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Whereas the conservation and management of biodiversity has become a key
issue in environmental sciences and policy in general, the conservation of
marine biodiversity faces additional challenges such as the challenges of acces-
sing field sites (e.g. polar, deep sea), knowledge gaps regarding biodiversity
trends, high mobility of many organisms in fluid environments, and ecosys-
tem-specific obstacles to stakeholder engagement and governance. This issue
comprises contributions from a diverse international group of scientists in a
benchmarking volume for a common research agenda on marine
conservation. We begin by addressing information gaps on marine biodiver-
sity trends through novel approaches and technologies, then linking such
information to ecosystem functioning through a focus on traits. We then lever-
age the knowledge of these relationships to inform theory aiming at predicting
the future composition and functioning of marine communities. Finally,
we elucidate the linkages between marine ecosystems and human societies
by examining economic, management and governance approaches that
contribute to effective marine conservation in practice.

This article is part of the theme issue ‘Integrative research perspectives
on marine conservation’.
1. Introduction
Biodiversity is changing rapidly across realms. The past year has seen the publi-
cation of the first global assessment of the status and trends of biodiversity by the
Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) [1],
highlighting how critically biodiversity is affected by human actions on land and
at sea, andhowmuch thiswill affect humanwellbeing.Also in 2019, unprecedented
efforts in the quantitative synthesis of time series data provided a global picture on
howmuch biodiversity is changing worldwide [2–4]. Land-use change [5] and cli-
mate change [6] have been identified as major drivers of past, current and future
biodiversity change.Most scientistswould agree that recent changes in biodiversity
are occurring at much faster rates than in pre-human environments [7,8].

However, there is still debate on the net outcome of this turnover across scales
[9,10], e.g. whether global species loss will lead to local species loss, or whether
immigration will outpace extinction locally, leading to short- to mid-term
increases in species richness. Biodiversity change has often been addressed by
univariate measures (richness or indices or proportion of certain key species),
which remain highly contingent on the temporal and spatial scales of assessments
and are sensitive to statistical and ecological artefacts [11–13]. Therefore, it
remains a challenge to capture the different aspects of changing biotic compo-
sition to reflect the multidimensional processes leading to biodiversity change.
Recent debates about temporal changes in species richness [9,14,15] show that
biodiversity change is the result of complex patterns of immigration and
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extinction dynamics [10,16], where the temporal turnover of
composition reflects changes in the identity of species and
their relative proportions. These temporal dynamics are
strongly affected by spatial components of biodiversity [17],
which themselves are altered by humans through spatial
homogenization [18,19]. Finally, there is no simple linear
relationship between the amount of compositional (i.e. taxono-
mical) biodiversity change and functional diversity changes
[20,21], which may result in novel ecosystem processes and
interaction networks [22,23].

These changes in biodiversity pose a challenge to local,
regional and global conservation efforts. At the global level,
the Aichi targets to halt biodiversity loss will not be achieved
on schedule [24]. By contrast to the international agenda to
address climate change, global biodiversity conservation
does not have a single goal such as the less than 1.5°Cwarming
target set in the Paris Agreement [25]. Turnover, extinction and
immigration are natural processes, which make ‘zero change’
targets inappropriate. However, alternatives such as certain
quota of areas protected from extractive uses often have been
criticized for being arbitrary and misleading because the
success of conservation is more related to quality and partici-
pation than the quantity of conservation measures [26,27].
The protection of strong interactors, including keystone
species, has been used bymany as a way to focus conservation
action [28]. Yet we know that it is not only strongly interacting
species that are vital to ecosystem functioning. Thus, knowl-
edge of both species identity and assemblages is needed to
design effective conservation measures [29,30].

Management strategies and targets for conservation are
actively and widely debated, and have led to major shifts
in how conservation has been envisioned and scientifically
addressed—Georgina Mace wrote a brilliant essay on the his-
tory of conservation ecology a few years ago [31]. Most of
these debates have a strong terrestrial focus, as marine con-
servation has, in comparison, a much shorter scientific track
record. Additionally, marine conservation has some extra
layers of complexity that need to be considered, a few of
which we highlight here.

(a) Types and rates of change
The pressure on marine ecosystems is comparable to the
anthropogenic changes on land, and only a small percentage
of the seas can be considered ‘pristine’ [32,33]. However, two
major differences exist regarding the type and rate of change:
first, whereas the human impact on land can often be related
to the amount of land conversion to range- or cropland, the
human impact on marine ecosystems is often less area-based.
Fisheries, eutrophication by river inflows and non-point pol-
lution, deoxygenation, acidification and warming are not
restricted to certain areas. Area-based changes often prevail
only in coastal areas, exemplified through the expansion of
coastal cities or conversion of mangroves to shrimp farms.
Second, marine life has been shown to be more sensitive to
changes in temperature [34], and at the same time species turn-
over is faster [2]. The former is thought to reflect lower thermal
tolerances in marine biota given less variable temperature
regimes, the latter the high connectivity and low dispersal bar-
riers in open marine ecosystems [2,34,35].

(b) Area-based conservation
The main approach to marine conservation has been through
marine protected areas (MPAs). Multiple benefits from
MPAs, particularly fully protected marine reserves [36],
have been documented, including higher fish biomass (and
sometimes biodiversity) [26], the spillover of this increased
biomass sustaining neighbouring fisheries [37] and increasing
ecological resilience to change [38,39]. However, it has also
been shown that without enforcement, MPA effects can be
neutral or even negative [26] and different syntheses regard-
ing MPAs arrive at different conclusions [40]. Some MPAs
attract higher fishing pressure than non-protected areas
[41], many are not adequately equipped with staff and
budget [42] and the species that are meant to be protected
are threatened by climate warming [43]. Moreover, many
MPAs are isolated, reducing the anticipated spillover effects
[44]. Debates regarding the effectiveness and strategies for
the siting of MPAs might stem partially from expectations
created by transferring this concept from terrestrial ecosystem
management [45]. By contrast to land, the demarcation of a
seascape as protected often reduces only one (mainly harvest-
ing) of the multiple human pressures, but not others (nutrient
input, deoxygenization). Therefore, expecting MPAs to oper-
ate as terrestrial protected areas may be unrealistic given the
open, fluid and three-dimensional nature of the ocean.

(c) Complexity of marine governance
The vast, open, connected and three-dimensional character-
istics of the ocean provide a physical challenge to marine
conservation. Additionally, much of the world’s ocean is out-
side of exclusive economic zones and thus national
jurisdiction and governance regimes [46]. While a legal frame-
work for the international sea exists through the United
Nations Convention on the Law of the Sea (UNCLOS), mana-
ging areas beyond national jurisdictions is complex, multi-
layered and slow. The rate of progress of marine conservation
of the high seas, even in laudable cases such as Antarctica [47],
might be outpaced by the rate of biodiversity change.
2. Contributions to this issue
In this issue, we assemble a unique set of expert perspectives in
themarine natural, social and transdisciplinary sciences to pro-
vide a forward-looking perspective on marine conservation.
Marine environmental research and policymaking hinge
upon understanding the consequences of human actions on
ocean sustainability owing to multidimensional interactions
among environmental responses, biodiversity changes and
nature’s contributions to people. Traditionally, marine natural
and social sciences have addressed single aspects of human
impacts on oceans, often focusing on direct links among
specific drivers and responses [48]. However, both biodiversity
[10] and nature’s contributions to people [49] are multifaceted
emergent properties of marine ecosystems that require agile,
adaptive and adjustablemanagement options to foster effective
marine conservation. As guest editors, we thus aimed to recruit
a diverse group of contributors representing different disci-
plines and approaches. We are happy to provide the views
from more than 60 authors working in 12 countries, which
we have organized into four sections that reflect areas of
future scientific development (figure 1).

The first section, entitled ‘From data to information’, com-
prises four papers on novel approaches to assess marine
biodiversity trends. Our knowledge on biodiversity trends in
the ocean often derives from near shore ocean time series,
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Figure 1. Logical flow of papers in this theme issue.
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and for many parts of the ocean we have little knowledge of
howmuch diversity actually changes. This is owing to the chal-
lenges of accessingmanymarine areas (deep sea, polar regions)
and our lack of remote sensing tools to uncover marine biodi-
versity. In the first paper of this section, Webb & Vanhoorne
[50] analyse the state of our knowledge on macroecological
patterns in marine life. They find that for 44% of the more
than 200 000 marine species in data repositories, only their
taxonomic information is available, whereas other species are
richer in data on biogeography, genetics, conservation status,
etc. Making different data sources interoperable is a clear
recommendation from this study. Rishworth et al. [51] use
monitoring data from two coastal regions, Germany and
South Africa, to show the extent of temporal variation in
species composition. While species richness across organism
groups and sites rarely showed significant monotonic trends,
species turnover between adjacent years was massive (up to
30% p.a.), and even larger when dominance shifts were taken
into account as well. Thus, marine conservation has to take
this huge potential for dynamics into account. The next two
papers of this section pinpoint to the data revolution ongoing
in the environmental sciences, focusing on the assessment of
marine biodiversity based on molecular or acoustic analyses.
Laakmann et al. [52] show how biodiversity assessments
have been shifted from classical morphotaxonomic analyses
to the use of molecular tools, especially the analyses of
organism-independent environmental DNA. Using copepods
as a functionally important and well-investigated case, they
focus on the advantages and pitfalls of respective methods.
Then, Pieretti & Danovaro [53] review recent advances in
using marine acoustics to monitor biodiversity in time and
space. By contrast to common belief, the ocean is not a silent
environment, as many taxa use acoustic communication and
habitat exploration, while at the same time the marine sounds-
capes are altered by anthropogenic noise. But how are these
‘big data’ useful for marine conservation? To explore this
question, the section closes with an article by Popa et al. [54]
on deriving information from sequences, where they show
pathways to link molecular information to functional changes
in the ecosystem. They advocate including this information
into the analyses of temporal trends, and combining such
monitoring with modelling and targeted experiments to
develop a mechanistic understanding of processes.

Given these advances in understanding and quantifying
biodiversity patterns and their temporal and spatial change,
the following section ‘From traits to function’ asks how
such changes affect the processes characterizing marine eco-
systems. Gårdmark & Huss [55] start at the individual
level, where responses to warming can alter individual per-
formance, population size structure and finally food web
dynamics. They stress that intraspecific variation in responses
to temperature and body size need to be embedded in devis-
ing and managing conservation efforts. Marshall & Alvarez-
Noriega [56] extend on this theme, and focus on dispersal as
a key life-history component. They use existing knowledge on
two key aspects of life history, dispersal mode (non-feeding
pelagic larvae, feeding pelagic larvae, no pelagic larvae)
and development duration, to project dispersal strategies
into the future. They predict higher dominance of species
with feeding larvae and shorter developmental pelagic
phases, especially in tropical regions. He et al. [57] then use
a meta-analysis of 125 studies in coastal wetlands to show
how much ecosystem functioning (as carbon cycling)
depends on the biotic composition of the consumer guild.
They find that the absence or presence of consumer guilds
altered the carbon cycle by e.g. halving plant carbon stocks
and increasing litter decomposition by more than 30%.

The theoretical underpinning of these ideas is at the core
of §3 ‘From theory to prediction,’ where we feature different
types of models. Dee et al. [58] model temperature-dependent
predator–prey dynamics and find that including temperature
variability (compared to constant or constantly warming
temperatures) alters interacting multispecies assemblages
with a multitude of potential outcomes, from predator
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collapse to stable coexistence. More generally, Bernhardt et al.
[59] conceptualize the ability of organisms to cope with such
variability, and complement the feedback strategies, where
organisms respond to changes in conditions by feed-forward
mechanisms, where they adjust to anticipated future changes
in conditions via sensing the environment. Klausmeier et al.
[60] then ask how evolutionary adaptation to changing
conditions can occur and whether it can be fast enough to pre-
vent extinction. They review different approaches to modelling
evolutionary rescue, and finally propose a new approach that
explicitly includes bounded environmental changes and
limits to adaptation. Gross et al. [61] open the door to address
spatially connected foodwebs, reviewing recent developments
in metacommunity theory to analyse the structure and
functioning of meta-foodwebs.

In the final section (§4 ‘Nature and people’), we approach
marine conservation as a socio-ecological management issue.
Kelly et al. [62] provide a thorough review on how marine citi-
zen science informs the current understanding of marine
biodiversity and supports the development and implemen-
tation of marine conservation initiatives. The connection
between management of land and consequences at sea is at
the core of the analysis of the stormwater impact on coastal
ecoregions along the US west coast (Levin et al. 2020 [63]).
Given the increasing coastal urbanization, stormwater runoff
results in massive pollution by a complex chemical cocktail,
which only can be mitigated by land management—and in
fact it could be managed by treating a small fraction of the ter-
restrial surface. Jacob et al. [64] introduce a multi-layered
network approach for a better understanding of howecosystem
services emerging from the diversity of traits embedded
in biodiversity drive the total service provision and where
conservation efforts must be placed. In a remarkable
closing article, Peters [65] addresses marine governance
and biodiversity protection as—at least from a theory
perspective—uncharted territory. She argues that in order to
understand our successes and failures in marine biodiversity
conservation, we need more critical discussions about ontolo-
gies and geo-philosophies in our current understanding of
ocean governance. Here a suggestion to de-territorialize gov-
ernance to make it more dynamic and flexible elegantly loops
back to the first papers of this issue on the dynamic nature of
biodiversity change.

In summary, this issue provides an unprecedented effort
to address marine biodiversity management by considering
the entire chain of information needed, from basic data on
the environment to human societal considerations. It would
be impossible for an issue like this to provide complete cover-
age of this topic, but each contribution represents a unique
view on the challenges faced in marine conservation. Concern
over marine biodiversity loss is becoming increasingly central
and important to the global debate, including through links
to other key agendas such as the United Nations sustainable
development goals (SDGs; see https://sdgs.un.org/goals)
and the drive to address climate change and its impacts.
Marine biodiversity and the benefits it provides to people is
fundamental for achieving the SDGs, as is the need to address
the goals synergistically through transformative change of
societies and institutions at multiple scales. There is an
urgent need to ‘bend the curve’ of marine biodiversity loss
in a manner that simultaneously addresses the full suite of
SDGs, and especially climate change, food security, nutrition
and health, recognizing and responding to interconnections.
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