Thresholds for ecological responses to global change do not emerge from empirical data


Contact
berenike.bick [ at ] hifmb.de

Abstract

To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that ‘safe-operating spaces’ are unlikely to be quantifiable.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
53001
DOI 10.1038/s41559-020-1256-9

Cite as
Hillebrand, H. , Donohue, I. , Harpole, W. S. , Hodapp, D. , Kucera, M. , Lewandowska, A. M. , Merder, J. , Montoya, J. M. and Freund, J. A. (2020): Thresholds for ecological responses to global change do not emerge from empirical data , Nature Ecology and Evolution . doi: 10.1038/s41559-020-1256-9


Download
[img]
Preview
PDF
Helmut_et_al_2020.pdf

Download (6MB) | Preview

Share


Citation

Research Platforms
N/A

Campaigns


Actions
Edit Item Edit Item