Progress and gaps regarding quantifying and monitoring permafrost thaw dynamics with multi-decadal optical timeseries data

Guido Grosse, Annett Bartsch, Julia Boike, Joerg Brauchle, Matthias Fuchs, Ben Jones, Mark Lara, Anna Liljedahl, Ingmar Nitze, Tabea Rettelbach, Alexandra Runge, Ken Tape, Mathias Ulrich
Observed Temperature change in permafrost of the high Arctic (continuous permafrost), Subarctic-Boreal (discontinuous permafrost), Antarctica, and High Mountain regions for 2007-2016:

- Permafrost was warming globally with ~0.3 degC / decade
- Biskaborn et al., 2019, Nature Communications

~4 million people and 70% of current infrastructure in the permafrost domain are in areas with high potential for permafrost thaw

Hjort et al., 2018, Nature Communications
Rates of Thaw and Permafrost Carbon Feedbacks

Permafrost collapse is accelerating carbon release

The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues.

Batagaika thaw slump, East Siberia

Published: 04 January 2017

Collapsing Arctic coastlines

Michael Fritz, Jorien E. Vonk & Hugues Lantuit

1. Climatic and biogeochemical impact
 - Vertical greenhouse gas release
 - Lateral relocation of sediment, carbon and nutrients
 - Sediment, carbon and nutrient burial

2. Marine ecosystem impact
 - Increased nutrient supply
 - Ocean acidification
 - Higher turbidity and decreased light transmission

3. Socio-economic impact
 - Infrastructure damage
 - Cultural heritage loss
 - Loss of fishing and hunting ground
 - Coastal community relocation

Landsat

Turetsky et al 2019 (Nature)

Fritz et al 2017 (Nature Climate Change)
Can we still afford, under the current pace of change in Arctic land regions, to only work with snapshots of decadal or multi-annual resolution EO time series?

Event (e.g., fire, heatwave, rain storm)-driven thaw slumping, coastal erosion, and lake drainages are just a few examples highlighting that we are often not dealing with gradual + linear permafrost thaw anymore

Urgent need to bump up spatial and temporal resolution in EO
Recent Progress in EO with optical time series

(1) Temporally dense trends of multispectral medium-resolution Landsat/Sentinel-2 data
 • Regional / panarctic scope for disturbance mapping with focus on permafrost thaw

(2) Enhanced VHR (0.3 – 3m) availability, temporally dense (annually to near-daily…)
 • Coastal erosion, thaw lake dynamics, thaw slumping, ice wedge degradation

(3) New approaches in quantifying permafrost change with EO
 • Machine learning, Deep Learning, AI
 • New processing platforms providing extensive data product ecosystem (e.g., GEE)
 • Apps featuring near-realtime EO data analysis

(4) Bridging the scales is key: Satellite EO continues to require field validation with airborne, drone, and/or ground data!
Focus on 4 continental transects: E + W Siberia, Alaska, Canada (~2 million km²); 16 year period (1999 – 2014)
Based on full Landsat-5/-7/-8 archive with 30 m resolution; processing in GEE and offline
Multispectral indices (NDVI, NDMI, NDWI, Tasseled Cap, etc.) time series + trend product:
 – Visual Product – Tasseled Cap slopes
 – Trend Product – all indices, trend components
First spatially consistent mapping of disturbances across large permafrost regions

Disturbance trends in panarctic permafrost regions

Multispectral Image Processing

Thermokarst Lakes
Thaw slumps
Fires

Local example of lake changes, retrogressive thaw slumps and wildfire burn scars along the Lena River, NE Siberia.

Nitzé et al. 2018 (Nature Communications)

Data available at: https://apgc.awi.de/group/about/persys-hot
Temporally dense Landsat/Sentinel-2 trend data

Next steps: extension of time series to 20 years (2000 to 2019), ML-based disturbance feature extraction

- a) Lake drainage (~3 km²) on the Chukchi Peninsula.
- b) Batagai megaslump with eroding headwall (blue) and revegetation on the slump floor (yellowish).
- c) Coastal erosion (blue) at the south coast of Big Lyakhovsky Island.
- d) Lena river island and sand bar dynamics with erosion (blue) and accumulation zones (orange), as well as fire impacted area on the southern land surface (brownish).

Machine learning-based extraction and classification of disturbance features (here: lake change)
- a) Raw Landsat satellite image (R-G-B);
- b) RGB-Visualization of Tasseled Cap Index Trends with R: Brightness, G: Greenness and B: Wetness;
- c) Classified trend data and lake object delineation;
- d) Subdivision into stable (A) and dynamic (B) lake zones

Full permafrost region coverage in progress

Nitze et al. 2017 (Remote Sensing)
Disturbance by Magnitude for 1999-2020 by LandTrendr

LandTrendr algorithm adapted
- annual Landsat + Sentinel-2 mosaics (*Runge & Grosse 2019 and 2020, both in Remote Sensing*)
- temporal segmentation for biggest changes -> disturbance
- Timing, magnitude, duration of disturbances
- retrogressive thaw slumps, coastal erosion, wildfires

Temporal segmentation by LandTrendr, modified after Kennedy et al. 2010.
Approach: Annual very high resolution (VHR) satellite images acquired for Drew Point between 2008–2017.

Next goal: Sub-annual temporal resolution at selected sites around the Arctic to better understand seasonal dynamics of erosion and correlation to sea ice, water temperatures, and waves/storms.

Ideal: Panarctic full-scale automated coastal monitoring…

Temperal density VHR time series: Coastal erosion

Observation of rapid coastal erosion in North Alaska

Permafrost Coastal Systems Network (PerCS-Net): https://permafrostcoasts.org
Jones et al. 2018 (ERL)
Temporally dense VHR time series: Lake drainage

Observing thermokarst lake expansion, fluctuation, and catastrophic lake drainage

Approach: Sub-annual Planet (3m) satellite images acquired for Northwestern Alaska for 2017/18.

Next goal: ML/DL-guided automated detection and classification of lake drainages in selected Arctic regions to understand seasonal dynamics of catastrophic drainage and correlation to temperature, precipitation, permafrost temperature, active layer thickening, and talik formation.

Ideal: Panarctic full-scale automated lake drainage detection...

Regional detection and monitoring of retrogressive thaw slumps with AI-based methods

- Slope failure resulting from rapid thaw of ice-rich permafrost at coasts + shores
- Result in significant irreversible surface deformation and sediment transport

Approach: Sub-annual Planet (3m) satellite images acquired for selected areas in Northeast Siberia.

Next goal: AI-based detection of thaw slumps on selected Arctic regions to understand dynamics of slump activation and stabilization.

Ideal: Panarctic full-scale automated thaw slump detection and monitoring...
AWI-DLR Permafrost Campaigns: NW Canada 2018, N Alaska 2019

DLR Modular Aerial Camera System:
- Raw: RGB ~ 17MB/image; NIR ~ 15MB/image
- Footprints @ 1000 m AGL
 - GSD NIR: 15 cm per pixel
 - GSD RGB: 9 cm per pixel → ~120 pixel per m²
 - Overlap @ 3 fps: 93%

Canada 2018 + Alaska 2019
- ca. 1,070,000 image files
- Raw data: ~23 TB
- TIFF: RGB ~ 90MB/image; NIR ~ 30MB/image
- additional: LIDAR data

MACS mosaic of the Yukon Coast, NW Canada: Derived from 22 images; MACS DEM draped with RGB @ GSD~12cm

Length of mosaic: ca. 1.3 km
Need for high temporal and/or high spatial resolution to understand tipping element character of permafrost

Need to further ease access to Arctic (VHR) EO data, high performance processing and storage platforms

Need to train new generation of EO scientist and engineers with understanding of permafrost dynamics

Panarctic work needs close collaboration across nationalities; overarching networking projects help fostering collaboration also in EO (e.g., PerCSNet, T-MOSAiC, Permafrost Discovery Gateway)