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The applicability of optical satellite data to quantify coastal erosion across the Arctic

is limited due to frequent cloud cover. Synthetic Aperture Radar (SAR) may provide

an alternative. The interpretation of SAR data for coastal erosion monitoring in Arctic

regions is, however, challenging due to issues of viewing geometry, ambiguities in

scattering behavior and inconsistencies in acquisition strategies. In order to assess

SAR applicability, we have investigated data acquired at three different wavelengths

(X-, C-, L-band; TerraSAR-X, Sentinel-1, ALOS PALSAR 1/2). In a first step we

developed a pre-processing workflow which considers viewing geometry issues

(shoreline orientation, incidence angle relationships with respect to different landcover

types). We distinguish between areas with foreshortening along cliffs facing the sensor,

radar shadow along cliffs facing away and traditional land-water boundary discrimination.

Results are compared to retrievals from Landsat trends. Four regions which feature high

erosion rates have been selected. All three wavelengths have been investigated for Kay

Point (Canadian Beaufort Sea Coast). C- and L-band have been studied at all sites,

including also Herschel Island (Canadian Beaufort Sea Coast), Varandai (Barents Sea

Coast, Russia), and Bykovsky Peninsula (Laptev Sea coast, Russia). Erosion rates have

been derived for a 1-year period (2017–2018) and in case of L-band also over 11 years

(2007–2018). Results indicate applicability of all wavelengths, but acquisitions need to be

selected with care to deal with potential ambiguities in scattering behavior. Furthermore,

incidence angle dependencies need to be considered for discrimination of the land-water

boundary in case of L- and C-band. However, L-band has the lowest sensitivity to

wave action and relevant future missions are expected to be of value for coastal erosion

monitoring. The utilization of trends derived from Landsat is also promising for efficient

long-term trend retrieval. The high spatial resolution of TerraSAR-X staring spot light mode

(< 1 m) also allows the use of radar shadow for cliff-top monitoring in all seasons. Derived

retreat rates agree with rates available from other data sources, but the applicability for

automatic retrieval is partially limited. The derived rates suggest an increase of erosion at

all four sites in recent years, but uncertainties are also high.
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FIGURE 8 | Backscatter of Sentinel-1 (top panels (A) and (B), acquired on descending orbit, VV polarization) and PALSAR-2 (bottom panels, (C) and (D), acquired on

ascending orbit, HH polarization) acquisitions at Avadlek (Herschel Island) for 2017 and 2018. Dates represent closest acquisitions between the two sensors for each

year. Images are ellipsoid corrected only. Sensor viewing direction is indicated by arrows. Derived shorelines represent the land-water boundary. The baseline for

retreat rate calculations corresponds to Figure 2A.

as the coastline for the erosion analysis. This issue needs to be
considered for applications over larger regions.

Wide, smooth sand beaches are in general difficult to classify,
especially for longer wavelengths. The roughness of the material
in comparison to the wavelength is the main factor whether a
specular reflection or a scattering of the wave takes place (Jones
and Vaughan, 2010). Like calm water, sand is a relatively smooth
surface in comparison to the C- and L-band wavelengths, and
the microwave signal is reflected in a single beam that is not
directed toward the sensor. Furthermore, the radar backscatter
depends on the geometric and dielectric properties of the
surface. Sand has in general a very low dielectric constant, so
the microwaves penetrate deep into the material. This effect
further reduces the backscatter signal (Stephen and Long, 2005).
This makes SAR classification of sandy areas, like parts of the
Barents Sea coast, challenging. The temporal stability of the low
surface roughness of these areas may, however, be of benefit for
separation of sandy areas from water affected by wave action
(rough surface).

Banks et al. (2014) found that for C-band the best separability
of sandy areas from water was given with images in HH

polarization with shallow (45.3◦–49.5◦) and medium (39.3◦)
incidence angles. However, images with steep (20.9◦–24.2◦)
incidence angles tend to bring better separability results in VV
and HV polarizations. This incidence angle range is however not
available from Sentinel-1.

Wet snow can impact the classification result as shown in
Figure 9 for TerraSAR-X near King Point. Snow has been still
present at the June acquisition date in 2018. A comparison with
the Sentinel-2 optical images demonstrates that some pixels,
which were classified as water, correspond to the location of
late lying snow patches. The mean temperature around 2018-
06-15 in that area hovered slightly above 0◦C (Government
Canada, 2019), indicating that the snow was melting. Like
open water, wet snow is characterized by low backscatter. Wet
snow typically absorbs the microwave signal and reduces the
backscatter intensity significantly (further TerraSAR-X examples
in similar settings: Antonova et al., 2016; Mora et al., 2017;
Stettner et al., 2018), which caused the false classification result.

Results indicate that also radar shadow areas can be used to
quantify erosion rates in case that the spatial resolution allows
clear separation. This enables identification of the cliff tops in
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FIGURE 9 | The influence of snow and ice on the classification result of TerraSAR-X at King Point (20 km south of Kay Point). Left (A) and (C): RGB (band 4, 3, and 2)

composites of Sentinel-2; right (B) and (D): TerraSAR-X derived classes. Snow on land is classified as water (wet snow - low backscatter) and sea ice is partially

classified as land (higher backscatter than open water). Sentinel-2 acquisitions represent closest available to TerraSAR-X acquisition.

case of bluffs facing away from the sensor in summer as well
as winter. Retrievals for X-band indicate that identification of
cliff-tops facing the sensor (separation from land) might be
more reliable with acquisitions from the unfrozen and snow-
free period as not only the foreshortening effect plays a role
for the higher backscatter. Exposed wet soils contribute as well,
leading to a drop in backscatter in winter (see Figure 5). The
winter- summer difference at Kay Point is larger than reported
in Stettner et al. (2017).

The limitation of the analysis to the ellipsoid correction allows
to account for the lack of accurate digital elevation model time
series. Direct comparisons between results from different viewing
geometries, however, can not be made. Only the quantification
of relative change is feasible, which impacts combinations with
other data sources and an exact assignment to coastlines. A
characterization of coastal segments (as in Lantuit et al., 2012)
should be nevertheless feasible.

The high uncertainty values of the PALSAR-2 and Sentinel-
1 results might be caused by the spatial resolution, which also
affects which erosion processes can be monitored. Choosing a
transect distance much lower than the spatial resolution will not
improve the calculation results. Therefore, only erosion features
larger or equal to the spatial resolution of the image can be
captured. The differences in derived rates between the sensors
may be also explained by the fact that the calculations assess

slightly different areas due to their comparably coarse spatial
resolution (mixed pixel effects) and differences in classification
accuracy. The different acquisition timing also adds to that.

It would be interesting to compare change rates based on
2007–2018 C-band data with the calculated rates based on
2007–2018 PALSAR/PALSAR-2 L-band data. Unfortunately, only
coarse resolution (30 m) data for the areas of interest are
available for ENVISAT and ERS-1/2 (the predecessor satellites of
Sentinel-1) (ESA, 2019a). Both of these SAR missions acquired
data in VV polarization, which we could show to be suitable
for the identification of the land-water boundary. Such data
could be therefore used to derive long-term trends similar
to Landsat, going back as far as 1991. Coverage across the
Arctic is, however, limited due to the acquisition strategies
of these missions. Future studies could include data from the
operationally focused Canadian RADARSAT-2 satellite. Images
with a higher resolution than 30 m were acquired for some study
areas (e.g., Herschel Island) between 2008–2019 (MDA, 2019).

4.2. Erosion Rates
The only available study to date using SAR data for Arctic erosion
rates was carried out for a river bank with TerraSAR-X. Stettner
et al. (2017) calculated 22-day cliff-top movements based on a
threshold classification for an ice-rich riverbank situated in the
Lena Delta. The statistically determined threshold (cliff vs. land)
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FIGURE 10 | Mean annual ground temperature (MAGT) at 2 m depth for 2003–2017 (source: Obu et al., 2019a). Vertical dashed lines indicate years with

PALSAR acquisitions.

for this study (approximately −2.5 dB for 31◦) is higher than in
Stettner et al. (2017) which determined −7.8 dB for HH (31◦)
based on visual evaluation. This difference may relate to mode
characteristics (staring spot light in this study vs. stripmap mode
in Stettner et al., 2017), strength of the foreshortening effect,
and surface wetness apart from the consideration of surface type
specific noise. The −7.8 dB threshold is still well above the land
(tundra) average (∼−11 dB), but within one standard deviation.

Results for the Beaufort Sea Coast (Kay Point) are similar
to results published by Irrgang et al. (2018) (Table 5). They
calculated shoreline movements of the Yukon Coast based on
aerial and satellite images between the years 1951 and 2011.
Average rates for the entire coast segment are in the order of
the maximum in case of all sensors, specifically PALSAR-1/2 and
Landsat which provide long-term rates with lower uncertainties
than the annual retrievals. The differences suggest higher rates
in recent years for this site, but the uncertainties (±−0.4 m and
±−1.4 m, respectively) are still high compared to the observed
range in Irrgang et al. (2018,−0.8 to−4.1 m).

Obu et al. (2016) used aerial lidar elevation data from 2012
and 2013 with a horizontal resolution of 1 m to study short-term
coastal erosion at the Yukon Coast including Herschel Island.
Rates are reported for the land-water boundary. The results
are also consistent with this study. Their calculated coastline
movement for this area is −6.8 m/year (Obu et al., 2016),
which is similar to the long-term results (2007–2018) of this
study (−7.02 m/year). Landsat estimates are, however, lower with
−4.19 m/year for the period 1999–2014. Mean annual ground
temperature has been increasing by 3◦C from 2003 to 2017
(Figure 10). This may suggest higher rates in recent years, but
differences in spatial resolution may reduce the comparability of

results. Larger fluctuations from year to year within the different
analyses periods could also contribute to this difference.

Coastal erosion dynamics on Bykovsky Peninsula were
calculated between 1951 and 2006 by Lantuit et al. (2011). They
analyzed airborne and spaceborne optical images and calculated
the annual erosion rates. Rates of up to 2 m/year (Lantuit et al.,
2011) were determined at the coastal stretch selected in our study.
The agreement among the sensors for the recent development
(up to about 10 m/year) suggests an increase of erosion activity
at this site as well, but uncertainties are also very high (Table 5).
However, this agrees with findings by Günther et al. (2015) at the
nearby Muostakh island for 2010–2013. The time series of mean
annual ground temperature indicates an increase of 2◦C in this
region between 2003 and 2017 (Figure 10).

While cliff-top retreat (thermo-denudation) was faster than
the land-water boundary change (thermo-abrasion) at Muostakh
(10.2 m vs. 3.4 m/year), it appears rather similar at the Bykovsky
site (Table 5). The analyzed Muostakh sections face mostly
North-East, whereas the Bykovsky site exposition is West. As
thermo-abrasion conditions thermo-denudation (Günther et al.,
2015), the differences among the sites (also compared to Herschel
where the land-water boundary change exceeds cliff top retreat)
may represent different stages of interaction. The analyses of
longer time series with annual resolution might provide more
insight into the related mechanisms and dependencies.

Leont’yev (2003) predicted that the open coast of Varandai
would retreat 300 to 500m over the next century, or 3 to 5m/year.
This study’s calculated 2007–2018 erosion rate of 5.41 m/year
is slightly faster than Leont’yev’s rate, but matches within the
uncertainty. Surprisingly, the two year-to-year rates calculated in
this study were very close to Leont’yev’s rate, even though their
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uncertainties are still extremely large. As mentioned before, it is
challenging to distinguish between tidal and wave motion and
erosion processes in sand areas without vegetation or cliffs. The
tidal motion can cause calculation errors as the position of the
land-water boundary is affected. Rates for 1951–2013 as reported
by Sinitsyn et al. (2020) are lower with 1.8 m/years. Rates seem
to have increased at Varandai as well. The rates in 2007/8 and
2017/18 are similar (about 3m) as was also mean annual ground
temperature (Figure 10).

5. CONCLUSIONS

In general, the calculation of long-term shoreline movements
of sensor facing steep coasts in the Arctic based on a threshold
classification seems to be a promising approach. The calculated
rates based on PALSAR/PALSAR-2 L-band images between 2007
and 2018 seem to bring reasonable results. The uncertainties
are, however, high for the prediction of short-term trends based
on Sentinel-1 and PALSAR-2 images, which have comparably
low-resolution (10 and 12.5 m nominal resolution, respectively)
with respect to actual erosion rates. This may be improved by
using more than one image per year. Another limitation of such
resolution is that only erosion features equal to or greater than
the resolution of the image can be detected.

In addition to Stettner et al. (2017), who focused on cliffs
facing the sensor, we demonstrated the utility of SAR data for
separation of the land-water boundary at Arctic coasts. This
expands the potential of SAR application, as sensor facing cliffs
are only relevant in case of (1) presence of cliffs and (2) coast
orientation toward the West or the East. The identification of
such coastal segments can be based on using existing landcover
datasets in conjunction with orbit inclination information as
presented in this paper.

The comparison of the classification results with optical
data revealed several issues: snow, wide sand beaches, and
infrastructure. In the classification results, wet snow was
misclassified as water, which made classifications during snow
melt difficult. Late lying snow patches can also occur at North-
facing slopes. In future work, including a threshold function to
determine snow melt may help avoid possible misclassifications.

Classification is also complicated by smooth sand beaches.
The sand backscatter values of long-wave C-band and L-
band microwaves are relatively low, which makes the
distinction between water and sand challenging. Future
studies may overcome this by introducing an additional
class for land, by distinguishing between sandy areas and
undisturbed tundra.

A comparison of the PALSAR/PALSAR-2 L-band long-term
results of this study with RADARSAT-2 C-band long-term results
would be an interesting approach for future studies. Also, the
calculation of seasonal trends with TerraSAR-X data in a region
with more active erosion would be a promising application,
which should be investigated. The threshold based method
can help to better understand the seasonal, annual, and inter-
annual Arctic coastline dynamics, and it provides additional
information that complements the optical and in situ methods.

In a further step machine-learning methods can be introduced
to analyze coastlines with a higher degree of automation
and reliability.

The consideration of incidence angles to distinguish relevant
surface types is required for cliff-land as well as land-water
discrimination in case of L-band. In case of C-band it is
only required for land-water discrimination. The variation of
backscatter in X-band data is specifically high for water. But
our results suggest that incidence angle dependencies are not
required to be considered for this type of application of X-band
data at HH polarization. High incidence angles might be of
benefit due to the impact of incidence angle on spatial resolution
in staring spot light mode.

Specifically L-band data could be shown of benefit due to their
lower sensitivity to wave action. C-band, specifically Sentinel-
1, can be, however, also utilized and provides similar estimates
like other sensors in case of calm sea. Several future L-band
SAR missions are currently in planning [NISAR, ROSE-L NASA
(2019), Pierdicca et al. (2019)] which could be of interest for
coastal erosion studies over larger areas in the future. The
post processed Landsat derived trends provide an additional
source for longterm monitoring, specifically for automatic
retrieval across the entire Arctic. This could be complemented
by ENVISAT and ERS-1/2 C-band SAR data for the period
1991 to 2012. Superior regarding spatial resolution and at
the same time also illumination independence is TerraSAR-X.
The nominal resolution of 1 m or better may not only allow
determination of sub-seasonal retreat rates at some of the sites,
but also the separation of radar shadow at high bluffs enables the
identification of the cliff-top position.
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