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Abstract: Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes
were estimated in surface waters using principal component analysis (PCA) of hyperspectral
and multispectral remote-sensing reflectance data. This involved the development of models
that employed multilinear correlations between cell abundances across the Atlantic Ocean
and a combination of PCA scores and sea surface temperatures. The models retrieve high
Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical
dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate
waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters.
Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements
for the training dataset, which resulted in the successful detection of fine-scale Synechococcus
patches. Satellite implementation of the models showed good performance (R2 > 0.50) when
validated against in-situ data from six Atlantic Meridional Transect cruises. The improved
relative performance of the hyperspectral models highlights the importance of future high spectral
resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to
extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages.
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1. Introduction

Observing spatiotemporal changes in the composition of phytoplankton assemblages over broad
areas of the ocean increases our understanding of the response of these critical photoautotrophs to
environmental and climatic processes. The smallest phytoplankton cells, most often categorized
as picophytoplankton (< 2 µm [1]) or ultraphytoplankton (< 3 µm [2]), are the most abundant
primary producers in the global ocean. Despite their individually low biomass relative to other
primary producers [3,4], picophytoplankton are dominant in ∼50% of the world’s surface oceans,
where the reduced availability of inorganic nutrients limits the growth of larger phytoplankton
cells [5–7]. Composed of the cyanobacteria Prochlorococcus (∼0.8 µm) and Synechococcus
(∼1 µm), as well as a polyphyletic group of picoeukaryotes, picophytoplankton are responsible
for 50 to 90% of all primary production in open ocean ecosystems [8,9]. They therefore play a
substantial role in the maintenance of the marine food web and contribute up to 30% of the total
carbon export to the deep ocean [10–12].
Given the important ecological and biogeochemical roles of picophytoplankton, the oceano-

graphic community invests substantially in improving our scientific understanding of their
spatiotemporal patterns. Ship-based in-situ measurements of phytoplankton composition have
revealed important paradigms in their diversity [13–18]. In the Atlantic Ocean, for example,
Prochlorococcus inhabits warmer and mostly oligotrophic waters surrounded by spatially adjacent
fronts of sub-mesoscale Synechococcus patches [8,13,18]. These fronts often reside at boundaries
where phytoplankton communities start to transition to higher concentrations of larger eukaryotic
cells, such as picoeukaryotes and nanoeukaryotic flagellates [8,19] (Fig. 1). Hence, identification
of Prochlorococcus and Synechococcus distributions may conceptually be used to identify trophic
boundaries in oceanic ecosystems [20], in addition to providing insight into productivity, food
web regimes, and carbon export.

Ocean color satellite instruments provide a tool for capturing and retrospectively analyzing
phytoplankton spatiotemporal patterns on synoptic and long-term scales that are unattainable
by conventional in-situ methods [21–23]. These instruments measure visible and near-infrared
radiances at discrete wavelengths at the top-of-the atmosphere. Atmospheric correction algorithms
are applied to remove contributions of the atmosphere and surface reflection from the total signal,
leaving estimates of spectral remote-sensing reflectances (Rrs(λ); sr−1), the light exiting the
water column normalized to the downwelling surface irradiance [24]. Bio-optical algorithms
are subsequently applied to the Rrs(λ) to produce estimates of near-surface concentrations of
the photosynthetic pigment chlorophyll-a (Chl; mg m−3) and other metrics of phytoplankton
community composition [25–27]. Other existing bio-optical algorithms provide abundances or
biomass of different phytoplankton using unique empirical relationships between cell abundance
and Rrs(λ), as well as additional satellite observables such as sea surface temperature (SST; °C)
and photosynthetically active radiation (PAR; µE m−2 s−1) [9,28–30].

To date, the majority of bio-optical algorithms that explore phytoplankton community compo-
sition exploit the capabilities of multispectral ocean color satellites, using only a few wavelengths
of an Rrs(λ) spectrum [21,23,31]. More recent approaches consider increased spectral resolution,
following the development of commercial off-the-shelf instrumentation allowing the hyperspec-
tral in-situ measurement of Rrs(λ) and the expectation that hyperspectral ocean color satellite
instruments will be launched in the foreseeable future [32]. Given the higher information content
of hyperspectral radiometry, sophisticated statistical methods have been successfully applied to
assess its variability and correlation with phytoplankton attributes of interest [18,33–39]. The
forthcoming NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is expected to
increase the interest and demand for hyperspectral methods for global phytoplankton community
composition assessment [40].

In this paper, we present empirical algorithms based on principal component regressions that
provide estimates of surface abundances of Prochlorococcus, Synechococcus, and autotrophic
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Fig. 1. a) Carbon concentration estimated from flow-cytometric cell counts across the
Atlantic Meridional Transect, and b) cell abundance (scaled to group-specific maximum cell
abundance) of Prochlorococcus (blue), Synechococcus (orange), autotrophic picoeukaryotes
(green) and autotrophic nanoeukaryotes (red) in surface waters of the frontal system between
the South Atlantic Gyre and temperate waters of the South Atlantic (subset of the southern
portion of the transect in (a)). Data collected during AMT24 (2014). Red circles in
Prochlorococcus indicate samples that were taken from CTD casts. The remaining samples
(across the Synechococcus front) were taken from the ship’s underway system.

picoeukaryotes, derived from in-situ datasets of measured cell abundances and hyperspectral
Rrs(λ). First, we explore the viability of principal component techniques for the identification of
some of the smallest phytoplankton community members using hyperspectral and multispectral
Rrs(λ). This exploration includes an assessment of performance enhancement using both
Rrs(λ) and remotely sensed SST as an additional predictor. Second, we evaluate the relative
performance of multi- and hyperspectral implementations of these algorithms. These comparisons
quantify improvements in Prochlorococcus and Synechococcus retrievals when additional spectral
information is used. Knowledge of such performance differences provides a metric of relative
uncertainty to be considered when evaluating results from heritage multispectral satellite
instruments in comparison with forthcoming hyperspectral satellite instruments such as NASA’s
PACE mission [40].
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2. Material and methods

2.1. Algorithm training in-situ dataset

Radiometric, hydrographic, and phytoplankton abundance in-situ data for algorithm training
were collected during the Atlantic Meridional Transect 24 (AMT24) oceanographic expedition,
which took place between the United Kingdom and the Falkland Islands during boreal autumn
(September 30th to November 1st, 2014) onboard the RRS JamesClark Ross. AMT24 coveredmost
biogeochemical provinces of the Atlantic Ocean (Fig. 2), capturing several marine ecosystems
inclusive of ocean gyres, the highly productive Equatorial Convergence Zone, and the high-latitude
boundaries of the ocean gyres [8,41].

Fig. 2. a) CTD stations for the training dataset (Atlantic Meridional Transect 24 - AMT24),
and the validation datasets (AMTs 20, 22, 23, 25 and 28), with the monthly composite
of chlorophyll (MODerate resolution Imaging Spectroradiometer onboard Aqua - Aqua-
MODIS) in October/2014, and b) magnification of frontal region between the South Atlantic
Gyre and temperate waters, highlighting the frequent underway samples (dots).

The sampling strategy to generate an appropriate dataset to develop a predictive algorithm
targeted to a phytoplankton group must be designed according to the spatial scales of variability
for this group. As such, consideration of previous knowledge about the biology and ecology of
this phytoplankton group is useful. With that in mind, we considered two different approaches to
collect discrete samples for the analysis of picophytoplankton community structure. First, daily
surface (< 10 m depth) samples were collected at 13:00 (local time) using a Niskin bottle deployed
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as part of the CTD rosette (Fig. 2). Second, additional surface samples were collected every
30 minutes from the underway system of the ship (Fig. 2) while crossing the front between the
South Atlantic Gyre and temperate waters (latitude from 25°S to 45°S). This is the region where
we expect a transition from Prochlorococcus dominance into the sub-mesoscale Synechococcus
patches. Water temperature was measured using a CTD (Sea-Bird Electronics SBE 9/11) installed
on the rosette profiler or using the hull-mounted shipboard CTD unit (SBE 3P). More details on
the underway sampling can be found in Brewin et al. [42].
Above-water radiometric data were collected in continuous underway mode using three

Sea-Bird Electronics HyperSAS radiometer systems (measuring total upwelling radiance Lt(λ),
sky radiance Lsky(λ), and planar downwelling irradiance Ed(λ)) as described by Brewin et al. [43].
The radiometers have nominal spectral resolution of 10 nm and spectral sampling of 3.3 nm. The
procedure to process radiometric data followed protocols described in the same reference, with
the following modifications: 1) raw radiometric data were converted to physical quantities using
calibration coefficients computed as the average between the pre- and post-cruise calibrations; 2)
corrections for dark counts, interpolated in time and over a common wavelength range, were done
as in Brewin et al. [43]; 3) continuous measurements of pitch and roll were used to compute tilt
angles and all radiometric measurements corresponding to tilt angles ≥ 5°, or with solar zenith
angles ≥ 80° and ≤ 10° were discarded; 4) the relative azimuth angle (∆φ) between sensor (φ)
and sun (φ0) was computed as∆φ=φ – φ0 and all radiometric measurements with ∆φ ≥ 170°
and ∆φ ≤ 50° were discarded; and, 5) an existing technique based on the assumed absence of
upward radiance in the near infrared in open-ocean waters [44] was adapted to minimize sun
glint. For the latter, we divided the continuous underway dataset into 1-minute intervals and for
each interval we only retained the data corresponding to the Lt(λ) spectrum that had the minimum
Lt(λ) in the near-infrared spectral region as determined by the average of values in the 750-800
nm range. Water-leaving radiance (Lw(λ)) was computed by subtracting the influence of sky and
sunlight specularly reflected by the sea surface using the following equation:

Lw = Lt − ρskyLsky − LNIR, (1)

where ρsky and LNIR are scalar coefficients that we obtained by minimizing the following cost
function:

C =
∑λ=800

λ=750
|Lt(λ) − ρskyLsky(λ) − LNIR |. (2)

In practice, this minimization routine ensures that the derived Lw(λ) is approximately zero and
spectrally flat between 750 and 800 nm. Finally, remote-sensing reflectances were computed by
dividing Lw(λ) by Ed(λ).

Once processed, Rrs(λ) from 414 to 660 nm were interpolated (2 nm resolution), then quality-
controlled by removing: 1) measurements collected earlier than 09:00 local time or later than
17:00 local time; 2) spectra that showed negative values in the visible range (400-700 nm); and,
3) spectra with second derivative values higher than 2× 10−4 sr−1 nm−1 or lower than -2× 10−4

sr−1 nm−1 in the spectral region from 610 to 660 nm, as a means of noise removal. Coincidence
between in-situ Rrs(λ) measurements and discrete sampling locations was determined by time
(date, hour, and minute of sampling). Prior to the numerical analysis, each Rrs(λ) spectrum was
standardized (Rrs’(λ)) [33,35] following:

Rrs
′(λ = i) =

Rrs(λ = i) − mean [Rrs]
660
414

sd [Rrs]
660
414

, (3)

where Rrs(λ=i) is the Rrs at the ith wavelength, and mean and sd [Rrs]
660
414 are the average and

standard deviations of Rrs(λ) of values between 414 and 660 nm in one Rrs(λ) spectrum. This
standardization of the Rrs(λ) curves highlights spectral features of Rrs(λ) and minimizes variance
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due to amplitude. Within open ocean (case 1) waters, the variability in the shapes of spectral
features aremostly governed by phytoplankton absorption properties (i.e., pigments and packaging)
[45], which provide the most useful spectral characteristics to differentiate between taxonomic
groups. Features caused by changes in the spectral slope of backscattering and absorption by
colored dissolved organic matter (CDOM) are still reflected in the shape of standardized Rrs’(λ)
spectra. Less spectrally distinct changes in Rrs(λ) result from backscattering effects driven
by particle morphological characteristics and refractive indices, and from processing errors in
underway measured Rrs(λ) such as sea-surface correction and cloud effects. The measured Rrs’(λ)
spectra from the AMT24 dataset are shown in Fig. 3.

Fig. 3. Remote-sensing reflectances (Rrs(λ)) measured at discrete sampling locations
across the Atlantic Ocean during AMT24: a) original hyperspectral measurements; b)
standardized hyperspectral measurements; c) standardized multiband measurements at the
central wavelengths of seven Aqua-MODIS bands: 443, 469, 488, 531, 547, 555, and
645 nm.

Picophytoplankton cell concentrations (cells ml−1) were analyzed in 1.6 ml seawater samples
preserved with paraformaldehyde using a FACSCalibur (Becton Dickinson) flow cytometer.
Yellow-green 0.5 and 1.0 µm reference beads (Fluoresbrite Microparticles, Polysciences, War-
rington, PA, USA) were used as an internal standard for both fluorescence and flow rates [46].
For Prochlorococcus and Synechococcus, samples were stained with a 1% commercial stock
solution of SYBR Green 1 (Molecular Probes, Inc.) in Milli-Q water, then mixed with 300
mol m−3 tripotassium citrate (24.5 mol m−3 final concentration) [47]. This method allows the
distinction of different populations of microbes based on their DNA content and right-angle light
scatter (RALS), regardless of their intracellular Chl content (red fluorescence) [46]. Autotrophic
eukaryotes were quantified based on their red fluorescence and RALS, using the method described
in Olson et al. [48]. The AMT24 picoplankton dataset is freely available [49].

2.2. Validation in-situ datasets

Radiometric, hydrographic, and phytoplankton abundance in-situ data for algorithm validation
were collected during several oceanographic expeditions. First, cross-validation (see section 2.4)
was performed using the same AMT24 dataset that was used for training the model. Then, a
satellite implementation was tested using flow cytometric counts from five additional AMT
cruises (AMT20, 22, 23, 25, and 28) [50–53] and coincident Rrs(λ) and SST satellite retrievals (see
details in section 2.3), provided by the British Oceanographic Data Centre (BODC) [52]. Flow
cytometric quantification of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes
was conducted using the method described in Olson et al. [48], except on AMTs 23 and 25 where
Prochlorococcus was quantified following Zubkov et al. [47]. The collection and processing of
flow cytometric data on these cruises followed the methods described in Lange et al. [28]. The
five AMT cruises surveyed similar locations and occurred in similar seasons (late September
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to early November) spanning 2010 to 2018 (detailed information on cruise tracks and dates are
described in the Atlantic Meridional Transect website [54]).

2.3. Satellite data

MODerate resolution Imaging Spectroradiometer onboard Aqua (Aqua-MODIS) data were
acquired from the NASA Ocean Biology Processing Group [55]. This included Level-3, 4-km
global maps of Rrs(λ) and SST spanning the following periods: daily and 8-day composites from
September 30th to November 1st, 2014 (the duration of AMT24); and 8-day composites spanning
October 12th to November 25th 2010 (AMT20), October 10th to November 24th 2012 (AMT22),
October 3rd to November 4th 2013 (AMT23), September 11th to November 4th 2015 (AMT25)
and September 23rd to October 30th 2018 (AMT28). Data from 8-day satellite composites were
considered to match in-situ sampling locations when the date of the in-situ collection fell within
the 8-day window of the composite and its location was located inside a valid 4-km satellite pixel.
The October 2014 monthly cell abundance composites were created by averaging products that
used 8-day composites from October 2014 as input.

Although the temporal interval between in-situ and satellite data may be long (for instance 3-4
days) when using 8-day satellite composites, the abundance of picophytoplankton cells are not
expected to change abruptly over time in stratified environments where they are most abundant
(i.e. ocean gyres and Equatorial divergence zone). Phytoplankton community structure in these
regions gradually changes over the seasons, with a much less dynamic behavior than temperate
waters and shelf seas. Thus, these operationally-viable retrievals from 8-day satellite composites
show their distribution patterns in enough detail and an acceptable associated uncertainty led by
temporal mismatch. Data processing and quality assurance followed the OBPG reprocessing
configuration 2018.0 [55]. Available visible Aqua-MODIS Rrs(λ) from the OBPG were used at
443, 469, 488, 531, 547, 555, and 645 nm wavelengths. Satellite Rrs(λ) spectra were standardized
according to Eq. (3) before being utilized for model implementation.

2.4. Model development

Following Craig et al. [33] and Bracher et al. [35], we used principal component regression
to derive empirical relationships for the prediction of the abundances of Prochlorococcus,
Synechococcus and autotrophic picoeukaryotic cells from scores of a principal component
analysis (PCA) of in-situ Rrs’(λ) from AMT24. We also considered the SST measured in the
AMT24 stations as an additional predictor to improve the performance of the PCA score-based
empirical models. The decomposition of standardized Rrs(λ) spectra via PCA was performed
in R using the function prcomp (package stats [56]), using: 1) hyperspectral Rrs’(λ) spanning
414-660 nm with 2 nm intervals, hereafter referred to as PCAh, and 2) Rrs(λ) measurements at
the seven Aqua-MODIS wavelengths (443, 469, 488, 531, 547, 555, 645 nm) available in the
HyperSAS measurement range, hereafter referred to as PCAm. The matrix X with the Rrs’(λ)
spectra was decomposed into principal components (PC) via:

X(n,w) = U(n, p)
∑
(p) V(w, p)T , (4)

where the matrix V of loadings (also known as eigenvectors) shows the spectral contributions
to each PC (or mode), the vector

∑

contains the singular values (square-root of scores), and
the matrix U of scores (or eigenvalues) consists of the projection of samples at each PC driven
by the variability of Rrs’(λ) in distinct sections of the spectrum [35]. The values n, w, and p in
parentheses indicate dimensions of the matrices and correspond to the number of observations,
number of wavelengths, and number of PCs, respectively, where the number of PCs is equal to
the smallest number between n and w. Derived PCs with a standard deviation lower than 0.1% of
the standard deviation of the first PC were discarded, resulting in 20 PCs from PCAh and 5 PCs
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from PCAm. Additional PCs were discarded based on their significance as a predicting variable
in the empirical model (p-values > 0.05), resulting in 14 PCs for PCAh and 3 PCs for PCAm.
The PC scores were used as predictors in multilinear regression analyses targeting the

abundances of Prochlorococcus (Pro) (Eq. (5)), Synechococcus (Syn) (Eq. (6)), and autotrophic
picoeukaryotes (Apeuk) (Eq. (7)). The initial empirical models were developed using SST and all
PC scores as predictors. Irrelevant predictors (highest p-value in the regression model) were then
systematically discarded using backward stepwise selection. As each predictor was discarded, the
new model (without the discarded predictor) was compared with the previous model (including
that predictor) using the Akaike Information Criteria (AIC), and the model with the lower AIC
value was selected. This process was interrupted when the model that included a target predictor
showed lower AIC than the model where it was removed. Then, the other variables were removed
one by one, and the AIC was re-calculated to assure the best selection of variables, including
those with low p-values in the regression. In the final regressions, SST was used as an additional
predictor for Prochlorococcus and picoeukaryotes, composing the following formulations:

yPro = a + b0log10(SST) + b1u1 + b2u2 + . . . + bpup (5)

log10(ySyn) = a + b1u1 + b2u2 + . . . + bpup, and (6)

log10(yApeuk) = a + b0log10(SST) + b1u1 + b2u2 + . . . + bpup (7)

where y is the concentration of cells (cells ml−1), u1,2,...,p is the score of a Rrs’(λ) spectrum in
the pth PC from the matrix U, a is the intercept, and b0,1,2,...,p are the regression coefficients.
The explanatory variable SST and the response variables (cell abundances of Synechococcus
and autotrophic picoeukaryotes) were log-transformed for the multilinear regression analysis to
achieve a normal distribution. In contrast, cell abundances of Prochlorococcus demonstrated
normal distribution, thus log-transformation was not required and, when implemented for testing,
significantly reduced the performance of the empirical model. The workflow of calculations is
displayed in Fig. 4.

2.5. Model uncertainty assessment

To assess the robustness of the empirical models, cell abundance estimates were compared with
the in-situ observations using the approach proposed by Seegers et al. [57], which includes two
statistical metrics for uncertainty: average bias (Eq. (8)) and mean absolute error (MAE, Eq. (9)),
assuming the normal frequency distribution of the variables. Here, we also calculate the adjusted
coefficient of determination (R2, Eq. (10)). These metrics were calculated as follows:

bias = 10̂
(
1
n

∑n

i=1
log10(XP

i ) − log10(XO
i )

)
, (8)

MAE = 10̂
(
1
n

∑n

i=1
| log10(XP

i ) − log10(XO
i ) |

)
, and (9)

R2 = 1 − (1 − R2)

[
n − 1

n − (k + 1)

]
(10)

where n is the number of observations, XP is the predicted variable, X° is the observed variable,
and k is the number of independent variables in the equation. For consistency across all
phytoplankton assemblages, all metrics were calculated in logarithmic space, and reported values
therefore can be assessed as relative or percentage uncertainties (i.e., Eqs. (3) and (4) from
Seegers et al. [57]). Uncertainties were calculated using the following dataset arrangements:
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1) Full-fit in-situ predictions: Models trained with the AMT24 dataset were used to compute
cell abundances from in-situ Rrs(λ) measurements from AMT24 and predictions were
compared to in-situ observations of cell abundances from AMT24, which were also used
for developing the models (Tables 1 and 2);

2) Cross-validation based on in-situ predictions: Models trained with randomly sub-sampled
training datasets (80%of the original AMT24 dataset) were used to compute cell abundances
using the remaining 20% of the dataset, and these predictions were compared with
observations from this 20% sub-dataset (bootstrap method). This process was repeated
(2000 Monte-Carlo permutations) and the average performance metrics were computed
(Tables 1 and 2);

3) Satellite predictions using full-fit multispectral in-situ models: Models trained with the
AMT24 dataset were used to compute cell abundances from Aqua-MODIS Rrs(λ) and SST
retrievals (daily and 8-day composites) matching the time and location of sampling of
AMT24, and predictions were compared to in-situ observations of cell abundances which
were used to develop the prediction models (Table 3); and,

4) Validation of satellite predictions with independent datasets: Models trained with the
AMT24 dataset were used to compute cell abundances from Aqua-MODIS Rrs(λ) and
SST retrievals (8-day composites) matching the time and location of sampling of five
AMT cruises (AMTs 20, 22, 23, 25 and 28), and predictions were compared to in-situ
observations of cell abundances (Table 3).

Arrangements 1 and 2 assess model performance and robustness against the selection of input
data, respectively. Arrangement 2 (cross-validation) allows an assessment of whether or not the

Fig. 4. Workflow of calculations performed in the predictive models: Model design (yellow
and blue) and model application to Aqua-MODIS data (grey).
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full-fit model is overtrained (i.e., not generalizable to datasets other than its training dataset). If
the full-fit and the cross-validation performance metrics show similar results, the model is robust
(i.e., not overtrained). Arrangements 3 and 4 are used to assess the performance of the model
in terms of application to satellite data to assess its uncertainty by validation with independent
datasets. All statistical analyses were performed using the R packages stats [56], MASS [58], and
devtools [59].

Table 1. Arrangement 1 uncertainty calculations for cell abundance (cells ml−1) model estimates of
Prochlorococcus, Synechococcus and autotrophic picoeukaryotes during AMT24, with or without
SST. Bias and MAE were calculated in log10 normal space, thus are expressed in relative values

corresponding to the percentage deviation from 1 (i.e., 1.09=+9%, 0.93=–7%) . R2 was calculated in
log10 normal space for Synechococcus and picoeukaryotes, but with untransformed data for

Prochlorococcus because Prochlorococcus abundances naturally show a normal distribution. The
best performing hyperspectral and multispectral models using either PCs+SST or PCs only are

indicated in bold, with corresponding results shown in Fig. 6.

Spectral resolution Predicted variable
AMT24 (PCs only) AMT24 (PCs+ SST)

n bias MAE R2 n bias MAE R2

Hyperspectral
Prochlorococcusa 73 1.13 1.49 0.42 73 1.08 1.31 0.82
Synechococcus 73 ∼ 1 1.27 0.92 73 ∼ 1 1.27 0.92

Picoeukaryotes 78 ∼ 1 1.21 0.95 78 ∼ 1 1.21 0.95

Multispectral
Prochlorococcusa 73 1.09 1.46 0.50 73 1.09 1.33 0.76
Synechococcus 73 ∼ 1 1.45 0.81 73 ∼ 1 1.45 0.81

Picoeukaryotesa 78 1 1.27 0.90 78 1 1.24 0.92

aModels chosen to use sea surface temperature (SST) as an additional predictor.

Table 2. Arrangement 1 (full-fit) versus 2 (cross-validation) uncertainty calculations for cell
abundance model estimates of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes
during AMT24. Bias and MAE were calculated in log10 space, thus are expressed in relative values

corresponding to the percentage deviation from 1 (i.e., 1.09=+9%, 0.93=–7%). R2 was calculated in
log10 space for Synechococcus and picoeukaryotes, but with untransformed data for

Prochlorococcus because Prochlorococcus abundances naturally show a normal distribution.

Spectral resolution Predicted variable
All AMT24 (Arrangement 1) Re-sampled AMT24 (Arrangement 2)

n bias MAE R2 n bias MAE R2

Hyperspectral
Prochlorococcusa 73 1.08 1.31 0.82 16 1.08 1.35 0.78

Synechococcus 73 ∼ 1 1.27 0.92 16 ∼ 1 1.36 0.85

Picoeukaryotes 78 ∼ 1 1.21 0.95 16 ∼ 1 1.26 0.92

Multispectral
Prochlorococcusa 73 1.09 1.33 0.76 16 1.11 1.38 0.74

Synechococcus 73 ∼ 1 1.45 0.81 16 1.01 1.50 0.74

Picoeukaryotesa 78 1 1.24 0.92 16 0.94 1.39 0.76

aModels using sea surface temperature (SST) as an additional predictor.
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Table 3. Arrangements 3 and 4 uncertainty calculations for cell abundance model estimates (cells
ml−1) of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes using Aqua-MODIS

Rrs(λ) 8-day-composite retrievals for time and location of AMT24 sampling sites and those of AMTs
20, 22, 23, 25 and 28. Bias and MAE were calculated in log10 normal space, thus are expressed in
relative values corresponding to the percentage deviation from 1 (i.e., 1.09=+9%, 0.93=–7%). R2

was calculated in log10 normal space for Synechococcus and picoeukaryotes, but with
untransformed data for Prochlorococcus because Prochlorococcus abundances naturally show a

normal distribution.

Spectral resolution Predicted variable

AMT24 Aqua-MODIS
(8-day composites)

AMTs 20,22-25, 28
Aqua-MODIS (8-day)

n bias MAE R2 n bias MAE R2

Multispectral
Prochlorococcusa 60 1.09 1.37 0.58 113 1.75 2.26 0.54

Synechococcus 68 0.62 2.04 0.50 120 0.93 2.20 0.40

Picoeukaryotesa 65 0.91 1.28 0.92 120 1.05 1.53 0.60

aModels using sea surface temperature (SST) as an additional predictor.

3. Results

3.1. Selection of explanatory variables

The backward selection of explanatory variables resulted in 14 PCs for PCAh and 3 PCs for
PCAm. The loadings of the first 6 PCs for the PCAh and PCAm datasets are shown in Fig. 5.
The spectral distribution of PC loadings is akin to results from prior similar approaches [33–35],
indicating spectral features related to the optical properties of the seawater constituents. The
spectral variability of the first PC is driven mainly by the particulate backscattering of the in-water
constituents and the absorption of water molecules, and explained more than 96% of the data
covariance for both multi- and hyperspectral Rrs’(λ) datasets. The second PC highlights spectral
features related to the absorption by Chl at the ocean surface, explaining ∼3.5% of the dataset
covariance; and the third PC is driven by the spectral variation of Rrs’(λ) due to the absorption
of accessory pigments and explained ∼0.16% of the dataset covariance [33–35]. These first
three PCs were similar between hyperspectral and multispectral models, indicating that the most
significant Rrs’(λ) features were captured by multispectral data (Fig. 5).
In the multispectral models, PCs 1 and 2 were strong predictors for all targeted picophy-

toplankton taxa, whereas PC3 was utilized to predict the abundance of Synechococcus and
picoeukaryotes. For the hyperspectral models, the prediction of Prochlorococcus utilized PCs
1 and 2 combined with two other PCs, Synechococcus was associated with PCs 1, 2 and 3 in
association with seven other PCs, and picoeukaryotes were predicted using PCs 2 and 3 with
five additional PCs. In addition to using the PCs’ scores as predictors, SST was included as a
predicting variable and the improvement of the models was evaluated.

3.2. Model performance assessed with the training dataset

3.2.1. SST as an additional predictor

Regardless of differences in performance metrics, both hyperspectral and multispectral models
are capable of detecting the changes in cell concentrations along the AMT 24 transect. However,
hyperspectral based models were superior to multispectral ones regardless of the targeted
picophytoplankton group (Table 1). In addition, for Arrangement 1 (section 2.4), the inclusion
of SST as a predictor considerably improved the performance of both the multispectral and
hyperspectral models to predict Prochlorococcus when compared to models that only used
PCs as predictors (Table 1). For the hyperspectral approach, the MAE decreased from 1.49
(49%) to 1.31 (31%) and R2 increased from 0.42 to 0.82 when SST was added to the predictive
model of Prochlorococcus (Table 1, Fig. 6). Likewise, for the multispectral approach, the
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Fig. 5. Spectral distribution of loadings of the first six principal components. Solid lines
(primary Y axis) show loadings of the PCA using hyperspectral Rrs’(λ) (PCAh), whereas
dashed lines (secondary Y axis) show those of the PCA using Rrs’(λ) at the Aqua-MODIS
bands (PCAm). Relative (percentage) explanation of the variability of the data by each PC is
shown on the bottom right of each plot.

MAE decreased from 1.46 to 1.33 and R2 increased from 0.50 to 0.76 (Table 1, Fig. 6). The
inclusion of SST as a predictor did not improve either the multispectral or hyperspectral models
to predict Synechococcus, with biases andMAEs remaining unchanged (Table 1). For autotrophic
picoeukaryotes, uncertainty metrics remained effectively unchanged when considering SST for the
hyperspectral approach and, in the multispectral model, theMAE and R2 showed an improvement
when adding SST (1.27 to 1.24 and 0.90 to 0.92, respectively) (Table 1). We opted to use SST
as an additional predictor in the models to estimate the abundance of Prochlorococcus using
both multi- and hyperspectral Rrs’(λ), and in the model to predict the abundance of autotrophic
picoeukaryotes using multispectral Rrs’(λ).

3.2.2. Multispectral versus hyperspectral cross-validation

Model performance improved when using hyperspectral Rrs’(λ) compared to consideration of
only Aqua-MODIS bands (see Fig. 6, Tables 1 and 2). For Synechococcus abundance estimation,
biases were negligible (Table 2) while multispectral MAEs exceeded hyperspectral MAEs in both
Arrangements 1 (full-fit) and 2 (cross-validation) (1.45 vs. 1.27 and 1.50 vs. 1.36, respectively).
For the prediction of Prochlorococcus and picoeukaryote abundances, the hyperspectral biases
and MAEs were also reduced relative to their multispectral counterparts for both Arrangements 1
and 2 (Table 2). Finally, the R2 for predicting Prochlorococcus, Synechococcus, and autotrophic
picoeukaryote abundances increased by 6% on average when using hyperspectral approach
compared to the multispectral approach. Nevertheless, and despite underperforming relative to
the hyperspectral approach, patterns in the latitudinal variability in the abundance of these groups
were still reasonably captured by the multispectral approach, using SST when applicable, across
the full dynamic range of cell concentrations for each phytoplankton group (see Fig. 6).

3.3. Model implementation using satellite data (Aqua-MODIS)

3.3.1. Satellite retrievals from AMT cruises

Assessment of our multispectral model using 8-day Aqua-MODIS Rrs’(λ) and SST imagery
(September 30th to October 7th, 2014) as input yielded reasonable retrievals of cell concentrations
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Fig. 6. Performance of developed models (Arrangement 2) for a-c) Prochlorococcus (first
row), d-f) Synechococcus (second row) and g-i) autotrophic picoeukaryotes (third row) cell
abundance, using PCAm and PCAh approaches. In panels d-e and g-h, abundances of
Synechococcus and picoeukaryotes are plotted in log10 scale as this transformation was
implemented for model development. SST was used as an additional predictor for both
Prochlorococcus models and the multispectral picoeukaryotes model since it was found
to improve performance (Table 1). Regardless of difference in performance metrics, both
hyperspectral and multispectral in-situ models are capable of detecting the changes in cell
concentrations along the AMT 24 transect (c,f,i).

when compared to in-situ samples collected during the AMT24 cruise (Table 3). TheMAE of
1.37 for Prochlorococcus, 2.04 for Synechococcus and 1.28 for picoeukaryotes was higher than
the one encountered for in-situ Rrs’(λ) data (Table 1), indicating a degradation in performance
when moving to the satellite Rrs’(λ). The bias in Prochlorococcus prediction remained around
1.09 (9%) when using Aqua-MODIS Rrs(λ), similar to that using in-situ Rrs’(λ) measurements.
However, increases in the bias of Synechococcus (0.62 (–38%) from Aqua-MODIS and ∼ 1 (∼
0%) from in-situ Rrs’(λ)) and picoeukaryote retrievals (0.91 (–9%) from Aqua-MODIS and 1
(0%) from in-situ Rrs(λ)) were more evident. These underestimations of cell abundances when
using satellite data are likely associated with the “patchy” nature of their spatial distribution,
further augmented by mismatch between in-situ/satellite sampling times and areas (1.6ml discrete
sample vs. 8 days/4 km composites) (Fig. 7).

The temporal portability of multispectral models was assessed using cell abundance predictions
computed from Aqua-MODIS data retrieved from sampling time/locations of AMTs 20, 22, 23,
25 and 28. Prochlorococcus abundance was overestimated in these 5 AMT cruises, as indicated
by the increase in MAE (2.26) and in bias (1.75) when compared to satellite retrievals from
AMT24 (MAE= 1.37, bias= 1.09), especially in the North Atlantic (Fig. 8). The Synechococcus
model predictions also showed a higher MAE (2.20) compared to AMT24 (2.04), whereas



Research Article Vol. 28, No. 18 / 31 August 2020 / Optics Express 25695

Fig. 7. Performance of developed models (PCAm approach) for a,b) Prochlorococcus (first
row), c,d) Synechococcus (second row) and e,f) autotrophic picoeukaryotes (third row) cell
abundance, implemented using Aqua-MODIS retrievals for the cruise AMT24. In panels c
and e, abundances of Synechococcus and picoeukaryotes are plotted in log10 scale because
this transformation was implemented for model development. SST was used as an additional
predictor for models to predict Prochlorococcus and autotrophic picoeukaryotes.
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Fig. 8. Performance of developed models (PCAm approach) for a,b) Prochlorococcus
(first row), c,d) Synechococcus (second row) and e,f) autotrophic picoeukaryotes (third row)
cell abundance, implemented using 8-day Aqua-MODIS retrievals for AMTs 20, 22, 23,
25 and 28. In panels b, d, and f, black symbols indicate in-situ observations, while red
markers indicate values retrieved using species-specific model from Aqua-MODIS, and
specific MAE of modelled values from each cruise is shown. In panels c and e, abundances
of Synechococcus and picoeukaryotes are shown in log scale, as this transformation was
used in model development. SST was used as an additional predictor for models to predict
Prochlorococcus and autotrophic picoeukaryotes.

picoeukaryotes MAE increased from 1.28 on AMT24 to 1.53 for the other five AMTs with a bias
decreasing slightly from 0.91 (– 9%) to 1.05 (5%) (Table 3).

3.3.2. Implementation using satellite imagery

The spatial distribution of these picophytoplankton groups captured by our models is shown
in Fig. 9. Satellite predictions show highest abundances of Prochlorococcus at the Equatorial
Convergence Zone and lowest abundances in the ocean gyres (despite still being higher than other
phytoplankton), with an increase towards the high-latitude edges of both North and South Atlantic
subtropical gyres. Despite the low abundance, Prochlorococcus numerically dominated the
picophytoplankton in the gyres. Synechococcus showed highest abundances at the high-latitude
edges of the ocean gyres. Autotrophic picoeukaryotes were most abundant in higher latitudes (>
45° N and S) showing similar patterns to the distribution of Chl (see Fig. 2), with the constraint
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of Chl concentrations being lower than 1 mg m−3, since chlorophyll concentrations never reached
values higher than this in the present dataset. Satellite visualization of model outputs allowed
us to detect the picophytoplankton community zonation at the high-latitude gyre edges (i.e.
Prochlorococcus-Synechococcus-picoeukaryotes from the inner gyres towards higher latitudes),
as observed in in-situ measurements (see Fig. 1), demonstrating the potential use of our approach
for the evaluation of ecosystem and biogeochemical models.

Fig. 9. Aqua-MODIS monthly composites (October 2014) showing cell abundances (cells
ml−1) of a) Prochlorococcus, b) Synechococcus and c) autotrophic picoeukaryotes at the
sea surface.

4. Discussion

Principal component regression analysis provides a powerful tool to retrieve optically-significant
marine variables from hyperspectral radiometry by exploring spectral variations in Rrs(λ)
[33,35]. With regard to assessing phytoplankton community composition, this method has
been implemented most frequently in areas of high phytoplankton biomass, where changes in
phytoplankton composition and biomass provide significant changes in phytoplankton absorption
that are reflected in spectral variations in Rrs(λ) [33,35,60]. The highest picophytoplankton
abundances occur in the stable oligotrophic ocean, where the spectral signature of water is
influenced not only by the present cells but also by other seawater constituents that co-vary with
their abundances such as the absorption of colored dissolved organic matter and backscattering of
heterotrophic bacteria, both of which alter the magnitude and shape of Rrs(λ). Considering this,
our analysis captures the associations between changes in ocean color and the abundance of the
smallest phytoplankton, namelyProchlorococcus, Synechococcus, and autotrophic picoeukaryotes.
In the PCA made with Rrs(λ) spectra from the Atlantic Ocean (AMT24) and concurrent cell
counts, the first three principal components displayed spectral features directly or indirectly
correlated with the abundance of these taxa. For example, PC1 shows Rrs(λ) features likely
attributed to the backscatter slope and the spectral shape of the absorption of water molecules,
having similar shape to the first PC of PCAs from hyperspectral Rrs(λ) spectra of meso- and
eutrophic waters [33–35]. This first PC was highly correlated with highest Prochlorococcus
abundances and lowest abundances of larger phytoplankton cells, meaning Prochlorococcus is
most abundant in waters where the shape of the Rrs(λ) spectrum is most similar to that of PC1,
thus having lower influence of the absorption of Chl, accessory pigments and other in-water
constituents (i.e., oligotrophic waters). PCs 2 to 4 were associated with the presence of accessory
pigments and higher Chl absorption, present in Synechococcus and autotrophic picoeukaryotic
cells.
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Increasing the spectral resolution of Rrs(λ) substantially improved the prediction of all targeted
groups (see Tables 1 and 2). Hyperspectral Rrs(λ) provides greater information content on
oceanic constituents contributing to variability in the optical signal, in particular taxon-specific
light-absorbing photosynthetic pigments. Pigment-specific light absorption imposes spectral
features of several nanometers in distance, leading to variations in the spectral shape of Rrs(λ)
signal [23,38]. As a consequence, our hyperspectral approach resulted in a higher number of
usable principal components (predictors) than our multispectral approach, ultimately increasing
the performance of the hyperspectral predictive models, in particular for Synechococcus. This
result agrees with several previous comparisons of hyperspectral and multispectral algorithms
that demonstrate how increasing the spectral resolution of the Rrs(λ) signal improves predictive
models for some phytoplankton taxa [33–35,38].
Remotely-sensed physical ocean properties such as SST can be useful to further constrain

empirical models that predict algal abundance. SST can be used as a powerful predictor for the
accumulation of cells when direct or indirect relationships between SST and certain ecological
conditions that favor the target taxon are well known, as previously demonstrated for the prediction
of blooms of the harmful dinoflagellate Alexandrium fundyense in the Bay of Fundy [61] and
blooms of the diatom Pseudo-nitzschia in Chesapeake Bay [62], and in other predicting models
for the biomass of specific phytoplankton groups [30,63,64]. In our study, the inclusion of SST
was relevant for predicting the abundances of Prochlorococcus and picoeukaryotes, as ecological
niches of both taxa are extremely constrained by temperature [65–67]. Prochlorococcus is most
abundant in environments with high water column stability [68–70], which is usually associated
with high SST [71], whereas picoeukaryotes grow next to the transition between oligo- and
mesotrophic waters [41,72], where SST is typically slightly lower than at the center of the gyres
[73]. The inclusion of SST as a predictor was especially useful for improving multispectral
models.

The performance of empirical models such as the ones presented here are highly dependent on
the training datasets. For example, inclusion of a dataset collected at higher spatial frequency
across the frontal region in the South Atlantic allowed for a larger dynamic range in the training
dataset, yielding better retrievals for phytoplankton taxa that occur in high-abundance patches
such as Synechococcus at the frontal system of the South Atlantic gyre southern boundary [8,29].
When we retrained the multispectral model using only samples collected on CTD casts (sparse
sampling strategy), Synechococcus cell abundances were underestimated in these patches as
sparse sampling missed small pockets of high Synechococcus abundances, thus not capturing
the full range of Synechococcus cell concentrations. The increased number of samples across
the Synechococcus patch reduced the retrieval bias from 0.71 (–29%) to ∼ 1 (∼ 0%) when
using multispectral Rrs(λ) and from 0.84 (–16%) to ∼ 1 (∼ 0%) when using hyperspectral Rrs(λ),
whereas MAE was reduced from 1.67 (67%) to 1.45 (45%) in the multispectral model and from
1.37 (37%) to 1.27 (27%) using the hyperspectral approach. As an empirical model is only
good at predicting cell abundances within the cell number range of its training dataset, this
result highlights the importance of understanding the scales of cell abundances and its spatial
distribution patterns for the targeted phytoplankton taxon when assembling data to train empirical
models. Proper design of in-situ sampling plans must cover the full dynamic range of cell
abundances of that particular taxon. Similarly, vertical sampling needs consideration in such
analyses given that in situ sampling does not always represent the spectrally-dependent depth
range considered in the satellite retrieval. We considered the top 10 m of the water column in
these analyses, which does not consider the full euphotic zone in our areas of interest, but does
encompass a reasonable fraction of the optically weighted signal observed over the first e-folding
depth [74].
Satellite implementation of the empirical models to monthly composites of Aqua-MODIS

Rrs(λ) and SST provided a qualitative view of the spatial and temporal distributions (see Fig. 9)
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of targeted taxa, if only to provide a visual case study to assess the portability of our model.
For Prochlorococcus, our model predicts highest surface abundances at the edges of the ocean
gyres and Equatorial Convergence, showing similar distribution to that of in-situ observations
from AMT cruises (see Fig. 1) [8,14,52]. This Prochlorococcus distribution pattern agrees
with predictions of other ocean color-based models, such as Alvain et al. [75], El-Hourany et
al. [76], and Xi et al. [31], and the model of Lange et al. [28] which combines ocean color
information with environmental variables. In turn, a model based solely on environmental
variables (SST, photosynthetically-active radiation - PAR) – i.e. Flombaum et al. [29] – estimates
highest Prochlorococcus abundances in western boundary currents such as the Gulf Stream and
the Brazil Current because, in this model, SST is the most important driver of the distribution
of Prochlorococcus. SST is a powerful predictor of Prochlorococcus [65–67], possibly due
to its causal relationship with water column stratification [71] which favors the growth of this
cyanobacterium [70]. Stratification induces oligotrophy, avoiding the growth of microbial
assemblages that include herbivores of Prochlorococcus [77]. The direct relationship between
Prochlorococcus and water column stability, rather than temperature, would justify the high
Prochlorococcus abundances found in the Mediterranean Sea [78], and its absence in polar
regions where stratification is seasonal or episodic. While SST may fail to predict the presence
of Prochlorococcus in regions where salinity is important in driving stratification, ocean color
variables such as Rrs(λ) provide direct observation of the surface water components. Rrs(λ) and
spectral phytoplankton absorption coefficients (aph(λ)) provide refined information on the presence
of optically-relevant phytoplankton, which are abundant in the absence of Prochlorococcus. In
other words, Prochlorococcus is most abundant where the optical influence of phytoplankton on
the Rrs(λ) spectrum is minimal. However, concurrent high abundances of Prochlorococcus and
other phytoplankton groups (such as diatoms, nano- and picoeukaryotes) occur in areas where
nutrient input is high despite high stratification levels (i.e., high SST), such as the Equatorial
Convergence Zone [8,79]. This explains the best performance of our Prochlorococcus model
when using ocean color information and SST as predictors.

Regarding Synechococcus estimates, our ocean color-based model finds highest abundances
at the high-latitude edges of the ocean gyres, especially the South Atlantic gyre, surrounding
possible blooms of larger phytoplankton cells such as coccolithophorids, similar to predictions
based on SST and PAR [29]. Highest abundances of autotrophic picoeukaryotes were found at
the higher latitude edges of the ocean gyres (> 45° N and S), mimicking patterns seen in the Chl
distribution. However, picoeukaryotic populations slightly decrease where Chl concentrations
reach values of ∼ 1 mg m−3. Such spatial and temporal patterns highlight the importance
of these picophytoplankton taxa as proxies for certain ecosystems or trophic conditions. For
example, high abundances of Prochlorococcus delineate the extension of the ocean gyres, and
Synechococcus becomes abundant in a narrow band at the transition between oligotrophic (i.e.
South Atlantic gyre) and mesotrophic waters (i.e. temperate waters of higher latitudes where pico-
and nanophytoplankton bloom), as also observed in several studies [8,14,18,41]. It is important
to note that our model estimates cell abundances, which are highly correlated with group-specific
carbon biomass but not always with pigment concentrations because of photophysiological
adaptations of picophytoplankton cells to the different environmental conditions found across
oceanic fronts [8,41,80–83].
In a similar way, we hypothesize that the inclusion of datasets from other parts of the

ocean outside the Atlantic would improve the global model and allow for basin-specific tuning.
Such models could allow for a segregated assessment of the photophysiological and optical
characteristics of basin-specific ecotypes of the picocyanobacteria and picoeukaryotic flora,
ultimately improving the performance of these empirical models. Furthermore, the ability
of models to retrieve abundances of Synechococcus and autotrophic picoeukaryotes could be
improved by including datasets from coastal and/or high Chl areas (> 1 mg m−3), allowing for
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a merged approach (similar to NASA’s current operational Chl algorithm). In these waters,
the contribution of CDOM and carotenoids in large phytoplankton to the spectral variability of
Rrs(λ) is higher, diminishing the relative influence of picophytoplankton cells. However, the
spectral characteristics of these two groups are different in complex waters: Synechococcus
ecotypes display different concentrations of accessory pigments to adapt to different optical
niches [84–87], although they all contain phycobiliprotein complexes which are rather unique and
likely to be detected by the PCA; and the taxonomic composition of autotrophic picoeukaryote
communities is highly variable according to nutrient availability, temperature and stratification
[41,88,89]. This could also deteriorate finding robust models for the specific groups. Xi et al.
[31] used a large global matchup dataset for setting up similar Empirical Orthogonal Function
(EOF) models with pigments (measured using HPLC) and satellite Rrs(λ) data. While eukaryotic
phytoplankton groups were very well predicted globally, the prediction skill of Prochlorococcus
and Synechococcus was rather poor.
Observed changes in model performance between ocean basins or different Atlantic cruises

may be expected and could stem from multiple sources. First, the occurrence of distinct
ecotypes of Prochlorococcus and Synechococcus and combinations of picoeukaryotic taxa in each
ocean basin, and their associated optical properties (due to the physiological acclimation and/or
evolutionary adaptation) might have made our model specific to the Atlantic Ocean during the
AMT sampling season(s) only. Second, the relationships between group-specific cell abundances
and the Rrs(λ) signature can be influenced by the structure of the ecosystem itself – that is, the
presence of other phytoplankton cells (e.g., diatoms in the Equatorial Convergence Zone), or
other optically-active water constituents (e.g., CDOM and non-algal particles). Differences
in ecosystem structure, specifically in the top-down control and other loss pathways for these
phytoplankton populations, could also potentially influence model predictions. In addition, flow
cytometric cell counts enable a precise determination of the abundance of picophytoplankton
groups, which can be converted to carbon biomass [81,82], and do not depend on models
and their associated uncertainties to attribute group-specific biomass from marker pigments.
However, the use of marker pigments as proxies for phytoplankton taxa is most directly linked to
the observed change in the Rrs(λ) spectrum, and also provide estimates of the contribution of
larger phytoplankton to the total phytoplankton biomass and its influence in the Rrs(λ) spectrum,
which can be useful for analysis interpretation. Lastly, while methods used to collect Rrs(λ) for
this study followed similar community-approved procedures, approaches used to quantify the
cell abundances on different oceanographic expeditions differ, potentially adding to differing
validation performances when comparing outputs of the model with alternate datasets where
different flow cytometric procedures were adopted (i.e., Olson et al. [48] versus Zubkov et al.
[47] for quantifying Prochlorococcus and Synechococcus).

Since the goal of the model is to detect the large-scale spatial variability in open ocean waters,
where picophytoplankton cells are most abundant, the model has not been tested in shelf seas
and coastal waters. We expect that the models will need to be retuned for such waters because
the presence of suspended sediments and CDOM will change the spectral distribution of the
eigenvectors of each principal component.

5. Summary and conclusions

Cell abundances of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes were
estimated in surface waters of the Atlantic Ocean using empirical models based on a combination
of SST and the scores of an Rrs(λ) principal component analysis, which captured the association
between changes in ocean color and the abundance of these picophytoplankton groups. These
models were implemented using satellite data (Aqua-MODIS), which allowed us to estimate cell
abundances on a basin scale. Although these phytoplankton types occur in high abundances in
oligotrophic oceans, the spectral signature of waters inhabited by these cells is highly influenced
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by their optical attributes and other water constituents that co-vary with their abundance, such
as the absorption of CDOM and backscattering of heterotrophic bacteria, which modify the
magnitude and shape of the Rrs(λ) spectrum, being expressed in different PCs of the PCA.
The extension of the predictive models to a basin scale is feasible because of the broad

swath of the reference AMT in-situ dataset, which covers a large range of marine environments,
including the North and South Atlantic gyres where picoplankton are dominant, and the
Equatorial Convergence Zone where pico-sized cells are abundant but share the environment
with larger phytoplankton. Along the AMT transect, model estimates successfully demonstrate
the expected distributions of Prochlorococcus in gyres, with higher cell concentrations at the
Equatorial Convergence and near the gyre edges. The model shows the emergence of autotrophic
picoeukaryotes where Chl concentrations increase, and latitudinal changes in the abundance of
Synechococcus showing high-abundance patches in areas of trophic transition such as between
the ocean gyres and mesotrophic waters of higher latitudes.
Our model successfully predicts the abundance of Prochlorococcus, Synechococcus and

autotrophic picoeukaryotic cells in the surface oceans using remote-sensing reflectance and
sea surface temperature. The models using hyperspectral Rrs(λ) substantially improved the
prediction of Prochlorococcus when compared to the multispectral model. The sampling strategy
to generate an appropriate dataset to develop a predictive algorithm targeted to a phytoplankton
group must be designed according to the scale of spatial variability of this group; for example,
in the case of Synechococcus accurate algorithm retrievals necessitate fine spatial sampling to
detect the full abundance range including elevated cell concentrations along transition zones
between oligotrophic and mesotrophic waters. Thus, consideration of previous knowledge about
the biology and ecology of the target phytoplankton group is required.
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