Retrieval of Aerosol Optical Thickness in the Arctic Snow-Covered Regions Using Passive Remote Sensing: Impact of Aerosol Typing and Surface Reflection Model
Currently, no aerosol optical thickness (AOT) data set over the Arctic snow/ice-covered regions derived from space-borne passive remote sensing is available. The challenge is to develop an accurate and robust technique to derive AOT above highly variable and bright snow/ice surfaces. To extend data coverage of the eXtensible Bremen Aerosol/cloud and surfacE Retrieval (XBAER) AOT data product in the future, we propose a new algorithm for the retrieval of AOT and surface properties over snow/ice simultaneously. The algorithm utilizes the linear perturbation theory and does not use any simplified atmospheric correction techniques. Key issues like the selection of a proper aerosol type and optimal surface parameterization method for the retrieval of AOT over the Arctic have been investigated. The aerosol type is investigated using the aerosol climatology microphysical properties derived from four Aerosol Robotic Network (AERONET) sites (Barrow, Hornsund, Kangerlussuaq, and Tiksi). The three-parametric Ross-Li linear kernel model is used to describe the snow bidirectional reflectance distribution function (BRDF). The a priori knowledge of wavelength-dependent features of the coefficients in the Ross-Li linear kernel model is derived from Polarization and Directionality of the Earth's Reflectances (POLDER) measurements over the Arctic and utilized as constraints in the retrieval. The studies show that the combination of Ross-Li surface model and weakly absorbing aerosol parameterization provides an optimal way to derive AOT over the Arctic snow/ice-covered regions from passive remote sensing observations. The retrieved AOTs using POLDER show good agreement with AERONET observations.