from Limacina retroversa to Clione 

limacina 
Total lipid assimilation by Clione limacina (1.4% of the ingested lipids) was very low compared 

to the study conducted by Böer et al. (2006) on the same species, which report a complete 

assimilation of carbon within 1 week. The amount of carbon offered varied however, 

considerably among the experiments and this could at least partly explain the differences in lipid 
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assimilation rates: Böer et al. (2006) fed C. limacina with one L. helicina in five days (total lipid: 

1.2 mg ind-1, corresponds to app. 0.9 mg C ind-1). In our study, C. limacina were fed with 3-4 of 

the much smaller L. retroversa within five days (total lipid: 0.01 mg C ind-1). Therefore, the total 

lipid mass available for C. limacina was 10 times lower than in the experiment by Böer et al. 

(2006). The low lipid assimilation may also have been related to the physiological state of C. 

limacina. In our study, C. limacina were collected during the period of high reproductive activity 

(Mileikovsky 1970) and then starved for ten weeks. Body shrinkage associated with metabolic 

reduction can be expected during this period (Böer et al. 2005). The exchange rate of lipids 

increased throughout the our feeding experiment, suggesting the pteropods used the diet-derived 

energy first to fuel increasing metabolic activity and somatic growth to normal size, and only 

subsequently to deposit lipid. Somatic growth is also reflected by the highest turnover rates 

observed in structural fatty acids 16:0, 20:5(n-3) and 22:6(n-3), which are required to form 

biomembranes and have been shown to be essential for zooplankton growth (Müller-Navarra et 

al. 2000, Wacker & Elert 2001). Thirdly low lipid assimilation, as compared to that observed by 

Böer et al. (2006), may also be due to a different methodology. In their experimental study, Böer 

et al. (2006) did not remove the stomachs in C. limacina.  Therefore, the lipid signal may have 

been masked by undigested food and did not truly reflect lipid accumulation.  

 

It has been suggested that C. limacina has a large capacity of de novo fatty acid synthesis, in 

particular producing odd-chain fatty acids (Kattner et al. 1998, Böer et al. 2005). The 

biosynthetic pathway of the odd-chain fatty acids in C. limacina is still unclear, but the 

utilization of dimethylsulfoniopropionate (DMSP) has been suggested. DMSP is most likely 

provided by Limacina spp., which strongly accumulate this component, due to feeding on 

detritus and phytoplankton (Gilmer & Harbison 1991, Levasseur et al. 1994). After cleavage of 

DMSP to DMS and acrylic acid, the propionate moiety is formed, which is the starter molecule 

(3 carbon atoms) for the biosynthesis of odd chain fatty acids (Kattner et al. 1998). Odd-chain 

fatty acids are mainly incorporated into DAGE, which are long-term storage lipids (Kattner et al. 

1998, Böer et al. 2005). Our results confirm that C. limacina produce these fatty acids de novo, 

since individuals assimilated substantial amounts of the odd-chain fatty acids 17:0,17:1(n-8) and 

19:1 while none of these were detectable in L. retroversa. Assimilation rates in C. limacina were 

as high for odd-chain fatty acids as for even-chain fatty acids directly derived from the diet. The 
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reason for the formation of odd-chain fatty acids is not yet clear and the complete pathways of 

biosynthesis and incorporation of these unusual fatty acids into the storage lipid classes TAG and 

DAGE still need to be described. 

 

Conclusions 
The rates of lipid assimilation of thecosome pteropods are closely associated with the 

development stages and species. Juveniles of Limacina helicina assimilated dietary fatty acids 

significantly more rapidly than the adults and showed a predilection for diatom fatty acids. In 

contrast, adult L. helicina integrated fatty acids from diatoms and flagellates in similar portions, 

suggesting no preference for one of the algae taxa. The sub-Arctic L. retroversa exhibited higher 

fatty acid and total lipid turnover rates than the Arctic L. helicina. Also its feeding preferences 

diverge from those of L. helicina, since L. retroversa integrated fatty acids more rapidly from 

flagellates than from diatoms. Clione limacina, despite its high feeding efficiency on L. 

retroversa specimens, assimilated their lipids at a low rate, as compared to previous feeding 

studies with L. helicina. Our data thus suggest that C. limacina is better adapted to feeding on the 

larger and more lipid-rich L. helicina. In a context of global changes and the possible shift of the 

thecosome community towards a dominance of L. retroversa rather than L. helicina, this could 

have severe consequences on the performance of C. limacina in Arctic waters.  

 

Pteropods seem to be less efficient than copepods in assimilating lipids, however, they contribute 

an important portion of the lipid transfer in the Arctic marine food web due to their larger size 

and seasonally high abundances. Pteropods reach maximum abundances in autumn, ensuring the 

continuity of energy supply for higher trophic levels during a critical period, when the major 

biomass species, Calanus spp., have left the upper water layers to enter dormancy at greater 

depth.  
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RESULTS AND SYNOPTIC DISCUSSION

One of the most important features of Arctic ecosystems is the lipid-driven flow of energy

through the food web, which determines the structure of communities and populations (Falk-

Petersen et al. 2009). Lipids that are biosynthesized by ice-algae and phytoplankton are

assimilated as high-energy stores by zooplankton (Lee 1975, Sargent and Henderson 1986,

Falk-Petersen et al. 1987, Lee et al. 2006). Subsequently, these compounds are transferred

across the entire food web, constituting the major source of energy for fish, birds and marine

mammals in the Arctic (Falk-Petersen et al. 1990, 2004, Dahl et al. 2003).

This thesis aimed at better understanding the role of zooplankton in the transfer of lipids

through the Arctic pelagic food web by:

1. Filling the gaps of knowledge in terms of abundance and life-cycle strategies of zooplank-

ton species, particularly thecosome pteropods (manuscript II)

2. Estimating the lipid and fatty acid turnover capacities of main Arctic zooplankton species

in relation to their life cycle strategies (manuscripts I and III)

The synoptic discussion first focuses on methodological advances with regard to feeding experi-

ments using 13C labeled prey items in combination with CSIA, and emphasizes new possibilities

as well as their limitations (section 4.1). The discussion also highlights the high variability of
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lipid and fatty acid turnover among zooplankton species as a result of their contrasting life

strategies (section 4.2). The seasonal and stage-related variations of lipid turnover of main

Arctic zooplankton species are examined in section 4.3. Section 4.4 combines knowledge on

zooplankton distribution and experimental results on lipid and fatty acids turnover rates to

discuss the role of the zooplankton community in the transfer of lipids and fatty acids through-

out the Arctic pelagic food web. The last section of the discussion (section 4.5) frames the

capacities of lipid transfer by Arctic zooplankton in the context of climate change and aims at

evaluating possible future alterations in the lipid-driven food web.

4.1 Advantages of CSIA combined with experiments us-

ing labeled food

Studying the lipid carbon transfer within food webs has been a growing focus of ecosystem-

based studies. A traditional approach is to evaluate changes in the lipid, fatty acid and fatty

alcohol composition of organisms (e.g. Lee 1974, Graeve et al. 1994b, Kattner and Hagen

1995, Falk-Petersen et al. 2009). However this method exhibits certain limitations to ade-

quately explain lipid deposition patterns (Graeve et al. 2005, Budge et al. 2011, manuscript

I, III). The first problematic aspect is that the signal of dietary fatty acid incorporation of a

consumer may be diluted by its initial fatty acid composition (Jobling 2003, 2004). An increase

of the concentration of a dietary fatty acid is much easier to detect if its initial concentration

in the consumer was low than if it was already high. Another aspect is that a change of a

consumer’s fatty acid profile can also be the result of the combination of dietary incorporation

and mobilization of fatty acids for metabolism (Jobling 2003). Depending on the zooplankton

species, development stage and feeding condition, one of the two relevant processes (incorpo-

ration versus mobilization) can dominate and change the fatty acid profile, or both contribute

equally, leading to a stable profile (Graeve et al. 2005). Looking only at the fatty acid or lipid

concentrations, the magnitudes of these two processes cannot be distinguished.

To overcome these limitations, radioactive 14C labeling of fatty acids was used to follow the

transfer of lipids and investigate their biosynthesis in consumers (Farkas et al. 1973, Sargent

and Lee 1975, Lampert 1977, Dall et al. 1993). This method allowed for semi-quantitative

monitoring of carbon lipid assimilation by examining the total radioactivity with a scintillation

counter. In the recent past, 14C was replaced by non-radioactive 13C to estimate the biosynthe-
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sis of fatty acids and alcohols in organisms (Graeve et al. 2005). The 13C isotope is naturally

present in marine systems, at an average abundance of 1.1% 13C vs. 98.9% 12C. In marine pri-

mary producers, this ratio is of 98.93% 12C and 1.107% 13C and slightly varies in organisms of

higher trophic levels as 13C undergoes little fractionation (<1 h) with trophic level (Minagawa

and Wada 1984, Post 2002, Søreide et al. 2006).

The ratio of 13C/12C into individual compounds can be estimated by CSIA using a GC-IRMS

that separates the target compounds with the GC unit and measure isotopic ratios with the

IRMS unit (Graeve et al. 2005, section 2.4.3). CSIA were first developed in the early 1990s to

evaluate natural isotope abundances (Meier-Augenstein 1999, Boschker and Middelburg 2002),

but they can also be applied to feeding experiments based on 13C labeled diet to detect processes

of carbon assimilation into specific compounds such as fatty acids, even when the concentra-

tions of the respective compounds remain unchanged (Graeve et al. 2005, manuscript I, III).

The transfer of lipid carbon from a producer to one or several trophic levels of consumers can

thus be accurately followed and its turnover rate quantified.

This method provides valuable functional information about lipid-related ecology, which can

be useful in several research areas. A major application concerns the investigation of trophic

relationships in ecosystems. One approach (1) is the use of mixing models that determine the

13C isotopic signature of consumers’ FATM to evaluate their trophic level and the origin of their

diet. When applying this approach, it is crucial to know how long it takes for the consumer to

turnover its fatty acids, which allows for evaluating whether or not the fatty acid profile reflects

a recent diet. However, to date, only one study determined fatty acid assimilation rates, in

Arctic Calanus spp. (Graeve et al. 2005). Current mixing isotope models are mainly based

on the assumption that lipid turnover rates of organisms, for example zooplankton and fish,

range between hours and days (i.e. Søreide et al. 2006, Kohlbach et al. 2016, 2017). With

an accurate determination of the lipid turnover rates, these models could provide more precise

results. Another approach in trophic relationships investigations (2) is the use of quantitative

fatty acid signature analysis (QFASA) to determine the diet composition of a consumer (Iver-

son et al. 2004). The consumer’s fatty acid signature (FAS) is compared to different weighted

mixtures of the potential preys’ FAS. The mixture that exhibits the smallest statistical distance

from that of the consumer is considered to reflect the true diet. The proportional contribution

of each prey type to the mixture, and hence to the consumer’s diet is estimated from its FAS

contribution. Calibration coefficients are necessary in these models to take into account the
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fact that the FAS of the consumer does not reflect exactly that of its prey. These coefficients

are estimated from controlled feeding experiments, where the consumer is fed a single diet until

its FAS resembles that of its diet as closely as possible (e.g. Nordstrom et al. 2008, Thiemann

et al. 2008, Budge et al. 2011). However the necessary duration of feeding to reach this steady

state is so far empirical and in most cases inaccurate. Knowing lipid turnover rates would allow

for adjusting these experiments and hence represent an important gain of precision. In both

described approaches (1) and (2) used in food web interactions modeling, the use of experi-

mentally quantified rates would represent a major improvement in the determination of trophic

relationships.

When designing feeding experiments usinga 13C labeled diet, it is of major importance to signif-

icantly increase the 13C/12C ratio of their diet to discard natural changes in 13C abundance of

the consumers. Another aspect is that the amount of label decreases with trophic level due to

dilution (manuscript III). It is therefore crucial to reach a sufficient amount of label in the fatty

acids of the first trophic level to ensure detectable changes in the top consumer. On the other

hand, too high 13C labeling can cause overloading of the IRMS detector. Labeling of the first

trophic level (algae in this study), which is performed by adding 13C sodium bicarbonate in the

culture medium (see section 2.3.1), is therefore a crucial step. In the first feeding experiment

using 13C labeled diet conducted by Graeve et al. (2005) with copepods fed with diatoms, 200

mg L−1 of 13C sodium bicarbonate were added. This resulted in a high labeling of the algae

(37% of 13C) and of the consumers (10-20%). Since then, I gradually decreased the quantity of

13C added to the algal cultures to reach a concentration that does not cause technical problems,

but is still significantly higher than the natural ratio (manuscript I, III). In 2014, 15 mg L−1

were added to the algal cultures, leading to a labeling of the algal diet of 14-15%. In 2015,

the quantity of 13C sodium bicarbonate was reduced to 1.5 mg L−1, resulting in a labeling of

the diet of 3.7%. The labeling success in consumers are summarized in Table 6. For feeding

experiments with only one primary consumer, I suggest that a labeling of the first trophic level

of 10-20% is ideal and can be achieved by adding 10-20 mg L−1 of 13C sodium bicarbonate to

the culture medium. For feeding experiments with two levels of consumers, I would recommend

to label the first trophic level with 20-25% by adding 20-30 mg L−1 of 13C sodium bicarbonate

to the culture medium.

Regarding the calculation of assimilated carbon by a consumer (see section 2.4.3), it is worth

underlining the importance of using the 13C atom percent excess (ATE) instead of the atom
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percent (AT). This is essential to correct for the natural 13C background of the consumer and

consider only the experimental enrichment (Coleman and Fry 1992, Brenna et al. 1997). Cal-

culations of lipid assimilation based on AT, as performed by Graeve et al. (2005), lead to an

overestimation of the consumer’s efficiency. As an example, in the experiments conducted in

the present study, the total lipids exchanged by P. minutus calculated from the ATE were of

55% total lipid after 21 days (manuscript III). If the AT had been used, the total lipids ex-

changed would have been estimated to 70% total lipid. Moreover, the overestimation of carbon

assimilation tends to be higher for fatty acids with low enrichment than for fatty acids with

high enrichment. For example, the turnover of 18:0 would be overestimated by factor 4 (15%

vs. 4% total fatty acid) while 20:5(n-3) would be overestimated only by factor 1.2 (91% vs.

76% total fatty acid). These different levels of overestimation may have high consequences on

the ecological interpretation of carbon assimilation into total lipids and fatty acids.

Table 6: Labeling success (atom%) of all trophic levels investigated in this study.

Year - manuscript Trophic level 1 Trophic level 2 Trophic level 3
(algae mixture) (C. limacina)
AT Species AT AT

2014 15.3% C. glacialis CIV 4.8% (Day 21) –
2014 - manuscript I 15.3% P. minutus CV 8.1% (Day 21) –
2014 - manuscript I 15.3% O. similis female 2.3% (Day 21) –
2015 - manuscript III 3.7% L. helicina juv. 1.2% (Day 6) –
2015 - manuscript III 3.7% L. helicina adult 1.1% (Day 6) –
2014 - manuscript III 13.7% L. retroversa adult 2.2% (Day 3) 1.2% (Day 23)
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Key-messages of section 4.1

• CSIA combined with feeding experiments using 13C diet allow for a precise evaluation of

the lipid and fatty acid turnover in organisms. The transfer of lipid carbon in a simple food

web can be accurately quantified by this method.

• Experimentally determined lipid assimilation rates can be used in food web research,

particularly to estimate trophic relationships.

• Labeling of the diet must be carefully adjusted. The 13C label must be concentrated

enough to ensure a clear monitoring of lipid assimilation by the consumer(s) but not over

concentrated to avoid technical problems with the IRMS.

• It is crucial to offset natural 13C content in the consumers to avoid an overestimation of

their lipid turnover efficiency.

4.2 Lipid and fatty acid turnover reflects life strategies

of Arctic zooplankton

The life cycle and feeding strategies of Arctic zooplankton organisms are highly adapted to

the extreme conditions that characterize their environment (Lee and Hirota 1973, Clarke 1983,

Falk-Petersen et al. 2009). These species accumulate different amounts of lipid reserves and

store them under different lipid classes (Hagen and Auel 2001, Dalsgaard et al. 2003, Lee et

al. 2006). However, the capacities of these organisms to turnover their total lipids and fatty

acids are poorly understood. Only one study performed by Graeve et al. (2005) focused on

this matter before. This thesis investigated to which extent the variations of lipid and fatty

acid turnover rates among copepods (P. minutus and O. similis, manuscript I and C. glacialis,

additional data) and pteropods (L. helicina, L. retroversa and C. limacina, manuscript III) are

related to their life strategies. This section gathers the gained knowledge about these species

lipid turnover capacities to distinguish general eco-physiological patterns among the Arctic zoo-

plankton community.
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Large differences in size and in storage capacities (Table 1, Table 2) result in large differences

in total lipid masses among the species, as reflected in this study (Fig.13). L. helicina adult

and C. limacina exhibited the highest total lipid masses, averaging at 203 µg C ind−1 and 148

µg C ind−1, respectively. The total lipid mass of C. glacialis was lower but increased from

19 µg C ind−1 at Day 0 to 62 µg C ind−1 at Day 21, indicating that individuals accumulated

lipids during the experiment. P. minutus and L. retroversa exhibited a constant total lipid

mass averaging at 3 µg C ind−1. O. similis exhibited an increase of its total lipid mass from

0.08 µg C ind−1 at Day 0 to 0.2 µg C ind−1 at Day 21. But this may be an artifact due to a

high variability in the lipid content among individuals, probably associated with the overlap of

two cohorts (Narcy et al. 2009, see manuscript III for more details). L. helicina juvenile had

the lowest total lipid mass, averaging at 0.04 µg C ind−1.
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Figure 13: Total lipid mass (µg C ind−1) of zooplankton species during the various feeding experi-
ments.

To compare the efficiency of total lipid and fatty acid assimilation among species, (1) the high

differences between their total lipid masses were discarded by considering assimilation rates

expressed as a percent of total lipid mass; (2) all species of the second trophic position were

offered the same phytoplankton food composed of a mixture of flagellates and diatoms at a cell

number ratio of 1:1 (manuscript I, III).
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The algae were supplied in excess to ensure that the consumers were not food-limited (Sakshaug

et al. 2009, Howes et al. 2014). This mixed diet was chosen to match the in situ conditions

in summer to early autumn, when a co-dominance of flagellates and diatoms is observed in

Svalbard waters (Leu et al. 2006, Søreide et al. 2010, Hegseth and Tverberg 2013). Since the

individuals were not fed with single algal cultures, food selectivity could not be studied in detail.

Even though diatoms and flagellates were offered in similar concentrations, the consumers could

have ingested the two taxa in different proportions. A higher assimilation rate of a specific

FATM may therefore be the result of preferred ingestion and/or more efficient assimilation.

Diatoms mainly provided the monounsaturated fatty acid 16:1(n-7) and the C16 PUFA 16:2(n-

4) and 16:3(n-4), while flagellates produced high amounts of the C18 PUFA 18:2(n-6), 18:3(n-3)

and 18:4(n-3) which is in line with previous studies (Ackman et al. 1968, Graeve et al. 1994b,

Falk-Petersen et al. 1998) (see manuscripts I and III for the algae fatty acid composition). The

monounsaturated 18:1(n-9), a major component of the fatty acid biosynthesis of copepods, was

present in elevated amounts in flagellates and was hence referred to as a flagellate marker in

the copepods diet.

4.2.1 Herbivorous feeding strategy

Among all studied species, the herbivorous copepods C. glacialis and P. minutus were able to

turnover their total lipids at the highest rates, averaging 1.3 and 2.6% d−1, respectively (Table

7). In addition, C. glacialis de novo synthesized fatty alcohols and long chain MUFA (1.2% and

1.4 d−1, respectively) (Fig.14), which serve as long term energy reserves and are usually stored

as wax esters. The results also suggested that P. minutus is able to de novo synthesize the

long chain fatty alcohol 20:1 (manuscript I), which contradicts previous assumptions that the

species can only de novo synthesize short chain alcohols (Kattner et al. 2003). This pronounced

efficiency in lipid and fatty acid assimilation reflects the adaptive mechanism of Arctic herbiv-

orous species, which need to rapidly accumulate energy during the short primary production

bloom in spring/early summer (Lischka and Hagen 2005, Søreide et al. 2008, manuscript III).

C. glacialis mainly uses its lipid reserves to fuel molting, gonad maturation and reproductive

processes (Sargent and Falk-Petersen 1988, Hagen 1999, Lee et al. 2006, Falk-Petersen et al.

2009). Mainly between November and March, the species overwinters in true diapause at depth

with very limited utilization of its lipid reserves (Hagen and Auel 2001, Freese et al. 2017). In

contrast, P. minutus does not overwinter in a true diapause. It partially relies on lipid deposits

for metabolism that it supplements by opportunistic feeding (Kwaniewski 1990, Lischka et al.
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ARCTIC ZOOPLANKTON

Table 7: Daily lipid assimilation and lipid turnover of zooplanton species.

Species Lipid assimilation
(µg C ind−1 d−1)

Lipid turnover (% total
lipids ind−1 d−1)

C. glacialis CIV 0.8 1.3
P. minutus CV 0.07 2.6
O. similis female 0.001 0.5
L. helicina juvenile 0.0001 0.2
L. helicina adult 0.04 0.1
L. retroversa adult 0.02 1.3
C. limacina adult 0.03 0.07

2007). Considering this more flexible feeding mode, it is surprising that its efficiency to turnover

its total lipids was higher than that of C. glacialis and this suggests that lipid reserves play an

important role in its life strategy. An additional explanation for the higher lipid turnover of P.

minutus as compared to C. glacialis may be related to season-specific strategies (see section

4.3.1).

The herbivorous C. glacialis and P. minutus assimilated diatom FATM (2.4 and 4.6% d−1

respectively) at a much higher rate than flagellate FATM (1.2 and 1.3% d−1 respectively)

(Fig.15). At the end of the experiment (Day 21), the portion of exchanged diatom FATM was

2 times higher than that of flagellate FATM in C. glacialis and 3 times higher in P. minutus.

Both species are selective particle filter feeders and have been reported to prefer diatoms over

flagellates (Poulet 1974, Norrbin et al. 1991, Søreide et al. 2008). These copepods are also

thought to have flexible feeding strategies by switching their diet to flagellates when diatoms

are not abundant (Levinsen et al. 2000, Lischka and Hagen 2007). These results suggest that

when both diatoms and flagellates are present, C. glacialis and P. minutus feed on both taxa

but with a pronounced preference for diatoms. It is also possible that the individuals fed equally

on both algae sources, but fatty acid assimilation was more efficient from diatom as compared

to flagellate FATM.

4.2.2 Omnivorous feeding strategy

Species with an omnivorous feeding strategy, i.e. O. similis and L. helicina, exchanged their

total lipids at the low rates of 0.1-0.5% d−1 (Table 7). These species maintain metabolic activ-

ity throughout the year, fueled by opportunistic feeding. O. similis is an ambush feeder that

consumes a wide variety of organisms from small flagellates to copepod nauplii and faecal pel-

lets (Franz 1988, Kattner et al. 2003, Lischka and Hagen 2007). L. helicina feeds on any food

particles collected by its mucous net (Gilmer 1972, Harbison and Gilmer 1992, Falk-Petersen et
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Figure 14: Turnover of de novo synthesized compounds (% total fatty acid/alcohol mass) of zoo-
plankton species during the feeding experiments.
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Figure 15: Turnover of FATM (% total lipid mass) of Arctic copepods (left) and thecosome pteropods
(right) during the feeding experiments.
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al. 2001, Gannefors et al. 2005). Hence, both species do not need to exchange their total lipids

at a high rate, as food is continuously available for them. Extensive lipid accumulation does

not seem essential in their life-cycle strategy (manuscript I, III). L. retroversa showed a high

lipid turnover efficiency, reaching the same rate as that of C. glacialis (1.3% d−1) (Table 7).

This is unexpected given the fact that this species is an omnivorous feeder that is not known

to rely on lipid reserves to a large extent (Falk-Petersen et al. 2001, Gannefors et al. 2005)

(manuscript III).

Despite their omnivorous strategy, O. similis and Limacina spp. exhibited capacities of de

novo synthesis, which are usually related to a strategy of long term energy storage . O. sim-

ilis exchanged fatty alcohols and respectively wax esters at a rate of 0.2% d−1 (Fig.14). This

confirmed that wax esters are important in O. similis life cycle (manuscript I). They are used

by this species as an additional energy to buffer the poor food supply in winter and to fuel

reproductive processes (Lischka and Hagen 2007). The results strongly suggested that L. he-

licina and L. retroversa de novo synthesized long chain MUFA (0.3 and 0.5% d−1 respectively)

(Fig.14) (see manuscript III for more details about possible pathways). This result is in con-

trast with previous studies that did not consider thecosome pteropods to being able to de novo

synthesize long chain MUFA. Even though these compounds have been found in significant

amounts in L. helicina from the Arctic and Southern Ocean, they have always been associated

with feeding on copepods (Kattner et al. 1998, Falk-Petersen et al. 2001, Gannefors et al. 2005).

The omnivorous O. similis and L. helicina appeared to be equally efficient in ingesting and/or

assimilating fatty acids from diatoms and flagellates (0.7 vs. 0.5% d−1 for O. similis and 0.1 vs.

0.1% d−1 for L. helicina adult) (Fig.15). O. similis has been characterized as preferring motile

prey (Drits and Semenova 1984, Svensen and Kiørboe 2000) but some studies suggest that it

can feed on diatoms (Kattner et al. 2003, Lischka and Hagen 2007). Our results confirm that

O. similis feeds on diatoms and that it pursues an opportunistic feeding strategy (manuscript

I). Likewise, L. helicina is known to feed opportunistically (Gilmer 1972, Harbison and Gilmer

1992, Falk-Petersen et al. 2001, Gannefors et al. 2005), explaining its capacity to assimilate

fatty acids from both algae taxa at the same rate (manuscript III). L. retroversa was the only

studied species that ingested/assimilated preferentially flagellate FATM. At Day 6, the portion

of exchanged flagellate FATM was 23 times higher than that of diatom FATM (Fig. 15),

reflecting a daily rate of 5.3 v.s 0.2% d−1. This confirms previous studies that indicated that

L. retroversa feeds primarily on flagellates and, at a lower level, on diatoms of ingestible size
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and shape (Morton 1954, Perissonotto 1992, manuscript III). Given the fact that L. retroversa

and L. helicina are closely related species with a similar ecology, the difference in their FATM

assimilation rates is however surprising and should be further investigated.

4.2.3 Carnivorous feeding strategy

The only carnivorous species investigated in this study, C. limacina, exchanged its total lipids

at the slowest rate of all investigated species (0.07% d−1) (Table 7). This is very low as com-

pared to previous studies, which report a carbon turnover of nearly 100% within 1-2 weeks

(Conover and Lalli 1974, Böer et al. 2006). These markedly different results may be due to

large differences in methodology and in the physiological state of C. limacina among the stud-

ies (manuscript III). Firstly, Conover and Lalli (1974) used a completely different method, in

which they determined assimilated carbon by subtracting egested to ingested material. Böer et

al. (2006) used a similar method as in the present study, but did not remove the stomachs of

C. limacina. Therefore, the lipid signal may have been masked by undigested food and did not

truly reflect lipid accumulation. Secondly, in the present study, C. limacina specimens were

collected during the period of high reproductive activity (Mileikovsky 1970) and then starved

for ten weeks during which they probably decreased their metabolism (Böer et al. 2005). It

is hence likely that the individuals first needed to reactivate their digestive enzymes after the

long starvation period, as previously observed in copepods (Freese et al. 2016). A further

explanation may be that the individuals used the diet-derived energy in priority to sustain

their metabolism. Thereafter, they had enough subsidiary energy to invest into lipid deposits

(see manuscript III for more details). Thirdly, the amount of food offered may have been a

limiting factor for the metabolic uptake. In the present study, C. limacina were fed with 3-4

L. retroversa every five days, which corresponds to a total lipid mass of 11 µg C. In contrast,

L. helicina, the main prey of C. limacina in Arctic waters (Meisenheimer 1905, Lalli 1970,

Conover and Lalli 1972, Hopkins 1985, 1987), contains 203 µg C lipid, i.e. 20 times more. It is

therefore likely that C. limacina needs high amounts of ingested lipids to trigger energy storage

processes. Unfortunately, it was not possible to compare this result with feeding on L. helicina,

because the respective experiment conducted in 2015 was not successful. Surprisingly, the very

few C. limacina specimens that achieved feeding on L. helicina died few days later. Most C.

limacina showed a predator behavior up to more than 24 h, swimming in circles around L.

helicina and evaginating their tentacles trying to catch it. This operation lasted for a very long

time compared to previous observations that reported <6 h (Conover and Lalli 1972, Böer et
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al. 2006, pers. obs.). Hence, C. limacina might have used too much energy to catch their prey

and subsequently died of exhaustion. This experiment would need to be repeated to better

understand these observations.

The occurrence of odd chain fatty acids as minor components is not unusual in marine organ-

isms. However, exceptional amounts have been found in C. limacina, in which they contribute

up to 34% to the fatty acid composition (Kattner et al. 1998, Böer et al. 2005, manuscript III).

Since odd chain fatty acids are in negligible amounts in C. limacina’s unique prey Limacina

spp., it has been suggested that they are de novo synthesized, probably from dimethylsulpho-

niopropionate (DMSP) using the propionate moiety as a starter molecule (Kattner et al. 1998,

Falk-Petersen et al. 2001, Böer et al. 2005). In this study, despite a possible feeding limitation

(see section 4.2.3), C. limacina assimilated substantial amounts of the odd chain fatty acids

17:0, 17:1(n-8) and 19:1 (ca. 0.03% d−1) while none of these were detectable in L. retroversa

(Fig.14), confirming the previous assumptions. Assimilation rates in C. limacina were as high

for odd chain fatty acids as for even chain fatty acids that were directly derived from the diet.

This suggests that these compounds play an important role for the physiology and ecology of

C. limacina and are very efficiently synthesized (see manuscript III for more details). Odd

chain fatty acids are especially enriched in DAGE, which are considered as a long term energy

storage that is used for reproduction and during periods of food scarcity (Phleger et al. 1997,

Falk-Petersen et al. 2001, Böer et al. 2005).
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Key-messages of section 4.2

• Arctic herbivorous species (here C. glacialis and P. minutus) exhibit a highly efficient

total lipid turnover, which, combined with the rapid de novo synthesis of wax esters, reflects

the importance of quickly storing energy reserves to successfully fulfill their life cycle. These

species preferentially ingest/assimilate diatom FATM, confirming that diatoms play an

essential role for growth and reproduction.

• Omnivorous species show lower total lipid turnover rates than herbivorous, reflecting a

life strategy that is less dependent on lipid reserves. Nonetheless they de novo synthesize

significant amounts of long term energy storage such as fatty alcohols (O. similis) and long

chain MUFA (Limacina spp.). O. similis and L. helicina have similar ingestion/assimilation

rates of flagellate and diatom FATM, mirroring their opportunistic feeding strategy. In

contrast, L. retroversa seems to prefer flagellates over diatoms.

• Carnivorous species (C. limacina) exhibit a very slow lipid turnover, which in this study

may be related to the direct investment of energy into metabolism after a long period of

starvation. C. limacina de novo synthesize odd chain fatty acids that are used as long term

energy reserves to overcome the variability of presence of its unique food source Limacina

spp.

4.3 Temporal variations of lipid and fatty acid turnover

Most species of the Arctic pelagic food web match their life cycle to the large seasonal changes

(Clarke 1983), which may result in seasonally changing lipid turnover rates. Lipid turnover may

also change over the course of life cycle, because different lipid amounts and different specific

compounds are needed depending on the developmental stage (Brett et al. 2009).

4.3.1 Season-specific requirements

Herbivorous copepods such as C. glacialis and P. minutus are able to turnover large amounts

of storage lipids during the productive period (Lischka and Hagen 2007, Søreide et al. 2008,

manuscript I). In winter during dormancy, the lipid turnover is probably low since metabolism
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is reduced to a minimum (Norrbin et al. 1990, Norrbin 1994, Falk-Petersen et al. 2009, Vader

et al. 2015). The lower lipid turnover rate of C. glacialis as compared to P. minutus in this

study (see section 4.2.1) may support this hypothesis. C. glacialis builds up large lipid reserves

mainly during the short phytoplankton spring bloom, and starts to descend to deep layers in

late July/early August for diapause (Sargent and Falk-Petersen 1988, Hagen 1999, Hagen and

Auel 2001, Lee et al. 2006, Søreide et al. 2010, Daase et al. 2013) (Fig.16). In contrast, P.

minutus feeds on phytoplankton in surface waters for a longer time, since it does not descend

to deep layers before October/November (Lischka and Hagen 2005). When the feeding exper-

iments were conducted in late July, it is hence likely that C. glacialis was already starting to

decrease its metabolism for overwintering and thus reduced feeding and lipid assimilation while

P. minutus was still in a phase of regular feeding and lipid assimilation. This would indicate

that lipid assimilation efficiency is mainly driven by internal factors and not by external triggers

such as food availability.

Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec. 

P. minutus 

C. glacialis D
ep

th
 

Sampling for experiment 

Figure 16: Schematic representation of the light and primary production regime in high Arctic
ecosystems, as well as the seasonal vertical distribution of the calanoid copepods Calanus glacialis
and Pseudocalanus minutus.

Omnivorous species are expected to turnover their total lipids throughout the year, feeding on

phytoplankton in summer and on detritus in winter with no major reduction of metabolism

(Conover and Huntley 1991, Lischka et al. 2007). However phytoplankton offers a high qual-

ity of food, which is enriched for example in EFA such as the PUFA 20:5(n-3) and 22:6(n-3)

(Ackman 1989, Lee et al. 2006, Leu et al. 2006). It is therefore possible that even omnivorous

species have a slightly higher turnover rate during the productive period. This may be reflected

in this study by the differences in lipid assimilation between L. helicina and L. retroversa (see

section 4.2.2). High latitude species, e.g. L. helicina, are particularly efficient to accumulate
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lipids during a short primary production cycle, whereas sub-polar species, e.g. L. retroversa are

adapted to feed during a longer productive period (Madsen et al. 2001, Ringuette et al. 2002,

Søreide et al. 2008, Falk-Petersen et al. 2009). Therefore, L. helicina may be more efficient to

build up lipid reserves in spring than in late summer, when the experiment was conducted. On

the contrary, L. retroversa may be efficient to accumulate lipids during a longer period than L.

helicina, which would explain its high lipid turnover rate in this study (manuscript III).

Several studies report a changing fatty acid signature of zooplankton species over the seasons

(Lischka and Hagen 2007, Søreide et al. 2008, Falk-Petersen et al. 2009). These changes are

the result of shifts in the diet, between a diatom-based diet in spring and a flagellate and/or

detritus-based diet in autumn and winter (Drits and Semenova 1984, Gilmer and Harbison

1991, Gannefors et al. 2005). It is likely that not only the composition of fatty acids but

also their turnover changed depending on seasons. The results of this study are based on a

diatom-flagellate mixed diet that reflects in situ summer conditions; it is hence not possible to

conclude about seasonality of specific fatty acid turnover.

4.3.2 Stage-specific requirements

Turnover of total lipids and fatty acids in zooplankton may vary among developmental stages,

depending on requirements for stage-specific processes such as growth, gonad maturation and

egg production (Brett et al. 2009, Jónasdóttir et al. 2009). Here L. helicina juveniles and

adults were investigated and can illustrate these stage-related differences.

L. helicina adults exchanged their total lipids at a lower rate as compared to the juveniles.

They may have been at the end of their life cycle since the experiment was conducted in late

July/early August and previous studies suggested that they die in August/September, shortly

after reproduction (Gannefors et al. 2005, Hunt et al. 2008). Before they disappear from the

water column, they may reduce feeding to only fuel basic metabolism, and therefore exhibit

reduced lipid content (Gannefors et al. 2005) as well as low turnover rate (manuscript III).

Adults had significantly higher concentrations of 20:5(n-3) and 22:6(n-3) than juveniles but

they exhibited a a negligible turnover rate of these compounds. These fatty acids are essential

for gonad maturation processes and hatching success of copepods (Jónasdóttir et al. 2009) and

it is very possible that they have a similar function in pteropods. This results suggest that

females were already mature when sampled for the experiment and that the turnover of these
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compounds reflects processes of gonad maturation (manuscript III). The high lipid turnover rate

of juveniles combined with high turnover rate of the long chain MUFA suggests an investment

into growth as well as a storage of energy (Paranjape 1968, Lalli and Gilmer 1989, manuscript

III). Also juveniles assimilated higher portions of diatom markers as compared to flagellate

markers (0.4 vs. 0.1% d−1) while adults assimilated diatom and flagellate FATM in the same

portions (see section 4.2.2). This highlights the potential importance of diatom-derived fatty

acids for the development of young thecosomes.

Stage-related differences of specific compound turnover rates that were observed in this study

for L. helicina are likely to concern other zooplankton species. For example copepods of stages

CIV and CV invest in storage lipids (Falk-Petersen et al. 2009) and may hence turnover their

long chain MUFA and fatty alcohols at a high rate. Females that invest mainly in reproduction

processes (Søreide et al. 2008) may show a higher turnover rate of the fatty acids 20:5(n-3) and

22:6(n-3).

The differences of lipid and fatty acid turnover among seasons and development stages of zoo-

plankton species are still not quantified. This study is the first to compare different species but

it presents only a snapshot of the actual zooplankton physiological capacities related to lipid

biosynthesis. It is crucial to conduct further experiments with different development stages and

during different seasons to better comprehend the yearly turnover rates.

Key-messages of section 4.3

• The lipid assimilation efficiency of herbivorous zooplankton species may show a pro-

nounced seasonality, with highest rates during the productive season in spring and low rates

during overwintering. In contrast, omnivorous species may have a more constant capacity

to assimilate lipids throughout the year.

• Energetic needs may vary quantitatively and qualitatively depending on life-stages because

processes such as growth, reproduction, and metabolism during food scarcity involve and

require different amounts of lipids as well as specific compounds.
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4.4 Role of zooplankton in the transfer of energy com-

pounds through the Arctic pelagic food web

Fatty acids are among the most important molecules transferred across marine food webs

from primary producers up to top predators (Brett et al. 2009). They occupy a crucial role in

different processes of all organisms such as somatic growth, survival, development, reproduction

and metabolism during food scarcity periods (Müller-Navarra 1995, Sargent et al. 1999). The

efficiency of lipid transfer throughout the food web depends on how quickly key organisms

respond to dietary inputs and assimilate fatty acids and alcohols (Brett et al. 2009). The

amount of lipid carbon provided by zooplankton for higher trophic levels depends on different

factors that include intrinsic capacities of organisms to assimilate lipids from their diet and

their respective biomass and abundances. Since all these parameters are expected to highly

vary throughout the year (see section 4.3), this section estimates the role of zooplankton in the

lipid-driven Arctic pelagic food web, exclusively however during summer/autumn.

4.4.1 Total lipids

The daily transfer of total lipids from phytoplankton to zooplankton differed among the studied

species (Fig.17) as a result of their individual capacities to assimilate lipids from diet (Table 7,

manuscript I, III) and their respective abundances (Table 8).
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Figure 17: Total lipids (µg C m−3 d−1) provided by main Arctic zooplankton species. The y-axis is
represented in a log10 scale for easier visualization.
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Table 8: Averaged summer/autumn abundances in the entire water column (< 300 m deep) of main
zooplankton species and stages in Svalbard fjords.

Species Month Abundance (ind m−3) Reference
C. glacialis CIV July 90; 400; 168; 70; 400; 320;

224
Walkusz et al. 2003, Walkusz et al. 2004,
Blachowiak-Samolyk et al. 2008, Walkusz et al.
2009, Freese 2015, Boissonnot et al. in prep.,
Stübner unpubl.

P. minutus CV July 1046; 175; 180; 1524; 1804;
352; 176

Wȩs lawski et al 1991, Walkusz et al. 2003,
Walkusz et al. 2004, Blachowiak-Samolyk et al.
2008, Walkusz et al. 2009, Kwasniewski et al.
2010, Stübner unpubl.

O. similis female July 884; 2161; 1200; 6475; 4846;
1456

Wȩs lawski et al 1991, Walkusz et al. 2003,
Walkusz et al. 2004, Blachowiak-Samolyk et al.
2008, Walkusz et al. 2009, Stübner unpubl.

L. helicina juv. September 700; 8264; 1824; 164; 1600 Walkusz et al. 2003, Gannefors et al. 2005,
Blachowiak-Samolyk et al. 2008, Ehrenfels 2016,
Manuscript II

L. helicina adult July 87; 252 Gannefors et al. 2005, Walkusz et al. 2009

L. retroversa adult September 10; 3; 55 Wencky 2001, Weydmann et al. 2014, Manuscript
II

C. limacina adult October 62; 1.7; 0.1 Wȩs lawski et al 1991, Walkusz et al. 2009, Stübner
unpubl.

Due to their high individual biomass combined with rapid total lipid turnover rates as well as

high abundances, copepods transferred the largest amount of lipids from phytoplankton, with

247 µg C m−3 d−1 (Fig.17). Among copepods, C. glacialis and P. minutus were the species that

provided the highest amounts of lipid carbon for higher trophic levels (191 and 53 µg C m−3

d−1, respectively). Such elevated daily transfer confirms the major role of calanoid copepods in

the lipid-based Arctic pelagic food web, as suggested by previous studies, which were mainly

conducted on large calanoids (Falk-Petersen et al. 1990, 2004, 2009, Dahl et al. 2003). In

contrast, the small cyclopoid O. similis provided 3 µg C m−3 d−1 total lipids on average, which

suggests that despite its very high abundance, the species does not occupy a major role in the

transfer of lipids in the Arctic pelagic food web. However, O. similis may be more important

during particular periods, i.e. autumn and winter when calanoid copepods undergo diapause

(Lischka and Hagen 2005, Narcy et al. 2009, Svensen et al. 2011 section 4.3). The species may

therefore act as stabilization factor of planktonic communities (Paffenhöfer 1993, Narcy et al.

2009).

Among pteropods, the large L. helicina adults represented the most important vector of total

lipid transfer, with a daily supply of 7 µg C m−3 d−1 for higher trophic levels. This result
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confirms the suggestions of previous studies that L. helicina is a key species in the Arctic

pelagic food web (Gilmer and Harbison 1991, Falk-Petersen et al. 2001, Böer 2005, Lischka et

al. 2012), however at a much lower level than calanoid copepods.

The low total lipid production of L. retroversa (0.5 µg C m−3 d−1) despite its high individual

lipid turnover rate (manuscript III) strongly supports that the combination of physiological ca-

pacities, biomass and abundance plays a role in the capacity of species to transfer lipids across

the food web. Namely a species that exhibits a low lipid turnover rate but has a high biomass

can have the same impact on the lipid transfer in the food web as a species that exhibit a high

lipid turnover rate but has a low biomass. The similar range of total lipids provided by L.

helicina adults and O. similis females despite their contrasting sizes and abundances is in line

with this observation.

The zooplankton community of Arctic fjords in summer/autumn is mainly composed of the

species and developmental stages investigated in this thesis (Walkusz et al. 2003, Blachowiak-

Samolyk et al. 2008, Kwasniewski et al. 2010). Therefore I consider that the range of turnover

rates calculated in this study is a good estimate of that of the zooplankton community. Based

on my data (Table. 9), I suggest that the lipid turnover rate of the zooplankton community can

be approximated to 0.6 % total lipids d−1 in summer/autumn. With such an average rate, the

total lipids of the zooplankton community may be entirely exchanged in less than 5 months.

This seems in agreement with Falk-Petersen et al. (1990) who suggested that fatty acids may

be transported through the Arctic pelagic food web from algal blooms to top predators within

6-8 months.

Table 9: Average abundances calculated from Table 8 and lipid turnover of zooplankton species.

Species Average abundance
(ind m−3)

Lipid turnover (% total
lipids ind−1 d−1)

C. glacialis CIV 239 1.3
P. minutus CV 751 2.6
O. similis female 2837 0.5
L. helicina juvenile 2510 0.2
L. helicina adult 170 0.1
L. retroversa adult 23 1.3
C. limacina adult 21 0.07
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4.4.2 Essential fatty acids

A variety of PUFA that have their first double bond in the position (n-3) and (n-6) (see Box.2)

are identified as EFA. Among all lipid compounds transferred across the food web, these com-

pounds are considered as the most important and have been the focus of several studies (i.e.

Klein Breteler et al. 1999, Sargent et al. 1999, Arts et al. 2001, Parrish et al. 2007). The first

fatty acids described as essential were 18:2(n-6) and 18:3(n-3) because they could eliminate

acute deficiency symptoms in rats (Burr and Burr 1930, Gurr and Harwood 1991). Currently,

23 PUFA are recognized as being essential (Cunnane 2000), among which 10 are recurrent in

Arctic marine species (Parrish 2009, manuscript I, III). These compounds are involved in sev-

eral processes such as neural development (Connor 2000, Ruxton et al. 2004), cell membranes

function (Lee et al. 1971, Ruxton 2004), reproduction (Jónasdóttir et al. 2009) and diseases

prevention/healing (Kris-Etherton et al. 2002, Simopoulos 2002, Shahidi and Miraliakbari

2004). In the biosynthesis of PUFA, the first double bond is usually inserted in the middle of

the molecule, for example in the (n-9) position of 18:0. While primary producers introduce the

subsequent double bonds between the first double bond and the methyl end, animals are only

able to introduce double bonds between the first double bond and the carboxyl end (Parrish

2009). Consequently animals cannot synthesize (n-3) and (n-6) PUFA and need to assimilate

them from their diet. In the Arctic pelagic food web, zooplankton ensures the transfer of EFA

from primary producers to higher trophic levels. According to the results of this study, zoo-

plankton species assimilate and turnover their EFA at different rates (Table 10).

As for the total lipids (section 4.4.1), calanoid copepods were the most efficient in supplying

EFA to higher trophic levels, since C. glacialis and P. minutus could transfer 7 and 10 µg C

m−3 d−1, respectively (Fig. 18). Thus, these organisms do not only play a major role in the

transfer of lipid carbon but also in transferring high quality fatty acids to higher trophic levels

(Falk-Petersen et al. 1990, 2004, 2009, Dahl et al. 2003). The pteropod community exhibited

a daily transfer of EFA of only 3 µg C m−3 d−1 (Fig. 18). Among this community, L. helicina

adults had the highest capacity to provide EFA to higher trophic levels (2 µg C m−3 d−1). Their

large biomass seems to counterbalance their low individual EFA turnover rate (Gannefors et al.

2005, section 4.4.1). This stresses the importance of the thecosome community in the transfer

of EFA, which to my knowledge, has never been demonstrated.
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Figure 18: Total EFA (µg C m−3 d−1) provided by main Arctic zooplankton species. The y-axis is
represented in a log10 scale for easier visualization.

The EFA 20:5(n-6) and 22:6(n-3) are considered the most important long chain PUFA for zoo-

plankton organisms (Brett et al. 2009, Jónasdóttir et al. 2009) but also for higher levels, e.g.

fish (Sargent et al. 1999, Montero et al. 2003, 2004) and mammals (Simopoulos 2002, Ruxton

et al. 2004, Shahidi and Miraliakbari 2004, Wijendran and Hayes 2004). They are essential

components of cell membranes and have several beneficial effects related to health (Parrish

2009). It is therefore not surprising that these two compounds were the most assimilated EFA

by the zooplankton species in this study, representing 51% and 27% of the total EFA provided

by zooplankton, respectively (Fig.19). Among zooplankton, calanoid copepods seemed partic-

ularly efficient to provide 20:5(n-6) and 22:6(n-3) (Fig.20).

The C18 EFA, and especially 18:2(n-6) and 18:3(n-3) are crucial in the neural development of

several higher trophic species (Burr and Burr 1930, Gurr and Harwood 1991). In the present

study, they represented 2% and 8% of total EFA assimilated by all zooplankton species (Fig.19).

L. helicina adults showed the same efficiency as calanoid copepods to provide C18 EFA, which

may be explained by their respective feeding strategies, since L. helicina assimilates flagellate

fatty acids in larger amounts than calanoids do (see section 4.2.2, manuscript III).

The long chain EFA 20:3(n-3) and 20:3(n-6) are particularly involved in the immune system pro-

cesses as anti-inflammatory compounds (Fan and Chapkin 1998, Yang-Yi and Chapkin 2000).

In the present study, they represented together 3% of the total EFA transferred by the zoo-

plankton community (Fig.19). The results revealed that among the zooplankton community,
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only thecosome pteropods showed the ability of providing these compounds for higher trophic

levels (Fig.20), evidencing here again their crucial role among the zooplankton community.
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Figure 19: EFA (% total EFA) provided by the Arctic zooplankton community.

Assuming that the species and stages investigated in this study are representative for the zoo-

plankton community, I suggest that the EFA turnover rate of the zooplankton community may

average 0.6 % total EFA d−1, which is similar to the total lipid turnover rate.

Key-messages of section 4.4

• The transfer of lipids across the Arctic pelagic food web by zooplankton is mainly ensured

by calanoid copepods as a result of their high lipid content, efficient lipid turnover and high

abundances. L. helicina adults also supply significant amounts of lipids to higher trophic

levels, despite their low turnover rates.

• EFA are largely assimilated by zooplankton species from their diet and therefore available

for higher trophic levels. Copepods and pteropods supply different compounds to their

predators. This complementarity suggests that both taxa are crucial for an efficient transfer

of EFA across the food web.
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Figure 20: EFA (µg C m−3 d−1) provided by main Arctic zooplankton species. The y-axis is
represented in a log10 scale for easier visualization.
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4.5. IMPACTS OF CLIMATE WARMING ON LIPID TRANSFER IN THE ARCTIC
PELAGIC FOOD WEB

4.5 Impacts of climate warming on lipid transfer in the

Arctic pelagic food web

Recent estimates of the effects of climate change on the Arctic environment suggest higher

Atlantic inflow, surface water warming, sea ice melting, increased rates of carbon uptake and

enhanced stratification (Dickson et al. 2000, Hansen et al. 2004, Orr et al. 2005, Nghiem et al.

2007, Serreze et al. 2007, Holliday et al. 2008, 2009, McNeil and Matear 2008, Timmermans and

Proshutinsky 2015, 2016). Such changes may cause serious alterations in the pelagic food web

structure (Hansen et al. 2003). Primary producers and zooplankton species will be directly and

indirectly affected by these environmental shifts, which will have repercussions on the transfer

of lipids across the food web. The determination of lipid turnover rates in zooplankton offers

the possibility to evaluate changes in the Arctic pelagic food web with a functional approach.

This approach is novel and complementary to other studies that base predictions on static

observations of lipid biomass (e.g. Falk-Petersen et al. 2007, Søreide et al. 2010, Berge et

al. 2012), considering zooplankton as an “energy reservoir” without taking fluxes into account.

This section aims at developing some major impacts of climate change on the lipid turnover of

the Arctic pelagic food web.

4.5.1 Changes in the fatty acid primary production

In the future decades, the warming and stratification of Arctic seas may result in a shift of the

phytoplankton species composition, as flagellates are likely to thrive while diatom abundances

may decrease (Li et al. 2009, Ardyna et al. 2011). Such change may have large consequences

on the basal production of total lipids and fatty acids, in terms of quantity and quality. Firstly,

small cells such as flagellates produce less lipid carbon than large cells such as diatoms (Li et al.

2009). In our experiments, flagellate cells contained 2 times less lipid carbon than diatom cells

(manuscript I, III). In a situation where flagellates dominate the phytoplankton community, a

high abundance of this taxa may compensate for its low lipid content. Yet zooplankton species

may have to feed at higher rates to ensure a sufficient consumption of carbon lipid. Secondly,

flagellates and diatoms do not have the same fatty acid signature, especially regarding EFA

(Fig.21) (manuscript I, III). A dominance of flagellates would result in an increased production

of the C18 PUFA (Graeve et al. 1994b). In contrast, the long chain 20:3(n-6) and 20:4(n-6) are

apparently not synthesized by flagellates, and this will have negative implications for higher

trophic levels that are unable to synthesize them (Parrish 2009).
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4. RESULTS AND SYNOPTIC DISCUSSION
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Figure 21: EFA composition (% total fatty acid mass) of diatoms and flagellates grown during the
feeding experiments in the present study.

The phytoplankton community composition shift to a dominance of flagellates may directly

affect zooplankton dynamics. Species that prefer diatoms will face a decrease of their main

food source while species that prefer flagellates may have a higher success and thrive under this

new regime. The present study suggests that herbivorous zooplankton, i.e. C. glacialis and

P. minutus, assimilate FATM at a higher rate from diatoms than flagellates, when feeding on

a mix-diet (see section 4.2.1, manuscript I). From my data, I cannot conclude whether these

copepods may switch to feeding solely on flagellates when there is no other food source in the

water column as some studies suggest (Levinsen et al. 2000, Lischka and Hagen 2007), and more

investigations are needed to comprehend to which extend they can perform lipid biosynthesis

only from this diet. As suggested by the present study’s results, omnivorous species such as O.

similis, L. helicina and L. retroversa (Gilmer 1972, Perissonotto 1992, Svensen and Kiørboe

2000) assimilate FATM at least as much from flagellates as from diatoms (see section 4.2.2). In

a situation of flagellate dominance, these species may thrive. Since the omnivorous species O.

similis and Limacina spp. generally provide less lipids and fatty acids than the large calanoid

copepods (see sections 4.4.1 and 4.4.2), higher trophic levels of the food web may be affected,

as they would get less energy form their diet and would hence need to feed at a higher rate.

Some studies suggest that the prymnesiophyte Phaeocystis pouchetti may dominate the phy-

toplankton community in the future decades, as a result of the warming of the water column

and intensified inflow of Atlantic water masses (Hegseth et al. 2008, Lasternas and Augusti
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2010, Hegseth and Tverberg 2013). Several studies report reduced zooplankton feeding and

abundance during blooms of Phaeocystis (Estep et al. 1990, Turner et al. 2002, Nejstgaard

et al. 2007). Microzooplankton may be particularly vulnerable to this shift of phytoplank-

ton species composition, as it cannot feed on the large colonies of Phaeocystis (Weisse et al.

1994, Calbet et al. 2010). Labeling experiments using this algal species as a food source need

to be conducted to understand the transfer of lipids through the future Arctic pelagic food web.

As sea ice becomes thinner, it will break up earlier in spring, resulting in an earlier onset

of the pelagic primary production (Hegseth and Sundfjord 2008). The growth season for sea

ice algae will become shorter as they will lose their substrate (Hegseth 1998, Tremblay et

al. 2006, Arrigo et al. 2008, Pabi et al. 2008). As a result, the time between the ice-

associated and pelagic blooms will shorten (Søreide et al. 2010). This will potentially have

direct impacts on the herbivorous zooplankton species, which highly rely on the algae and

phytoplankton blooms to accumulate lipid reserves. The life cycle of C. glacialis is synchronized

to the primary production regime (Niehoff et al. 2002, Søreide et al. 2008, Falk-Petersen et al.

2009). Females use the high-quality ice algal bloom to fuel early maturation and reproduction

and their resulting offspring can used the phytoplankton bloom two months later. An earlier

sea ice break-up may lead to a mismatch between the two primary production peaks of high-

quality food and the life cycle of C. glacialis, resulting in negative impacts on the reproduction,

growth, and abundance of C. glacialis (Søreide et al. 2010). P. minutus, although less studied

than C. glacialis, is also known to take advantage of the ice-algal production (Conover et al.

1986, Runge and Ingram 1991). A shortened ice-algae bloom may therefore also have negative

consequences for its development. Since C. glacialis and P. minutus constitute key species in

the transfer of total lipids and fatty acids in the Arctic pelagic food web (see sections 4.4.1

and 4.4.2), several important species of higher trophic levels may be negatively affected by the

changes in their life cycles.

4.5.2 Shifts in the zooplankton community

Invasion of boreal species

Over the past decades, ArW warming in combination with an elevated inflow of atypical warm

AW (Dickson et al. 2000, Hansen et al. 2004, Holliday et al. 2008, 2009, Schauer et al. 2008,

Beszczynska-Möller et al. 2012, Bauerfeind et al. 2014) have led to a growing presence of

sub-Arctic species. For example, in the early 20th century, L. retroversa was considered as a
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sub-polar species, occurring south of 65 ◦N (Lebour 1932, Redfield 1939), while it can currently

be found at up to 79 ◦N (van der Spoel and Heyman 1983, Meinecke and Wefer 1990, Bathmann

et al. 1991, Bauerfeind et al. 2009). A long term study looking at sedimentation rates in the

Fram Strait suggested a shift of the thecosome community since 2005/2006, pointing towards

a dominance of L. retroversa (Bauerfeind et al. 2014). An increase of L. retroversa abundance

can not be confirmed by this study since L. retroversa were on average 4 times less abundant

than L. helicina (see manuscript II). Further investigations are needed to clarify this possible

shift of the community composition. If the predictions of Bauerfeind et al. (2014) come true,

the Arctic pelagic food web may face large alterations. While L. retroversa seems to have a

higher lipid turnover rate than L. helicina (see section 4.2.2), its low body mass makes it less

efficient to provide lipids for higher trophic levels (see section 4.4.1). Higher trophic levels would

therefore have to feed on a higher number of animals to fulfill their metabolic requirements.

This is supported by the fact that C. limacina seems to turnover its total lipids at a much

higher rate when feeding on one L. helicina than when feeding on 3.4 L. retroversa (Böer et al.

2006, manuscript III, section 4.2.3).

Effects of acidification

Ocean acidification is occurring at a high rate in Arctic seas (Orr et al. 2005, McNeil and

Matear 2008). Recent studies predict that most thecosomes will not be able to precipitate

CaCO3 to build their shells by the end of this century (Lischka et al. 2011, Comeau et al.,

2012). Lischka and Riebesell (2012) suggested that thecosomes already experience aragonite

under-saturation nowadays, at least during winter. Net dissolution of the shells in combination

with additional energy demands to construct them may lead to a lower survival success of the

thecosome community, which in turn will result in decreasing abundances (Comeau et al. 2012,

Lischka et al. 2012). In such an extreme scenario, the transfer of lipids across the food web may

be highly perturbed, since less lipids would be available from the thecosome community. Also,

the EFA 20:3(n-3) and 20:3(n-6) may not be transferred towards higher trophic levels since

pteropods seem to be the only zooplankton taxa to ensure their transfer (see section 4.4.2).

With severe decrease in thecosome pteropod abundances, C. limacina may disappear. Higher

trophic levels that count C. limacina as a main food source, such as baleen whales (Lebour

1931, Lalli 1970), would then face a major dietary change.
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Key-messages of section 4.5

• Global changes that affect the Arctic ecosystem will qualitatively and quantitatively alter

the primary production of lipids and fatty acids since small cells will likely dominate the

phytoplankton community.

• Particularly herbivorous zooplankton will be strongly affected by a change of their diet,

which will considerably change the transfer of lipid carbon and specific EFA to higher

trophic levels.

• The zooplankton community composition may change, with increasing success of sub-

Arctic species and decreasing success of Arctic species. Especially a disappearance of

thecosome pteropods due to ocean acidification may have dramatic repercussions on the

transfer of certain EFA that are only provided by pteropods for higher trophic levels.
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This study has gathered (1) physiological data acquired from experimental work and (2) ecol-

ogy knowledge documented from field observations and literature to better understand the role

of zooplankton in the transfer of lipids across the Arctic pelagic food web in a rapidly changing

context. It is among the few that combined CSIA and labeled feeding experiments to accurately

determine lipid assimilation rates and assess lipid turnover capacities of main Arctic zooplank-

ton species and their developmental stages, i.e. C. glacialis, P. minutus, O. similis, L. helicina,

L. retroversa and C. limacina. This thesis has also increased our understanding of thecosome

pteropods ecology, filling gaps of knowledge that are essential to better assess their place in the

Arctic pelagic ecosystem.

The findings of this thesis have raised new questions, which may be particularly promising

for further studies. This section presents different axes of research that would be essential to

develop to improve our understanding of the lipid-driven Arctic pelagic food web.

A first aspect is that this thesis is based on experiments that were exclusively conducted during

the late productive period (summer/early autumn). The findings suggested a high seasonality

of zooplankton lipid turnover and therefore lipid transfer throughout the Arctic pelagic food

web. However lipid turnover rates could not be quantified for different seasons. Feeding exper-
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iments using 13C diet conducted with the same zooplankton species as in this study and at a

different time of the year would allow for solving this problematic. These experiments should

include a diet composition that is representative of the in situ conditions during respective

seasons. In addition, using Phaeocystis as the main food source would allow for investigating

the lipid turnover capacities of zooplankton species in future conditions.

In this study, the potential transfer of lipids by zooplankton was calculated using zooplankton

distribution data that was gathered from previous estimates. This allowed for an evaluation

of the average daily supply of lipids by zooplankton, which offers a valuable basis for a bet-

ter understanding of ecosystem dynamics. It would be of major interest to further develop

this research by investigating zooplankton community patchiness in Arctic seas as well as the

species/stage composition of the patches. This knowledge combined with specific lipid turnover

rates would allow for the identification of hotspots of lipid transfer in the Arctic pelagic food

web. Developing a model based on these elements may be useful to predict areas of major

importance for the lipid-driven pelagic food web, particularly in a context of high vulnerability

of the Arctic ecosystem.

This thesis exclusively focused on the zooplankton community to evidence its major role in

the transfer of lipids in the Arctic pelagic food web. The next step would be to extend these

investigations to other communities for which there is currently not information about lipid

turnover rates. For example, fish would represent an essential component of the food web

and outputs of such investigations may be used in ecological studies as well as in fisheries

management.
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Hirche HJ, Jónasdóttir SH Madsen ML (2007) Perspectives on marine zooplankton lipids. Cana-
dian Journal of Fisheries and Aquatic Sciences 64:1628-1639

Kattner G, Krause M (1989) Seasonal variations of lipids (wax esters, fatty acids and alcohols) in
calanoid copepods from the North Sea. Marine Chemistry 26:261-275

Kayama M, Araki S, Sato S (1989) Lipids of marine plants. In: Ackman RG (ed) Marine biogenic
lipids, fats and oils, Vol. II. CRC Press, Boca Raton, pp 3-48

Kerswill CJ (1940) The distribution of pteropods in the waters of eastern Canada and Newfound-
land. Journal of the Fisheries Board of Canada 5:23-31

Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of
food quality by protozoans enhancing copepod growth: role of essential lipids. Marine Biology
135:191-198

Kobayashi HA (1974) Growth cycle and related vertical distribution of the thecosomatous pteropod
Spiratella (“Limacina”) helicina in the central Arctic Ocean. Marine Biology 26:295-301

Kohlbach D, Graeve M, Lange B, David C, Peeken I, Flores H (2016) The importance of ice algae-
produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by
lipid and stable isotope analyses. Limnology and Oceanography 61:2027-2044

Kohlbach D, Schaafsma FL, Graeve G, Lebreton B, Lange BA, David C, Vortkamp M, Flores H
(2017) Strong linkage of polar cod (Boreogadus saida) to sea ice algae-produced carbon: evi-
dence from stomach content, fatty acid and stable isotope analyses. Progress in Oceanography
152:167-174

Kosobokova KN (1999) The reproductive cycle and life history of the Arctic copepod Calanus
glacialis in the White Sea. Polar Biology 22:254-263

Kosobokova K, Hirche HJ (2000) Zooplankton distribution across the Lomonosov Ridge, Arctic
Ocean: species inventory, biomass and vertical structure. Deep Sea Research Part I 47:2029-
2060

Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids,
and cardiovascular disease. circulation 106:2747-2757

Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of
invertebrates. Marine Ecology Progress Series 373:275-284

Kwasniewski S (1990) A note on zooplankton of the Hornsund Fjord and its seasonal changes.
Oceanografia 12:7-27

Kwasniewski S, Gluchowska M. Jakubas D, Wojczulanis-Jakubas K, Walkusz W, Karnovsky N,
Blachowiak-Samolyk K, Cisek M, Stempniewicz L (2010) The impact of different hydrographic
conditions and zooplankton communities on provisioning Little Auks along the West coast of
Spitsbergen. Progress in Oceanography 87:72-82

L
Lalli CM (1970) Structure and function of the buccal apparatus of Clione limacina (Phipps) with

a review of feeding in gymnosomatous pteropods. Journal of Experimental Marine Biology and

160



Ecology 4:101-118
Lalli CM, Gilmer RW (1989) Pelagic snails: the biology of holoplanktonic gastropod mollusks.

Stanford University Press, Stanford, 246 pp
Lalli CM, Wells FE (1978) Reproduction in the genus Limacina (Opisthobranchia: Thecosomata).

Journal of Zoology 186:95-108
Lampert W (1977) Studies on the carbon balance of Daphnia pulex as related to environmen-

tal conditions. I. Methodological problems of the use of 14C for the measurement of carbon
assimilation. Polskie Archiwum Hydrobiologii 48:287-309

Lasternas S, Agust́ı S (2010) Phytoplankton community structure during the record Arctic ice-
melting of summer 2007. Polar biology 33:1709-1717

Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. Journal of
statistical software 25:1-18

Lebour MV (1931) Clione limacina in Plymouth waters. Journal of the Marine Biological Associ-
ation of the United Kingdom (New Series) 17:785-795

Lebour MV (1932) Limacina retroversa in Plymouth Waters. Journal of the Marine Biological
Association of the United Kingdom (New Series) 18:123-126

Lee RF (1974) Lipids of zooplankton from Bute inlet, British Columbia. Journal of the Fisheries
Research Board of Canada 31:1577-1582

Lee RF (1975) Lipids of Arctic zooplankton. Comparative Biochemistry and Physiology Part B:
Comparative Biochemistry 51:263-266

Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Marine Ecology Progress
Series 307:273-306

Lee RF, Hirota J (1973) Wax esters in tropical zooplankton and nekton and the geographical
distribution of wax esters in marine copepods. Limnology and Oceanography 18:227-239
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