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Abstract. Data assimilation integrates information from ob-
servational measurements with numerical models. When
used with coupled models of Earth system compartments,
e.g., the atmosphere and the ocean, consistent joint states can
be estimated. A common approach for data assimilation is
ensemble-based methods which utilize an ensemble of state
realizations to estimate the state and its uncertainty. These
methods are far more costly to compute than a single cou-
pled model because of the required integration of the ensem-
ble. However, with uncoupled models, the ensemble meth-
ods also have been shown to exhibit a particularly good scal-
ing behavior. This study discusses an approach to augment a
coupled model with data assimilation functionality provided
by the Parallel Data Assimilation Framework (PDAF). Using
only minimal changes in the codes of the different compart-
ment models, a particularly efficient data assimilation system
is generated that utilizes parallelization and in-memory data
transfers between the models and the data assimilation func-
tions and hence avoids most of the file reading and writing,
as well as model restarts during the data assimilation pro-
cess. This study explains the required modifications to the
programs with the example of the coupled atmosphere—sea-
ice—ocean model AWI-CM (AWI Climate Model). Using the
case of the assimilation of oceanic observations shows that
the data assimilation leads only to small overheads in com-
puting time of about 15 % compared to the model without
data assimilation and a very good parallel scalability. The
model-agnostic structure of the assimilation software ensures
a separation of concerns in which the development of data
assimilation methods can be separated from the model appli-
cation.

1 Introduction

Data assimilation (DA) methods are used to combine obser-
vational information with models. A common application is
to apply DA to estimate an initial state that is used to start a
forecast system as is common practice at weather and marine
forecasting centers. The most widely used class of ensem-
ble DA methods are ensemble-based Kalman filters (EnKFs)
like the local ensemble transform Kalman filter (LETKF;
Hunt et al., 2007), the deterministic ensemble Kalman filter
(DEnKF; Sakov and Oke, 2008), or the local error-subspace
transform Kalman filter (LESTKF; Nerger et al., 2012b).
Commonly, DA is applied to separate models simulating, for
example, the atmospheric dynamics or the ocean circulation.
However, in recent years coupled models of different Earth
system compartments have become more common. In this
case, the compartment models frequently exchange informa-
tion at the interface of the model domains to influence the
integration of the other model compartment. For example,
in coupled atmosphere—ocean models the fluxes through the
ocean surface are dynamically computed based on the physi-
cal state of both the atmosphere and the ocean, and these are
exchanged in between both compartments. For model initial-
ization, DA should be applied to each of the compartments.
Here, DA can either be performed separately in the differ-
ent compartment domains, commonly called weakly coupled
DA, or it can be performed in a joint update, called strongly
coupled DA. Only strongly coupled DA is expected to pro-
vide fully dynamically consistent state estimates.

A recent overview of methods and issues in coupled DA
is provided by Penny et al. (2017). By now the weakly cou-
pled assimilation is the common choice for assimilation into
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coupled models and recent studies assess the effect of this as-
similation approach. For atmosphere—ocean coupled models,
different studies either assimilated observations of one com-
partment into the observed compartment (e.g., Kunii et al.,
2017; Mu et al., 2020) or assimilated observations of each
compartment into the corresponding observed compartments
(e.g., Zhang et al., 2007; Liu et al., 2013; Han et al., 2013;
Chang et al., 2013; Lea et al., 2015; Karspeck et al., 2018;
Browne et al., 2019). The research question considered in
these studies is usually to what extent the assimilation into a
coupled model can improve predictions in comparison to the
assimilation into uncoupled models. Partly, the mentioned
studies used twin experiments assimilating synthetic obser-
vations to assess the DA behavior.

Strongly coupled DA is a much younger approach, which
is not yet well established. Open questions for strongly cou-
pled DA are, for example, how to account for the differ-
ent temporal and spatial scales in the atmosphere and the
ocean. Strongly coupled DA is complicated by the fact that
DA systems for the ocean and atmosphere have usually been
developed separately and often use different DA methods.
For example, Laloyaux et al. (2016) used a 3D variational
DA in the ocean but 4D variational DA in the atmosphere.
The methodology led to a quasi-strongly coupled DA. Frolov
et al. (2016) proposed an interface-solver approach for vari-
ational DA methods, which leads to a particular solution for
the variables close to the interface. Strongly coupled DA was
applied by Sluka et al. (2016) in a twin experiment using an
EnKF with dynamically estimated covariances between the
atmosphere and ocean in a low-resolution coupled model.
For coupled ocean—biogeochemical models, Yu et al. (2018)
discussed strongly coupled DA in an idealized configura-
tion. Further, Goodliff et al. (2019) discussed the strongly
coupled DA for a coastal ocean—biogeochemical model as-
similating real observations of sea surface temperature. This
study pointed to the further complication of the choice of
variable (linear or logarithmic concentrations for the biogeo-
chemical compartment) for strongly coupled assimilation.

Ensemble-based Kalman filters (but also the nonlinear par-
ticle filters) can be formulated to work entirely on state vec-
tors. A state vector is the collection of all model fields at
all model grid points in the form of a vector. When one
computes the observed part of the state vector, applying the
so-called “observation operator”, one needs to know how a
field is stored in the state vector. However, the core part of
the filter, which computes the corrected state vector (the so-
called ““analysis state”) taking into account the observational
information, does not need to know how the state vector is
constructed. This property is also important for coupled DA,
where the state vector will be distributed over different com-
partments, such as the atmosphere and the ocean.

The possibility to implement most parts of a filter algo-
rithm in a generic model-agnostic way has motivated the
implementation of software frameworks for ensemble DA.
While the frameworks use very similar filter methods, they
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differ strongly in the strategy of how the coupling between
model and DA software is achieved. As described by Nerger
et al. (2012b), one can distinguish between offline and on-
line DA coupling. In offline-coupled DA one uses separate
programs for the model and the assimilation and performs
the data transfer between both through disk files. In online-
coupled DA one performs in-memory data transfer, usually
by parallel communication, and hence avoids the use of disk
files. In addition, online-coupled DA avoids the need to stop
and restart a model for DA. The Data Assimilation Research
Testbed (DART; Anderson et al., 2009) uses file transfers and
separate programs for the ensemble integration and the filter
analysis steps, which are run consecutively. The framework
“Employing Message Passing Interface for Researching En-
sembles” (EMPIRE; Browne and Wilson, 2015) uses paral-
lel communication between separate programs for model and
DA. These programs are run in parallel and the information
transfer is performed through parallel communication, which
avoids data transfers using files. The Parallel Data Assimila-
tion Framework (PDAF; Nerger et al., 2005; Nerger et al.,
2012b, http://pdaf.awi.de, last access: 14 September 2020)
supports both online- and offline-coupled DA. For the online-
coupled DA, PDAF also uses parallel communication. How-
ever, in contrast to EMPIRE, the model usually is augmented
by the DA functionality; i.e., model and DA are compiled
into a joint program.

For coupled ensemble DA in hydrology, Kurtz et al. (2016)
have combined PDAF with the coupled terrestrial model sys-
tem TerrSysMP. To build the system, a wrapper was devel-
oped to perform the online coupling of model and DA soft-
ware. The study shows that the resulting assimilation system
is highly scalable and efficient. Karspeck et al. (2018) have
discussed a coupled atmosphere—ocean DA system. They ap-
ply the DART software and perform weakly coupled DA us-
ing two separate ensemble-based filters for the ocean and at-
mosphere, which produce restart files for each model com-
partment. These are then used to initialize the ensemble inte-
gration of the coupled model.

Here, we discuss a strategy to build an online-coupled DA
system for coupled models with the example of the coupled
atmosphere—ocean model AWI-CM. The strategy enhances
the one discussed in Nerger et al. (2012b) for an ocean-only
model. The previous strategy is modified for the coupled DA
and applied to the two separate programs for the atmosphere
and ocean, which together build the coupled model AWI-CM
(Sidorenko et al., 2015). The required modifications to the
model source codes consist essentially of adding four sub-
routine calls in each of the two compartment models. Three
of these subroutine calls connect the models to the DA func-
tionality provided by PDAF, while the fourth is optional and
provides timing and memory information. With this strategy,
a wrapper that combines the compartment model into a sin-
gle executable as used by Kurtz et al. (2016) can be avoided.
We discuss the strategy for both weakly and strongly coupled
DA but assess the parallel performance only for weakly cou-
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pled DA into the ocean, which is supported in the code ver-
sion AWI-CM-PDAF V1.0. This is motivated by the fact that
strongly coupled DA is not yet well established, and weakly
coupled DA by itself is a topic of current research.

The remainder of the study is structured as follows. Sec-
tion 2 discusses ensemble filters and their setup for cou-
pled DA. The setup of a DA system is described in Sect. 3.
Section 4 discusses the parallel performance of the DA sys-
tem build by coupling AWI-CM and PDAF. Section 5 exam-
ines the assimilation behavior of an example application with
AWI-CM. Implications of the chosen strategy for the coupled
model and data assimilation are discussed in Sect. 6. Finally,
conclusions are drawn in Sect. 7.

2 Ensemble filters

Ensemble DA (EnDA) methods use an ensemble of model
state realizations to represent the state estimate (usually the
ensemble mean) and the uncertainty of this estimate given
by the ensemble spread. The filters perform two alternating
phases. In the forecast phase the ensemble of model states
is integrated with the numerical model until the time when
observations are available. At this time, the analysis step is
computed. It combines the information from the model state
and the observations by taking into account the estimated er-
ror of the two information sources and computes an updated
model state ensemble, which represents the analysis state es-
timate and its uncertainty.

The current most widely used ensemble filter methods are
ensemble-based Kalman filters (Evensen, 1994; Houtekamer
and Mitchell, 1998; Burgers et al., 1998). When incorpo-
rating the observations during the analysis step, these fil-
ters assume that the errors in the state and the observations
are Gaussian distributed. This allows one to formulate the
analysis step by just using the two leading moments of the
distributions, namely, the mean and covariance matrix. An-
other class of EnDA methods are particle filters (e.g., van
Leeuwen, 2009). While particle filters do not assume Gaus-
sianity of error distributions, they are difficult to use with
high-dimensional models, because particular adaptions are
required to avoid the case when the ensemble collapses to
a single member due to the so-called “curse of dimension-
ality” (see Snyder et al., 2008). Methods to make particle
filters usable for high-dimension systems were reviewed by
van Leeuwen et al. (2019). One strategy is to use the observa-
tional information already during the forecast phase to keep
the ensemble states close to the observations. This approach
requires that some DA functions are already executed dur-
ing the forecast phase. The realization in the implementation
strategy will be discussed in Sect. 3.2.
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2.1 Filter algorithms

To be able to discuss the particularities of coupled DA with
respect to ensemble filter, here the error-subspace transform
Kalman filter (ESTKF; Nerger et al., 2012b) is reviewed.
The ESTKEF is an efficient formulation of the EnKF that has
been applied in different studies to assimilate satellite data
into sea-ice—ocean models (e.g., Kirchgessner et al., 2017;
Mu et al., 2018; Androsov et al., 2019) and biogeochemi-
cal ocean models (e.g., Pradhan et al., 2019; Goodliff et al.,
2019).

2.1.1 The ESTKF

In the analysis step at time #, the ESTKF transforms a fore-
cast ensemble Xi of N. model states of size N, stored in the
columns of this matrix into a matrix of analysis states X as

EEATES AR ) (1)

where X! is the forecast ensemble mean state and 1y, is a
vector of size N, holding the value one in all elements. Fur-
ther, wy, is a vector of size N, which transforms the ensemble
mean and W is a matrix of size Ne x Ne, which transforms the
ensemble perturbations. Below, the time index k is omitted,
as all computations in the analysis refer to time #.

The forecast ensemble represents an error subspace of di-
mension N — 1, and the ESTKF computes the ensemble
transformation matrix and vector in this subspace. Practi-
cally, one computes an error-subspace matrix by L = X'T,
where T is a projection matrix with j = N, rows and i =
Ne — 1 columns defined by

| — for i = j, j < Ne

Ne Tt
T, = _ 1T fori # j,j < N, 2
= Ne T JoJ = fNe 2
~ N for j = Ne.

Below, the equations are written using X! and T rather than
L as this leads to a more efficient formulation.

A model state vector x! and the vector of observations y
with dimension N, are related by the observation operator H
by

y =H(xf) te 3)

where € is the vector of observation errors, which are as-
sumed to be a white Gaussian-distributed random process
with observation error covariance matrix R. For the analysis
step, a transform matrix in the error subspace is computed as

A~l=p(Ne — DI+ HX'T)'RHXT . 4)

This matrix provides ensemble weights in the error subspace.
The factor p with 0 < p <1 is called the “forgetting factor”
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(Pham et al., 1998), and it is used to inflate the forecastf:rror
covariance matrix. The weight vector wy and matrix W are
now given by

w =TA(HXfT)TR_1 (y —Hff) , (5)
W =N, — ITA/>TT (6)

where A!/2 is the symmetric square root which is computed
from the eigenvalue decomposition USU? = A~! such that
A2 =US~1/2UT. Likewise, A in Eq. (5) is computed as
A=Us"'U".

For high-dimensional models, a localized analysis is com-
puted following Nerger et al. (2006). Here, each vertical col-
umn of the model grid is updated independently by a lo-
cal analysis step. For updating a column, only observations
within a horizontal influence radius / are taken into account.
Thus, the observation operator is local and computes an ob-
servation vector within the influence radius / from the global
model state. Further, each observation is weighted according
to its distance from the water column to down-weight obser-
vations at larger distances (Hunt et al., 2007). The weight is
applied by modifying matrix R™! in Eqs. (4) and (5). The
localization weight for the observations is computed from a
correlation function with compact support given by a fifth-
order polynomial with a shape similar to a Gaussian function
(Gaspari and Cohn, 1999). The localization leads to individ-
ual transformation weights wy and W for each local analysis
domain.

2.2 Weakly coupled ensemble filtering

In weakly coupled DA, the EnKF is applied in the coupled
model to a single compartment or separately to several of the
compartments. Given that the analysis is separate for each
involved compartment, the filter is applied as in a single-
compartment model. Thus, in practice several EnKFs com-
pute the analyses updates independently before the next fore-
cast phase is started with the updated fields from the different
compartments.

2.3 Strongly coupled ensemble filtering

To discuss strongly coupled filtering, let us assume a
two-compartment system (perhaps the atmosphere and the
ocean). Let xp and xo denote the separate state vector in
each compartment. For strongly coupled DA, both are joined
into a single state vector xc.

Using the joint forecast ensemble XfC in Eq. (1) of the ES-
TKEF, one sees that the same ensemble weights w and W are
applied to both x o and xo. The weights are computed using
Egs. (4) to (6). These equations involve the observed ensem-
ble HXE, the observation vector y, and the observation error
covariance matrix R. Thus, for strongly coupled DA, the up-
dated weights depend on which compartment is observed. If
there are observations of both compartments, they are jointly
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used to compute the weights. If only one compartment is ob-
served, e.g., having only ocean observations yq, then we also
have HXL = (HX")(, and the weights are only computed
from these observations. Thus, through Eq. (1), the algorithm
can directly update both compartments, x o and x o, using ob-
servations of just one compartment.

An interesting aspect is that when one runs separate assim-
ilation systems for the two compartments with the same filter
methodology, one can compute a strongly coupled analysis
by only exchanging the parts of y, HX!, and R in between
both compartments and then initializing the vectors contain-
ing observational information from all compartments in the
assimilation system of each compartment. If there are only
observations in one of the compartments, one can also com-
pute the weights in that compartment and provide them to the
other compartment. Given that y and R are initialized from
information that is usually stored in files, one can also let the
DA code coupled into each compartment model read these
data and only exchange the necessary parts of HX'. While
this discussion shows that technically it is straightforward to
apply strongly coupled DA with these filter methods, one has
to account for the model parallelization, which is discussed
in Section 3.3.

3 Setup of data assimilation program

This section describes the assimilation framework and the
setup of the DA program. First an overview of PDAF is given
(Sect. 3.1). The code modifications for online coupling are
described in Sect. 3.2, and the modifications of the paral-
lelization are described in Sect. 3.3. Finally, Sect. 3.4 ex-
plains the aspect of the call-back functions.

The setup builds on the strategy introduced by Nerger and
Hiller (2013). Here, the discussion focuses on the particular-
ities when using a coupled model consisting of separate exe-
cutable programs for each compartment. While we here de-
scribe the features for both weakly and strongly coupled DA,
AWI-CM-PDAF in version 1.0 is only coded with weakly
coupled DA in the ocean. This is motivated by the fact that
the weakly coupled DA in a coupled climate model has al-
ready different properties than DA in an uncoupled model.
In particular, the initial errors in the coupled AWI-CM are
much larger than in a simulation of FESOM (Finite Element
Sea ice-Ocean Model) using atmospheric forcing. Mainly
this is because in FESOM the forcing introduces informa-
tion about the weather conditions, while AWI-CM only rep-
resents the climate state. Thus studying weakly coupled DA,
which is still used in most applications, has a value on its
own. Strongly coupled DA will be supported in the AWI-
CM-PDAF model binding in the future.
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3.1 Parallel Data Assimilation Framework (PDAF)

PDAF (Nerger and Hiller, 2013, http://pdaf.awi.de, last ac-
cess: 14 September 2020) is a free open-source software that
was developed to simplify the implementation and applica-
tion of ensemble DA methods. PDAF provides a generic
framework containing fully implemented and parallelized
ensemble filter and smoother algorithms like the LETKF
(Hunt et al., 2007), the ESTKF (Nerger et al., 2012b), or the
nonlinear NETF method (T6dter and Ahrens, 2015) and re-
lated smoothers (e.g., Nerger et al., 2014; Kirchgessner et al.,
2017). Further, it provides functionality to adapt a model par-
allelization for parallel ensemble forecasts as well as rou-
tines for parallel communication linking the model and fil-
ters. Analogous to many large-scale geoscientific simulation
models, PDAF is implemented in Fortran and is parallelized
using the Message Passing Interface standard (MPI; Gropp
et al., 1994) as well as OpenMP (OpenMP, 2008). This en-
sures optimal compatibility with these models, while it is still
usable with models coded, for example, in the programming
language C.

The filter methods are model agnostic and only operate on
abstract state vectors as described for the ESTKF in Sect. 2.
This allows one to develop the DA methods independently
from the model and to easily switch between different assim-
ilation methods. Any operations specific to the model fields,
the model grid, or to the assimilated observations are per-
formed in program routines provided by the user based on
existing template routines. The routines have a specified in-
terface and are called by PDAF as call-back routines (i.e., the
model code calls routines of PDAF), which then call the user
routines. This call structure is outlined in Fig. 1. Here, an
additional yellow “interface routine” is used in between the
model code and the PDAF library routine. This interface rou-
tine is used to define parameters for the call to the PDAF
library routines, so these do not need to be specified in the
model code. Thus, only a single-line call to each interface
routine is added to the model code, which keeps the changes
to the model code to a minimum.

The motivation for this call structure is that the call-back
routines exist in the context of the model (i.e., the user space)
and can be implemented like model routines. In addition, the
call-back routines can access static arrays allocated by the
model, e.g., through Fortran modules or C header files. For
example, this can be used to access arrays holding model
fields or grid information. This structure can also be used
in the case of an offline coupling using separate programs
for the model and the analysis step. However, in this case the
grid information is not already initialized by the model and
has to be initialized by a separate routine. The interfaces and
user routines provided by PDAF can also be used with mod-
els implemented in C or C++, or they can be combined with
Python. For coupled models consisting of multiple executa-
bles, this call structure is used for each compartment model.
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Call-back
routine 1
Call-back
routine 2

Model context / user space
Model Interface
code routine

PDAF context

PDAF library
routine

Figure 1. Call structure of PDAF. Calls to interface routines (yel-
low) are inserted into the model code (blue). The interface rou-
tines define parameters for PDAF and call PDAF library routines
(green). These library routines call user-provided call-back routines.
The model code, interface, and call-back routines operate in the
model context and can hence exchange information indirectly, e.g.,
through Fortran modules. Likewise, the PDAF library routines share
variables.

3.2 Augmenting a coupled model for ensemble data
assimilation

Here, only the online coupling for DA is discussed. As de-
scribed before, the offline coupling uses separate programs
for the model and the DA program and model restart files
to transfer information about the model states between both
programs. Generally, the same code for the user routines can
be used for online- and offline-coupled DA. The difference is
that in the online coupling, model information like the model
grid is initialized by the model code and usually stored in,
for example, Fortran modules. For offline-coupled DA, one
could use the same variable names and the same names for
the modules. Thus, one would need to implement routines
that initialize these variables.

The strategy to augment a coupled model with DA func-
tionality is exemplified here using the AWI Climate Model
(AWI-CM; Sidorenko et al., 2015). The model consists of the
atmospheric model ECHAMS6 (Stevens et al., 2013), which
includes the land surface model JSBACH, and the Finite El-
ement Sea ice-Ocean Model (FESOM; Danilov et al., 2004;
Wang et al., 2008). Both models are coupled using the cou-
pler library OASIS3-MCT (Ocean Atmosphere Sea Ice Soil
— Model Coupling Toolkit; Valcke, 2013). OASIS3-MCT
computes the fluxes between the ocean and the atmosphere
and performs the interpolation between both model grids.
The coupled model consists of two separate programs for
ECHAM and FESOM, which are jointly started on the com-
puter so that they can exchange data via the Message Pass-
ing Interface (MPI; Gropp et al., 1994). OASIS3-MCT is
linked into each program as a library. For further details on
the model, we refer to Sidorenko et al. (2015).

The online coupling for DA was already discussed in
Nerger and Hiller (2013) for an earlier version of the ocean
model used in the AWI-CM. Here, an updated coupling strat-
egy is discussed that requires less changes to the model code.
While the general strategy for online coupling of the DA is
the same as in the previous study, we provide here a full de-
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Model

| Init. parallelization |

Init. parallel. coupler

Initialize model
Initialize coupling
Initialize grid & fields

Do i=1, nsteps

Time stepping
in-component step
coupling

Model with DA extension

Init. parallelization

Init_parallel_PDAF
Init. parallel. coupler

Initialize model
Initialize coupling
Initialize grid & fields
1
[ it PDAF |

Do i=1, nsteps

Time stepping
in-component step
coupling
1
| Assimilate_PDAF |

Postprocessing

| End parallelization |

| Postprocessing |

I:l Part of model program
(e.g., subroutine)

I:I Addition for DA

(subroutine) [ End aralllelization |
(@) ® -

| Finalize_PDAF |

Figure 2. General program flow: (a) abstract original program with-
out data assimilation; (b) program augmented for data assimila-
tion. The blue color marks coupling routines whose parallelization
needed to be adapted for the data assimilation. Each of the two cou-
pled compartment models were augmented in this way.

scription for completeness. Further, we discuss the particu-
larities of the coupled model.

Figure 2 shows the general program flow and the necessary
extension of the code for adding the DA functionality. The
different boxes can (but are not required to) be subroutine
calls. The figure is valid for any of the two programs of the
coupled model system. Without references to the coupler, it
would also be valid for a single-compartment model.

The left-hand side of Fig. 2 (Fig. 2a) shows the typical flow
of a coupled compartment model. Here, at the very beginning
of the program, the parallelization is initialized (“init. paral-
lelization”). After this step, all involved processes of the pro-
gram are active (for the parallelization aspects see Sect. 3.3).
Subsequently, the OASIS coupler initializes the paralleliza-
tion for the coupled model by separating the processes for
ECHAM and FESOM. Thus, after this point, the coupler
can distinguish the different model compartments. Now, the
model itself is initialized; e.g., the model grid for each com-
partment is initialized and the initial fields are read from files.
Further, information for the coupling will be initialized like
the grid configuration, which is required by the coupler to
interpolate data in between the different model grids. This
completes the model initialization; then the time stepping is
computed. During time stepping, the coupler exchanges the
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interface information between the different compartments.
After time stepping, some postprocessing can be performed,
e.g., writing time averages or restart files to disk.

The right-hand side of Fig. 2 (Fig. 2b) shows the required
additions to the model code as yellow boxes. These additions
are calls to subroutines that interface between the model code
and the DA framework. In this way, only single-line subrou-
tine calls are added, which might be enclosed in preprocessor
checks to allow users to activate or deactivate the data assim-
ilation extension at compile time. The additions are done in
the codes of both ECHAM and FESOM, and here we discuss
them in general. The added subroutine calls have the follow-
ing functionality:

— Init_parallel PDAF modifies the parallelization of the
model. Instead of integrating the state of a single model
instance (“model task™), the model is modified to run
an ensemble of model tasks. This routine is inserted di-
rectly after the parallelization is started. So all subse-
quent operations of the program will act in the modified
parallelization. In the coupled model, this routine is ex-
ecuted before the parallelization of the coupler is initial-
ized. In this way the coupler will also be initialized for
an ensemble of model states.

— In Init_PDAF, the PDAF framework will be initialized.
The routine is inserted into the model codes so that it
is executed after all normal model initialization is com-
pleted, i.e., just before the time-stepping loop. The rou-
tine specifies parameters for the DA, which can be read
from a configuration file. Then, the initialization rou-
tine for PDAF, named “PDAF_init” is called, which per-
forms the PDAF-internal configuration and allocates the
internal arrays, e.g., the array of the ensemble states.
Further, the initial ensemble is read from input files.
As this reading is model specific, it is performed by a
user-provided routine that is called by PDAF as a call-
back routine (see Sect. 3.4). After the framework 1is ini-
tialized, the routine “PDAF_get_state” is called. This
routine writes the information from the initial ensemble
into the field arrays of the model. In addition, the length
of the initial forecast phase, i.e., the number of time
steps until the first analysis step, is initialized. For the
coupled model, “PDAF _init” and “PDAF_get_state”
are called in each compartment. However, some param-
eters are distinct: the time step size of ECHAM is 450 s,
while it is 900s for FESOM. Hence, the numbers of
time steps in the forecast phase of 1d are different in
the compartments.

— Assimilate_PDAF is called at the end of each model
time step. For this, it is inserted into the model codes
of ECHAM and FESOM at the end of the time-
stepping loop. The routine calls a filter-specific rou-
tine of PDAF that computes the analysis step of the
selected filter method, e.g., “PDAF_assimilate_lestkf”
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for the localized ESTKF. This routine of PDAF also
checks whether all time steps of a forecast phase have
been computed. Only if this is true will the analy-
sis step be executed; otherwise, the time stepping is
continued. If additional operations for the DA are re-
quired during the time stepping, such as taking into ac-
count future observations in the case of the advanced
equivalent-weights particle filter (EWPF; van Leeuwen,
2010) or collecting observed ensemble fields during
the forecast phase for a four-dimensional filtering (Har-
lim and Hunt, 2007), these are also performed in this
filter-specific routine. For the coupled model, the rou-
tine is called in both ECHAM and FESOM. Then,
“PDAF_assimilate_lestkf” will check for the analysis
time according to the individual number of time steps
in the forecast phase. The analysis step will then be
executed in each compartment according to the con-
figuration of the assimilation. In the implementation of
AWI-CM-PDAF 1.0, the analysis is only performed in
FESOM. Thus, while “PDAF_assimilate_lestkf” is also
called in ECHAM, it does not assimilate any data.

— Finalize_PDAF is called at the end of the program. The
routine includes calls to the routine “PDAF_print_info”,
which print out information about execution times of
different parts of the assimilation program as measured
by PDAF as well as information about the memory al-
located by PDAF.

Compared to the implementation strategy discussed in
Nerger and Hiller (2013), in which the assimilation subrou-
tine is only called after a defined number of time steps, this
updated scheme allows users to perform DA operations dur-
ing the time-stepping loop. To use this updated scheme, one
has to execute the coupled model with enough processors so
that all ensemble members can be run at the same time. This
is nowadays easier than in the past, because the number of
processor cores is much larger in current high-performance
computers compared to the past.

Apart from the additional subroutine calls, a few changes
were required in the source codes of ECHAM, FESOM, and
OASIS3-MCT, which are related to the parallelization. These
changes are discussed in Sect. 3.3.

3.3 Parallelization for coupled ensemble data
assimilation

The modification of the model parallelization for ensem-
ble DA is a core element of the DA online coupling. Here,
the parallelization of AWI-CM and the required changes for
the extension for the DA are described. For FESOM, as a
single-compartment model, the adaption of the paralleliza-
tion was described by Nerger et al. (2005) and Nerger and
Hiller (2013). A similar parallelization was also described by
Browne and Wilson (2015). For the online coupling of PDAF
with the coupled model TerrSysMP, the setup of the paral-
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lelization was described by Kurtz et al. (2016). While for
TerrSysMP, a different coupling strategy was used; the paral-
lelization of the overall system is essentially the same as dis-
cussed here for AWI-CM. The parallelization for the DA is
configured by the routine init_parallel_pdaf. In general this
is a template routine, which can be adapted by the user ac-
cording to particular needs. Nonetheless, by now the default
setup in PDAF was directly usable in all single-compartment
models to which PDAF was coupled. Compared to the de-
fault setup in PDAF for a single-compartment model, we
have adapted the routine to account for the existence of two
model compartments.

Like other large-scale models, AWI-CM is parallelized
using the Message Passing Interface standard (MPI; Gropp
et al., 1994). MPI allows one to compute a program us-
ing several processes with distributed memory. Thus, each
process has only access to the data arrays that are al-
located by this process. Data exchanges between pro-
cesses are performed in the form of parallel communica-
tion; i.e., the data are explicitly sent by one process and
received by another process. All parallel communication
is performed within so-called communicators, which are
groups of processes. When the parallel region of a program
is initialized, the communicator MPI_COMM_WORLD is
initialized, which contains all processes of the program.
In the case of AWI-CM when the two executables for
ECHAM and FESOM are jointly started, they share the same
MPI_COMM_WORLD so that parallel communication be-
tween the processes running ECHAM and those running
FESOM is possible. Further communicators can be defined
by splitting MPI_COMM_WORLD. This is used to define
groups of processes both for AWI-CM and for the extension
with PDAF.

For AWI-CM without data assimilation extension, the
parallelization is initialized by each program at the very
beginning. Then, a routine of OASIS3-MCT is called
which splits MPI_COMM_WORLD into two communica-
tors: one for ECHAM (COMM_ECHAM) and one for FE-
SOM (COMM_FESOM). These communicators are then
used in each of the compartment models, and together
they build one model task that integrates one realization
of the coupled model state. MPI_COMM_WORLD is fur-
ther used to define one process each for ECHAM and FE-
SOM, which perform parallel communication to exchange
flux information. Important here is that OASIS3-MCT is
coded to use MPI_COMM_WORLD to define these com-
municators. Each of the compartment models then uses its
group of processes for all compartment-internal operations.
Each model uses a domain decomposition; i.e., each pro-
cess computes a small region of the global domain in the
atmosphere or the ocean. The distribution of the processes
is exemplified in Fig. 3a for the case of six processes in
MPI_COMM_WORLD. Here, the communicator is split into
four processes for COMM_FESOM (green) and two for
COMM_ECHAM (blue).
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(a) MPI communicator structure for AWI-CM Color legend:
0 1 2 3 4 5 MPI_COMM_WORLD COMM_CPLMOD
0 1 2 3 COMM_FESOM  COMM_COUPLE
COMM_ECHAM
(b) MPI i structure of AWI-CM d with PDAF for strongly coupled
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(c) Structure of MPI

0123-

icator COMM_FILTER for weakly coupled assimilation

Figure 3. Example configuration of MPI communicators: (a) AWI-
CM, (b) AWI-CM with PDAF extension for ensemble data as-
similation. The colors and lines mark processes that are grouped
as a communicator. Different shades of the same color mark
the same communicator type (e.g., four orange communicators
COMM_FESOM). For COMM_COUPLE, each communicator is
spread over the model tasks. The numbers mark the rank index of a
process in a communicator.

For the ensemble DA, the parallelization of AWI-CM
is modified. Generally, the introduction of the ensemble
adds one additional level of parallelization to a model,
which allows one to concurrently compute the ensemble
of model integrations, i.e., several concurrent model tasks.
In AWI-CM augmented by the calls to PDAF, the rou-
tine init_parallel_pdaf modifies the parallelization. Namely,
MPI_COMM_WORLD is split into a group of communica-
tors for the coupled model tasks (COMM_CPLMOD), as ex-
emplified for an ensemble of four model tasks in Fig. 3b indi-
cated by the different color shading. Subsequently, OASIS3-
MCT splits each communicator (COMM_CPLMOD) into a
pair (COMM_ECHAM and COMM_FESOM) (third row in
Fig. 3b). To be able to split COMM_CPLMOD, the source
code of OASIS3-MCT needs to be modified by replac-
ing MPI_COMM_WORLD by COMM_CPLMOD, because
OASIS3-MCT uses MPI_COMM_WORLD as the basis for
the communicator splitting (see also Kurtz et al., 2016, for
the required modifications). With this configuration of the
communicators, AWI-CM is able to integrate an ensemble
of model states by computing all model tasks concurrently.

Two  more  communicators are defined in
init_parallel_pdaf for the analysis step in PDAF. Here,
a configuration is used that computes the filter analysis
step on the first coupled model task using the same do-
main decomposition as the coupled model. Because the
ESTKF (as any other ensemble Kalman filter) computes
a combination of all ensemble members individually for
each model grid point or for single vertical columns (Eq. 1),
the ensemble information from all ensemble members is
collected on the processes of the first model task, keeping
the domain decomposition. For collecting the ensemble
information, the communicator COMM_COUPLE groups
all processes that compute the same subdomain in the
coupled model. Thus, all processes that have the same rank
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Figure 4. PDAF filter analysis step and related call-back routines
provided by the user. There are four types of routines: transfers be-
tween model fields and state vector (cyan), observation handling
(orange), treatment of localization (yellow), and pre- and postpro-
cessing (blue).

index in, for example, COMM_FESOM are grouped into
one communicator as shown in row 4 of Fig. 3b. Finally,
the communicator COMM_FILTER (row 5 of Fig. 3b) is
defined, which contains all processes of the first model task.
Note that compared to the single-compartment case dis-
cussed in Nerger et al. (2005) and Nerger and Hiller (2013),
the major change is that each model task is split into the
communicators COMM_FESOM and COMM_ECHAM,
which are, however, only used for the model integration. In
addition, COMM_FILTER includes the processes of both
model compartments of the first model task.

This configuration is used to perform strongly coupled
DA, because it allows for the communication between pro-
cesses of ECHAM with processes of FESOM. In a weakly
coupled application of DA, COMM_FILTER is initialized
so that two separate communicators are created: one for
all subdomains of FESOM and another one for all subdo-
mains of ECHAM as shown in Fig. 3c. In practice one
can achieve this by using the already defined communi-
cators COMM_FESOM and COMM_ECHAM of model
task 1. Because these two communicators are initialized
after executing init_parallel_pdaf, one has to overwrite
COMM_FILTER afterwards in, for example, init PDAF.
With this configuration, the assimilation can be performed
independently for both compartments.

3.4 Call-back routines for handling of model fields and
observations

The call-back routines are called by PDAF to perform oper-
ations that are specific to the model or the observations. The
operations performed in each routine are rather elementary
to keep the complexity of the routines low. There are four
different types of routines, which are displayed in Fig. 4:
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— For interfacing model fields and state vector (cyan),
there are two routines called before and after the anal-
ysis step. The first routine writes model fields into the
state vector of PDAF, while the second initializes model
fields from the state vector. These routines are executed
by all processes that participate in the model integra-
tions, and each routine acts on its process subdomain.
For the coupled model, there are different routines for
FESOM and ECHAM.

— The observation handling (orange) performs operations
related to the observations. For example, a routine pro-
vides PDAF with the number of observations, which
is obtained by reading the available observations and
counting them. This routine allows PDAF to allocate ar-
rays for the observed ensemble. Another routine is the
implementation of the observation operator. Here, the
routine is provided with a state vector x from the en-
semble and has to return the observed state vector, i.e.,
H(x). For the coupled model, the routines are distinct
for FESOM and ECHAM as, for example, the obser-
vation operator for an oceanic observation can only be
applied in FESOM. For strongly coupled DA, the obser-
vation operator routine would also contain parallel com-
munication that acts across the compartments. Thus,
after obtaining the observations in a compartment, a
cross-compartment observation vector is initialized us-
ing MPI communication.

— For localization (yellow), the localized analysis de-
scribed in Sect. 2.1.1 requires several operations, which
are provided by call-back routines. For example, a call-
back routine needs to determine the dimension of a lo-
cal state vector. For a single grid point, this would be the
number of variables stored at this grid point. For a ver-
tical column of the model grid, this would be the num-
ber of three-dimensional model fields times the number
of model layers plus the number of two-dimensional
model fields (like sea surface height or sea ice vari-
ables in FESOM). Then, after PDAF allocates the local
state ensemble, a call-back routine is used to fill the lo-
cal states from the full domain-decomposed state vector.
(Likewise, there is a routine that writes a local state vec-
tor after the local analysis correction into the full state
vector.) In addition, there is a routine that determines
the number of observations within the influence radius
around the vertical column and a routine to fill this local
observation vector from a full observation vector.

— For pre- and postprocessing (blue), there is a pre- and
postprocessing routine to give the user access to the en-
semble before and after the analysis step. Here, one typ-
ically computes the ensemble mean and writes it into a
file. Further, one could implement consistency checks,
e.g., whether concentration variables have to be posi-
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tive, and can perform a correction to the state variables
if this is not fulfilled.

4 Parallel performance of the coupled data
assimilation system

4.1 Scalability

To assess the parallel performance of the assimilation system
described above, AWI-CM is run here in the same global
configuration as described by Sidorenko et al. (2015). The
atmosphere uses a horizontal spectral resolution (T63, about
180km) with 47 layers. The ocean model uses an unstruc-
tured triangular grid with 46 vertical layers. The horizontal
resolution varies between 160 km in the open ocean, with a
refinement to about 45 km in the equatorial region and close
to the Antarctic continent, and 30 km north of 50° N. The
models are run with a time step size of 450 s for ECHAM
and 900 s for FESOM. The coupling by OASIS3-MCT is per-
formed hourly.

In the initial implementation (AWI-CM-PDAF 1.0),
the assimilation update is only performed as weakly
coupled DA in the ocean compartment. The state
vector for the assimilation is composed of the two-
dimensional sea surface height, the three-dimensional
model fields temperature, salinity, and the three velocity
components. The DA is started on 1 January 2016, and
satellite observations of the sea surface temperature ob-
tained from the European Copernicus initiative (data set
SST_GLO_SST_L3S_NRT_OBSERVATIONS_010_010
available at https://marine.copernicus.eu, last access:
14 September 2020), interpolated to the model grid, are
assimilated daily. The assimilation is multivariate so that
the SST (sea surface temperature) observations influence
the full oceanic model state vector through the ensemble
estimated cross-covariances that are used in the ESTKF. The
initial ensemble was generated using second-order exact
sampling (Pham et al., 1998) from the model variability of
snapshots at each 5th day over 1 year. The ensemble mean
was set to a model state for 1 January 2016 from a historical
(climate) run of AWI-CM. No inflation was required in this
experiment; i.e., a forgetting factor p = 1.0 (see Eq. 4) was
used. Even though we only perform weakly coupled DA
here, we expect that the compute performance would be
similar in the case of strongly coupled DA, as is explained in
Sect. 6.

For a fixed ensemble size but varying number of processes
for ECHAM and FESOM, the scalability of the program
is determined by the scalability of the models (see Nerger
and Hiller, 2013). To access the scalability of the assimila-
tion system for varying ensemble size, experiments over 10d
were conducted with varying ensemble sizes between N, = 2
and N, = 46. The length of these experiments is chosen to
be long enough so that the execution time is representative
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to assess the scalability. However, the assimilation effect will
be rather small for these 10 analysis steps. The number of
processes for each model task was kept constant at 72 pro-
cesses for ECHAM and 192 processes for the more costly
FESOM. The experiments were conducted on the Cray XC40
system “Konrad” of the North-German Supercomputer Al-
liance (HLRN).

Figure 5 shows the execution times per model day for dif-
ferent parts of the assimilation program. Shown are the times
for 24 h forecast phases including the time to collect and dis-
tribute the ensemble (DA coupling within the communica-
tor COMM_COUPLE) for the analysis step. Also shown are
the times for the analysis step (green), the execution of the
pre- and post-step operations (red), and the DA coupling time
(blue). The crosses show the times for each model task sepa-
rately for the atmosphere and ocean; thus, there are 2N, black
and blue crosses for each ensemble size. The blue and black
lines show the maximum execution times. The overall execu-
tion time is dominated by the time to compute the forecasts.
The combined time for the analysis and the pre- and post-
step operations is only between 4 % and 7 % of the forecast
time. For a given ensemble size, the black crosses show that
the execution times for the forecast on the different model
tasks vary. In the experiments, the longest forecast time was
up to 16 % longer than the shortest time, which occurred for
N = 24. This variability is partly caused by the time for DA
coupling (see discussion below) but also by the fact that the
semi-implicit time stepping of FESOM leads to varying exe-
cution times. Further influences are the parallel communica-
tion within each compartment at each time step and the com-
munication for the model coupling by OASIS3-MCT that is
performed at each model hour. The execution time for these
operations depends on how the overall program is distributed
over the computer. As the computer is also used by other ap-
plications, it is likely that the application is widely spread
over the computer so that even different compute racks are
used. This can even lead to the situation when the processors
for a single coupled model task of ECHAM and FESOM (but
also a single model instance of ECHAM or FESOM) are not
placed close to each other. If the processors are distant, e.g.,
in different racks, the communication over the network will
be slower than for a compact placement of the processors.
To this end, also the execution time will vary when an exper-
iment for the same ensemble size is repeated. Nonetheless,
repeated experiments showed that the timings in Fig. 5 are
representative. Likewise, experiments in the new supercom-
puter system “Lise” of the HLRN showed similar timings,
though the forecast time was reduced to about 27 s per model
day compared to about 35 s shown in Fig. 5.

The variation of the forecast time when the ensemble size
is changed is mainly caused by the varying time for the DA
coupling. When the time for the DA coupling is subtracted
from the forecast time, the variability is much reduced as
the black dashed line shows. The variability in the depen-
dence on the ensemble size is better visible when the exe-
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Figure 5. Execution times per model day for varying ensemble sizes
for different parts of the assimilation program. The dominating fore-
cast time includes the “coupling” time, which results in the time
variations.

cution time is normalized relative to the time for N, = 2, as
is displayed in Fig. 6. The forecast time including DA cou-
pling fluctuates and increases by up to 8 % for the largest
ensemble with N, =46 (black line). In contrast, the fore-
cast time without DA coupling only increases by about 3.5 %
(black dashed line). The time for the DA coupling (blue line)
varies by a factor of 2.5. This large variation is due to the
fact that here the communication happens in the commu-
nicators COMM_COUPLE, which are spread much wider
over the computer than the communicators for each coupled
model task (COMM_CPLMOD), as is visible in Fig. 3. How-
ever, even though the number of ensemble states to be gath-
ered and scattered in the communication for the DA coupling
varies between 2 and 46, there is no obvious systematic in-
crease in the execution time. In particular, for N = 40 the
execution time is almost identical to that of N. = 2.

Further variation in the dependence on the ensemble size
is visible for the pre- and post-step operations (red line). This
variation is mainly due to the operations for writing the en-
semble mean state into a file. In contrast, the analysis step
shows a systematic time increase. The time for computing the
analysis for N. =46 is about 7 times as long as for No = 2.
This is expected from the computational complexity of the
LESTKEF algorithm (see Vetra-Carvalho et al., 2018). How-
ever, the LESTKF also performs MPI communication for
gathering the observational information from different pro-
cess domains. When repeating experiments with the same
ensemble size, we found a variation of the execution time
for the analysis step of up to 10 %.

4.2 Performance tuning

To obtain the scalability discussed above, important opti-
mization steps have been performed. First, it is important
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Figure 6. Execution times relative to ensemble size 2 for different
parts of the assimilation program as a function of the ensemble size.
The fluctuation in the time is caused by parallel communication and
file operations. The analysis step shows a systematic time increase,
while the time for DA coupling varies strongly.

that each coupled model instance is, as far as possible, placed
compactly in the computer. Second, one has to carefully con-
sider the disk operations performed by the ensemble of cou-
pled model tasks.

For the first aspect, one has to adapt the run script. The
coupled model is usually started with a command line like
mpirun -np N_O fesom.x -np N_A\

echam.x
(or any other suitable starter for an MPI-parallel program)
such that FESOM and ECHAM are run using No and Np
processes, respectively. For the DA, one could simply change
this by replacing No by Ne X No and Na by Ne X Ny to pro-
vide enough processes to run the ensemble. This is analogous
to the approach used when running a single-compartment
model. However, changing the command line in this way will
first place all MPI tasks for the FESOM ensemble in the com-
puter followed by all MPI tasks for the ECHAM ensemble.
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Accordingly, each ocean model will be placed distant from
the atmospheric model to which it is coupled. Using this ex-
ecution approach, the time for the forecasts discussed above
increased by a factor of 4, when the ensemble size was in-
creased from 2 to 46. For a more efficient execution, one has
to ensure that the ocean—atmosphere pairs are placed close to
each other. This is achieved with a command line such as
mpirun -np N_O fesom.x -np N_A \

echam.x: -np N_O fesom.x -np N_A\

echam.x...
which contains as many FESOM-ECHAM pairs as there are
ensemble members. With this approach, the time increase of
the forecast was reduced to about 40 % for the increase from
N, =2to N, =46.

For the second issue regarding disk operations, one has
to take into account that the direct outputs written by each
coupled ensemble task are usually not relevant, because the
assimilation focuses on the ensemble mean state. To this end,
one generally wants to deactivate the outputs written by the
individual models and replace them by outputs written by the
pre- and post-step routine called by PDAF. If the model does
not allow us to fully switch off the file output, it usually helps
to set the output interval of a model to a high value (e.g., a
year for a year-long assimilation experiment). However, in
the case of AWI-CM this strategy still resulted in conflicts of
the input/output operations so that the models from the dif-
ferent ensemble tasks tried to write into the same files, which
serialized these operations and increased the execution time.
To avoid these conflicts, it helped to distribute the execution
of the different ensemble tasks to different directories, e.g.,
mpirun -np N_O 0l1/fesom.x -np N_A\

0l/echam.x : -np 02/N_O fesom.x :\

-np N_A 02/echam.x...
combined with a prior operation in the run script to generate
the directories and distribute the model executables and in-
put files. This distribution avoids the case when two model
tasks write into the same file and improves the performance
of the ensemble DA application. In this configuration, the
performance results of Sect. 4.1 were obtained. Another ben-
efit of separate execution directories is that ensemble restarts
can be easily realized. Given that each model task writes its
own restart files in a separate directory, a model restart is
possible from these files without any adaptions to the model
code. Note that the approach of separate directories is also
possible for the ensemble DA in the case of a single (un-
coupled) model like a FESOM-only simulation using atmo-
spheric forcing data as, for example, applied by Androsov
et al. (2019).

5 Application example

Applications based on the AWI-CM-PDAF 1.0 code are
given in Mu et al. (2020), where the focus is on the effect
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on sea ice, and Tang et al. (2020), who discuss the reaction
of the atmosphere on assimilating ocean observations.

Here, we demonstrate the functionality of the data assim-
ilation system in an experiment assimilating SST data over
the year 2016. An ensemble of 46 states is used, which is
the maximum size used in the scalability experiment dis-
cussed above. The assimilation is performed with a localiza-
tion radius of 500 km using the regulated localization func-
tion by Nerger et al. (2012a). The same SST observations
as in Sect. 4.1 are assimilated, which are treated as in Tang
et al. (2020). The resolution of the observations is 0.1° and
hence higher than the resolution of the model in most re-
gions. Since the model grid is unstructured with varying res-
olution, super-observations are generated by averaging onto
the model grid. The observation error standard deviation for
the assimilation was set to 0.8 °C, and observations whose
difference from the ensemble mean is more than 2 standard
deviations are excluded from the assimilation. This approach
excludes about 22 % of the observations at the initial first
analysis step. The number of excluded observations shrinks
during the course of the assimilation and after 1 month less
than 5 % of the days observations are excluded. The assimila-
tion further excludes observations at grid points for which the
model contains sea ice because of the mismatch of the satel-
lite data representing ice-free conditions, while ice is present
on modeled ocean surface. Two experiments are performed:
the experiment FREE runs the ensemble without assimilating
observations, while the experiment DA-SST assimilates the
SST data.

Figure 7 shows the root-mean-square error (RMSE) of the
SST in the analysis step with respect to the assimilated ob-
servations over time. Given that the SST observations are as-
similated, it is a necessary condition for the DA to reduce
the deviation from these observations. At the initial analysis
time (i.e., after 24 h), the RMSE is about 1.2 °C. In the free
run, the RMSE increases first to about 1.4 °C and reaches
nearly 1.6 °C a the end of the year. The assimilation in DA-
SST strongly reduces the RMSE during the first 2 months.
During this initial transient phase, the RMSE is reduced to
about 0.45°C. Afterwards, the RMSE remains nearly con-
stant, which is a typical behavior. On average over the year
2016, the RMSE in the experiment DA-SST is 0.51 °C, while
itis 1.38 °C for the free run.

To validate the assimilation with independent observa-
tions, temperature and salinity profiles from the EN4 data set
(EN4.2.1) of the UK Met Office (Good et al., 2013) are used.
This collection of in situ data contains about 1000 to 2000
profiles per day at depths between the surface and 5000 m
depth. Figure 8 shows the RMSE of the experiment DA-SST
relative to the RMSE for the free run. Hence values below
one indicate improvements. For the temperature, a gradual
improvement is visible during the first 100d. The error re-
duction reaches about 40 % during the year. On average, the
RMSE is reduced by 24 % from 1.85 to 1.40 °C. The varia-
tions in the RMSE, e.g., the elevated values around day 250,

Geosci. Model Dev., 13, 4305-4321, 2020

L. Nerger et al.: Building a coupled data assimilation system

SST RMSEs

——FREE
—— Assimilation

RMSE [°C]

0 50 100 150 200 250 300 350
Day

Figure 7. Root-mean-square errors of the estimated SST with re-

gard to the assimilated SST observations. Shown are the free run

(blue) and the SST assimilation experiment (black). During the
spin-up period of the DA, the RMSEs are strongly reduced.

are due to the varying coverage and location of the profiles
in the EN4 data set. For the salinity, the effect of the DA is
lower. While the RMSE of the salinity first increases dur-
ing the first month, it is reduced from day 60, but until day
140 it is sometimes larger than at the initial time. The RMSE
is partly reduced by up to 23 % at day 144. On average,
over the full year of the experiment, the RMSE of salinity
is reduced by 5.6 %. This smaller effect on the salinity is ex-
pected, because there are no strong correlations between the
SST and the salinity at different depths. The improvements of
the model fields by the DA of SST are mainly located in the
upper 200 m of the ocean. For the temperature, the RMSE is
reduced by 15.2 % in the upper 200 m but only 3.0 % below
200 m. This is also an expected effect, because the correla-
tions between SST and subsurface temperature are largest in
the mixed layer of the ocean.

6 Discussion

The good scalability of the assimilation system allows us to
perform the assimilation experiment of Sect. 5 over one full
year with daily assimilation in slightly less than 4 h, corre-
sponding to about 53 000 core hours. As such, the system is
significantly faster than the coupled ensemble DA applica-
tion by Karspeck et al. (2018), who reported an experiment
to complete 1 year in 3 to 6 weeks with an ensemble of 30
states and about 1 x 10° core hours per simulation year. How-
ever, both systems are not directly comparable. Karspeck
et al. (2018) used atmospheric and ocean models with 1°
resolution. Thus, their atmosphere had a higher resolution
than used here, while the ocean resolution was comparable
to the coarse FESOM resolution in the open ocean, which
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1o Relative RMSEs for EN4 profile data
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Figure 8. Root mean square errors (RMSEs) of the assimilation ex-
periment relative to the free run computed with regard to the in situ
EN4 profile observations. Shown are the relative RMSEs for tem-
perature (blue) and salinity (green). Temperature is more strongly
improved than salinity.

was then regionally refined. Given that both model compart-
ments in AWI-CM scale to larger processor numbers than
we used for the DA experiment, we expect that the DA in
AWI-CM with ECHAM at a resolution of T127 (i.e., about
1°) could be run at a similar execution time as for T63 given
that a higher number of processors would be used. Further,
Karspeck et al. (2018) also applied the DA in the atmosphere,
while here only oceanic data were assimilated. Given that the
atmospheric analysis step would typically be applied after
each sixth hour, the time for the DA coupling and the anal-
ysis steps would increase. However, we do not expect that a
single atmospheric analysis step would require significantly
more time than the ocean DA, so due to the parallelization,
the overall run time should not increase by more than 10 %-—
20 %. Further, we expect a similar scalability in the case of
strongly coupled DA. The major change for strongly cou-
pled DA is to communicate the observations in between the
compartments as mentioned above. This communication will
only be a small part of the analysis time.

Important for the online-coupled assimilation system is
that there is obviously no significant time required for redis-
tributing the model field (i.e., the time for the DA coupling
discussed in Sect. 4.1). Furthermore, there is no transpose of
the ensemble array to be performed, which was reported to be
costly by Karspeck et al. (2018). Here, the implementation of
the analysis step uses the same domain decomposition as the
models; hence, only the full ensemble for each process sub-
domain has to be collected by the DA coupling. Thus, only
groups of up to 46 processes communicate with each other in
this step.

The online-coupled assimilation system avoids any need
for frequent model restarts. Actually, the initial model startup
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of AWI-CM took about 95 s and the finalization of the model
with writing restart files took another 15 s. Thus, these opera-
tions take about 3.3 times longer than integrating the coupled
model for 1d. If the DA would be performed in a separate
program coupled to AWI-CM through files, these operations
would be required each model day. In addition, the assim-
ilation program would also need to read these restart files
and write new restart files after the analysis step. Assuming
that these observations take about 15 s, such as the finaliza-
tion of the coupled model, the execution time would increase
by a factor of 4 for offline-coupled DA compared to online-
coupled DA.

The code structure using interface routines inserted into
the model code and case-specific call-back routines makes
the assimilation framework highly flexible. Further, the ab-
straction in the analysis step, which uses only state and ob-
servation vectors without accounting for the physical fields,
allows one to separate the development of advanced DA algo-
rithms from the development of the model. Thus, a separation
of concerns is ensured, which is mandated for efficient devel-
opment of complex model codes and their adaptions to mod-
ern computers (Lawrence et al., 2018). The separation allows
all users (as soon as a new DA method is implemented) with
their variety of models to use this method by updating the
PDAF library. To ensure compatibility of different versions
of the library, the interfaces to the PDAF routines are kept un-
changed. However, for a new filter, additional call-back rou-
tines might be required, e.g., a routine to compute the likeli-
hood of an ensemble according to the available observations
in the case of the nonlinear ensemble transform filter (NETF;
Todter and Ahrens, 2015) or a particle filter. The abstrac-
tion in the analysis step and the model-agnostic code struc-
ture also allow users to apply the assimilation framework in-
dependently of the specific research domain. For example,
applications of PDAF with a geodynamo model (Fournier
et al., 2013), hydrological applications (Kurtz et al., 2016),
ice shield modeling (Gillet-Chaulet, 2020), and volcanic ash
clouds (Pardini et al., 2020) have been published.

The example here uses a parallelization in which the anal-
ysis step is computed using the first model task and the same
domain decomposition as the model. Other parallel config-
urations are possible. For example, one could compute the
analysis step not only by using the processes of model task 1
but also by using processes of several or all model tasks. This
could be done by either using a finer domain decomposi-
tion than in the model integrations or by distributing different
model fields onto the processes. These alternative paralleliza-
tion strategies are, however, more complex to implement and
hence not the default in PDAF. A further alternative, which
is already supported by PDAF, is to dedicate a set of pro-
cesses for the analysis step. In this case, the DA coupling
would communicate all ensemble members to these separate
processes. However, these processes would idle during the
forecast phase. To this end, separating the processes for the
analysis step would mainly be a choice if the available mem-
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ory on the first model task is not sufficient to execute the
analysis step. Also in this case, the distribution of the anal-
ysis step over several processors would reduce the required
memory. For the parallel configuration of AWI-CM-PDAF
in Fig. 3, a particular order of the processes is assumed. This
order originates from the startup procedure of MPI and is
determined by the command line which starts the program.
Thus, for other models one might need a different setup,
which can usually be obtained by only modifying the routine
init_parallel_pdaf. Further, the default version of this routine
splits the communicator MPI_COMM_WORLD. However,
for other models a different suitable communicator might
be split if not all processes participate in the time stepping.
This can be the case when, for example, an input/output (OI)
server is used that reserves processes exclusively for the file
operations. To provide flexibility to adapt to such require-
ments, the routine init_parallel_pdaf is compiled with the
model and is not part of the core routines of the PDAF li-
brary.

While the fully parallel execution of the assimilation pro-
gram is very efficient, it is limited by the overall job size
allowed on the computer. The maximum ensemble size was
here limited by the batch job size of the used computer. The
model used in the example here can scale even further than
the 192 processes used for FESOM and the 72 processes for
ECHAM. Thus, using the same computer, one could run a
larger ensemble, with less processes per model and accord-
ingly a larger run time, or a smaller ensemble with less run
time. The number of processes should be set so that the re-
quirements on the ensemble size for a successful assimilation
can be fulfilled. Nonetheless, the ensemble DA is computa-
tionally demanding; for larger applications, one might need
to obtain a compute allocation at larger computing sites, such
as national compute centers.

7 Conclusions

This study discussed the Parallel Data Assimilation Frame-
work (PDAF) and its use to create a coupled data assimila-
tion program by augmenting the code of a coupled model and
using in-memory data transfers between the model and the
data assimilation software. The implementation strategy was
exemplified for the coupled ocean—atmosphere model AWI-
CM for which two separate programs for the ocean and atmo-
sphere were augmented. However, the strategy can be easily
used for other model systems consisting of a single or multi-
ple executables.

The implementation of a DA system based on PDAF con-
sists of augmenting the model codes with calls to routines of
the assimilation framework. These routines modify the par-
allelization of the model system so that it becomes an en-
semble model. Further, the ensemble is initialized and the
analysis step of the data assimilation can be executed at any
time without restarting the model. Operations to transfer be-
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tween model fields and the abstract state vector of the assim-
ilation (and the observation handling) are performed in the
case-specific routines. These routines are executed as call-
back routines and can be implemented like routines of the
numerical model, which should simplify their implementa-
tion.

Numerical experiments with daily assimilation of sea sur-
face temperature observations into the AWI-CM showed an
excellent scalability when the ensemble size was increased.
This resulted in an overhead which was, depending on the
ensemble size, only up to 15 % in computing time compared
to the model without assimilation functionality. The execu-
tion time of the coupled ensemble data assimilation program
was dominated by the time to compute the ensemble inte-
grations in between the time instances at which the observa-
tions are assimilated. This excellent scalability resulted from
avoiding disk operations by keeping the ensemble informa-
tion in memory and exchanging it through parallel commu-
nication during the run time of the program. Care has to be
taken that in the coupled model the pairs of atmosphere and
ocean model compartments are placed close to each other
in the computer, which can be achieved by specifying these
pairs in the command starting the parallel program. The time
to collect this ensemble information before the analysis step
and to distribute it afterwards showed significant variations
from run to run. These variations are due to the fact that the
large compute application is widely spread over processors
of the computer. In any case, no systematic time increase
was observed when the ensemble size was increased, and the
time was only up to about 6 % of the time required for the
forecasting. Distributing the different models over separate
directories improved the scalability, because it avoided pos-
sible conflicts for the file handling, which can be serialized
by the operating system of the computer.

PDAF provides a model-agnostic framework for the effi-
cient data assimilation system as well as filter and smoother
algorithms. As such, it provides the capacity to ensure a sep-
aration of concerns between the developments in the model,
observations, and the assimilation algorithms. Functionality
to interface between the model, which operates on physical
fields, and the assimilation code, which only works on ab-
stract state vectors, has to be provided in a case-specific man-
ner by the users based on code templates. This also holds
for the observation handling. While there are typical obser-
vational data sets for the different Earth system compart-
ments, the observation operator links the observations with
the model fields on the model grid. Thus, the observation
operator has to be implemented by taking into account the
specific character of the model grid such as the unstructured
structure of FESOM’s grid.

The current implementation of AWI-CM-PDAF only con-
tains assimilation for the ocean component, while assimila-
tion for the atmosphere is technically prepared. First studies
(Mu et al., 2020; Tang et al., 2020) based on this implementa-
tion have been published. In future work, we plan to add the
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assimilation of atmospheric observations and to complete the
implementation of strongly coupled data assimilation, which
requires the exchange of observations in between the ocean
and atmosphere.

Code availability. The  model  binding for AWI-CM-
PDAF 1.0 wused in this study is archived at Zenodo
(https://doi.org/10.5281/zenodo.3822030; Nerger et al., 2019a)
The PDAF code (version 1.14 was used here), as well as a
full code documentation and a usage tutorial, is available at
http://pdaf.awi.de (last access: 14 September 2020). The source
code of the coupled AWI-CM is available from the model de-
velopers via https://fesom.de (last access: 14 September 2020).
The ECHAMG6 source code is maintained by the Max Planck
Institute for Meteorology and is freely available to the public
(http://www.mpimet.mpg.de/en/science/models/mpi-esm/echam/;
Max Planck Institute for Meteorology, 2019a). External access to
the ECHAMG6 model is provided through their licensing procedure
(https://mpimet.mpg.de/en/science/models/availability-licenses,
last access: 14 September 2020). Only after registering for using
ECHAMBG6 can access to AWI-CM be granted. The OASIS3-MCT
coupler is available for download at https://portal.enes.org/oasis
(ENES Portal, 2011).
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“LR” mesh of FESOM. For the availability of the configura-
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put files containing the timing information, the outputs from the
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