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Abstract
In standard models of spatial harvesting, a resource is distributed over a continuous domain with an agent who may harvest
everywhere all the time. For some cases though (e.g., fruits, mushrooms, algae), it is more realistic to assume that the
resource is located at a fixed point within that domain so that an agent has to travel in order to be able to harvest. This
creates a combined travelling–and–harvesting problem where slower travel implies a lower travelling cost and, due to a
later arrival, a higher abundance of the resource at the beginning of the harvesting period; this, though, has to be traded off
against less time left for harvesting, given a fixed planning horizon. Possible bounds on the controls render the problem
even more intricate. We scrutinise this bioeconomic setting using a two-stage optimal control approach, and find that the
agent economises on the travelling cost and thus avoids to arrive at the location of the resource too early. More specifically,
the agent adjusts the travelling time so as to be able to harvest with maximum intensity at the beginning and the end of the
harvesting period, but may also find it optimal to harvest at a sustainable level, where the harvesting and the growth rate of
the stock coincide, in an intermediate time interval.

Keywords Optimal travelling–and–harvesting decision · Spatial renewable resource · Bioeconomic model · Two-stage
optimal control problem · Sustainable harvesting

Introduction

The spatial dimension has recently attracted substantial
attention in the economic literature on management of
renewable resources. Frequently, this literature focuses on
how much effort is required to harvest a resource when that
resource is moving (e.g., fish or game).1 In this paper, we

1See, for example, Neubert (2003), Neubert and Herrera (2008), Brock
and Xepapadeas (2008), Brock and Xepapadeas (2010), Ding and
Lenhart (2009), Moeller and Neubert (2013), Kelly et al. (2016), and
Grass et al. (2019).
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reverse this premise: we consider the case where an agent is
required to move in order to harvest an immobile resource.
Since travelling is a pre-requisite of harvesting, this implies
a spatio-temporal interdependence of both policies, which
is the focus of this paper.

The management of renewable natural resources has
been a central issue in economics for many decades,
and meanwhile the early models have been extended
and generalised in various respects.2 While the temporal
dimension of bioeconomic problems has been considered
already in the early works, the spatial dimension became
of interest to economists rather late, although it had been
treated in the theoretical biology and applied mathematics
literature for some time. Only in 1999, Sanchirico andWilen
generalise the fundamental open-access models of Gordon
(1954) and Smith (1968). They set up a bioeconomic model
with a finite number of resource patches within which the
resource migrates, resulting in time-dependent changes in

2For example, Fan and Wang (1998) generalise the optimal harvesting
policy of an autonomous harvesting problem with logistic growth to
a non-autonomous case with periodic coefficients; Liski et al. (2001),
accounting for costly changes of the harvesting rate, explore the effects
of increasing returns to scale for a standard fishery management
model; and Feichtinger et al. (2003), Hritonenko and Yatsenko (2006),
Tahvonen (2008, 2009a, b), Skonhoft et al. (2012), Tahvonen et al.
(2013) and Belyakov and Veliov (2014) investigate harvesting of
age-structured populations.
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the allocation of harvesting effort between these patches.
In this way, Sanchirico and Wilen (1999) integrate within-
and between-patch biological and economic forces and
demonstrate how these effects determine the process of
bioeconomic convergence over space and time.

Following Sanchirico andWilen (1999), the early models
in spatial resource economics feature discrete patches,
where migration of the biomass is modelled as entry and
exit of the biomass from one location to the other. An
alternative approach assumes a continuous distribution of
the resource and models the migration and the spread of
the biomass as diffusion; notable contributions are, for
example, Montero (2000, 2001), Neubert (2003), Brock
and Xepapadeas (2008, 2010), Ding and Lenhart (2009),
Grass et al. (2019). An overview of the literature of spatial-
dynamic systems in resource economics is provided by
Conrad and Smith (2012) and Kroetz and Sanchirico (2015),
for example.

In both strands of the literature, it is the resource
that is mobile, while a possible movement of the agent
remains unrecognised. In many instances, an immobile
agent represents a reasonable simplification, as the effect
of the agent’s movement can be neglected without losing
much realism (e.g., coastal fixed–net fishery or shooting
game)—but in other cases it is not. For example, in fruit
and mushroom harvesting (in distant, vast wilderness such
as Canada or Kamchatka), in forestry and in extensive
agriculture, it is the agent who is moving to a resource
that is positioned at a fixed location. In these cases, the
travelling costs are often significant due to either large
distances or because of a lack of infrastructure. Moreover,
there is frequently only a fixed time slot in which the
resource can be harvested, imposing constraints on the
arrival time; for example, grape harvesting needs to be done
within the last few days before the first night frost (late
harvest). Another example, which has recently attracted
much attention and for which travelling is essential, is algae:
a rapidly growing renewable resource, which may be used
in the production of human and animal food, cosmetics,
pharmaceuticals, chemicals, plastics, and biofuel.3 Algae is
frequently located at distant patches and is hard to monitor;
in particular, algae farms have now often been automated
and located more and more off-shore so that travelling times
become increasingly relevant.

Few papers consider a travelling–and–harvesting prob-
lem of an agent in a spatial domain. Notable examples
are Robinson et al. (2008), Behringer and Upmann (2014),
Sirén and Parvinen (2015), Belyakov et al. (2015, 2017) and
Zelikin et al. (2017), who consider an immobile resource

3For the possibilities of algal biofuel production, see, for example,
Shurin et al. (2013), Zhu et al. (2017), Ummalyma et al. (2017), and
Chu (2017); for a paper investigating algae growth control from a
pollution point of view, see Yoshioka and Yaegashi (2018).

positioned at known locations. Except for Robinson et al.
(2008) and Sirén and Parvinen (2015), these authors analyse
a resource that is continuously distributed on the periphery
of a circle and an agent who leaves for a round trip, return-
ing home after each turn. In those models, the agent does
not need to stop in order to harvest the resource, but is able
to do this en passant. While in the model of Behringer and
Upmann (2014) the harvesting activity does not cost any
time over and above the time of travelling, in Belyakov et al.
(2015, 2017) the maximal harvesting activity is inversely
proportional to velocity. Models of the latter type are some-
times referred to as search models, because a higher speed
of travelling renders the agent incapable of descrying much
of the resource (see also Robinson et al. 2002). However, in
both types of models, i.e., in Behringer and Upmann (2014)
and in Belyakov et al. (2015, 2017), the travelling and the
harvesting activity occur simultaneously.

Complementary to that approach are sequential
travelling–and–harvesting decisions, which have previously
been considered by Robinson et al. (2008) and Sirén and
Parvinen (2015), for example. In Robinson et al. (2008),
the resource is located at discrete patches, and the agent is
required to travel to those locations in order to be able to
harvest. Sirén and Parvinen (2015) modify that model and
formulate a continuous–time, continuous–space version.
In those models, travelling and harvesting are mutually
exclusive activities, taking place at different locations at
subsequent times. Yet, in both models the decisions about
travelling and harvesting are connected via a gathering-
specific cost function. This formalises the idea that the
travelling time, and hence the travelling cost, increases
in the total amount already harvested, assuming that the
harvest has to be carried back to a local market.

In Sirén and Parvinen (2015), speed is assumed to be
fixed (thereby invalidating their peculiar assumption that
travelling costs are decreasing in speed). As a consequence,
travelling costs are linearly increasing in the travelling
distance, so that it is the distance, rather than the speed,
on which the agent has to decide. In this way, travelling
and harvesting decisions collapse, similar to search models.
Sirén and Parvinen (2015), considering a infinite time
horizon, show that in the steady state, the stock is an
increasing function of the distance, while also the harvest
increases with distance, before it eventually drops to zero.

In these spatio-temporal harvesting models, travelling to
the resource constitutes a crucial activity. In particular, in
their numerical analysis Robinson et al. (2008) show that
the travelling costs dissipate a substantial fraction of the
harvesting yield, and thus of the resource value. Because of
this significance of the travelling cost, they obtain cyclical
solutions with extraction varying over space and time,
where the number of periods is sensitive with respect to
parameterisation of the model.



Theor Ecol

The prediction of cyclical solutions with extraction
varying over space and time, developed by Robinson et al.
(2008), resemble those in the continuous time model of
Belyakov et al. (2015). These authors, specifying a long-
run average objective to motivate a sustainability goal, show
the existence of an optimal solution that also reveals a
periodic structure with possibly exhausted areas appearing
on the periphery of a circle. However, the presence of
cyclical solutions is critically dependent on the assumption
of harvesting capacity being inversely related to speed, as
it is assumed in search models. Behringer and Upmann
(2014) and Zelikin et al. (2017) relax this assumption and
allow for two fully independent controls for speed and
harvesting. Disentangling speed and harvesting, the latter
authors obtain non-cyclic, and in some special cases even
constant solutions.

In this paper, we also “disentangle” speed and harvesting,
but with respect to the time dimension. We consider a two-
stage optimal control problemwith travelling and harvesting
taking place in subsequent periods. In this way, travelling
and harvesting are independent in the sense that they are
only connected by the arrival time of the agent at the
location of the resource. At the same time, travelling and
harvesting are mutually exclusive, rival activities: the more
time is spent on travelling, the less time is left for harvesting,
and vice versa. The link by the arrival time yields a
truly dynamic two-stage optimal control problem with two
interconnected sub-problems: a travelling problem and a
subsequent harvesting problem.

Our model shares some similarities with the timber
gathering model of Robinson et al. (2008) and, in particular,
with the continuous–time, continuous–space model of Sirén
and Parvinen (2015). In all three models, travelling and
harvesting take place at different locations at subsequent
times. However, in our model there neither is a functional
link between the cost of travelling and the cost of harvesting,
nor is there the need to carry the harvest back to some
home market, but the resource is immediately sold at
a market (or to a distributor) that is located close to
the resource. (For a model that investigates the effects
of endogenous market demands in a spatial harvesting
setting see Aniţa et al. 2019.) In the absence of such
nearby markets, Robinson et al. (2008) allow for low
levels of resource density to appear far from the harvester’s
home with abundant resources in between, generalising
the monotone predictions of Sirén and Parvinen (2015).
Similarly, Belyakov et al. (2015), assuming an infinite
time horizon, allow for a periodic structure with possibly
exhausted areas. In our model, though, we investigate the
behaviour of an agent with a finite rather than an infinite
planning horizon. This perspective necessarily constrains

the time the agent may employ for harvesting once the
resource is reached, rendering the eventual resource pattern
a function of temporal and transport constraints.

To specify our two-stage travelling–and–harvesting
control problem, we assume a linear–quadratic travelling
cost, and consider two different possible specifications for
the growth process of the resource: exponential growth
and logistic growth. Applying these specifications, we
analytically derive the optimal travelling–and–harvesting
policies, i.e., the optimal paths, and the associated profits
for both types of growth functions, thereby demonstrating
the interdependence between both problems. The need for
travelling requires the agent to weigh the benefit of an early
arrival, i.e., a longer harvesting period, with its cost: a higher
pecuniary travelling cost and a shorter time for the resource
to grow, implying a lower stock upon arrival and hence less
beneficial conditions for harvesting. In essence, the limited
amount of time (fixed time period) encourages the agent
to start harvesting early, while the presence of travelling
costs lets the agent postpone the beginning of the harvesting
period.

More specifically, we show that the optimal policies for
exponential and logistic growth feature similar characteris-
tics depending on two fundamental parameters: the planning
horizon and the harvesting capacity (maximal effort level).
Given those parameters, the travelling period provides the
agent with the possibility to customise the length of the
harvesting period by choosing the arrival time. Since early
arrival is costly in terms of higher travelling cost, the agent
adjusts the speed of travelling to avoid being idle. As a con-
sequence, optimal harvesting is done either at the maximal
rate all the time, or harvesting is reduced to a sustainable
level during an intermediate time interval. The latter policy
with two switches in the harvesting intensity (maximum—
sustainable—maximum) only occurs in case of the logistic
growth function. Finally, we also investigate the sensitiv-
ity of our results with respect to the presence of bounds
on the control of movement and with repect to the rate at
which future revenues and costs are discounted. We show
that, even though these modifications lead to some shifts in
the optimal policy, the basic effects still prevail.

The rest of the paper is structured as follows: In Section
“The model” we set up the model. In Section “Decomposition
of the problem” we decompose the travelling–and–harvesting
problem into the two sub-problems. We begin our analysis
with the harvesting problem in Section “Second stage:
harvesting”, and we then proceed with an analysis of the
full travelling–and–harvesting problem in Section “First
stage: optimal travelling–and–harvesting policy”. In Section
“Robustness of the results” we discuss the robustness of
our results with respect to bounds on the control and the
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discount rate, before we conclude in Section “Conclusion”.
The robustness analysis is relegated to Appendix A; longer
proofs, to Appendix B.

Themodel

We consider an economic agent who has the exclusive right
to harvest a renewable natural resource during a fixed, finite
time period T ≡ [0, T ]. We may think of a harvesting
licence or a rental period that begins at time t = 0 and
terminates at t = T .4 The resource is situated at some
fixed and known location x1 ∈ (0, x̄]. At time t ∈ T the
location of the economic agent is x(t) ∈ X ≡ [0, x̄], with
the agent’s initial location given by x(0) = 0. The agent is
able to harvest the resource only at his/her current position,
and since x(0) �= x1, the agent is required to travel to get
access to the resource. Only on arrival at location x1 is the
agent able to begin with harvesting. The agent’s problem is
thus a combined travelling–and–harvesting problem, where
the speed of travelling, and hence the arrival time, and the
harvesting rate have to be determined jointly in order to
maximise the total profit, composed of the revenue from
harvesting net of harvesting and travelling costs.

In order to move from one location to the next, the agent
has to adjust the velocity of travelling v(t) ∈ V ⊂ R.
This speed of movement (or the harvesting machine) cannot
be chosen directly, though, but is physically controlled by
means of acceleration a(t) ∈ A ⊂ R. Thus, movement is
described by

ẋ(t) = v(t), v̇(t) = a(t), ∀t ∈ T with x(0) = v(0) = 0.

(1a)

Specifying acceleration, rather than speed, as the control
variable avoids the occurrence of unrealistic, i.e., discontin-
uous speed profiles where the agent may abruptly switch
speeds. (This specification of the movement model follows
Pontryagin et al. 1962; Léonard and Long 1992, Sec. 8.1;
Hull 2003, Sec. 17.7 and others; a more sophisticated model
can be found in, e.g., Bertolazzi and Frego 2018.) There
may be lower and upper bounds on acceleration. For the
moment, we disregard such constraints, but we shall assume
in Appendix A, that acceleration is bounded by a(t) ∈ A ≡
[a
¯
, ā] with a

¯
< 0 and ā > 0.5

4With an infinite time horizon the significance of the travelling period
will reduce and the trade-off between the travelling and the harvesting
decision will be less pronounced; also, any end–of–period effects will
vanish.—All of those effects would distract from the central issue of
this paper.
5The minimum acceleration a

¯
is necessarily negative to allow for

a slowdown of speed, as the agent would otherwise be unable to
stop—and start harvesting.

Since both harvesting and travelling take time and the
time horizon is finite, the earlier the agent arrives at location
x1 the more time is left for harvesting. In order to render the
problem non-trivial, we subsequently assume that the costs
of travelling are not too high, so that an arrival before time
T is desirable. Since speed is finite, the arrival time must
be strictly positive. Formally, the arrival time of the agent at
the location of the resource x1 is the first time the agent’s
location is x1:

t1 ≡ min
t

{t ∈ T |x(t) = x1, v(t) = 0}. (1b)

Then, � ≡ [0, t1] denotes the agent’s travelling period; and
� ≡ (t1, T ], the resulting harvesting period.6 The total time
available is then spent on travelling and on harvesting, with
the travelling period preceding the harvesting period. This
is illustrated in Fig. 1.

The stock of the renewable resource (i.e., the biomass)
at time t ∈ T is denoted by s(t) ≥ 0. We assume
that the resource is growing at rate g(s) with g(0) = 0.
(Subsequently, we will consider the cases of exponential
and logistic growth.) Furthermore, harvesting gradually
diminishes the stock. The harvest depends on the abundance
of the resource, i.e., on the stock s, and on the harvesting
effort h(t) ∈ H ≡ [0, h̄] ⊂ R+. Suppose that for a
given stock, the yield from harvesting increases in effort;
moreover, effort is more productive the higher the stock.
Specifically, we assume that the harvesting yield equals
zero, H = 0, if either the stock or the effort equals
zero, i.e., if s = 0 or h = 0. To capture this idea, we
follow the familiar Schaefer model (see Schaefer 1954) and
specify the revenue from harvesting as a bilinear function
of effort and the stock: H(t) = qs(t)h(t), where q is the
catchability coefficient, defined as the fraction of the stock
harvested per unit of effort. For convenience, we normalise
the units of effort and set q = 1. Then, the harvesting
yield equals H(t) = h(t)s(t) if the agent’s location is
x1, and H(t) = 0 otherwise. With this specification, the
harvesting effort equally represents the harvesting rate, and
we thus use the phrases harvesting effort and harvesting
rate interchangeably.7 Putting pieces together, the resulting
growth of the stock is governed by the differential equation

ṡ(t) = g(s(t)) − h(t)s(t)1�(t), ∀t ∈ T , s(0) = s0. (1c)

6Once the agent has reached location x1, they will never start travelling
again, and thus the agent completes the planning period at location x1,
i.e., x(t) = x1, ∀t ∈ [t1, T ].
7The assumption that the agent chooses the harvesting rate h = H/s

is justified by the idea of stock-dependent harvesting effort, where the
yield from a given amount of effort depends on the abundance of the
resource; harvesting effort is then similar to fishing by nets, which
captures a fraction of the fish stock. If we departed from that view
and instead assumed that the agent may choose the harvesting amount
H directly, this would affect the dynamics of the optimally controlled
system. We are very grateful for a referee for pointing this out.



Theor Ecol

Fig. 1 Structure of the planning period T : the travelling period �

ends when the harvesting period starts at the arrival time t1

where 1� denotes the indicator function for the harvesting
period, i.e., for times t ∈ �.

Travelling and harvesting are both costly. We assume
that the harvesting cost C(H) is increasing and convex, i.e.,
C′ > 0 and C′′ ≥ 0 for all H ∈ R+, with C(0) = 0. More
specifically, we assume that the harvesting cost is linear
in total catch, C(H) = cH = chs, with 0 ≤ c < p.
Then, instantaneous profit from harvesting amounts to
(p−c)h(t)s(t) or, more compactly, Mh(t)s(t), where M ≡
p − c denotes the per-unit profit (mark-up). Also, travelling
is associated with some cost, which generically depends on
both speed and acceleration: K(v, a) for v ∈ V and a ∈ A .
We assume that pausing is costless, K(0, 0) = 0, that the
travelling cost increases with both speed and acceleration,
and that acceleration is more costly the higher the speed,
i.e., the partial derivatives of K satisfy Kv ≥ 0, Ka ≥ 0 and
Kva ≥ 0.

Let ρ ≥ 0 denote the discount rate of the agent, and
let p be the (constant) price of one unit of the harvested
resource. The problem for the agent is then to maximise the
discounted profit flow consisting of instantaneous revenue
net of the harvesting cost and net of the travelling cost
for the planning period T .8 Presupposing that the agent
reasonably chooses h(t) = 0, ∀t ∈ � and a(t) = 0, ∀t ∈ �

(the choices h(t) > 0 for t ∈ � or a(t) > 0 for t ∈ � would
be futile actions), we obtain the travelling cost

J1(a(·), t1) ≡
∫ t1

0
e−ρtK(v(t), a(t)) dt

and the profit from harvesting

J2(h(·), t1) ≡
∫ T

t1

e−ρtMh(t)s(t) dt,

where v and x, and hence the arrival time t1, depend
on the acceleration path a(·). We henceforth write, with
minor sloppiness, a(·) ∈ A and h(·) ∈ H as shorthand
notations for the admissible paths (a(t))t∈�, a(t) ∈ A
and (h(t))t∈�, h(t) ∈ H , respectively. Putting the pieces
together, let J (a(·), h(·), t1) ≡ −J1(a(·), t1) + J2(h(·), t1),

8In order to simplify the presentation and to focus on the link between
the travelling and the harvesting period, we disregard any residual
value φ(s(T ), T ) that the agent may receive at the end of the planning
period. Still, one can easily take into account a residual value, as the
only effect of φ is to modify the transversality condition of the costate
variable (see, e.g., Léonard and Long 1992, Theorem 7.2.1).

then the agent’s optimisation problem reads as

max
{a(·)∈A ,h(·)∈H ,t1∈T }

J (a(·), h(·), t1)
s.t. (1a), (1b), (1c), v(t)∈V . (1d)

The state constraint s(T ) ≥ 0 is automatically fulfilled due
to assumptions g(0) = 0, and H = 0 whenever s = 0;
similarly, the constraints x(t) = x1 and v(t) = 0, ∀t ∈ �

are implied by Eq. (1a) and (1c). Thus, those constraints
need not be specified explicitly in Eq. (1d).

Decomposition of the problem

In order to solve problem (1), we draw upon the literature
of two-stage optimal control problems, notably on the work
of Amit (1986), Tomiyama (1985) and Tomiyama and
Rossana (1989),9 and decompose the intertemporal optimal
travelling–and–harvesting problem into two subsequent
problems: a travelling and a harvesting sub-problem. In the
travelling problem we choose an acceleration path a(·), and
thus the arrival time t1, so as to move from location 0 to
location x1 at minimal cost:

min
{a(·)∈A ,t1∈T }

J1(a(·), t1) s.t. (1a), (1b). (2a)

Since the travelling time t1 can be chosen subject to the
constraint x(t1) = x1, we face a free-terminal-time problem
with a fixed endpoint constraint.

During the travelling period �, the resource grows
unimpaired until the agent arrives at the location x1 at time
t1, when the harvesting period begins. As a consequence,
the stock of the resource at the time of arrival, s(t1),
represents the solution of the (interim) growth process
ṡ(t) = g(s(t)) with s(0) = s0 for all t ∈ �. In this
way, the travelling decision determines the initial value of
the stock process for the harvesting problem, s1 = s(t1).
Given those parameters, the resulting subsequent harvesting
problem becomes choosing a path of the harvesting effort
h(·) that maximises J2:

max
{h(·)∈H }

J2(h(·), t1) s.t. (1c), s(T ) free. (2b)

The fact that the travelling time of the agent also represents
the growth time of the resource is the crucial link between
the travelling problem (2a) and the harvesting problem (2b).
As a consequence, the agent has to take into account

9These authors provide optimality conditions for two-stage, finite time
dynamic optimization problems. An extension to an infinite horizon is
provided byMakris (2001); and applications of this theory to two-stage
optimal control problems can, for example, be found in Boucekkine
et al. (2004), Saglam (2011), Grass et al. (2012), Caulkins et al. (2013),
Krawczyk and Serea (2013), Moser et al. (2014), Long et al. (2017),
and Seidl et al. (2018).
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that a longer travelling time reduces the time left for
harvesting, and thus ceteris paribus the resulting yield.
In contrast, a lower speed of travelling makes travelling
less expensive and gives the resource more time to grow,
thus providing the opportunity for a more abundant harvest
at later times. The travelling–and–harvesting problem (1)
takes into account these interdependencies between sub-
problems (2a) and (2b).

We next derive necessary conditions for an optimal
control pair (a∗(·), h∗(·), t∗1 ), or for short (a∗, h∗, t∗1 ), by
decomposing the original problem (1), i.e., the sequence
of interdependent problems, into two standard problems.
We first consider the harvesting problem of the second
stage (2b), and then the travelling problem of the first
stage (2a), acknowledging that the solution of the second
stage depends on the decision in the first stage. Formally,
we proceed as follows: Assuming the existence of the
optimal switching time t1 in the interior of the time interval
T , we solve the second–stage problem and calculate the
maximised objective function J ∗

2 as a function of the initial
state s1 and the switching time t1. Then, we derive the
optimal control a∗ and the associated optimal switching
time t1 by solving the travelling problem of the first stage.

Second stage

Given the control time interval � and the initial condition
s(t1) = s1, we solve problem (2b) for an admissible
optimal control h∗. This problem is of a standard form and
can be solved using the well-known Pontryagin maximum
principle (see, for example, Kamien and Schwartz 1991).
Using the solution of the second-stage problem, (h∗, s∗),
which depends on the starting values s1 and t1, we
calculate the maximised objective value J ∗

2 (s1, t1) ≡
J2(h

∗(s1, t1), t1). Then, with the help of J ∗
2 , the original

problem (1) reduces to the first–stage problem:

First stage

Given the constraints (1a) and (1b), we look for an
admissible optimal control a∗(·) on � and the associated
optimal arrival time t∗1 ∈ T such that

max
{a(·)∈A ,t1∈T }

V (a(·), t1) ≡ −J1(a(·), t1) + J ∗
2 (s(t1), t1),

(3)

where the optimal arrival time t∗1 , satisfying (1b), is deter-
mined by the acceleration path a∗(·), through ∫ t1

0 v(t)dt =
x(t1) − x(0) = x1. Since t∗1 ∈ (0, T ) by assumption, this
problem reduces to a standard problem with terminal value
(or “salvage” value) J ∗

2 , free terminal time t1 and free end
point s(t1). (For the solution of such a problem, see, for
example, Léonard and Long 1992, sec. 7.2 and 7.6)

Second stage: harvesting

We solve the harvesting problem in this section, and then
we solve the problem of the first stage in Section “First
stage: optimal travelling–and–harvesting policy”. We con-
sider two standard specifications for the growth process of
the resource: exponential growth in Section “Exponential
growth” and logistic growth in Section “Logistic growth”.
Exponential growth is a stark abstraction for most real
growth processes, of course, as possible density depen-
dence of the growth rate is neglected. The assumption
of exponential growth implicitly postulates that possible
density dependence of growth becomes effective at popu-
lation scales beyond the considered abundances. Logistic
growth, though, takes this density dependence explicitly
into account. Thus, exponential growth may be a reason-
able assumption for low abundances, while logistic growth
is more descriptive for high abundances. For these reasons,
both processes should be considered as complementary.10

Exponential growth

Suppose that the stock of the renewable resource, when left
unimpaired, increases at a constant rate: g(s(t)) = s(t).
Since the stock is reduced by the catch H(t) ≡ s(t)h(t), it
evolves according to the differential equation

ṡ(t) = s(t) − h(t)s(t), s(t1) = s1, ∀ t ∈ �. (4a)

We abstract from discounting for the moment and set
ρ = 0. (We show in Appendix A how our results are
affected by the presence of a positive discount rate.) Then,
the objective function of Eq. (2b) becomes

max
{h(·)∈H }

J2(h(·), t1) =
∫ T

t1

Mh(t)s(t) dt

s.t. (4a), s(T ) free.

The Hamiltonian of this problem is given by

H = Mh(t)s(t) + π(t)s(t) (1 − h(t)) .

SinceH is linear in the control h, we expect that the optimal
solution is of the bang–bang type, with h jumping between
the lower and the upper bound, 0 and h̄. We now show that
such a policy is in fact optimal. To this end, let σ(t) ≡
∂H/∂h = (M − π(t))s(t) denote the switching function.
Then, the maximum principle yields

h(t) =
⎧⎨
⎩
0 if σ(t) < 0,
[0, h̄] if σ(t) = 0, ∀ t ∈ �,

h̄ if σ(t) > 0,
(4b)

π̇(t) = h(t)π(t) − Mh(t) − π(t), ∀ t ∈ �, (4c)

10Similar models can be found, for example, in the textbooks of
Conrad and Clark (1987), Hocking (1991), and Clark (2010).
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along with Eq. (4a) and the transversality condition π(T ) =
0.11 Thus the optimal strategy depends on whether π is less
or greater than M . Next, using π(T ) = 0 together with
h(t) = h̄ for π(t) < M , Eq. (4b) implies that we cannot end
the harvesting period � with h = 0. Hence, the agent must
complete the harvesting period by harvesting at maximal
effort, i.e., h(T ) = h̄.

Moreover, the solution of Eq. (4c) must satisfy

π(t) =

⎧⎪⎨
⎪⎩

A0e
−t if h(t) = 0

M
h̄

h̄ − 1
+ A1e

t(h̄−1) if h(t) = h̄.

Neither solution achieves the critical value π = M more
than once. Consequently, there is a unique switching point
τ ,12 implying that we either have (i) h(t) = h̄ for all t ∈ �,
or (ii) h(t) = 0 for all t1 ≤ t < τ and h(t) = h̄ for all
τ ≤ t ≤ T . Then, along any path with h = h̄, the costate
variable is given by

π(t) = M
h̄

h̄ − 1

(
1 − e(1−h̄)(T −t)

)
(5)

where we used the transversality condition π(T ) = 0 to
determine the constantA1 = Mh̄eT (1−h̄)/(1−h̄). Moreover,
the switching time τ is defined by π(τ) = M so that we
obtain from Eq. (5)

τ = T − δ, with δ ≡ log
(
h̄
)

h̄ − 1
. (6)

Since δ is a positive, decreasing and convex function for
all values of h̄,13 we conclude that the larger the maximal
harvesting (or effort) rate h̄, to which we subsequently also
refer to as harvesting capacity, the longer the agent can
wait and let the resource grow unimpaired in order to allow
for more intense harvesting later. Depending on the sign of
τ−t1, or equivalently, on the length of the harvesting period,
either of two cases may occur (see Fig. 2):

Case A: T < δ + t1

In this case, the maximal harvesting rate is relatively low,
requiring a longer period of harvesting. There is thus no

11The use of the transversality condition π(T ) = 0 requires that s(T )

is free. Of course, s(T ) is required to be non-negative, so that, in
principle, π(T ) might be positive if s∗(T ) = 0. However, it follows
from the exponential growth function (4a), that if the resource is
“heavily depleted” continuously, in the sense that h(t) > 1 for all
t ≥ ξ , for some ξ > 0, s(t) converges to zero for t → ∞. Hence,
while, depending on the parameter choice, the residual stock s(T ) may
be small, the resource never becomes extinct for any finite time T ,
irrespective of the parameter choice.
12Alternatively, this observation follows from Eq. (4c), which implies
that evaluated at a switching point τ , we have π̇(τ ) = −M since
π(τ) = M by definition.
13For h̄ = 1 we define δ = 1 so as to make δ a continuous function of
h̄. To see that, in fact, limh̄→1 δ(h̄) = 1 apply l’Hôpital’s rule.

time for “waiting” and choosing a zero harvesting rate for
some initial time period. Rather, upon arrival the agent
immediately begins harvesting (at the maximal rate), so that
there is no policy switch during the harvesting period, but
maximal harvesting throughout.

Proposition 1 Let T < δ + t1 and h̄ �= 1. Then the optimal
harvesting policy is given by

h(t) = h̄, s(t) = s1e
(1−h̄)(t−t1),

π(t) = M
h̄

h̄ − 1

(
1 − e(1−h̄)(T −t)

)
, (7a)

for all t ∈ �, and the resulting maximised profit amounts to

J ∗
2A(s1, t1) ≡ s1M

h̄

h̄ − 1

(
1 − e(1−h̄)(T −t1)

)
. (7b)

Proof The result follows from the preceding analysis.

Case B: T > δ + t1

In this case, the maximal harvesting rate is relatively
high, so that the agent can afford to postpone the start of
harvesting. Then, after some idle time—or “waiting” time—
has elapsed, harvesting takes place at maximal capacity.
During “the waiting period”, [t1, τ ), the stock is left
unimpaired and is thus given by s(t) = s1e

t−t1 , so that
at the switching time τ the stock amounts to s(τ ) =
s1e

τ−t1 , which then is the starting value of the stock for the
harvesting period [τ, T ]. Consequently, for times t ∈ [τ, T ]
the stock equals

s(t) = A2e
(1−h̄)t = s(τ )e(1−h̄)(t−τ) = s1e

h̄(τ−t)+t−t1 .

Proposition 2 Let T > δ + t1 and h̄ �= 1. Then the optimal
harvesting policy is given by

h(t) =
{
0 for t1 ≤ t < τ

h̄ for τ ≤ t ≤ T
(8a)

s(t) =
{

s1e
t−t1 for t1 ≤ t < τ

s1e
h̄(τ−t)+t−t1 for τ ≤ t ≤ T

(8b)

π(t) =
⎧⎨
⎩

eτ−t for t1 ≤ t < τ

M
h̄

h̄ − 1

(
1 − e(1−h̄)(T −t)

)
for τ ≤ t ≤ T ,

(8c)

Fig. 2 Case A: early switching time τ , i.e., a small harvesting period
T −t1 < δ; Case B: late switching time τ , i.e., a large harvesting period
T − t1 > δ
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Fig. 3 Optimal harvesting effort in Case B, T > δ + t1: with h̄ = 3/2 > 1 and thus τ = 0.5224 (left diagram), and h̄ = 3/4 < 1 and thus
τ = 0.1826 (right diagram), both for t1 = 0, T = 4/3 and M = 1; with the stock in green, the costate in blue and the control in red

for all t ∈ �, and the maximised profit amounts to

J ∗
2B(s1, t1) ≡ M

h̄

h̄ − 1
s1e

τ−t1
(
1 − e(1−h̄)(T −τ)

)

= Ms1 h̄1/(1−h̄) eT −t1 . (8d)

Proof The result follows from the preceding analysis.

Remark 1 For T = δ+t1, or equivalently, for τ = t1 Case A
and Case B coincide.

The case of h̄ = 1

Finally, the optimal policy for the case h̄ = 1 is obtained by
taking the limits of Case A and Case B:

Remark 2 If h̄ = 1, the optimal profit amounts to

J ∗
2 |h̄=1(s1, t1) =

{
s1M(T − t1) if T ≤ δ + t1

s1MeT −t1−1 if T > δ + t1.

Discussion

There is a critical length of the harvesting period given by
δ = log(h̄)/(h̄ − 1). If there is plenty of time in the sense
that T − t1 > δ, there is no harvesting during the initial
phase [t1, τ ) of the harvesting period, but harvesting takes
place at the maximum rate h̄ during the final phase [τ, T ]
of the harvesting period only. In this case, the harvesting
technology is so efficient that the agent may wait to let the
resource grow further, until harvesting begins. If, however,
there is not enough time available, i.e., T − t1 ≤ δ, the
agent is required to harvest at the maximum rate throughout.
The relatively low efficiency of the harvesting technology
lets the agent harvest as much as possible during the entire
harvesting period. Finally, whether the stock increases or
decreases during the harvesting process depends on whether
the harvesting capacity h̄ exceeds or falls short of the growth
rate of the stock, which is assumed to be equal to unity here.
The situation when h̄ > 1 is depicted in the left diagram
of Fig. 3, and when h̄ < 1, in the right diagram (both for
t1 = 0).

Fig. 4 Maximised profit (solid curves) as a function of the time hori-
zon T : for h̄ = 3/4 < 1, thus δ = 4 log (4/3) = 1.1507 (left
diagram), and for h̄ = 3/2 > 1, and thus δ = 2 log (3/2) = 0.8109

(right diagram): both for t1 = 0 and M = 1. Since J ∗
2A (in blue) is

defined only for T ≤ δ, and J ∗
2B (in green) is defined only for T > δ,

the dashed parts are merely hypothetical.
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Remarkably, the critical length of the harvesting period,
δ, depends on the harvesting capacity h̄ but is independent
of the time horizon; the maximised profit though (in both
Case A and B) does depend on T . For any given values of
the arrival time t1 and the stock at arrival s1, we find that
the profit in Case B is higher than or equal to the profit
in Case A, i.e., J ∗

2B ≥ J ∗
2A. This is quite intuitive as a

high harvesting capacity is beneficial, allowing for a greater
flexibility of the harvesting profile. This is depicted in Fig. 4
for the case t1 = 0. Therein, the vertical line represents the
critical time T = δ + t1 for a given value of the harvesting
capacity h̄, and the red curve depicts the (composed) profit
function for varying values of T . If time is scarce in the
sense that T − t1 < δ, Case A applies and the blue curve
represents the resulting maximised profit (coinciding with
the red curve for values T < δ). If there is plenty of time,
in the sense that T > δ + t1, Case B applies and the green
curve represents the resulting maximised profit (similarly
coinciding with the red curve for values T > δ + t1).

Logistic growth

In this section, we modify the growth process of the
resource and now explicitly take into account possible
density dependence of the growth function. To this end, we
assume that the stock obeys a logistic growth process:

g(s(t)) = 2s(t)

(
1 − s(t)

2

)
, ∀t ∈ �,

with a carrying capacity s∗ = 2.14 With this specification,
the net growth of the stock is governed by the differential
equation

ṡ(t)=g(s(t))−h(t)s(t)=s(t) (2 − s(t)−h(t)) , ∀t ∈ �.

(9a)

We assume that the resource has been left unimpaired
for a sufficiently long time, or even represents a pristine
stock (a scenario that is, for example, also considered by
Robinson et al. 2008), so that at the arrival time t1 the stock
equilibrates at its steady state level s(t1) = s∗ = 2.15

14This specification is used, for example, in Pindyck (1984), Conrad
and Clark (1987), Thieme (2003), Da Lara and Doyen (2008), Polasky
et al. (2011) and other applications. We assume a growth rate r = 2,
which may seem high. The numerical results depend on the ratio of the
growth rate r and the harvesting capacity h̄, with a relatively high (low)
growth rate resulting in a higher (lower) final stock. However, since
the stock never gets fully depleted by time T (see fn. 11), the particular
value of the growth rate does not affect the qualitative results.
15Clearly, in finite time the stock cannot fully recover so that the
assumption s(t1) equals the steady state stock s∗ = 2 should be
understood as an approximation, unless the stock is actually pristine.
If we assumed instead that s(t1) = s0 for some value s0 ∈ (0, 2), we
may have obtained additional cases, namely cases where the agent first
refrains from harvesting in order to let the stock grow for some time,
and then starts harvesting later.

The remaining model is adopted from Section “Exponential
growth”.

The Hamiltonian of the problem is given by

H = Mh(t)s(t) + π(t)s(t) (2 − s(t) − h(t)) .

As in the case of exponential growth, H is linear in the
control h. Yet here, as we will see, the optimal solution
is not only of the bang-bang type, but may also follow a
singular path for some time interval if there is plenty of
time (or, equivalently, if h̄ is sufficiently large). To this end,
let σ(t) ≡ ∂H/∂h = (M − π(t))s(t) denote the switching
function. Then, the maximum principle yields

h(t) =
⎧⎨
⎩
0 if σ(t)<0,
[0, h̄] if σ(t)=0, ∀ t ∈ �,

h̄ if σ(t)>0,
(9b)

π̇(t) = −Mh(t)−π(t) (2−2s(t)−h(t)) , ∀ t ∈ �, (9c)

together with Eq. (9a) and the transversality condition
π(T ) = 0. If we have σ(t) = 0 for some time interval, then
the optimal solution contains a singular arc, otherwise we
have a bang-bang solution. The next lemma helps to find the
specific pattern of the solution.

Lemma 1 π(t1) < M .

Proof See Appendix B.

It follows from Lemma 1 that the optimal policy rule
coincides with the rule obtained for exponential growth of
the resource (4b): Since π(t1) < M , the optimal path begins
with maximal harvesting h(t1) = h̄. Intuitively, since the
initial stock equals its maximum level, s(t1) = 2, there is no
reason to begin with moderate harvesting or even to wait. If
time is scarce, relative to the harvesting capacity, the choice
of the maximal harvesting effort h(t) = h̄ is optimal for all
t ∈ �. If, however, there is plenty of time, it is optimal to
reduce harvesting in an intermediate time interval, because
otherwise harvesting will be completed too early, and the
terminal condition that a (marginal) unit of the stock is
worthless at the end of the planning horizon, π(T ) = 0, will
not be met.

Proposition 3 The optimal harvesting policy is given by

h(t) = h̄ if h̄ ≤ h̄c (10a)

h(t) =
⎧⎨
⎩

h̄ t1 ≤ t < t2,

1 t2 ≤ t < t3, if h̄ > h̄c,

h̄ t3 ≤ t < T ,

(10b)

with some critical harvesting capacity h̄c > 1 (depending
on T ).

Proof See Appendix B.
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Figure 5 illustrates the two situations characterised in
Proposition 3. The left column of the diagrams shows the
situation for a low harvesting capacity, while the right
column displays the situation for a high harvesting capacity.
In each case, the green curve represents the zerocline of
s, while the blue curve represents the zerocline of π . The
horizontal line at π = M is the switching manifold defining
the singular path of the optimal control (see Eq. 9b). Since
the zerocline of s is vertical at s = 2−h̄, while the zerocline
of π reaches the switching manifold at s = 1, both curves
have a point of intersection if, and only if, h̄ < 1 (see
left column of diagrams). In this case, a saddle path from
s0 = 2 to the unique positive steady state (s∞, π∞) =(
2 − h̄, h̄/(2 − h̄)

)
exists. However, this path is not optimal,

since the steady state cannot be reached in finite time.
Consequently, the optimal path starting from s(t1) = 2 lies
beneath the saddle path terminating at π(T ) = 0 according
to the transversality condition. In the lower left diagram the
optimal trajectories are drawn for different values of T .

When h̄ > 1, see right column of diagrams in Fig. 5,
the zeroclines of s and π do not meet, so that in this case
a critical trajectory, i.e., a trajectory passing through the
point (1,M) = (1, 1) exists (see the proof of Proposition 3).
The optimal path, starting from s(t1) = 2 and terminating
at π(T ) = 0, lies either beneath the critical trajectory
or coincides with it, depending on the harvesting capacity
(viz. on the time being available for harvesting). The first
case applies if h̄ < h̄c, the latter if h̄ ≥ h̄c. The next lemma
characterises the critical harvesting capacity h̄c, and shows
that it depends inversely on the time horizon T .

Lemma 2 Let ψ : (1, 2] → R+ be defined by

h̄ → ψ(h̄) ≡ t1 + 1

2 − h̄
log

(
h̄

2(h̄ − 1)2

)
(11)

with  > 0,  ′ < 0 and  ′′ > 0. Then, given time T , the
critical harvesting capacity h̄c is defined as the solution of
T = ψ(h̄), i.e., h̄c ≡ ψ−1(T ). Equivalently, given some

Fig. 5 Phase diagrams (top) and optimal trajectories (bottom) for h̄ =
0.8 (left column) and for for h̄ = 1.5 (right column). Bold curves show
the optimal trajectories (for different values of T ), the thin curves show
the trajectories for h = 0. The dashed curves represent sub-optimal tra-
jectories, i.e., trajectories that violate Eq. (9b). Blue and green curves

display the zeroclines of π and s, respectively. The trajectory pass-
ing through the point (1, 1), displayed in red, represents the critical
trajectory; for this trajectory to exist, the harvesting capacity must be
sufficiently large, i.e., h ≥ h̄c
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harvesting capacity h̄, the critical length of the harvesting
period is defined by Tc ≡ ψ(h̄).

Proof See Appendix B.

The intuition for the optimal strategy characterised in
Proposition 3 and the critical length of the harvesting period
given in Lemma 2 is as follows: In the case T > Tc,
there is too much time for harvesting, implying that if the
agent followed the critical path (the red path in the right
diagram of Fig. 5), the terminal condition, i.e., the π = 0
line, would be reached too early. Because of this, one might
consider following a trajectory lying above the critical one,
and thus reaching the π = M line at some stock s > 1.
Then however, since the condition π = M requires a policy
change, one has to dispense with harvesting, and thus to
switch to h = 0. Yet, dispensing with harvesting implies that
the stock increases so that the policy is bound to follow an
upward-sloping trajectory (a thin path in the right diagram
of Fig. 5), implying that both the stock and the costate
variable increase; but this makes it impossible to meet the
terminal condition π(T ) = 0. For that reason, the optimal
policy is as follows: Pursue the critical path by harvesting at
the capacity limit until the resource is sufficiently reduced
and the point (s, π) = (1, M) is reached, which happens
at time t2. Then, upon arrival at (s, π) = (1, M), reduce
harvesting to the “moderate” effort level h = 1, which, in
view of Eq. (9a) and c, renders both the stock s and its
shadow price π constant (singular path). This is because
unity is the natural growth rate of the resource so that
harvesting at exactly this rate represents the sustainable
harvesting policy where the stock level is fully preserved.
Finally, to complete the optimal path, resume harvesting at
the maximal rate so as to arrive at the terminal condition
π = 0 at time T .

Remark 3 More generally, for an arbitrary growth rate r

and an arbitrary carrying capacity K , the zerocline of s is

vertical at s = K
(
1 − h̄

r

)
and the zerocline of π is given

by s(t) = K
2

(
1 + h(t)(M−π(t))

rπ(t)

)
. Hence, if h̄/r approaches

unity, the zerocline of s becomes vertical at s = 0. However,
the zerocline of π meets the switching manifold, i.e., the
horizontal π = M, at s = K/2, irrespective of the
values of h̄ and r . Since the critical trajectory exists for all
parameter values, the minimal stock remaining at time T is
determined by the final stock s(T ) on the critical trajectory.
Consequently, the final stock may become small but does
not converge to zero.

Case A: Either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc

In this case, the maximal harvesting effort, relative to the
length of the harvesting period—or, equivalently, the length

of the harvesting period, relative to the maximal harvesting
capacity—is low, h̄ < h̄c = ψ−1(T ), so that maximal
harvesting at rate h̄, can be maintained throughout the
complete harvesting period. Then, the optimal harvesting
strategy is given by:

Proposition 4 Let either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc.
Then the optimal harvesting policy is given by

h(t)= h̄, s(t)= 2
(
h̄ − 2

)
h̄e(h̄−2)(t−t1) − 2

,

π(t) = M
h̄(s(T ) − s(t))

2s(t)−s(t)2 − h̄s(t)
,

(12a)

for all t ∈ �, and the resulting maximised profit amounts to

J ∗
2A(t1) = h̄M

∫ T

t1

s(t) dt = h̄M log

(
2e(2−h̄)(T −t1) − h̄

2 − h̄

)
.

(12b)

Proof We know from the proof of Proposition 3 that for all
sub-critical cases T < Tc (or h̄ < h̄c) defined in Eq. (11),
we have h(t) = h̄ for all t ∈ �. Substituting this, jointly
with initial condition s(t1) = 2 and the terminal condition
π(T ) = 0, into Eq. (9a)–(9c) we obtain Eq. (12a).

Remark 4 For the limiting case when h̄ → 1, the resulting
profit amounts to J ∗

2A|h̄=1(t1) = M log
(
2eT −t1 − 1

)
.

Remark 5 In the critical case, i.e., when T = Tc, the optimal
profit amounts to

J c
2A(t1) = 2h̄M log

(
h̄

h̄ − 1

)
. (13)

Case B: 1 < h̄ < 2 and T > Tc

In this case, the time available for harvesting T − t1 is too
long such that, given the maximal harvesting capacity, h̄, it
is not optimal to harvest at the maximal rate all the time, as
this implies that the terminal condition π = 0 is met before
the final time T . Thus, harvesting cannot be maintained
at the maximal rate h̄ throughout the complete harvesting
period, but must be reduced for some time interval.

Proposition 5 Let 1 < h̄ < 2 and T > Tc. Then the optimal
harvesting policy is given by

h(t) =

⎧⎪⎨
⎪⎩

h̄ t1 ≤ t < t2,

1 t2 ≤ t < t3,

h̄ t3 ≤ t < T ,

(14a)
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Fig. 6 Maximised profit (solid curves) as a function of the harvesting
capacity h̄: with T = 2, and thus h̄c = 1.59791 (left diagram); with
T = 5, and thus h̄c = 1.07193 (middle diagram); and with T = 20,

and thus h̄c = 1.00003 (right diagram); all for M = 1. Since J ∗
2A (in

blue) is defined only for h̄ ≤ h̄c, and J ∗
2B (in green) is defined only for

h̄ > h̄c, the dashed parts are merely hypothetical

with switching times

t2 = t1 +
log

(
h̄

2(h̄−1)

)

2 − h̄
and t3 = T −

log
(

1
h̄−1

)

2 − h̄
.

The resulting profit is given by

J ∗
2B(t1) =

M

[
T −t1+2h̄ log

(
h̄

h̄ − 1

)
− 1

2 − h̄
log

(
h̄

2(h̄−1)2

)]
. (14b)

Proof See Appendix B.

In the limiting case where T = Tc, we have t2 = t3
and the intermediate interval vanishes. More generally,
since ∂t2/∂h̄ < 0 and ∂t3/∂h̄ > 0, the intermediate
interval increases with h̄. The reason for this is that a
higher harvesting capacity allows the agent to harvest
more intensely in the beginning and at the end of the
harvesting period, so that harvesting must be reduced in
the intermediate time interval in order to avoid too intense
harvesting that reduces the stock too quickly. Yet, since
we have h(t) = 1, for all t ∈ [t2, t3), the only way to
accomplish a lower catch in the intermediate time interval is
to extend this interval.

Remark 6 For the limiting case when h̄ → 1, the result-
ing profit equals J ∗

2B |h̄=1 = M
[
T − t1 + log(2)

]
; while

for the case h̄ → 2, the profit amounts to J ∗
2B |h̄=2 =

M
[
T − t1 − 3

2 + log(16)
]
. Finally, when the harves-

ting capacity becomes unbounded, i.e., h̄ → ∞, we
obtain J ∗

2B = M [T − t1 + 2]. Hence, we have J ∗
2B |h̄=1

< J ∗
2B |h̄=2 < J ∗

2B |h̄=∞, as expected.

As Remark 6 suggests, the maximised profit function J ∗
2

is increasing in the capacity h̄; this is depicted in Fig. 6
for M = 1, T = 2, 5 and 20. Therein, the vertical line
represents the critical capacity h̄c = ψ−1(T ). For values of
h̄ < ψ−1(T ), Case A applies; for values of h̄ > ψ−1(T ),
Case B. The critical values h̄c = ψ−1(T ) can be gathered
from Eq. (11).

First stage: optimal
travelling–and–harvesting policy

Having solved the harvesting problem, we now go back
in time and solve the travelling problem. We begin our
analysis with the simple, hypothetical case of a fixed
travelling period in Section “Fixed travelling period”,
and then continue with acknowledging the subsequent
harvesting period and endogenising the arrival time t1
in Section “Optimal travelling period”. We proceed in
this successive manner, as this allows us to spotlight the
differences between the solution of the isolated travelling
problem (2a) and the solution of the travelling–and–
harvesting problem (3).

Fixed travelling period

Assume that the cost of travelling depends linearly on speed
v and quadratically on acceleration a:16

K(v, a) = cv + a2. (15)

Again assuming ρ = 0, the resulting aggregated travelling
cost amounts to
∫ t1

0

(
cv(t) + a(t)2

)
dt . (16)

(In Appendix A we explore the effects of a positive discount
rate.) Acknowledging the constraints ẋ(t) = v(t), v̇(t) =
a(t), and ṡ(t) = g(s(t)), we obtain the Hamiltonian

H1 = −cv(t) − a(t)2 + π2(t)a(t) + π1(t)v(t).

16A linear-quadratic dependence of fuel consumption on the kinematic
variables velocity and acceleration (along with the characteristics of
the road, motor data etc.) is typically used and has been empirically
tested in transport economics. See, for example, Ahn et al. (2002),
Bifulco et al. (2015), and Wörz and Bernhardt (2017) and the
references therein.
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For ease of tractability, we assume that there are no
bounds on the control a—yet, we will drop this assumption
in Appendix A. The familiar maximum principle then yields

x(t) = t2

12
(3K1 − K2t + ct) ,

π1(t) = K2,

v(t) = t

4
(2K1 − K2t + ct) ,

π2(t) = K1 + t (c − K2) ,

with K1 and K2 constants. Together with the boundary
conditions x(0) = v(0) = v(t1) = 0 and x(t1) = x1, we
obtain:

Proposition 6 Given arrival time t1, the optimal travelling
policy is given by

x(t) = t2(3t1−2t)x1
t31

, v(t) = 6t(t1−t)x1
t31

, a(t) = 6(t1−2t)x1
t31

,

π1(t) = c + 24x1
t31

, π2(t) = 12(t1−2t)x1
t31

,

and the minimised objective function equals

J ∗
1 (t1) =

∫ t1

0

(
a(t)2 + cv(t)

)
dt = cx1 + 12x2

1

t31

. (17)

Proof The result follows from the preceding analysis.

Since J ∗
1 enters the objective function negatively, the

value of the maximised Hamiltonian equals

H∗
1(t1) ≡ H1(s(t1), a(t1), π(t1), t1) = −dJ ∗

1 (t1)

dt1
= 36x2

1

t41

.

(18)

The acceleration of the vehicle and its resulting speed are
depicted in Fig. 7 for varying arrival times t1.

Optimal travelling period

In Section “Fixed travelling period” we assumed that the
arrival time t1 is fixed. However, the agent may choose

the length of the travelling period and, concordantly, the
beginning of the harvesting period. In order to determine the
optimal policy for the travelling–and–harvesting problem,
two different effects must be taken into account, and the
associated conditions have to be added to those of the pure
travelling decision. First, the growth process of the resource
during the travelling period must be acknowledged, and the
corresponding necessary optimality condition needs to be
added to the canonical system:

ṡ(t) = g(s(t))=
{
2s(t) − s2(t) logistic

s(t) exponential,
(19a)

π̇(t)=− ∂H1

∂s(t)
=

{
−2π(t)(1−s(t)) logistic

−π(t) exponential.
(19b)

Next, the terminal time t1 and the endpoint, i.e., the stock
at the terminal time, s(t1) of the travelling problem are free
and may be chosen in an optimal way. While the arrival
time t1 determines the length of the harvesting period �,
the endpoint s(t1) = s1 determines the initial value of
the growth process for the harvesting problem. Together,
both effects determine the maximal value J ∗

2 (s1, t1) of the
harvesting period, which in turn represents the terminal
value (or ‘salvage’ value) of the compound problem (3).
However, the arrival time t1 coincidentally also determines
the endpoint s1 = s(t1), and for this reason we do not have
two, but only one transversality condition representing both
effects: the direct effect of the arrival time on the length of
the harvesting period �, and the effect of t1 on the stock at
the beginning of that period s(t1).

To derive a necessary condition for the optimal choice
of the arrival time t1, we first have to substitute the
transversality condition s1 = s(t1) = s0e

t1 , into J ∗
2 , to

obtain, with slight abuse of notation, J ∗
2 (t1) ≡ J ∗

2 (s(t1), t1).
Then, defining V (t1) ≡ −J ∗

1 (t1) + J ∗
2A(t1) and using

Eq. (18), the associated necessary condition for the free
terminal time of the travelling problem t1 reads as

dV (t∗1 )

dt1
≡ −dJ ∗

1 (t∗1 )

dt1
+ dJ ∗

2 (t∗1 )

dt1
≡ H∗

1(t
∗
1 )+ dJ ∗

2 (t∗1 )

dt1
= 0.

(20)

Fig. 7 Speed (v) and acceleration (a) for t1 = 1, . . . , 5 (c = 1/10, x1 = 1)
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(Condition (20) represents a modification of the usual
necessary condition for the free terminal time, as provided,
for example, by Léonard and Long 1992, Theorem 7.6.1.)
With the help of Eq. (20) we are now able to calculate
the optimal travelling–and–harvesting policy. We do this for
both growth functions specified above.

Optimal travelling–and–harvesting policy
for exponential growth

Acknowledging the transversality conditions, the following
conditions have to be added to the canonical system:

s(t) = s0e
t , π(t) = M

(
1

h̄

) 1

h̄−1
eT −t . (21)

We next show that t1 must not be smaller than the switching
time τ , so that harvesting begins immediately upon arrival.
Intuitively, this is because a premature arrival is costly
without yielding any additional profit, as we initially have
h(t) = 0 in Case B. Thus, a policy that implies Case B is
never optimal, so that Case A must apply for the optimal
policy; correspondingly, the maximised value function of
the harvesting problem is given by Eq. (7b).

Proposition 7 In the optimal travelling–and–harvesting
policy, the arrival takes place after the switching time τ ,
i.e., t∗1 > τ , and thus Case A applies. Then, the optimal
harvesting policy is characterised by Proposition 1, while
the optimal travelling policy is given by Proposition 6.
Hence, the resulting profit from the optimal travelling–and–
harvesting policy is given by

V (t∗1 )≡J ∗
2A(t∗1 ) − J ∗

1 (t∗1 ) =

s0Met∗1 h̄

h̄−1

(
1−e(h̄−1)(t∗1−T )

)
−

(
12x2

1

(t∗1 )3
+ cx1

)
, (22a)

where the optimal arrival time t∗1 is a function of h̄ and T ,
implicitly defined by

dV (t∗1 )

dt1
= 36x2

1(
t∗1

)4 −s0Met∗1 h̄

h̄ − 1

(
h̄e(h̄−1)(t∗1−T ) − 1

)
= 0.

(22b)

Proof See Appendix B.

Lemma 3 The derivative of the maximised value function of
the harvesting problem is determined by the switching point
τ :

dJ ∗
2A(t1)

dt1
� 0 ⇔ T −t1 � δ ≡ log(h̄)

h̄ − 1
⇔ τ � t1.

(23)

Proof See Appendix B.

Since δ is a decreasing function of h̄, the derivative of J ∗
2A

is positive for large, and negative for small values of h̄. Now,
the condition dJ ∗

2A/dt1 = 0 determines the optimal arrival
time in the absence of any travelling cost. If the harvesting
capacity, when compared with the length of the harvesting
period � ≡ T − t1, is large, a given volume of harvest
can be collected in a shorter time interval, thus giving scope
for a later arrival. Since a later arrival, leaves the resource
with more time to grow, a higher harvesting capacity allows
the agent to postpone the arrival time. Conversely, when the
harvesting capacity is relatively low, postponing the start of
the harvesting activity is unattractive, as the agent will be
unable to benefit from the higher stock due to the limited
harvesting capacity. The optimal arrival time balances the
benefits from an earlier and a later arrival.

Corollary 1 In the absence of any travelling cost, the
optimal arrival time equals the switching time, i.e., t◦1 =
τ ≡ T − δ.

We thus find that the optimal arrival time t∗1 is chosen
so that the harvesting activity begins immediately upon
arrival (Case A). In other words, the optimal arrival time
is relatively late in the sense T − t∗1 < δ or t∗1 > τ ,
so that the agent begins with harvesting at the maximum
rate immediately at time t1. This is because an early arrival
results in higher travelling costs and curtails the time for
further growth. Both effects are unwelcome, so early arrival
should be avoided. The determination of the optimal arrival
time t∗1 and the switching time τ is illustrated in Fig. 8.

It follows from Proposition 7 and Corollary 1 that higher
travelling costs imply later arrival, and that the optimal
arrival time t∗1 exceeds the optimal arrival time when
travelling is costless t◦1 , which in turn coincides with the

Fig. 8 Exponential growth: revenue function J ∗
2A (black), cost

function J ∗
1 (red), and profit function V (green), for M = 1, s0 = 1,

T = 2, c = 1/2, x1 = 1/2 and h̄ = 3/4, yielding switching time
τ = 0.84927, the optimal arrival time t∗1 = 1.47525 and the net profit
V (t∗1 ) = 0.65429
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switching time: t∗1 > t◦1 = τ ≡ T − δ. Conversely,
the optimal length of the harvesting period �∗ ≡ T − t∗1
(assuming T > �∗) is smaller than the harvesting period
the agent would have chosen in the absence of any travelling
cost �◦ ≡ T − t◦1 .

Optimal travelling–and–harvesting policy
for logistic growth

In the case of logistic growth we assumed that the resource
was left unimpaired for a sufficiently long time, so that
upon arrival the stock rests at its steady state level s(t1) =
s1 = s∗. Consequently, in this case the arrival time t1 can
be chosen without affecting s1, but still we have to consider
two cases: Case A and Case B.

Case A: either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc

In this case, the optimal harvesting policy is characterised
by Proposition 4; and the optimal travelling policy, by
Proposition 6. Hence, the functions J ∗

2A(t1) and J ∗
1 (t1) are

given by Eqs. (12b) and (17), respectively. Moreover, the
derivative of J ∗

2A(t1) equals

dJ ∗
2A(t1)

dt1
= − 2

(
h̄ − 2

)
h̄M

h̄e(h̄−2)(T −t1) − 2
≤ 0, (24)

which is negative for all 0 < h̄ ≤ 2, as the numerator and the
denominator are both negative, and limh̄↗2 dJ

∗
2A(t1)/dt1 =

−4M/ (2(T − t1) + 1) < 0; moreover, dJ ∗
2A(t1)/dt1 =

0 for h̄ = 0. Since dJ ∗
1 (t1)/dt1 is also negative, the

optimal arrival time is determined by Eq. (20), and the
optimal travelling–and–harvesting policy is characterised as
follows:

Proposition 8 Let either h̄ < 1 or 1 < h̄ < 2 and T ≤ Tc.
Then, the optimal harvesting policy is h(t) = h̄ for all

t ∈ �, and the resulting profit from the optimal travelling–
and–harvesting policy, V (t∗1 ) ≡ J ∗

2A(t∗1 ) − J ∗
1 (t∗1 ), is given

by

V (t∗1 ) = h̄M log

(
2e(2−h̄)(T −t∗1 ) − h̄

2 − h̄

)
−

(
cx1 + 12x2

1(
t∗1

)3
)

,

(25a)

where t∗1 is a function of h̄ and T , implicitly defined by

dV (t∗1 )

dt1
= 36(

t∗1
)4 − 2

(
h̄ − 2

)
h̄M

h̄e(h̄−2)(T −t∗1 ) − 2
= 0. (25b)

Proof The result follows from the preceding analysis.

The functions J ∗
1 (t1) and J ∗

2A(t1) are depicted in Fig. 9
for a low (left diagram) and a high (right diagram)
harvesting capacity, with T = 5 and M = 1. Setting h̄ =
3/4, the optimal arrival time equals t∗1 = 2.4793 yielding
a net profit equal to V (t∗1 ) ≡ J ∗

2A(t∗1 ) − J ∗
1 (t∗1 ) = 1.8161.

Observe that Case A actually materialises for T = 5 with
M = 1 and c = 1/10. (Compare the middle diagram in
Fig. 6.)

Case B: 1 < h̄ < 2 and T > Tc

In this case, the harvesting capacity h̄ exceeds the
critical value h̄c. Then, the optimal harvesting policy is
characterised by Proposition 5, and the associated profit is
given by Eq. (14b). Accordingly, the derivative of the value
function equals dJ ∗

2B(t1)/dt1 = −M , and therefore the
optimal arrival time t∗1 can be calculated explicitly:

Proposition 9 Let 1 < h̄ < 2 and T > Tc. Then, the
optimal harvesting policy is characterised by Proposition 5,

Fig. 9 Logistic growth: value function J ∗
2 (black), cost function J ∗

1
(red), and profit function V (green), for M = 1, T = 5 and c = 1/10.
Case A (left): h̄ = 3/4, optimal arrival time t∗1 = 2.4793. Case B

(right): h̄ = 3/2, optimal arrival time t∗1 = √
6 = 2.4495 with critical

arrival time tc = 5 − 2 log(3) = 2.8028 (blue)
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Fig. 10 Optimal acceleration (upper left), speed (upper right) and posi-
tion (lower left), with (red) and without (blue) bounds on acceleration
for ρ = 1/20; and, for comparison, without bounds for ρ = 0 (green).

Lower right: optimal acceleration for c = 1/10 (bold curves) and
c = 1/5 (dashed curves) for ρ = 1/20

and the resulting profit from the optimal travelling–and–
harvesting policy, V (t∗1 ) ≡ J2B(t∗1 ) − J1(t

∗
1 ), is given

by

V (t∗1 ) =
M

[
T − t∗1 + 2h̄ log

(
h̄

h̄−1

)
− 1

2−h̄
log

(
h̄

2(h̄−1)2

)]

−
(

cx1 + 12x2
1(

t∗1
)3

)
, (26)

with t∗1 =
√
6x1/

√
M .

Proof The result follows from the preceding analysis.

This scenario is depicted for h̄ = 3/2 (and T = 5,
c = 1/10, M = 1) in the right diagram of Fig. 9, where
the value function J ∗

2B(t1) has slope −1 for all arrival times
t1 < tc. (Recall that for these parameter values, Case B
results, which is illustrated in the second diagram in Fig. 6.)
With these parameters, the optimal solution is given by t∗1 =
2.4495 yielding a net profit of J2B(t∗1 )−J1(t

∗
1 ) = 2.7326.17

Finally, the optimal arrival time for the case that
travelling is costless is the same for both Case A and
Case B:

17With a later starting time t1 > tc ≡ T −Tc = 5−2 log(3) = 2.8028,
Case A would become relevant, as the time left is less than the minimal
time interval required for harvesting in Case B, Tc = 2 log(3) =
2.1972.

Corollary 2 In the absence of travelling costs, the optimal
arrival time is equal to the earliest (physically) feasible
arrival time, i.e., t◦1 = tmin.

Proof The result follows from the fact that in both Case
A and Case B, the derivative of J2 is negative for any
h > 0, and hence the optimal arrival time t◦1 is chosen
minimally.

Robustness of the results

In the previous section, we abstracted from discounting
and possible constraints on acceleration. We therefore now
discuss the robustness of our results with respect to theses
assumptions, and briefly sketch the modifications implied
by a positive discount rate and bounds on acceleration.

As shown in Appendix A, we may generalise our
optimal travelling result: Proposition 10, generalising
Proposition 6, shows that for a fixed arrival time t1, the
optimal acceleration depends linearly on the travelling cost
parameter c, and consequently the minimised travelling
cost J ∗

1 is a polynomial of c of order 2. Similarly, while
in the absence of discounting acceleration depends linearly
on time, acceleration becomes a non-linear function of time
once the discount rate is positive. Intuitively, a positive
discount rate requires a more sophisticated travelling policy:
Discounting lets the agent postpone part of the travelling
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cost by shifting the acceleration profile towards the future.
In this way, the location of the resource will be reached at
the same time, yet at lower cost.

This result can even be generalised to the case of
a binding lower bound on acceleration. With positive
discounting, the agent again seeks to postpone acceleration
to the future. However, a lower bound inhibits this cost–
shifting effect as the agent is required to slow down earlier,
and thus must accelerate earlier. Hence, the cost–shifting
effect induced by discounting is mitigated by bounds
on acceleration. Corollary 3 (see Appendix A) formally
characterises this cost–shifting effect.

We illustrate the effects of a positive discount rate and of
a lower bound on acceleration for the travelling profile by
means of an example, which is used to draw Fig. 10.

Example In order to illustrate our results, we apply the
parameter specification: t1 = 40, x1 = 300, ρ = 1/20, c =
1/10. For this specification, the unbounded solution hits the
lower bound at time t = 34.2818 (see blue case in Fig. 10);
while the resulting optimal hitting time equals ξ = 29.5984.
Combining the optimal control before and after the hitting
time, we obtain

a(t)=
{
1
2

(
et/20(3.095−0.1046 t)−2

)
0≤ t ≤ξ =29.599,

−1 ξ < t ≤ t1 = 40,

with minimal travelling cost amounting to J
∗
1 = 18.4648.

The optimal solution is illustrated by the red trajectories in
Fig. 10. As expected, compared with J ∗

1 = 16.7095 for the
case of an unbounded control, the presence of the bound on
acceleration results in an increase in the minimal travelling
cost.

We may also compare our result for a positive discount
rate with the case ρ = 0, displayed by the green trajectories
in Fig. 10. In the absence of discounting, we obtain
J ∗
1 |ρ=0 = 375/8 = 46.875, so that discounting makes part

of the cost vaporise. This can also be seen in Fig. 10 by
comparing the blue with the green paths: a positive discount
rate makes the agent initially move more slowly and speed
up later so that part of the travelling cost is shifted to the
future. (In case of bounds on the control, such cost shifting
becomes limited so that some part of the travelling cost
must be incurred earlier, compare the red paths.) This cost–
shifting effect is the more pronounced the higher the cost
of speed is: compare the optimal acceleration path for c =
1/10 (bold curves) with that for c = 1/5 (dashed curves) in
the lower right diagram of Fig. 10.

Conclusion

In this paper we contribute to the theory of spatial resource
economics by explicitly taking into account the fact that in
many real-world situations, the agent has to travel to the

location of the resource before being able to harvest. Recent
papers acknowledge the requirement of an agent to travel
to the resource: see Robinson et al. (2008), Belyakov et al.
(2015), and Sirén and Parvinen (2015) and others. However,
in those models the travelling and the harvesting activity
are either inversely related by assumption (so called search
models), or harvesting is done in an en passant manner
where the harvesting yield is collected while travelling.
In both types of models the travelling and the harvesting
decisions are linked so that effectively there is only one
decision to be made. Only disentangling these two activities
allows the agent to make two discrete decisions.

Behringer and Upmann (2014) and Zelikin et al. (2017)
disentangled both activities while maintaining the en
passant harvesting framework. We follow a different route
here: In our two-stage travelling–and–harvesting model,
the agent has to travel to the location of the resource
in order to harvest. With travelling preceding harvesting
and both activities being time-consuming, they are not
only disentangled but are also mutually exclusive activities,
i.e., separated in time. Still, the travelling problem and
the subsequent harvesting problem are closely linked: The
arrival time at the location of the resource becomes the
crucial decision for the optimal harvesting policy as the
speed of travelling determines both the required travelling
profile and the start of the harvesting period. Accordingly,
there is the need for the agent to weigh the benefits and costs
of an early arrival: The benefit of a short travel and thus an
early arrival is that it leaves more time for harvesting, and
may thus offer the opportunity for a larger aggregate yield
from harvesting. This, however, comes at the disadvantage
of higher pecuniary travelling cost, and a shorter time for the
resource to grow until arrival, and thus less beneficial initial
conditions for harvesting. The optimal travelling–and–
harvesting decision has to balance those benefits and costs.

We are able to analytically characterise the control
programme for this combined travelling–and–harvesting
problem, employing recent tools from two-stage dynamic
optimization theory. To this end, we analyse the two sub-
problems in reverse order: we first solve the harvesting
problem (Proposition 1–5), and then the preceding travel-
ling problem (Proposition 6) taking into account the opti-
mal harvesting policy of the second stage. This allows us
to highlight the critical linkage between both stages and
thus to characterise the resulting optimal yield from the
resource. We derive the optimal policy for two different
growth processes of the resource stock: exponential growth
(Proposition 7) and logistic growth (Propositions 8 and 9).

The crucial parameters that determine the optimal policy
are the harvesting capacity and the length of the planning
period, which is divided between travelling and harvesting.
If the harvesting period were fixed, the agent may find
it optimal to wait, i.e., to let the resource grow before
harvesting, which occurs if the harvesting period is, in
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this sense, too long. Here, however, the travelling period
gives the agent the possibility to adjust the length of the
harvesting period by choosing the arrival time. In the
case of exponential growth, the agent adjusts the travelling
time so as to avoid any waiting period before starting to
harvest. A similar finding holds in the case of logistic
growth; yet, if the harvesting capacity is sufficiently high,
it becomes optimal for the agent to employ a three–part
harvesting strategy: In the beginning and at the end of
the harvesting period the agent harvests at the maximum
capacity, but reduces harvesting in an intermediate time
interval, during which the agent harvests the sustainable
level by equalising the harvesting rate and the growth rate of
the stock. The length of this intermediate time interval with
sustainable harvesting increases in the harvesting capacity.
In fact, this sustainable harvesting level also represents the
optimal steady state for an infinite time horizon. Yet, as the
planning horizon of the agent is finite, the agent eventually
abandons the sustainable policy and resumes harvesting at
the maximal level until the end of the planning period. In
sum, irrespective of the specification of the growth function,
the agent accomplishes to economise on the travelling costs
while choosing an optimal harvesting policy that involves
periods of maximal harvesting but may also include a
sustainable, well balanced interim harvesting period.

Further robustness checks (Appendix A) that include the
case of a positive discount rate and bounds on acceleration
show that those insights continue to hold in a more general
framework. The major modifications, though, are these: A
positive discount rate lets the agent postpone part of the
travelling cost by shifting the acceleration profile towards
the future. A binding lower bound on acceleration inhibits
this cost–shifting effect as the agent is required to slow
down earlier, and thus has to accelerate earlier.

In sum, we have demonstrated that the acknowledgement
of the spatial dimension in the classical problem of
managing a renewable resource leads to interesting and
economically relevant, yet analytically tractable results.
Our set-up allows for the introduction of further realistic
features, extending the theory to the case where the agent
faces a transportation problem that is temporarily and
spatially linked to a resource–gathering problem.
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Appendix A: Robustness analysis: a positive
discount rate and bounds on acceleration

We here explore how a positive discount rate and bounds
on acceleration affect the optimal travelling policy. We
maintain our specification of travelling cost (15). Then, with
a positive discount rate, the objective function thus equals18

J1(a(·), t1) =
∫ t1

0
e−ρt

(
cv(t) + a(t)2

)
dt .

Acknowledging the law of motion (1a), the Hamiltonian is
given by

H1 = −cv(t) − a(t)2 + ψ1(t)v(t) + ψ2(t)a(t).

We assume that acceleration is bounded to A = [a, a] =
[−1, +1], and the corresponding Lagrangean reflecting this
constraint equals

L = H1 + λ1(t)(1 + a(t)) + λ2(t)(1 − a(t)).

Then, the necessary conditions for the optimal solution are
given by

a(t) = 1

2
(π2(t) + λ1(t) − λ2(t)) , (A.1a)

ẋ(t) = v(t), x(0) = 0, x(t1) = x1, (A.1b)

v̇(t) = a(t), v(0) = 0, v(t1) = 0, (A.1c)

π̇1(t) = − ∂L

∂x(t)
+ ρπ1(t) = ρπ1(t), (A.1d)

π̇2(t) = − ∂L

∂v(t)
+ ρπ2(t) = −π1(t) + ρπ2(t) + c. (A.1e)

Using the yet unspecified initial values π1(0) = m1 and
π2(0) = c1, the latter two equations yield

π1(t) = m1e
ρt , π2(t) = eρt (c1 − m1t)+ c

ρ

(
eρt − 1

)
.

(A.2)

18In order to avoid that a negative speed, i.e., moving backwards,
reduces cost, it is preferable to write c|v| instead of cv. However, we
will assume that c is sufficiently low so that moving backwards is never
optimal and both cost components are non-negative along the optimal
path. Still, for sufficiently high values of c, moving backwards may be
part of the solution unless we replace cv by c|v|.

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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To be able to clearly identify the effects of the bounds on the
controls, we first solve, as a point of reference, the problem
when a is unbounded.

A.1 Analysis of the unbounded solution

In this case we have λ1(t) = 0 = λ2(t), so that Eq. (A.1a)
reduces to a(t) = π2(t)/2. Substituting this into Eq. (A.1b)
and Eq. (A.1c), we obtain

ẋ(t) = v(t), v̇(t) = π2(t)

2
. (A.3)

Then, substituting Eq. (A.2) into Eq. (A.3) yields the system

ẋ(t) = v(t), v̇(t) = 1

2

(
eρt (c1 − m1t) + c

ρ

(
eρt − 1

))
,

x(0) = 0, v(0) = 0,

the solution of which is given by

x(t) = 1

4ρ3

[
c
(
2eρt − 2 − ρt (ρt + 2)

)−2c1ρ
(
ρt−eρt + 1

)

−2m1
(
ρt + eρt (ρt − 2) + 2

)]
, (A.4a)

v(t) = 1

2ρ2

[
c
(
eρt − 1 − ρt

) + eρt (c1ρ + m1 − m1ρt)

−c1ρ − m1] . (A.4b)

Finally, using the terminal conditions x(t1) = x1 and
v(t1) = 0, we obtain the constants c1 and m1. Applying
those in Eq. (A.2), and using that result to calculate a(t) =
π2(t)/2, we obtain a generalisation of Proposition 6, with
the limiting case ρ → 0 recouping our former result:

Proposition 10 Given arrival time t1, the optimal travelling
policy is given by

a(t) = 1

4ρ

θ1(t, t1)

θ3(t1)
c − θ2(t, t1)

θ3(t1)
x1, (A.5a)

and the associated travelling cost amounts to

J ∗
1 (t1) = − 1

κ0(t1)

(
κ1(t1, x1) + κ2(t1, x1) c + κ3(t1) c2

)
,

(A.5b)

where

θ1(t, t1) ≡ 2 + 2e2ρt1 − 2eρt1
(
ρ2t21 + 2

)

+ρt1e
ρt (ρt (2 + ρt1) + ρt1 + 4)

−ρt1e
ρ(t+t1) (ρt (2 − ρt1) + ρt1(ρt1 − 3) + 4) ,

θ2(t, t1) ≡ ρ2eρt
(
1 + ρt + eρt1 (ρ(t1 − t) − 1)

)
,

θ3(t1) ≡ eρt1
(
ρ2t21 + 2

)
− e2ρt1 − 1,

κ0(t1) ≡ 2 + ρ2t21 − 2 cosh(ρt1),

κ1(t1, x1) ≡ ρ3x2
1e

−ρt1
(
eρt1 − 1

)
,

κ2(t1, x1) ≡ 8ρ4t1x1 (ρt1 cosh (ρt1/2) − 2 sinh (ρt1/2)) ,

κ3(t1) ≡ sinh (ρt1/2)
(
ρ4t41 + 12ρ2t21 − 8 cosh(ρt1) + 8

)

−4ρ3t31 cosh (ρt1/2) .

Proof The result follows from the preceding analysis.

We thus find that for a fixed arrival time t1, the optimal
control a is an affine function of c (as are x, v and π2,
while π1 is independent of c); and for this reason, the
minimised travelling cost J ∗

1 is a polynomial of order 2 of c.

A.2 Analysis of the bounded solution

We now take into account that the control is actually
bounded to a(t) ∈ A . The optimal control of the unbounded
case may either hit the upper bound or the lower bound,
or both. For illustrative purposes, let us henceforth assume
that the parameters are chosen such that the lower bound
becomes binding, while the upper bound does not. In this
case, it suffices to consider the constraint a ≥ a only. (The
case a ≤ a can be analysed in an analogous way.)

Assume that for the unbounded solution, the lower bound
becomes binding at time t ∈ (0, t1). We refer to t as the
hitting time. The optimal hitting time for the bounded case
ξ , though, has to be determined as part of the solution of the
bounded problem. We know that we have a(t) = a = −1
for all t in the final interval (ξ, t1]. Consequently, we must
have ξ < t , for if ξ = t the remaining time would only
suffice to guarantee the terminal condition v(t1) = 0, if we
were able to set a < a. Thus, during the final time interval
(ξ, t1], the solution must satisfy

ẋ(t) = v(t), v̇(t) = −1, x(t1) = x1, v(t1) = 0,

the solution of which is

x(t) = 1

2

(
−(t − t1)

2 + 2x1
)

, v(t) = t1 − t .

In particular, these equations must be satisfied at the
optimal hitting time ξ , and thus they provide the right-hand
boundary conditions for the time interval [0, ξ ]. Hence, we
obtain a system consisting of Eqs. (A.1d), (A.1e), (A.3) and
the boundary conditions:

x(0)=0, v(0)=0, x(ξ)= 1

2

(
−ξ2+2ξ t1 − t21 + 2x1

)
,

v(ξ) = t1 − ξ .

The solution of this system yields the optimal travelling
policy for the interval [0, ξ ], which is again an affine
function of c. Hence, putting the pieces together, we find:

Proposition 11 Given arrival time t1 and the constraint
a ∈ A ≡ [−1, 1], the optimal travelling policy is given by

a(t, ξ) =

⎧⎪⎨
⎪⎩

1

4ρ

θ1(t, ξ)

θ3(ξ)
c + ρ

2

θ5(t, ξ)

θ3(ξ)
, ∀t ∈ [0, ξ ]

−1, ∀t ∈ (ξ, t1]
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where the optimal hitting time ξ is determined by a(ξ, ξ) =
−1, θ1 and θ3 are as defined in Proposition 10, and

θ5(t, ξ) ≡ eρt
[
−4ξ + ρ2t

(
−ξ2 + t21 − 2x1

)

+ρ(t1 − ξ)(ξ + 2t + t1) + 4t1 − 2ρx1

]

+eρ(ξ+t) [4ξ − ρ(t1 − ξ)(−3ξ + 2t + t1)

+ρ2(ξ − t)
(
(t1 − ξ)2 − 2x1

)
− 4t1 + 2ρx1

]
.

Proof The result follows from the preceding analysis.

The presence of both cost–shifting effects can formally
be shown:

Corollary 3 Given arrival time t1 and the constraint a ∈
A ≡ [−1, 1], and the associated optimal travelling policy,
we have

(i) ∂J ∗
1 /∂ρ < 0 for all ρ and c ≤ c̄(ρ), where c̄(ρ) is

the highest cost parameter such that for any c > c̄(ρ)

the agent begins the travelling period with moving
backwards, i.e., a(0)|c=c̄(ρ) = 0, (see also fn. 18);

(ii) ∂a(0, ξ)/∂c < 0, i.e., the acceleration at the
beginning of the period falls if the cost of speed
increases.

Proof (i): The result follows from the Envelope Theorem.
(ii): Using Proposition 11, and evaluating the optimal
control at t = 0, we obtain (with slight abuse of notation):

∂a(0, ξ)

∂c
= 1

2ρ
(−1 + γ (ρt1)) where

γ (z) ≡ z
(
ezz2 − 3ezz − z + 4ez − 4

)
2

(−ezz2 − 2ez + e2z + 1
) .

Using l’Hôpital’s rule, we find limz→0 γ (z) = 1
and limz→∞ γ (z) = 0. Moreover, it is tedious but
straightforward to show that γ ′ < 0, and hence we have
∂a(0, ξ)/∂c < 0.

Appendix B: Proofs

Proof of Lemma 1

Proof Assume, on the contrary, that π(t1) > M . Since
s(t1) = 2, it follows from Eq. (9c) that π̇(t1) = −h(t1)M +
π(t1) (2 + h(t1)) > 0. Since h(t) = 0 as long as π(t) > M ,
the stock remains at its starting value s(t1) = 2. Given this,
there is no turning point in the evolution of π , and thus π

continues to grow, i.e., we have π̇(t) > 0 for all t . Yet, this
contradicts the transversality condition π(T ) = 0 and thus
proves our claim π(t1) < M , and thus h(t1) = h̄.

Proof of Lemma 2

Proof From Eq. (12a) we can calculate the critical time
horizon Tc for which at some point in time tc the trajectory
goes through the point (s(tc), π(tc)) = (1, M). Using
that information and evaluating π at Tc yields tc = t1 +
1

2−h̄
log

(
h̄

2(h̄−1)

)
and thus Eq. (11).

Proof of Lemma 3

Proof The derivative of the value function J ∗
2A(t1) is given

by:

dJ ∗
2A(t1)

dt1
= −s0Met1

h̄

h̄ − 1

(
h̄e(h̄−1)(t1−T ) − 1

)
.

It is then straightforward to show that, irrespective of the
sign of h̄ − 1, the sign of the derivative of J ∗

2A depends on
whether the switching point τ is before or after the arrival
time t1, and hence Eq. (23) follows.

Proof of Proposition 3

Proof (A similar proof can be found in Hocking 1991.)
Since the Hamiltonian is autonomous, it is constant along
the optimal trajectory (see, for example, Intriligator 1971),
p. 350–355). We can therefore characterise the trajectories
in the (s, π) plane for h = 0 and for h = h̄. Let K denote
the level of the Hamiltonian, then the optimal trajectories
are characterised by the equations

π(t)= K

2s(t) − s2(t)
and π(t)= K − s(t)h̄

2s(t) − s2(t) − s(t)h̄

for h = 0 and h = h̄, respectively. The h = 0 trajectories
have their minima at s = 1, and the trajectories with h = h̄

attain their maxima along the curve

π(t) = −h̄

2 − 2s(t) − h̄
for s > 1 − 1

2
h̄.

Both types of trajectories are depicted in Fig. 5 for a
low (left diagram) and a high (right diagram) harvesting
capacity. The trajectories starting from s(t1) = 2 reach the
horizontal axis at time T , i.e., π(T ) = 0. Those trajectories
with h̄ < 1 cross the horizontal axis at a point to the right
of 2 − h̄, that is s(T ) > 2 − h̄. If h̄ is sufficiently small,
the trajectory does not reach the π = M line (for M = 1
see Fig. 5, left). Since the locus of maxima crosses the point
(1, M), the critical trajectory is that one which achieves
its maximum at this point (see Fig. 5, right). Because the
trajectories do not cross the horizontal axis to the left of
2 − h̄, the critical trajectory must feature h̄ > 1. It thus
follows that the critical harvesting capacity exceeds unity,
h̄c > 1.
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Proof of Proposition 5

Proof That Eq. (14a) is indeed the optimal harvesting policy
can be seen by noting that π = M is a singular level. Since
we already know that π(t1) < M , it follows that π̇ ≥ 0 at
the time the singular level π = M is reached. If we have
π = M for some time interval with positive length, then
π̇ = 0 and hence we must have s = 1 ⇒ ṡ = 0 ⇒ h = 1
from Eq. (9a).

After completing the singular path we cannot have a path
with h = 0. This can be seen as follows: h = 0 implies
ṡ > 0, which in turn implies that, because s = 1 on the
singular arc, s > 1 right after the singular arc. Jointly
with h = 0 this in turn implies that π̇ > 0. Hence, we
enter a path where both s and π are growing so that the
transversality condition π(T ) = 0 cannot be satisfied. We
thus conclude that the optimal policy must proceed with
h = h̄ after completing the singular path—and thus the
policy in Eq. (14a) is optimal.

The total length of the harvesting sub-periods [t1, t2) and
[t3, T ] amounts to Tc − t1 and is thus given by Eq. (11).
Therefore harvesting during these sub-periods brings about
the same profit as in Case A, i.e., J c

2A given by Eq. (13);
while during the time interval [t2, t3) the resulting profit
equals h = 1 times the length of the harvesting period:
t3 − t2 = T − Tc. So, we obtain J ∗

2B = J c
2A + M

∫ t3
t2
1 dt =

J c
2A +M (T − Tc). Finally, substituting the definition of Tc,

Eq. (11), yields Eq. (14b).

Proof of Proposition 7

Proof Using the maximised Hamiltonian of Section “Fixed
travelling period”, H∗

1 = 36x2
1/t

4
1 , the transversality

condition Eq. (20) gives Eq. (22b). Since H∗
1 =

−dJ ∗
1 /dt1 > 0, the derivative dJ ∗

2A(t1)/dt1 must be negative
in order for Eq. (22b) to have a solution t∗1 . By Lemma 3,
dJ ∗

2A(t1)/dt1 is negative if, and only if, the switching point
τ is before the arrival time: t∗1 > T − δ ≡ τ , implying that
Case A applies.

References

Ahn K, Rakha H, Trani A, Van Aerde M (2002) Estimating vehicle
fuel consumption and emissions based on instantaneous speed and
acceleration levels. Journal of Transportation Engineering–ASCE
128(2):182–190

Amit R (1986) Petroleum reservoir exploitation: Switching from
primary to secondary recovery. Oper Res 34(4):534–549
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