Antarctic impact on ocean circulation during late Messinian ocean circulation, insights from IODP Exp. 361 sites.

Allana Azevedo, Francisco J. Jiménez-Espejo, Carlota Escutia, Jens Gruetzner, Deborah Tangunan, Gerald Auer

1Universidade Federal Fluminense, Niterói, Brazil, 2Instituto Andaluz de Ciencias de la Tierra, Armilla, Spain, 3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Geophysics, Bremerhaven, Germany, 4Universidad de Salamanca, Departament of Geology, Salamanca, Spain, 5Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Japan

Different models indicate a marked increase in ice-volume in Antarctica (approx. 50%) during the late Messinian, that culminate in large glaciations (TG22, 20 and 18) when the Antarctic ice-sheet was probably larger than today. Until recently there were only limited late Messinian records that could be used to investigate the influence of these Antarctic ice-sheet expansions on paleoclimatic and palaeoceanographic variability. A key location where this influence is poorly known is the boundary between the Indian and the Atlantic Ocean, which is an integral inter-ocean link in the global thermohaline circulation. In 2016 the International Ocean Discovery Program (IODP) Expedition 361 (“SAFARI”) recovered a complete high-resolution Messinian sedimentary succession at 3 drilling locations on the southeast African margin and in the Indian-Atlantic Ocean gateway. Here we present results from Site U1475 (Agulhas Plateau), a location proximal to the entrance of North Atlantic Deep Water (NADW) to the Southern Ocean and South Indian Ocean. The site is located over sedimentary drift deposits in 2669 m water depth and comprised of carbonate-rich sediments (74 – 85 wt % CaCO3). Based on high-resolution data sets of density, velocity, natural gamma radiation, X-ray fluorescence (XRF) core-scanning data, colour reflectance, grain size distributions and planktonic foraminifera oxygen isotope data, we reconstruct major circulation changes in bottom current as well variations in orbitally-controlled climate variability that can be linked to the Antarctic ice-sheet expansions.