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Calculation of epidemic arrival time distributions using branching processes
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The rise of the World Airline Network over the past century has led to sharp changes in our notions of
“distance” and “closeness”—in terms of both trade and travel, but also (less desirably) with respect to the spread
of disease. When novel pathogens are discovered, countries, cities, and hospitals are caught trying to predict how
much time they have to prepare. In this paper, by considering the early stages of epidemic spread as a simple
branching process, we derive the full probability distribution of arrival times. We are able to rederive a number
of past arrival time results (in suitable limits) and demonstrate the robustness of our approach, both to parameter
values far outside the traditionally considered regime and to errors in the parameter values used. The branching
process approach provides some theoretical justification to the “effective distance” introduced by Brockmann
and Helbing [Science 342, 1337 (2013)]; however, we also observe that when compared to real-world data, the
predictive power of all methods in this class is significantly lower than has been previously reported.
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I. INTRODUCTION

It was said by Jules Verne in 1873 that “The world has
grown smaller, since a man can now go round it ten times
more quickly than a hundred years ago,” that one could travel
around the world in 80 days [1]. One can’t help but wonder
what Verne would think of the advances in technology that
have occurred in the century and a half since, which now allow
the circumnavigation of the globe in less than 80 hours. The
World Aviation Network (WAN) has, over the past century,
shrunk the globe to a fraction of its former size, allowing for
vast increases in tourism, immigration, and trade. At the same
time, diseases that might once have traveled at the speed of
cart, ship or train now cross the world in a number of days
or hours [2]. In 2003 Severe Acute Respiratory Syndrome
(SARS) was able to spread from China to Vietnam, Hong
Kong, and Canada within two weeks of being reported to
the World Health Organization [3]. Similarly, the 2009 H1N1
flu pandemic first reported in Mexico was able to reach both
Europe and Asia within a fortnight [4]. Now, in 2020, we see
that coronavirus SARS-CoV-2 has spread quickly throughout
China [5] and across the world [6,7], reaching all but a handful
of countries within a few short months.
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Modeling of disease spread and disease arrival time is
critical, both to mitigate the effects of a disease and to
determine where best to apply quarantine, screening, and
transport restrictions [8] so as to minimize the spread of
infection. Similar questions are also critical in the study of in-
vasive species [9,10]. Modeling approaches range from direct
SIR-like metapopulation models to highly detailed epidemic
simulation models have been created, such as GLEAMviz
[11]. Depending on how they are set up, these models can
include such factors as vaccination, incubation times, multiple
susceptibility classes, nonlinear responses, seasonal forcing,
quarantine, and the stochastic movement of individual agents,
providing a detailed and comprehensive modeling framework.
Unfortunately, in many cases, such models quickly become
black boxes in and of themselves—objects to be studied and
analyzed only via costly simulation—allowing predictions of
the future that can be observed, but seldom understood. This
difficulty is further exacerbated by the difficulties of determin-
ing parameter values, often a delicate task during the initial
stages of a disease outbreak when information is scarce.

Depending on the questions being asked, explicit modeling
of such intricate details may be necessary; however, for other
questions, such as the determination of epidemic arrival time
(AT), it seems that simpler methods may suffice. For this rea-
son, a number of authors [12–15] have proposed a variety of
heuristics and metrics—artificial measures of distance based
on flight data from the WAN. The goal of such metrics is
to predict relative arrival times for an epidemic starting in a
specified location, predicting, for example, that an epidemic
starting in Vancouver will take twice as long to reach Istanbul
as it will to reach Rio de Janeiro. Absolute AT will also depend
on the parameters of the particular disease in question.
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A particularly elegant example of such a metric is Brock-
mann and Helbing’s [12] “effective distance,” in which they
define the direct distance between a pair of locations as

di j = 1 − log(Pi j ), (1)

where Pi j is the probability that a particular individual who is
leaving location i is traveling to location j. The total effective
distance between nodes a and b is then given as the shortest
path between a given pair of nodes:

Dab = min
∑

i j

di j = min
∑

i j

[1 − log(Pi j )], (2)

where here we minimize over all possible paths from a to b,
and di j denotes the effective distance along each step of this
shortest path (and Pi j the corresponding probability).

Papers by Gautreau, Ianelli et al. provide more detailed
and mathematically justified metrics, by first calculating the
expected time for a growing epidemic to make its first “jump”
[14], and summing over individual paths. Ianelli et al. extend
this work, providing an algorithm for summing over all pos-
sible paths joining a pair of airports [13]. More recent work
by Chen et al. [15] made use of linear spreading theory, and
the matrix exponential, in order to attain similar accuracy at
reduced computational cost.

Underlying each of the above efforts, either implicitly or
explicitly, is an assumption of unbound growth, the idea that
in the early stages of an epidemic, disease spread is not limited
by population size. Such unbound growth can be modeled as
smooth exponential growth, which may be viewed as either a
linearization of the standard SIR-type model [14,15] or as a
continuous approximation of discrete real-world populations.
An alternative model for unbound growth, one often used
when small populations, rare events, and probabilities are of
interest, is the branching process [16]. The branching process
is a classical tool in the study of extinction and evolution [17]
and has been used to study epidemics [18,19], surnames and
genealogies [20], and cancers [21,22]. In this paper we apply
the branching process framework in order to calculate not only
the mean but also the full distribution of ATs for arbitrary
networks.

In Sec. II we introduce a basic “multicompartment branch-
ing process” model, and from this model derive a system of
ODEs that precisely determine the probability of epidemic
arrival by a given time. In Sec. III we determine the mean
and variance in the AT and explore how these results both
support and contrast with the results of past papers. Section IV
explores the sensitivity of our predictions to perturbations to
system parameters and network structure. In Sec. V we use
data from real-world flight networks, and compare our predic-
tions, along with the predictions of past authors to epidemic
arrival times as observed for in the 2003 SARS epidemic and
2009 H1N1 influenza pandemic. In both cases we observe
correlation between predicted and observed results but also
significant noise. We are, unfortunately, unable to reproduce
previously published results and instead observe correlation
far weaker than has previously been reported.

Our goal in this paper is to provide a “canonical” approach
to calculating arrival times, that is to say, an approach which
relies on minimal assumptions and approximations, and can

FIG. 1. (Left) Schematic diagram of a traveler in a network; each
node representing a city or airport, and edges representing a flight
link in the WAN. Edges will have different weights depending on the
number of passengers flying. Colors are used purely to distinguish
between different nodes. (Right) Each infected individual in location
k can take one of three actions at any given moment of time: they may
infected another individual (at infection rate αk), they may recover,
removing themselves from the infectious population (at recovery rate
βk), or they may travel to some other location j at transport rate γ Tk j .

be trusted to provide accurate results across all of parameter
space. To the extent that the method works, it can be seen as
providing a foundation to past methods and heuristics. Where
our predictions disagree with observed arrival times for real-
world epidemics, this is suggestive of either flaws in the data,
or gaps in the underlying model, gaps that will require not
simply better mathematics, but instead better understanding
of the system under study.

II. DIFFUSION ON A NETWORK AND
THE BRANCHING PROCESS

Let us begin by concretely defining the model; we consider
a network of N connected nodes, each node representing a
location. In our case these nodes refer to particular airports
in the WAN. Individuals travel from node i to node j at
transport rate γ Ti j . Here Ti j gives the relative transport rate
along a given route, while γ is the global flight rate. While
γ and T can be folded together as one parameter, maintain-
ing this distinction will prove convenient later. We select Tii

to represent the rate at which individuals leave location i;
Tii = −∑

j �=i Ti j . Aside from this conservation condition, we
make no assumptions of structure and symmetry. We delay the
discussion of T ’s relationship to real-world data to Sec. V.

Each node in our network contains a population of Ik (t )
infected individuals, initially set to zero. This population
evolves according to a continuous time branching process: in
any given small time interval dt Ik (t ) will increase by one with
probability αkIk (t )dt and decrease by one with probability
βkIk (t )dt . This represents infection and recovery (α and β

respectively). Parallel with this branching process, infected
individuals may travel from one location, i, to a neighbor-
ing location, j, with probability γ Ti jIi(t )dt , resulting in an
increment at location j and a decrement at location i. We thus
have what might be described as a “continuous time multitype
branching process” [16]. An example network, along with our
three epidemic processes are depicted in Fig. 1.

Now that we have defined our epidemic spreading process,
we would like to determine the travel time from a to b. Stated
formally, suppose a novel diseases originates at time t = 0,
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at node a. We would like to know the time at which the
first infectious individual arrives in location b, that is to say
the earliest time such that Ib(t ) > 0. We denote this epidemic
arrival time (AT) as τ b

a . If no infected individuals ever arrives
at b we say that τ b

a = ∞. The distribution of τ b
a will depend

on the starting location a, the target location b, and the net-
work parameters γ , T , α and β. We wish to understand this
dependence and do so by considering the survival function
Sb

a(t ) = P (τ b
a > t ). In the language of Markov chains and

statistical mechanics, τ b
a can be thought of as a First Passage

Time-type problem [23]. Related problems have been con-
sider in the study of signaling molecules finding their way to
a DNA binding site [24], albeit in a continuous, rather than
network-based geometry.

Consider “patient zero,” initially placed in location a at
time t = 0. Now consider the state of the system a short time
later, at time t = dt . With overwhelming probability, nothing
will have happened during this small time window, and the
survival times will still be governed by Sb

a(t ). With probability
dtγ Ta,k patient zero will have moved to location k, and the
survival time distribution will instead be governed by Sb

k (t ).
In the case where k = b, survival is now impossible, hence
Sb

b(t ) = 0. Patient zero may also infect someone with proba-
bility dtαa. In this case, the probability of survival until time t
is given by the probability that neither traveler arrives at b. As
both travelers are independent and identical, this probability
is given by [Sb

a(t )]2. Finally, it is possible that the initially
infected patient zero may simply recover. This happens with
probability βa. In this case, no infected individual will ever
reach b, and survival probability is 1 for all time.

The probability of surviving for t units of time after dt
is thus a superposition of the possible survival functions for
the states the system could transition to. By definition the
probability of surviving for t units of time after time dt is also
precisely equal to Sb

a(dt + t ). Stated algebraically we thus
have

Sb
a(dt + t ) ≈

[
1 − dt

(
αa + βa + γ

∑
k �=a

Ta,k

)]
Sb

a(t )

+ γ
∑
k �=a

dtTa,kSb
k (t ) + αadt

[
Sb

a(t )
]2 + βa dt,

(3)

and rearranging and taking limits we find

lim
dt→0

Sb
a(dt + t ) − Sb

a(t )

dt
= γ

∑
k �=a

Ta,k
[
Sb

k (t ) − Sb
a(t )

]

+ αa
{[

Sb
a(t )

]2 − Sb
a(t )

}
+ βa

[
1 − Sb

a(t )
]
. (4)

remembering that Ta,aSb
a(t ) = −∑

k �=a Ta,kSb
a(t ), we can sim-

plify to

Ṡb
a(t ) = γ

∑
k

Ta,kSb
k (t ) + [

βa − αaSb
a(t )

][
1 − Sb

a(t )
]
,

Sb
b(t ) = 0, Sb

a �=b(0) = 1. (5)

We refer to arrival times calculated using this method as
“branching process arrival times” (BP AT). These equations

FIG. 2. Here we consider the arrival time for an epidemic propa-
gating down a simple chain (top). (Left) Survival curves, calculated
using Eq. (5) are approximately logistic, with the exception of the
first step. (Right) Mean arrival times as predicted via Eq. (5) perfectly
match mean arrival times as observed over the course of 5000 Gille-
spie simulations. Parameter values α = 0.5, γ = 0.1. Nodes and
survival curve are color coded so as to match the network diagram.

are equivalent to those given by Goldie and Coldman [21],
who model the arrival of treatment resistant cancer cells via
rare mutation (although in Goldie’s case, a much smaller
collection of “types” of individual are considered).

It is important to note that Eq. (5) does not model the
internal state of the system. While normal differential equa-
tions might be constructed by modeling the internal “state” of
the system at time t , and using this to model the system at
t + dt , instead we merely observe that the survival function
Sb

a(dt + t ) (whatever it might be), can be written as a super-
position of the (as yet unknown) survival functions Sb

k (t ) and
hence derive Eq. (3). In so doing, we have lent heavily upon
the assumption that system parameters are constant in time,
that the behavior and survival curve associated with a single
traveler observed at time t is identical to the behavior and
survival curve of a traveler observed at time 0. For a discussion
of how a similar approach might be taken in the context of
time varying parameters, see Appendix A.

A. Example networks

In order to test Eq. (5), and get something of an intuitive
handle on the behavior of our system, let us consider three
example networks of successively increasing complexity. For
each network we solve Eq. (5) numerically using Matlab’s
ode45 [25] for each target node, and compare to survival times
observed in exact agent based simulations, where we track
individual infection, migration, and recovery events precisely.
Where possible simulations are conducted using Gillespie’s
exact algorithm [26]. In cases where such an approach is
computationally infeasible, we make use of τ leaping [27].

As our first example, consider a simple chain graph, in
which infection begins at one end of the chain and is allowed
to propagate from one node to the next (Fig. 2). Here we
observe that arrival time scales with number of steps taken, as
might be expected. Survival curves are sigmoidal, which, as
we will later see, is a typical behavior for reasonable parame-
ter values. Mean arrival times as predicted by survival curves
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FIG. 3. (Top left) The spinning top graph consists of k + 4
nodes: a central starting node (black) with no incoming edges, the
initial site of infection, a “top” and “bottom” node with no outgoing
edges (blue, triangles), a single “up” node directly between the center
node, and the top (red, diamond) and k “down” nodes between the
center node and the bottom (yellow, plus symbols). Infected individ-
uals in the central node will travel either up or down at a rate of γ ,
those traveling down select among the k “down” nodes uniformly at
random. (Top right) Transition matrix T for the spinning top graph.
(Bottom) Graphs of mean AT (averaged over 150 simulations) vs
either effective distance (ED) or branching process arrival time (BP
AT) for the spinning top graph. In all cases, we assume α = 0.5,
β = 0, k = 50, and γ as specified on the scatter plot. Comparison
of ED and BP AT demonstrates that ED distinguishes between the
“top” and “bottom” node of the graph, while BP correctly handles
multiplicity of paths and assigns the pair identical ATs. We also see
that BP AT is responsive to changes in γ and correctly predicts the
change in expected order of arrival when γ is changed from 10−2 to
10−5. Simulations for this figure are carried out via τ leaping.

and as observed over 5000 Gillespie simulations are found to
agree.

We next consider a “spinning top” graph (Fig. 3); this graph
is constructed in order to illustrate the effects of multiplicity of
paths. Here one node of the graph is accessible through only
a single possible path, while another node (at equal distance)
can be accessed via a great multiplicity of paths, each with a
correspondingly reduced probability.

Here we observe that the BP AT gives accurate predictions
of arrival time, correctly predicting that the arrival time in the
two most distant nodes is equal, regardless of the multiplicity
of paths. Counterintuitively, it is also observed that when k
(the number of paths) is greater than 1/γ , the mean arrival

time in the outer blue nodes precedes the mean arrival time in
the intermediate yellow nodes. This occurs because, while the
epidemic must reach some intermediate node before passing
to the outer blue node, it is also perfectly possible for a large
number of intermediate nodes to be uninfected at this stage,
resulting in a higher mean arrival time. In the case γ = 10−2

this is precisely what occurs, and the ordering of mean arrival
times inverts. The qualitative behavior of the system is thus
sensitive to transport rate γ . All of this is correctly described
and predicted by the BP AT; heuristic models that account
only for a single shortest path [such as Eq. (1)] do not capture
this effect (see Fig. 3).

As a third example, in order to illustrate the possible com-
plexity of arrival time distributions, we construct an artificial
network with a wide spread of transportation, infection and re-
covery rates, and compare numerical solutions of Eq. (5) with
survival curves observed over the course of 25 000 Gillespie
simulations [26]. In this case we observe that survival curves
exhibit rich, complex behavior. Nonetheless, Eq. (5) correctly
predicts the distribution of arrival times as observed in direct
agent-based simulation (Fig. 4) over multiple timescales.

The branching process approach gives similar accu-
racy over a wide variety of parameter values and network
structures. A gallery of such comparisons is provided in
Appendix B.

III. DERIVATION OF MEAN AND
VARIANCE IN ARRIVAL TIME

Equation (5), while accurate, is somewhat cumbersome
and does not provide any closed form for values of interest
such as expected arrival time and variance in arrival time.
If we place no constraints on α, β, and γ T , then it is easy
to construct survival curves with complex topology such as
Fig. 4, and it can be shown that any valid survival curve [that
is any curve of the form 0 � f (t ) � 1, f ′(t ) � 0, f (0) = 1]
can be well approximated, for suitably chosen network and
parameter values (see Appendix C). While mathematically
interesting, such results are of little use to epidemiologists.
More useful results can be obtained by placing some mild
constraints on parameter values based on real-world under-
standing.

The first assumption that we make is that we are not
interested in epidemics that go extinct before spreading;
we care only about those epidemics that reach international
prevalence. For simplicity in the following discussion, this
is achieved by assuming βk = 0 for all k. A discussion of
nonzero βk can be found in Appendix D.

The second assumption that we make in what follows is
that epidemic dynamics (infection and recovery) take place on
on the time scale of days and weeks, while international travel
is a rare occurrence, the vast majority of the human population
taking international flights at most once or twice per year
[28]. Stated algebraically we have γ T � α; travel is rarer
than infection. This mimics the “rare mutation” assumption
made by Goldie and Coldman [21] when studying the the
development of treatment-resistant cancer cells and rules out
slow epidemics such as HIV.

We further assume that infection rate is equal across all
locations: αk = α. This greatly simplifies notation and has
limited impact upon our final conclusions.

042301-4



CALCULATION OF EPIDEMIC ARRIVAL TIME … PHYSICAL REVIEW E 102, 042301 (2020)

FIG. 4. (a) Here we construct a complex network, designed to
highlight the potential complexity of the survival curve S(t ). Patient
zero is placed at the top of the graph and can transition to one of three
“intermediate” nodes. These intermediate nodes have either high
infection rate α = 4 or low infection rate α ≈ 0.01, and transition
to the three “final” nodes at a variety of different rates (1, 10−2, or
10−4). The third intermediate node permits recovery from infection
(transition to the empty circle) at rate 0.01. While this network is
not reflective of real-world transportation networks, it does provide a
useful illustration of the possible complexity of survival curves, and
serves to demonstrate just how closely theory matches simulation
even in these complex situations. (b) Survival curves based on 25 000
Gillespie simulations of the epidemic spreading process. Lines are
color coded to match the nodes in the network. (c) We solve Eq. (5)
and display the analytic survival curve Sb

a (t ) for each possible b,
keeping a fixed. (d) We plot the difference between the observed
and analytic survival curves over time. (e) We sample n of our
25 000 simulations, then calculate

∑∫ |error|2 dt when comparing
observed and predicted survival probability. Here we integrate over
time and sum over possible arrival locations.

Taken together, these three assumptions (βk = 0, αk =
α, γ Ti j � α are sufficient to avoid the more complex sur-
vival curve dynamics, as observed in Fig. 4. Instead, we find
Ṡb

a(t ) ≈ −αSb
a(t )[1 − Sb

a(t )], and the arrival time distribution
is well approximated by a logistic function:

Sb
a(t ) ≈ 1

1 + eα(t−μb
a )

+ O(γ ). (6)

Here μb
a is the mean arrival time for an epidemic starting

in node a and spreading to b. Determination of μb
a is of

some considerable interest. This value is dependent upon the
dynamics of the system when [1 − Sb

a(t )] = O(γ ); that is
to say, the region where the transport γ T Sb

a(t ) is no longer
overwhelmed by logistic decay in probability.

A. Mean arrival time

Determination of μb
a can be seen as equivalent to the ques-

tion of determining when the exponential term of Eq. (6) is
equal to 1. For the sake of convenience, we label this term
Qb

a(t ) and make use of the change of variables Sb
a(t ) = 1/[1 +

Qb
a(t )]. This leads to the following differential equation:

Q̇b
a(t ) ≈ αQb

a(t ) − [
1 + Qb

a(t )
]2

γ
∑

k

Ta,k
1

1 + Qb
k (t )

. (7)

Given Eq. (6), the mean arrival time μb
a satisfies Qb

a(μb
a) =

eα(μb
a−μb

a ) = 1. Because Qb
a(t ) < 1 for t < μa, and γ T � α,

we can safely assume αQb
a(t ) � γ {2Qb

a(t ) + [Qb
a(t )]

2} in our
region of interest, hence allowing the approximation [1 +
Qb

a(t )]
2 ≈ 1. Because

∑
j Ti j = 0, we can restate Eq. (7) as

Q̇b
a(t ) ≈ γ

∑
k

Ta,k
Qb

k (t )

1 + Qb
k (t )

+ αQb
a(t ). (8)

At this stage it may be tempting to make the further approx-

imation Qb
k (t )

1+Qb
k (t )

≈ Qb
k (t ). Switching to matrix-vector notation

and setting Qb(t ) as a vector whose entries are Qb
a(t ), we find

Q̇b(t ) ≈ (γ T + αI )Qb(t ) , (9)

and using the matrix exponential eM = I + M + M2/2! + · · ·
we solve to find

Qb(t ) ≈ e(γ T +αI )t Qb(0). (10)

Here we observe that Eqs. (9) and (10) bear a striking resem-
blance to the calculation of the expected number of infections
at b, given an initial epidemic starting at a, as studied by
Chen et al. [15]. Under this interpretation of Qb

a(t ) we are
effectively approximating our arrival time as the time at which
the expected number of infected individuals in our target node,
b, reaches one. In cases where a single path of length d
dominates the spread of our epidemic from a to b we can make
the following further approximation:

Qb
a(t ) = 1 = eαt

[
I + γ T t

1!
+ γ 2T 2t2

2!
+ · · ·

]
a,b

(11)

≈ eαt [T d ]a,b
γ dtd

d!
(12)

αt ≈ − log

(
γ d T d

a,btd

d!

)
. (13)

Choosing to ignore a number of small terms, we find

αt ≈ −d log γ − log

(∏
Ti, j

)
(14)

= −
∑

(log γ + log Ti, j ), (15)
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FIG. 5. Comparison of arrival times as observed in 5000 direct Gillespie simulations of epidemic spread on a randomly generated network
with N = 155 nodes (a), to survival times as predicted using either numerical solutions [Eq. (5), (b)], logistic curves centered according to μ

[Eq. (18), (e)], or logistic curves with Q(t ) as defined by simple matrix exponentiation [Eq. (10), (g)]. In the right-hand column we give the
difference between predicted and observed survival probabilities for each method. Note the varying scales of the y axis. (d) Comparison of
mean AT as observed in 5000 simulations with the mean AT as predicted by the three numeric methods shown in the adjoining panes.

where here Ti, j are the transport rates along each link of the
most probable path epidemic path. We thus reconstruct the
results of shortest path methodology similar to Gautreau’s
original study [14] and the work of Brockmann and Hel-
bing [12]. More detailed discussion of this matrix exponential
approach and its relation to previous work is provided in
Appendix E. Survival curves as predicted by Eq. (10) are
given in Fig. 5.

While the approximation Q/(1 + Q) ≈ Q is convenient in
that it allows us to linearize the equation, more accurate results
can be obtained by retaining 1/(1 + Q) and following on from
Eq. (8) directly. Applying integrating factors we find

e−αt Qb
a(t ) ≈

∫ t

0
e−ατ γ

∑
k

Ta,k
Qb

k (τ )

1 + Qb
k (τ )

dτ. (16)

Substituting the ansatz Qb
k (τ ) = eα(τ−μb

k ) for k �= a, b, along

with Qb
b(t )

1+Qb
b(t )

= 1 − Sb
b(t ) = 1, we find

e−αt Qb
a(t ) ≈ γ Ta,b

∫ t

0
e−ατ dτ

+
∑
k �=b

γ Ta,k

∫ t

0
e−ατ eα(τ−μb

k )

1 + eα(τ−μb
k )

dτ. (17)

Multiplying through by eαt and integrating provides

Qb
a(t ) ≈ γ Ta,b

eαt − 1

α

+
∑
k �=b

γ Ta,k
eα(t−μb

k )

−α
log

(
e−αt + e−αμb

k

1 + e−αμb
k

)
. (18)

In effect, Eq. (18) solves exactly for one particular Qb
a(t )

under the assumption that all other survival curves are logistic.
If we then demand μb

a such that Qb
a(μb

a) = 1, Eq. (18) gives
a system of N − 1 equations and N − 1 unknowns [there is
no equation associated with Qb

b(t )]. This system of equations
can be solved using Newton’s method, allowing accurate
approximation of Qb

a(t ) and hence Sb
a(t ) without resorting

to computationally expensive numerical ODE solvers. This
approximation is particularly helpful in regions of parameter
space where γ is very small, and Qb

a(t ) spends large amounts
of time in the sensitive region near 0, rendering more direct
numerical methods unstable.

A comparison of the various approaches described in this
section is given in Fig. 5. Numeric solutions of Eq. (5) give the
best results (when using high-accuracy ODE solvers), while
predictions based on simple matrix exponentiation [Eq. (10)]
are the least accurate. All three approaches are highly corre-
lated with mean arrival times as observed in full agent-based
simulations, however. When we are interested in relative
rather than absolute arrival time, any of the three approaches
will suffice, and matrix exponential-based approaches are
the fastest (see Appendix E for details on efficient compu-
tation). When more accuracy, or knowledge of full proba-
bility distributions, is required, we recommend using either
Eq. (5) or (18).

B. Variance

Another value of practical interest is the variability in ar-
rival time; recognizing the difference between 52 ± 3 days
and 52 ± 30 days allows us to understand how precise we
expect arrival predictions to be. When γ T � α, we can
use standard logistic distribution results [29] to determine
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var(τ b
a ) = π2s2

3 = π2

3α2 , where s is the “scale parameter” of
the logistic distribution, in our case equal to 1/α. In plain
language, we find that variance is high for slowly growing
epidemics, and low for fast growing epidemics, where the
infected population spends shorter periods of time at interme-
diate levels.

This determination of variance leads naturally to the ques-
tion of covariance; if our epidemic arrives three days earlier
than expected in Paris, will it also inevitably arrive three days
early in Istanbul or São Paulo? Or are the two arrival times
relatively independent? This question is of particular impor-
tance because, generally speaking, we do not know when an
epidemic has started, and hence can only ever compare arrival
times in different cities relative to one another.

Unfortunately, by its nature Sb
a(t ) contains minimal infor-

mation about the state of the system; calculation of such state
information using probability generating function techniques
[30] would require us to take infinitely many derivatives of
Sb

a(t ) with respect to our initial conditions Sb
a(0). It would

appear that full covariance and correlation information is thus
inaccessible.

One avenue that we can take is to examine the variance in
arrival time given a larger starting population, for example,
p = 50, with all individuals starting at location a. Such an
assumption effectively removes the large levels of variance
associated with the epidemics “initial take-off” time (the time
taken to grow from p = 1 to p = 50), and leaves only the
variation associated with the spreading process throughout our
network (and subsequent take off time in the various locations
the epidemic emigrates to). Given that we typically do not get
to observe the true epidemic start data in practice, such an
assumption is likely to better reflect real-world data.

The survival time distribution for a starting population of p
is simply [Sb

a(t )]p. It can be shown (see Appendix F) that for
an initial population p, the arrival time has variance

var(τ ) = π2

3α2
−

p−1∑
k=1

1

α2k2
. (19)

In the limit
∑∞

k=1(αk)−2 = π2/6α2.
Of further note, we also observe that as p increases the

pth power of the logistic curve [(1 + e(t−μ) )−p] approaches
the Gumbel distribution (Fig. 6) as observed by Gautreau
et al. [14] in their original study of the epidemic arrival time
process. The Gumbel distribution can be loosely thought of as
an exponential waiting time with exponentially increasing rate
parameter (corresponding to the growing population) and has
cumulative distribution function of the form exp[e−(t−μ)β].
The continuous population assumption implicit in this result
is valid when p � 100 but causes noticeable discrepancies
for p � 5.

IV. ROBUSTNESS AND LIMITATION

So far we have explored the branching process model in
what may be considered close to optimal conditions; we have
assumed that T , α, and γ are exactly known, and that the
susceptible population of each node is large enough so as
not to limit epidemic growth and spread. Each of the above
assumptions may be violated in one context or another, and

FIG. 6. Here we compare the Gumbel distribution (the survival
curve identified by Gautreau et al. when modeling population as
continuous [14]), and the exact survival curve assuming a initial pop-
ulation p = 50, as discussed in Sec. III B. (Top) Survival curve for
Gumbel distribution (exp[−e(t−μ)]) or logistic ([1 + e(t−μ)]−p) like
arrival times with p = 50. (Bottom) Probability density function for
the same. Here we compare only shape, and hence, in this example
the curves have different μ parameter; this acts only to slide the mean
value so as to make the curves more comparable.

for this reason it is critical to understand how far each can be
stretched. Such understanding sheds light not only on the BP
AT itself, but also on past distance metrics, which we have
shown to rely on a similar theoretical foundations.

The first, and most likely assumption to be violated in
practice is the notion that we know α and γ . While γ can
be determined to some reasonable level of accuracy via com-
mercial flight data, α is a number that will vary from illness to
illness and may be known only to a limited degree of accuracy,
particularly in the early stages of a pandemic. Fortunately
the model turns out to be robust against variations in both α

and γ —even when varying these parameters by an order of
magnitude compared to the “true” values used in simulations,
predicted ATs remain highly correlated with those observed in
simulation (see Fig. 8). When using incorrect α the constant
of proportionality between τi and observed ATs is no longer
equal to one, suggesting that the BP model robustly estimates
ατi, such that the relative time of arrival at any two locations is
largely independent of α and γ , but that incorrect estimates of
α will lead to corresponding inaccuracy in the absolute values
of τi; if α is estimated a factor of two too high, then τi will be
a factor of two too low.

Another systematic source of error is inaccuracies in flight
network data. These can be produced due to uncounted or
unregistered flights (or alternative forms of transportation),
out of date data, or as a direct result of changes to individual
flight plans as a result of the epidemic itself. In order to
test robustness to noise in available flight data, we compare
the results of full Gillespie simulation using flight network
T , to ATs predicted using the perturbed matrix F̂ , where
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FIG. 7. When populations are very small, the exponential growth
assumption that the BP AT relies upon no longer gives accurate
predictions. Here we plot expected arrival time according to the BP
model, against the average results of 5000 Gillespie simulations on
a random graph of 135 nodes, where the susceptible population in
each node is 18.2 ± 7.5. We assume infection rate α = 0.5, and
recovery rate β = 0 (for small populations, β > 0 generally leads
to extinction). Dots are color coded based on the minimum number
of steps required to get from the source to target location; bluer
(darker) nodes being closer to the source, and yellow (lighter) for
nodes which are many steps away. For each graph we give both the
R2 and Kendall-τ correlation statistics. The dotted black line gives
the “1:1” line that would be expected of accurate predictions. The
dashed red line gives the line of best fit, as used to calculate R2.

T̂i j = Ti jeN (0,ξ ). Here ξ is a constant representing noise level.
As can be seen in Fig. 9, the resulting errors are modest.

While we have thus far considered arrival times in the
context of the global aviation network, effective distance mea-
sures have also been considered on a much smaller scale
in order to study the spread of antibiotic resistance between
wards within a hospital [31]. In this case, assuming unbound
growth becomes problematic, as the susceptible population in
each node is rather small; a single ward might contain (for
example) 10–30 beds, a far cry from the tens or hundreds
of thousands found when each node represents an entire city.
When the local susceptible population is small, the epidemic
is frequently no longer in an exponential growth phase by
the time it spreads to a neighboring node; “branching random
walks” are no longer independent because it is impossible for
person A to infect someone who has already been infected
by person B. Population saturation inevitably leads to less
accurate predictions; see Fig. 7.

In practice, for the SIR-type models the parameter window
where this concern is relevant is relatively narrow; infections
which grow quickly will infect the entire local population
and drive themselves to extinction before spreading between
nodes. For SIS- and SI-type models, or any infection which is
expected to reach a local endemic equilibrium, it is important
to determine whether exponential growth is a good approx-

imation before making use of the BP AT or any distance
metric that relies upon the same underlying unbound growth
assumption.

V. REAL-WORLD DATA

Finally, while comparison to simulations provides an ef-
fective test bed, useful in terms of repeatability and certainty
of data, we are more interested in the performance of mod-
els as they apply to the real world. For this purpose, we
make use of flight data provided by Dirk Brockmann (pri-
vate communication) to construct T , and compare observed
and predicted AT for both SARS and H1N1 outbreaks. In
order to do this, we must consider one major and one minor
complication.

Firstly, in order to calculate the BP AT distribution, we
would prefer to have access to the full transport matrix Ti j ,
the probability that an individual in location i will travel to
j on any given day. Instead, we have access to Fi j ; a matrix
containing the total number of passengers traveling from i to
j during a given time period. This matrix is approximately
symmetric, reflecting the fact that most flights are round trips.
In order to obtain T from F , we would need to know the
total population, pi, serviced by each airport; this would give
Ti j = Fi j/pi. Unfortunately, the population serviced by any
given airport is unknown and may well be ill defined.

In order to approximate Ti j , we assume that the total num-
ber of flights entering and exiting an airport is proportional
to the local population pi. In this case, T is found by dividing
each column of F by the total number of flights in that column
and is equivalent to Brockmann et al.’s Pi j , the probability to
fly from i to j, conditioned on the assumption that we board
some plane in airport i [12]. The parameter γ can then be
interpreted as the probability that a randomly selected person
boards a plane on a given day, regardless of their destination.
In the real world, we might assume γ to vary significantly
from place to place, based on economic factors, prevalence of
tourism, and the size of the population that any given airport is
servicing. For the time being we approximate γ as a constant
and rely on the model’s low sensitivity to γ T to prevent
difficulties.

A second consideration, this time far more specific to the
particular data available, is the fact that epidemic arrival times
are given on a country by country basis, while flight data
is provided on a city-by-city basis. Coarse graining can be
achieved in two possible ways: it is possible to either coarse
grain our transport matrix, calculating the total number of
flights between each country and forming T from there, or
we can use the fine-grained city by city matrix, and then set
the arrival time in a given country as the minimal arrival time
in any of that countries airports.

With these two details taken care of, we are now ready to
compare the observed arrival times of H1N1 and SARS to pre-
dictions made using either the branching process arrival time
[Eq. (5)] or the effective distance metric [Eq. (2) [12]]; see
Fig. 10. In order to best compare to the previously published
results of Brockmann et al., we make use of the coarse grained
country-to-country T matrix. Qualitatively similar results are
observed in all cases when using the fine grained city-by-city
T matrix.
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FIG. 8. Calculating the BP AT using incorrect growth and transport parameters leads to suboptimal results. Here we compare the predicted
mean AT [according to Eq. (5)] with mean observed AT (averaged over 5000 agent-based Gillespie simulations) in the case of using α and
γ which are either a factor of 10 too high or to low compared to their true values (α = 0.5, γ = 10−3). Here we consider a network with
N = 135 nodes, where each each node is linked to each other node with probability 8/135. For each graph we give both the R2 and Kendall-τ
correlation statistics. Data are colored according to the minimum number of flights from origin to target [blue (dark) for one flight to yellow
(light) for three]. The 1:1 (perfect agreement) line is given in gray. The black dotted line gives the best linear fit used to calculate R2. While
errors change the magnitude of predicted AT (note varying axis scales), the effect on relative AT predictions is minor in eight out of the nine
cases considered.

FIG. 9. Comparing the results of Gillespie simulations with the predictions made using a perturbed version of the original random network.
We consider a network with N = 135 nodes, where each each node is linked to each other node with probability 8/135. We are still able to
accurately predict AT, even in the case of significant perturbations to T , indicating that BP AT is robust even when link weights are increased
or decreased by an order of magnitude. For each graph we give both the R2 and Kendall-τ correlation statistics. Nodes are color coded based
on the number of steps to the initial infection site, with blue nodes (lower left) accessible with only a single flight, and yellow nodes (top right)
requiring four. The 1:1 line, representing perfect prediction, is given by the dotted black line. Note that here, after noise is applied to calculate
T̂ , we demand symmetry and recalculate diagonal entries so as to preserve mass. Similar results are observed for scale-free networks.

We find that both BP AT and effective distance arrival
time (“ED AT”) methods give qualitatively similar results
(see Fig. 10), and that these results would appear in many

cases plausible: for example, in the case of SARS, we observe
that predicted arrival times in both South Korea and Hong
Kong are low, while the arrival time in the United States
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(a) (b)

(c) (d)

FIG. 10. Comparison of distance metrics to arrival times in real-
world epidemics for the 2009 H1N1 epidemic (top) and the 2003
SARS epidemic (bottom). As in previous figures, color coding of
nodes represents the minimum number of flights from one location
to another, with yellow (pale) nodes requiring more flights and blue
(darker) nodes fewer. Unlike previous plots, here each node repre-
sents a country. For each graph we give both the R2 and Kendall-τ
correlation statistics. (a) We attempt to reconstruct Fig. 2D of Brock-
mann and Helbing (2013) [12]; we find that numerous details of the
general shape are reconstructed (for example the “branch” indicated
by the dash, and the cloud of separated points along the top of the
panel), but that the figure as presented in the original paper is slanted
significantly closer to the diagonal. (b) For suitably chosen α and
γ values, the BP method improves upon R2 but is still limited by
the accuracy of the underlying network, and the inherently noisy
details of real-world epidemiology. (c), (d) In the case of the SARS
epidemic we were not able to reproduce the extremely tight corre-
lation previously reported [12]. Once again, use of the BP metric
yields improvements in R2 compared to our reconstruction the ED
metric. The three marked nodes in the bottom images corresponding
to (from top to bottom) South Korea, Hong Kong, and the United
States. As might be expected for distance measure based on flight
data, both Korea and Hong Kong are “close” to China according to
both metrics, while the United States is farther away. This would
appear to be in contrast to previously published results [12], which
appear to indicate that the United States is closest to China, while
Korea is rather distant. Data provided by Dirk Brockmann (private
communication).

is predicted to be marginally higher. This result is entirely
plausible given airline traffic between the respective coun-
tries. In practice, predictions for both BP AT and ED AT do
not match observed arrival times: SARS is reported to have
arrived in the United States 54 days after the first reports
in China (16 November 2002), and in South Korea a full
160 days after these first reports. For SARS, arrival times as
reported from real-world data correlate at best weakly with
predictions [note the small R2 < 0.3 in Figs. 10(c) and 10(d)],
indicating either inaccuracy in the data or alternatively some
complexity in the real-world process not accounted for in cur-
rent models. R2 values are somewhat better when predicting
H1N1 (R2 ≈ 0.55).

We find no method (including ED) is able to reproduce
the very high R2 values reported in Brockmann and Hel-
bing’s original paper, and that we are unable to recreate their
figures [Figs. 2(d) and 2(e) in the original paper], instead
observing a far broader scatter. It is unclear if the observed
discrepancies is due to differences in implementation of the
algorithm, differences in the underlying data, or some other
cause. While it is possible that inaccuracies in WAN data
are to blame for these discrepancies, this explanation seems
unlikely; as demonstrated in Fig. 9, arrival time predictions
are generally stable, even to substantial changes in F . If we
consider the effective distance metric [Eq. (2)], increasing Di, j

by 5, as is needed to correctly predict SARS late arrival time
in South Korea, would require a Pi, j two orders of magnitude
smaller than our current value. Such drastic changes appear
implausible.

VI. CONCLUSIONS

Better understanding the spread of epidemics through the
WAN allows for both real-time forecasting (as has been used
during the current COVID-19 pandemic) and the possibility
of network design, making changes to the WAN or local
transport networks so as to slow epidemic spread [8].

In studying the question of epidemic arrival time, a variety
of models have been used, from the the most intricate agent
based simulations [11] to the intuitively appealing “distance”-
based models [12] and a number of analytic approaches in
between [13–15]. While each of these models approaches the
question of epidemic arrival time from a different view point,
one common thread is the assumption of exponential growth,
often justified as a linearization of more classical SIR-type
models. Spread is governed by unbound epidemic growth, and
rare transportation events. Population saturation, detailed viral
dynamics, and a travelers tendency to return to their port of
origin are ignored in all but the most detailed of models.

Given this basic premise, we were able to formulate the
problem of epidemic arrival times in term of “branching pro-
cesses” [16,21] and calculate the full probability distribution
of possible arrival times explicitly. These predictions match
perfectly to corresponding simulations. If we further assume
that air travel is rare and infection and recovery are common,
it is possible to rederive many of the results of past papers and
in some cases improve upon them. We are also able to give
predictions in regions of parameter space where past methods
are known to fail, and show that theoretical predictions pro-
vide a reasonable match to simulations, even when parameter
values are altered significantly.

Unfortunately, when comparing to real-world data we
observe that the predictive powers of ED metrics may be
significantly lower than previously reported [12]. When com-
pared to real-world data, ED and BP like methods predict
roughly 50% of variance in the cases of H1N1, and only
20% of variance when compared to SARS-2003, significantly
lower than would be predicted given the modest intrinsic
variance of our models. While the Branching Process Arrival
Time makes very few assumptions and gives exact results
given the underlying model assumed, these findings are sug-
gestive of a gap in our knowledge—either in the data available
for epidemic arrival times or (more likely) in the model

042301-10



CALCULATION OF EPIDEMIC ARRIVAL TIME … PHYSICAL REVIEW E 102, 042301 (2020)

FIG. 11. (a) Survival curves observed over the course of 12,000
simulations, for piecewise constant αk . The values of αk change
when t = 5, 10, 15 . . ., indicated by the dashed gray lines. βk = 0,
γ = 0.063. (b) Sb

a (t ) as calculated using Eq. (5) by simply substi-
tuting in the time varying αk (t ) in for αk . This approach violates
our Markov assumption and gives nonphysical results. (c) Survival
curves Sb

a (t, 0), calculated using Eq. (A1). By correctly accounting
for time variation in αk we are able to match observed survival curves
exactly. (d) Schematic diagram showing the flow of information in
Eq. (A1); solution curves trace back from our initial conditions at
t = ρ to our survival curve of interest at ρ = 0. The invalid region
t < ρ is greyed over.

itself. It seems likely that future efforts would be best directed
towards determining what real-world factors are currently un-
accounted for, and which of these are most critical.

Full code for simulation based figures is available on
github [32].
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APPENDIX A: TIME-VARYING PARAMETERS
AND FLIGHT NETWORKS

Construction of Eq. (5) relies heavily upon the assumption
that the process is memoryless and does not keep track of
time.

In order to see the importance of this Markov assumptions,
suppose we take Eq. (5) and replace α with some piecewise
constant function α(t ): both in our simulation and in the ODE.
As can be seen in Fig. 11 (top panels), simply replacing α

with α(t ) leads a rapid divergence of Sb
a(t ) and our observed

survival curve. Under such naive assumptions, our calculated
Sb

a(t ) is no longer monotone decreasing, and hence can no
longer be considered a survival curve in any sense of the word.
This breakdown comes about because even though Sb

a(t ) does

FIG. 12. Here we simulate a scale-free network as produced by
Mathew George’s SFNG function [33]. Here we set N = 30 nodes,
infection rate α = 0.5 and recovery rate β = 0.1. (Left) Observed
survival curves given 1500 simulations. Simulation done using the
exact Gillespie algorithm [26]. (Right) Survival curves as calculated
using Eq. (5).

not track possible states of the population directly, it must
(inevitably) encode these states implicitly. When α changes
midway through the process, this encoding is rendered invalid,
and Sb

a(t ) no longer behaves in a sensible manner. Without the
Markov assumption, Sb

a(dt + t ) is no longer a superposition
of Sb

k (t ).
Calculation of survival curves when dealing with time

varying parameters is possible however. To do this, we expand
the one-dimensional Sb

a(t ) to the two-dimensional Sb
a(t, ρ).

We define Sb
a(t, ρ) to be the probability that an infected

traveler, initially observed at position a at time ρ, has no dece-
dents arriving at b before time t . By definition Sb

a(t, ρ) = 1
whenever t � ρ, and Sb

b(t, t ) = 0. Using similar arguments to
Eq. (3) we find that Sb

a(t, ρ) is a superposition of Sb
a(t, ρ +

dρ). Taking limits and converting into a differential equation
we find

−∂Sb
a(t, ρ)

∂ρ
= T (ρ)Sb

a(t, ρ) + [
β(ρ) − α(ρ)Sb

a(t, ρ)
]

× [
1 − Sb

a(t, ρ)
]
. (A1)

Combining Eq. (A1) with the initial conditions given at t = ρ,
it is possible to determine Sb

a(t, 0) (the survival curve of in-
terest) for any given time t by solving a simple ODE in the
ρ direction (see Fig. 11, left panels). This approach accounts
for time-varying parameters whenever α, β, γ , and T vary
independently from the epidemic course. In the case where
parameters are dependent on epidemic spread (for example,
border closures in response to observed spread of disease),
more complicated methods are needed. Because Eq. (A1)
must be solved independently for each t this approach is more
computationally costly than the approach taken for Markov
systems.

APPENDIX B: GALLERY

Here we give a variety of figures, exploring the possible be-
havior of arrival time distributions in a variety of networks and
parameter regimes. In Figs. 12 and 13 we examine a variety
of scale free networks, varying network size, and parameter
values. In Fig. 14 we demonstrate the robustness of Eq. (5)
to unusual parameter values by consider the (unrealistic) case
of a fast-moving traveler who is noninfectious. We observing
tight agreement between analytic predictions and observed
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FIG. 13. Survival curves as calculated using Eq. (5), for
a larger scale-free network. N = 3000, γ = 0.001, α = 0.5 ±
0.11, β = 0.1 ± 0.03. Here we present only analytic results, as sim-
ulations are prohibitively expensive to run.

survival time in simulations. Finally, in Fig. 15 we consider
arrival times for travelers on a 30-by-30 mesh.

In all cases where simulation is feasible, we observe strong
agreement in arrival probabilities between analytic and simu-
lation based results, for all t values sampled.

APPENDIX C: CONSTRUCTION OF ARBITRARY
SURVIVAL CURVES

One of the more concerning results of Eq. (5) is the impli-
cation that it is possible to construct networks with arbitrary
survival curves. In this section we sketch a method for con-
structing such a network. The purpose of this exercise is to
demonstrate that for arbitrary networks, the probability dis-
tribution of arrival times may have arbitrary complexity, and
hence that any analytically tractable results require further
assumptions to be made on α, β, and T . More detail would
be needed in order to make the argument rigorous, the work
here is only intended as a proof of concept.

FIG. 14. The analytic survival curve gives valid predictions even
far from the usual parameter regime; here we consider a traveler
on a random network with, γ = 10, β = 0.2, α = 0; a fast moving
traveler that eventually decays, but does not duplicate. Arrival time
distributions as observed in 15 000 simulations perfectly match sur-
vival probabilities as calculated numerically using Eq. (5). Unlike
the γ � 1 domain, where survival probabilities decay approxi-
mately logistically, here we observe roughly exponential decay. Also
in contrast to the γ � 1 case, different locations plateau at dif-
ferent levels, representing different probabilities that the traveler
will ever arrive.

FIG. 15. (Left) Analytic survival time curves, for a 30 × 30 lat-
tice, with periodic boundary conditions. N = 900, γ = 0.001, and
epidemic parameters vary by node: α = 0.5 ± 0.11, β = 0.1 ± 0.03.
(Right) Analytic survival curves for 20 × 20 lattice, N = 400, γ =
0.001, epidemic parameters constant across all nodes, α = 0.5, β =
0.1. In both cases we observe “logistic” decay from 1. Mean arrival
time scales with distance from the initial site of infection. When
epidemic parameters are homogeneous, symmetry results in many
survival curves overlapping perfectly (the survival curve for “one
step north and one step east” is the same as “one step south, one
step west”). For variable parameter values, this symmetry is broken,
and we see a smooth distribution of arrival times.

Suppose we are given some function f (t ) such that f (0) =
1, f ′(t ) � 0, f (t ) � 0. We assume that f ′(t ) is well defined
for all time. Our goal is to create a network such that SN

0 (t )
approximates f (t ) as closely as possible. Consider a simple
“diamond” network as depicted in Fig. 16. In this network,
node zero has a directed edge connecting it to nodes 1 to
N − 1, and nodes 1 to N − 1 have a single outgoing edge,
directed towards the “final” node N . We assume βk = 0 for
all intermediary nodes. We take a travel rate γ = 1.

For these “intermediate” nodes, the survival time is gov-
erned by the equation

ṠN
k (t ) = −Tk,N SN

k (t ) − αkSN
k (t ) + αk

[
SN

k (t )
]2

, (C1)

which permits solutions of the form

SN
k (t ) = αk + Tk,N

αk + (αk + 2Tk,N )e(αk+Tk,N )(t−μk )
. (C2)

Here μk is selected such that (αk + 2Tk,N )e−μk (αk+Tk,N ) = Tk,N .
Because both αk and Tk,N are free parameters, it is possible to
select them so as to construct a logistic function with arbitrary
mean and scale parameters. This allows us to approximate
arbitrary step functions.

We now wish to select the transition rates T0,k such that
SN

0 (t ) ≈ f (t ). We select α0 = 0 such that the initial infection
at node zero does not replicate, and instead simply ‘jumps’
to one of our N − 1 intermediary nodes, or recovers. SN

0 (t ) is
governed by the equation

ṠN
0 (t ) =

∑
T0,k

[
SN

k (t ) − SN
0 (t )

]
βk

[
1 − SN

0 (t )
]
. (C3)

If we select T0,k and βk very large, then our initial infection
will linger in the starting node for only a short time, and

SN
0 (t ) ≈

∑
T0,kSN

k (t ) + βk∑
T0,k + βk

, (C4)
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FIG. 16. (Top) We generate a random piecewise linear decreas-
ing function, and then approximate it using the survival curve of a
network. Here we use analytic expressions for our stepwise function
as given in Eq. (C2). Direct integration of Eq. (5) runs into numerical
difficulties due to the exceptionally small Tk,N involved. (Bottom)
A schematic diagram of the diamond network used to match our
randomly generated survival curve. Infection rate in our central layer,
along with transport rate to the “target” node is selected such that
QN

k (t ) for each of our intermediary nodes approximates a step func-
tion, with a wide array of “step times.” Transport rates from our
starting node to intermediate nodes are selected such that QN

0 (t ) is
(approximately) a superposition of these many step functions, with
appropriate weight given to each such that |QN

0 (t ) − f (t )| is small.

that is to say, SN
0 (t ) is a sum of step functions, and a constant.

Transition parameters are selected such that βk/(
∑

T0,k +
βk ) is equal to f (∞) and T0,k/(

∑
T0,k + βk ) = f [(μk +

μk+1)/2] − f [(μk + μk−1)/2]. In this way f (t ) can be ap-
proximated using a series of (approximate) step functions. A
demonstration of this is given in Fig. 16. More sophisticated
algorithms would presumably be able to approximate f using
fewer nodes, but for our purposes this simple approach will
suffice.

APPENDIX D: SURVIVAL CURVES FOR NONZERO β

Throughout the main text, we frequently made use of the
simplifying assumption β = 0; an unrealistic assumption in
real-world context. Suppose we wish to consider nonzero β,
in the context of global epidemic spread. We assume, as pre-
viously, that travel is rare, and also that we interest ourselves

only in diseases such that R0 > 1, hence γ � β < α. This
leads to the equation

Ṡb
a(t ) ≈[

βa − αaSb
a(t )

][
1 − Sb

a(t )
]
, (D1)

and hence,

Sb
a(t ) ≈1 + βae(αa−βa )(t−μb

a )

1 + αae(αa−βa )(t−μb
a )

. (D2)

Hence, in the limit of small γ , the arrival time distribution
can be approximated using a logistic function. As in the main
text μb

a is some mean arrival time constant determined by a, b,
and γ T . In the limit t → ∞ Sb

a(t ) → βa/αa; the probability
that τ b

a = ∞ is precisely the probability of early epidemic ex-
tinction in our branching process. Unfortunately, this nonzero
probability of “infinite” arrival time leads to E (τ b

a ) = ∞, not
an especially informative result. It is thus useful to instead
consider the arrival time conditional on τ b

a < ∞:

Sb
a(t ) = Sb

a(t ) − Sb
a(∞)

Sb
a(0) − Sb

a(∞)
, (D3)

≈ 1

1 + e(αa−βa )(t−μb)
. (D4)

At this stage we have an “ideal” logistic distribution [29],
with mean value μb

a (currently unknown) and scale parame-
ter 1/(αa − βa). Hence, when making predictions concerning
real-world epidemics that have not gone extinct in their early
stages, it is useful to remap our variables such that we imagine
βk = 0 and αk is the net grow rate of our disease (formerly
labeled αk − βk).

APPENDIX E: COMPARISON TO AND IMPROVEMENT
ON PAST EXPONENTIAL GROWTH METHODS

In this Appendix we will discuss the Matrix Exponential
method, as used by Chen et al. [15] (referred to by them
as “linear spreading theory”). We begin by introducing the
method itself, and its connection to the Branching Process
approach studied in the main text. We then explain some of
the computational details necessary for fast calculation, and
the circumstances under which the approximation is and is
not accurate.

Let us begin by describing the method itself. Suppose, at
time t = 0, we have a population of infected individuals P(0)
with Pk (0) infected individuals located at node k and none
elsewhere. These individuals travel between nodes at transport
rate γ T , and infect others at some rate α. This rate is assumed
to be constant; we assume that the total population is large
enough such that population constraints are not relevant on
the timescale we are interested in. Under this unbound growth
assumption, the expected number of infectious individuals if
governed by the linear equation

Ṗ(t ) = γ T 	P(t ) + αP(t ). (E1)

This equation permits solutions of the form

P(t ) = exp[(γ T 	 + αI )t]P(0). (E2)

Here, we make use of the matrix exponential; that is to say
exp M = I + M + M2/2! + M3/3! + · · · . Here we use the
transposed transition matrix, T 	, because here we consider
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the flow of infected individuals forward through the net-
work, as opposed to the flow of arrival probability backwards
through the network (as we do in the main text).

Suppose we start with an initial population of 1 in node a.
If we wish calculate the deterministic time when the expected
population in node b reaches 1, we must solve Pb(t ) = 1.
Written slightly differently,

1 = δ	
b exp[(γ T 	 + αI )t]δa, (E3)

where δa, δb are indicator vectors, equal to 1 at index a and
b respectively, and equal to zero elsewhere. This equation
is equivalent to Eq. (7) of Chen et al. [15]. Here we have
reached the equation via a direct appeal to unbound population
growth, while Chen et al. instead describe their formalism as
a linearization of a full SIR model.

Equation (E3) can also be reached via an appeal to branch-
ing processes. By making the change of variables S → Q as
we do in the main text, suitable approximations lead to

Qb
a(t ) ≈ e(γ T +αI )t Qb

a(0), (E4)

i.e., Eq. (10). The expected arrival time at node a is precisely
the time when Qb

a(t ) = 1, that is,

1 = δ	
a e(γ T +αI )tδb. (E5)

The two methods give the same results (under the influence of
suitably powerful approximations).

Before moving on to discuss the accuracy of these results,
let us first discuss some computational difficulties. Equation
(E3) is transcendental and can thus only be solved approxi-
mately, using some suitable numerical scheme. In their paper,
Chen et al. approach this difficulty by identifying the minimal
number of steps d required to get from a to b, and truncating
the polynomial expansion of their matrix exponential after this
many steps:

1 = δ	
b e(γ T 	+αI )tδa = eαt

∞∑
k=0

δ	
b

γ kT 	kt k

k!
δa (E6)

1 ≈ eαtδ	
b

γ d T 	dtd

d!
δa. (E7)

All terms before the dth term are zero, all terms after
are higher powers of γ and thus assumed to be small. Chen
et al. solve Eq. (E7) using the Lambert-W function [34,35],
a nonlinear function originally constructed to solve equations
of the form yey = x. In cases where we have a single “most
probable” path from a to b, we can make the approximation

αt ≈ − log

(
δ	

b

γ d T 	dtd

d!
δa

)
(E8)

≈ −d log γ − log

( ∏
Ti, j

)
(E9)

≈ −
∑

log γ + log Ti, j . (E10)

Here Ti, j are the transition rates along the steps in our
shortest path. Such an estimate neglects terms of magnitude
d log(t/d ), along with contributions from all paths except the
shortest. This result mirrors those of both Gautreau et al. [14]
as well as Brockmann et al. [12] (with the notable difference

being that − log γ is replaced by 1 when using the effective
distance metric).

An alternative method to solve Eq. (E3) (not used by Chen
et al.) is the iteration scheme:

1 = δ	
a eγ T tn eαtn+1δb, (E11)

αtn+1 = − log
(
δ	

a eγ T tnδb
)
. (E12)

Here we make use of the fact that αtn+1 varies faster than
γ T tn; hence, if we have even a moderately accurate ap-
proximation tn, eγ T tn will be close to the correct value eγ T t .
In contrast eαtn+1 varies quickly: demanding tn+1 to solve
Eq. (E12), we quickly approach true solutions of Eq. (E5).

This iteration scheme requires us to calculate large matrix
exponentials repeatedly, an operation which is generically
computationally expensive, but can be made significantly less
costly by first computing the eigenvector decomposition T =
V DV −1. Here V is a matrix containing the eigenvectors of M,
while D is a diagonal matrix containing the corresponding
eigenvalues. This allows us to instead compute the matrix
exponential via elementwise exponentials of the diagonal ele-
ments:

αtn+1 = − log
[(

δ	
a V

)
eγ Dtn (V −1δb)

]
. (E13)

Matlab code to implement this iteration scheme, approx-
imating transport times to node b from all starting points is
given by the following:

[V,D_original] =eig(T);
N=size(T,1);
b=7;
delta_b= zeros(N,1);
delta_b(b)=1;

D= gamma * diag(D_original);
Right= V\delta_b;

Tk=-ones(N,1);

for(aaa=1:N)
guessT= (-log(gamma))/alpha
deltaT=5;
Left= V(aaa,:);
while(abs(deltaT)>10^-3)
expGammaT=Left*(exp(D*guessT).*Right);
deltaT= -log(expGammaT)/alpha
end
Tk(aaa)=guessT;
end
The computational cost of the above code is overwhelm-

ingly dominated by eig(M), and hence the runtime scales like
O(n3), similar to the Floyd-Warshall algorithm as might be
used to identify shortest paths when calculating the effective
distance. It is possible to calculate the time taken to arrive
in each location from a fixed starting location a by using the
transposed transition matrix, T 	, rather than T .

Now, in all uses of such methods, it is important to note that
the deterministic time when the expected population reaches
1 (as calculated using Chen et al.’s method), and the expected
time when the stochastically varying population reaches one
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are not equivalent concepts. This is best illustrated by con-
sidering the extreme case α = β = 0, where we observe that
δ	

a eγ T t eαtδb < 1 for all t . Taken at face value this would
erroneously imply that the arrival time has an expected value
of infinity; in practice this merely illustrates the difficulties of
using such an approximation for diseases with low α (such as
HIV). In general, Eq. (10) is observed to be a good approxi-
mation when α � γ T and performs poorly when α � 1.

APPENDIX F: VARIANCE IN ARRIVAL TIME

Here we provide the algebraic details for calculating vari-
ances in arrival time, assuming a starting population greater
than 1.

Recall that τ b
a denotes the arrival time at b, assuming an

epidemic starts at a, and has mean μb
a. The survival function

of Sb
a(t ) = P(τ b

a > t ). In what follows, we suppress subscripts
and superscripts, considering some generic τ :

E (τ ) =
∫ ∞

0
S dt = μ. (F1)

Assuming the mean value μ � 0,

Ṡ = αS(1 − S), (F2)∫ ∞

0
Sk − Sk+1 dt =

∫ ∞

0
Sk−1Ṡ/α dt, (F3)

∫ 0

1
Ŝk−1/α dS =

[
Sk

αk

]0

1

= −1/αk, (F4)∫ ∞

0
Sk+1 dt =

∫ ∞

0
Ŝk dt − 1

αk
, (F5)

∫ ∞

0
SN+1 dt = μ −

N∑
k=1

1

αk
. (F6)

Hence, if the expected arrival given an initial population of
1 is μ, then the arrival time assuming K + 1 individuals is
μ − ∑N

1 1/αk. This makes sense, given that the expected time
of transition form k to k + 1 individuals, for a branching rate
of α is precisely equal to 1/αk.

Next, we need to determine the expected value of E (τ 2) for
a starting population of N . For a starting population of 1, we
have E (τ 2) = μ2 + π2/3α2 [29]. For larger populations:∫ ∞

0
2t (Sk − Sk+1) dt =

∫ ∞

0
2tSk−1Ṡ/α dt,

S = 1/{1 + exp[α(t − μ)]},

t = log

(
1 − S

S

)
/α + μ,

∫ ∞

0
2t (Sk − Sk+1) dt = 2

α2

∫ 0

1
log

(
1 − S

S

)
Sk−1 dS

= 2

α2

Hk−1

k
,

where Hk is the kth harmonic number
∑k

i=1
1
i and H0 = 0:

2

α

∫ ∞

0
tSk−1 dS = 2

α2

Hk−1

k
− 2μ

αk
,∫ ∞

0
2tSN+1 dt = μ2 + π2

3α2
+

N∑
k=1

[
2

α2

Hk−1

k
− 2μ

αk

]
.

The variance is thus given as

E (τ 2) − E (τ )2 = μ2 + π2

3s2
+

N∑
k=1

[
2

s2

Hk−1

k
− 2μ

sk

]

−
(

μb
a −

N∑
1

1/sk

)2

(F7)

= π2

3s2
+

N∑
k=1

[
2

s2

Hk−1

k

]
−

(
N∑
1

1/sk

)2

(F8)

= π2

3s2
+ 1

s2

N∑
k=1

[
2Hk−1 − HN

k

]
(F9)

= π2

3s2
−

∑ 1

s2k2
. (F10)
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