Mathematics and Climate Change

Gerrit Lohmann

Abstract Climate change is one of the most pressing scientific challenges of our
times, with transformations which are already becoming present in many areas of the
world. The demand (from the stakeholders) for clear answers under a wide range of
future scenarios has to be addressed (by the scientific community) using our rapidly-
evolving knowledge of the weather and climate system. Mathematics is one of the
essential pillars at the foundation of this knowledge, as it allows us to quantify and
predict the effects we observe in nature. In this chapter, we illustrate some crucial
mathematical techniques and theoretical approaches, in the context of their applica-
tion to the climate system. The concepts of critical parameters, dimension reduction,
and stochasticity are explored in detail.
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Introduction

Mathematics can be described in large parts on (unprovable, but very well founded)
axioms by purely logical steps. Physics owes, since the beginning of modern times,
its great successes due to experiments (can be repeated at any time with limitation
to measurable data) with mathematical theories and models. Strong abstraction, e.g.
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in free fall, is unavoidable and at the same time greatly reduce the “overall real-
ity”. Climate science is rather new subject, describing the nature of its components
and quantities like temperatures and currents. Its great success is due to a proper
combination of observations, its theoretical foundations in fluid dynamics, and the
statistical analysis of data. Unlike in physics, there is no lab to repeat measure-
ments, instead, we have just one realization of the climate trajectory. Until now it is
unknown on whether the gradual or the catastrophic case is more likely.
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Fig. 1 Northern Hemisphere near-surface temperature anomaly [K] based on HadCRUT4 (Morice
et al|2012).

Fig. [T] shows the Northern Hemisphere temperature evolution of the last 150
years. The last 150 years are quite often called the “instrumental period” since the
spatial coverage and the quality of the data is high compared to earlier periods. The
current and future climate is subject to significant change and fluctuations, a large
part is due to the increasing human influence on the climate system. The extent and
the rate of this change are controversial, however. It is therefore necessary to im-
prove the understanding of natural climate variability and trends by searching for
their causes at time different scales, i.e. the multidecadal component in Fig. (I} A
major challenge is furthermore to understand the dynamics and potential thresholds
of rapid climate changes. The analysis of the current status, of the past, of driving
mechanisms and feedbacks provide a suitable framework to study conditions which
are expected to develop in the future.

A comprehensive modeling strategy designed to address abrupt climate change
includes vigorous use of a hierarchy of models, from theory and conceptual mod-
els with only a few degrees of freedom through models of intermediate complexity,
to high-resolution models of components of the climate system, to fully coupled
earth-system models. The simpler models are well-suited for use in developing new
hypotheses for abrupt climate change. Model-data comparisons are needed to as-
sess the quality of model predictions. It is important to note that the multiple long
integrations of enhanced, fully coupled Earth system models required for this re-
search are not possible with the computer resources available today, and thus, these
resources are currently enhanced. Since Earth System Models have to simplify the
system and rely on parameterizations of unresolved processes using present data,
paleoclimate records provide a unique tool to validate models for conditions which
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are different from our present one. Suitable data-model analyses provide therefore a
proper basis to estimate and possibly reduce uncertainties of future climate change
projections (Lohmann et al|2020). Furthermore, the model scenarios in conjunction
with the long-term data can be used to examine mechanisms for the statistics of
regional climate extremes under different boundary conditions. Mathematical tools
are numerics of partial differential equations, and conceptual approaches of fluid
mechanics are described in this paper.
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Fig. 2 Schematic diagram of the spatio-temporal scales considered. DO: Dansgaard-Oeschger,
H: Heinrich events; AMO: Atlantic Multidecadal Oscillation; PDO: Pacidic Decadal Oscillation;
ENSO: El Nifio-Southern Oscillation. The annual and astronomical cycles are externally driven and
have quasi-global impact. The dashed line shows a schematic power spectrum with more variability
on long time scales.

In the entire climate system, different scales play an important role (Fig.[2). These
are the characteristic orders of magnitude in space and time that a system possesses
or is superimposed on the system in order to record or observe it. Climate has a
spatial and temporal dimension, which fluctuate in a wide range of spatial and tem-
poral scales. Spatial scales vary from local to regional to continental. Time scales
vary from seasonal to geological. The spatio-temporal dimension of complex phe-
nomena are defined by their typical spatial extension (e.g. the diameter of a high-
pressure area), which is linked to a structure whose magnitudes can be specified as
spatial scales. The time scale of an atmospheric process is the order of magnitude
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of its lifetime. In addition, it is also possible to specify the spatial and temporal
resolution with which a system is to be viewed. A distinction is made between the
scale in space and time that an atmospheric process or an atmospheric system has
and the scale of the observation. If the spatial and temporal scales of observation
are to make it possible to capture the system in good resolution, they must be sig-
nificantly smaller than those describing the overall system. The word “scale” in this
context means order of magnitude or scale. The spectrum of atmospheric space and
time scales covers many orders of magnitude. A rough classification, which is com-
mon in meteorology, is based on the horizontal space scale L. Basically, climate
represents a space-time continuum, so that fixed scale limits do not occur in the real
atmosphere. Rather, more or less narrow transition ranges between the scales are the
rule. Larger and smaller systems influence each other so that the transitions between
differently scaled weather phenomena are smooth and the approach is usually based
on the question. In order to illustrate the scaling in the climate system, the procedure
of non-dimensional parameters are introduced.

Models of planetary motion based on Newton’s models of gravity and motion,
were astonishingly successful, and this had a profound impact on the way in which
people viewed mathematical models and in the way that we still view them. The
18th century French scientist/mathematician Laplace, extended the basic Newto-
nian model, given above, to model the motion of all the planets in the solar system,
including their influences on each other. This model accounted for the motions of
the planets as perfectly as they could be measured (including all the small devia-
tions from elliptical orbits caused by the planets gravitational affects on each other).
This seemed to be such a triumph that the belief grew up that everything in the uni-
verse could be described by such models, and that in principle the future could be
predicted perfectly given such models and accurate measurements of the state of
the universe now. Perhaps not surprisingly, Laplace was a vigorous promoter of this
idea, which gained the name determinism.

These ideas lent their name to the concept of a deterministic model - that is
a model which if solved from identical starting conditions always has the same
solution. For much of the nineteenth century determinism reined, and resulted in a
great deal of heart searching about free-will and the like. In the twentieth century
three areas of science comprehensively overturned the idea that everything could
be described by deterministic models. These were quantum mechanics and chaos
theory. The later had its origin in meteorology and fluid dynamics.

In the 1960s, Edward Lorenz, a mathematician and meteorologist, showed that
there are natural limits to the predictability of a nonlinear system, such as atmo-
spheric circulation. He discovered and described the chaotic behaviour of large-
scale motion patterns in the atmosphere and showed that despite the determinacy
of the system, i.e. that although the partial differential equations could be calcu-
lated at any time, the system itself loses its predictability after a relatively short
time. Even the smallest changes in the initial conditions caused different final states
after a few iteration steps (calculation steps). A predictability of the system is there-
fore limited in time and the non-linearity is responsible for the finite predictability
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of atmospheric flow patterns. This insight became known under the technical term
“butterfly effect”.

Climate physicists constantly trying to learn from our observations how to ex-
amine causes and effects in such a way that the observations are captured. We write
down our gained insights as mathematically formulated laws of nature. We formu-
late equations of motion in the form of differential equations. Their solutions pro-
vide information about what will happen to a given state at a given time at a later
time. In this sense, the equations of motion as such provide a causal description
par excellence - all equations of motion. Sometimes, however, there seem to be an-
noying difficulties with causal chains or with predictability. For example, when the
destructive path of a hurricane is poorly predicted, or in extreme weather events.
We are even more aware of the problems in long-term predictions, such as climate
change. So is causality failing here? Of course we do not think so, otherwise we
would not be looking for causes. It then also made no sense to derive political deci-
sions from insights into climate evolution. And although word has got around that
quantum mechanics is not a causal physics in the classical sense, we will hardly
want to blame quantum mechanics for the cases of lack of predictability or unde-
tectable cause-effect relationships. Here, the intersection of mathematical modeling
and questions within Climate Change sciences are elaborated.

A systematic description of the mathematics and climate is given (Fig. 3). A
general question within the micro-macro dynamic is that of integration between dif-
ferent levels. Two distinctly different levels emerge with different rules governing
each, but they then need to be reconciled in some way to create an overall function-
ing system. Physical, chemical, biological, economic, social and cultural systems all
exhibit this micro-macro dynamic and how the system comes to reconcile it forms
a primary determinate in its identity and overall structure. This multi-dimensional
nature to a system that results in the micro-macro dynamic is a product of synthesis
and emergence. An approach is coarse graining and projection where the underly-
ing dynamics is projected onto the macroscopic dynamics, the other is the statistical
physics theory of non-equilibrium statistical mechanics. The Boltzmann equation,
coarse graining, and the Brownian motion are the approaches to understand the dy-
namics on different scales.

Climate: a fluid dynamical system

For present climate state we are able to directly measure all involved quantities.
From measurements we can draw conclusions about physical, chemical and bio-
logical relationships between the variables. Our understanding about the involved
processes is far from complete, but nevertheless we derive equations that describe
and predict the observed phenomena.
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Boltzmann equation/BBGKY hierarchy Mori-Zwanzig approach: Coarse graining

1 Macroscopic moments
Fluid dynamics (Navier Stokes equation etc.)
Scale analyses and approximations
Coarse graining by numerical schemes, Parameterizations of unresolved scales
Coupling techniques

Climate system including its components with charactieristic time and spatial scales
(atmosphere, ocean, cryosphere, land cover and vegetation, biogeochemical cycles, solid Earth)

Defining initial and boundary conditions

Climate model experiments for past, present and future scenarios (Ensenbles)

I Statistical data analyses

Validation of climate scenarios on different time scales by using observations and paleoclimates

Fig. 3 Systematic description of climate and mathematics. Changing the description of the dy-
namics: from the micro to the macro scales. This is a common problem since we are not able to
describe the systems on all temporal and spatial scales.

Mathematical equations

Our starting point is a mathematical model for the system of interest. In physics a
model typically describes the state variables, plus fundamental laws and equations
of state. These variables evolve in space and time. For the ocean, fundamental equa-
tions are formulated:

e State variables: Velocity (in each of three directions), pressure, temperature,
salinity, density

e Fundamental laws: Conservation of momentum, conservation of mass, conserva-
tion of temperature and salinity

e Equations of state: Relationship of density to temperature, salinity and pressure,
and perhaps also a model for the formation of sea-ice

The state variables are expressed as a continuum in space and time, and the funda-
mental laws as partial differential equations. If the atmosphere is becoming too thin
in the upper levels, a more molecular, statistical description is appropiate. Even at
this stage, though, simplifications may be made. For example, it is common to treat
seawater as incompressible. Furthermore, equations of state are often specified by
empirical relationships or laboratory experiments.

ap
ot

or, using the substantive derivative:

V- (pu)=0 (1)
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Fig.4 Schematic view on the climate system. Global climate is a result of the complex interactions
between the atmosphere, cryosphere (ice), hydrosphere (oceans), lithosphere (land), and biosphere
(life), fueled by the non-uniform spatial distribution of incoming solar radiation
[1992). We know from climate reconstructions using recorders such as ice cores, ocean and lake
sediment cores, tree rings, corals, cave deposits, and ground water that the Earth’s climate has
seen major changes over its history. An analysis of the temperature variations patched together
from all these data reveals that climate change occurs in cycles with characteristic periods, for
example 200 million, 100 thousand, or 4-7 years. For some of these cycles, particular mechanisms
can be identified, for example forcing by changes in the Earth’s orbital parameters or internal
oscillations of the coupled ocean-atmosphere system. However, major uncertainties remain in our
understanding of the interplay of the components of the climate system.

Dp
Dr +p(V-u)=0. 2)
A simplification of the resulting flow equations is obtained when considering an in-
compressible flow of a Newtonian fluid. The assumption of incompressibility rules
out the possibility of sound or shock waves to occur; so this simplification is in-
valid if these phenomena are important. The incompressible flow assumption typi-
cally holds well even when dealing with a ”compressible” fluid -such as air at room
temperature- at low Mach numbers (even when flowing up to about Mach 0.3).

The dynamics of flow are based on the Navier-Stokes equations. This is a state-
ment of the conservation of momentum in a fluid and it is an application of Newton’s
second law to a continuum; in fact this equation is applicable to any non-relativistic

continuum and is known as the Cauchy momentum equation (e.g., Landau and Lif-



8 Gerrit Lohmannl

shitz (1959))). Taking this into account and assuming constant viscosity, the Navier-
Stokes equations will read, in vector form:

Inertia (per volume) Divergence of stress

—_——

Jdu
2
ou +u~Vu):pr+ Viut F . 3)
v Advective Pressure  Viscosity ~ Other
Unsteady acceleration gradient body
acceleration forces

Note that only the advection terms are nonlinear for incompressible Newtonian flow.
This acceleration is an acceleration caused by a (possibly steady) change in velocity
over position, for example the speeding up of fluid entering a converging nozzle.
Though individual fluid particles are being accelerated and thus are under unsteady
motion, the flow field (a velocity distribution) will not necessarily be time depen-
dent.

The vector field F represents “other” (body force) forces. Typically this is only
gravity, but may include other fields (such as electromagnetic). In a non-inertial
coordinate system, other “forces” such as that associated with rotating coordinates
may be inserted. We note that the Coriolis force will be one of the main contribu-
tions in the rotating Earth system. Often, these forces may be represented as the
gradient of some scalar quantity. Gravity in the z direction, for example, is the gra-
dient of —pgz. Since pressure shows up only as a gradient, this implies that solving
a problem without any such body force can be mended to include the body force by
modifying pressure.

If temperature effects are also neglected, the only “other” equation (apart from
initial/boundary conditions) needed is the mass continuity equation. Under the in-
compressible assumption, density is a constant and it follows that the equation will
simplify to:

V-u=0 ) 4)

This is more specifically a statement of the conservation of volume (see divergence).
These equations are commonly used in 3 coordinates systems: Cartesian, cylindri-
cal, and spherical. While the Cartesian equations seem to follow directly from the
vector equation above, the vector form of the Navier-Stokes equation involves some
tensor calculus which means that writing it in other coordinate systems is not as
simple as doing so for scalar equations (such as the heat equation).

Taking the curl of the Navier-Stokes equation results in the elimination of pres-
sure. This is especially easy to see if 2-dimensional Cartesian flow is assumed
(w = 0 and no dependence of anything on z), where the equations reduce to:

D, (Vy) =vViy (5)

where V* is the (2D) biharmonic operator and v is the kinematic viscosity v = £.
This single equation together with appropriate boundary conditions describes 2D

fluid flow, taking only kinematic viscosity as a parameter. Note that the equation
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for creeping flow results when the left side is assumed zero. In axisymmetric flow
another stream function formulation, called the Stokes stream function, can be used
to describe the velocity components of an incompressible flow with one scalar func-
tion. The concept of taking the curl of the flow will become very important in climate
dynamics (vorticity dynamics). The term { = V2 is called relative vorticity, and
the term f = 202 sin @ is due to the rotating Earth (€2 is the ratiation, ¢ the latitude).
The dynamics can be described by the barotropic vorticity equation as

D((+f)=VvV¢ (6)

which is heavily used in climate research.

Non-dimensional parameters: The Reynolds number

In climate, we are interested in the critical paramters of the system. For the case of
an incompressible flow in the Navier-Stokes equations, assuming the temperature
effects are negligible and external forces are neglected, the equations consist of
conservation of mass

Vou=0 )

and momentum
1
du+(u-Viu= —p—Vp—Fszu 3)
0

where u is the velocity vector and p is the pressure, v denotes the kinematic viscos-
ity. The equations can be made dimensionless by a length-scale L, determined by
the geometry of the flow, and by a characteristic velocity U. For inter-comparison
of analytical solutions, numerical results, and of experimental measurements, it is
useful to report the results in a dimensionless system. This is justified by the impor-
tant concept of dynamic similarity (Buckingham|(1914)). The main goal for using
this system is to replace physical or numerical parameters with some dimensionless
numbers, which completely determine the dynamical behavior of the system.

The procedure for converting to this system first implies, first of all, the selection
of some representative values for the physical quantities involved in the original
equations (in the physical system). For our current problem, we need to provide
representative values for velocity (U), time (T'), distances (L). From these, we can
derive scaling parameters for the time-derivatives and spatial-gradients also. Using
these values, the values in the dimensionless-system (written with subscript d) can
be defined:
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u=U- uy )
t=T- 1, (10)
x=0L-xy4 (11)

with U = L/T. From these scalings, we can also derive

d d

1
=5 =T o (12)
d 1 4
O = ax:Z'axd (13)

Note furthermore the units of [pg] = kg/m?>, [p] = kg/(ms?), and [p]/[po] = m?/s>.

Therefore the pressure gradient term has the scaling U? /L. Furthermore, divide the
momentum equation by U?/L and the scalings vanish completely in front of the
terms except for the Vfiud-term:

Vs ua=0 (14)
and conservation of momentum
au+(u Vi)ug = -V +1V2u (15)
8tdd d'Vq)ug = dPd Re " dud

The dimensionless parameter Re = UL/V is the Reynolds number and the only pa-
rameter left.

For large Reynolds numbers, the flow is turbulent. In most practical flows Re is
rather large (10* — 10%), large enough for the flow to be turbulent. A large Reynolds
number allows the flow to develop steep gradients locally. The typical length-scale
corresponding to these steep gradients can become so small that viscosity is not neg-
ligible. So the dissipation takes place at small scales. In this way different length-
scales are present in a turbulent flow, which range from L to the Kolmogorov length
scale. This length scale is the typical length of the smallest eddy present in a turbu-
lent flow. In the climate system, this dissipation by turbulence is modeled via eddy
terms. To evaluate the critical parameters and scales, we implicitly assume such
procedure. A classical example is provided in the next section.

Convection in the Rayleigh-Bénard system

A system of three ordinary differential equations are introduced whose solutions
afford the simplest example of deterministic flow that we are aware of. The system
is a simplification of the one derived by Saltzman| (1962), to study finite-amplitude
convection.

Consider the Rayleigh-Bénard circulartion. [Rayleigh| (1916) studied the flow oc-
curring in a layer of fluid of uniform depth H, when the temperature difference
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Benard-Cell

,,,,,,,,,,,,,,,,,,,,,,, (low temperature) . ________
- Ty

z u To+ AT
fa (high temperature)

Fig. 5 Geometry of the Rayleigh-Bénard system (see text for details).

between the upper- and lower-surfaces is maintained at a constant value AT .

T(xvyvzzH): To
T(x,y,z=0) = Tp+AT (16)

The Boussinesq approximation is used, which results in a buoyancy force term
which couples the thermal and fluid velocity fields. Therefore

P = po = const. a7)
except in the buoyancy term, where:
p=po(l—o(T —Tp)) witha >0 . (18)

po is the fluid density in the reference state. This assumption reflects a common
feature of geophysical flows, where the density fluctuations caused by temperature
variations are small, yet they are the ones driving the overall flow. We have the
following relations. Furthermore, we assume that the density depends linearly on
temperature 7.

This system possesses a steady-state solution in which there is no motion, and
the temperature varies linearly with depth:

u=w=20

Teq:ToJr( )AT (19)

2
H
When this solution becomes unstable, convection should develop.
In the case where all motions are parallel to the x — z-plane, and no variations
in the direction of the y-axis occur, the governing equations may be written (see
Saltzman|(1962)) as:
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1
Dy =—— xp—&—vVZu (20)
Po
1
Dyw = —;azp+VV2W+g(1—a(T—T0)) @n
0
D,T = kV’T (22)
deu+dw =0 (23)

where w and u are the vertical and horizontal components of the velocity. Further-
more, V="1/po, K =A/(poC,) the momentum diffusivity (kinematic viscosity) and
thermal diffussivity, respectively.

Now, the pressure is eliminated to derive the vorticity equation D, (V2y) =
vv4 v. Here, it is useful to define the stream function ¥ for the two-dimensional
motion, i.e.

x4
o 9
erd
adw du
azlp PR )
::DtW—DtTZz :Dlv !Il . (27)

Furthermore, one can introduce the function © as the departure of temperature from
that occurring in the state of no convection (19):

T=Ty+0 (28)

In the temperature term in % 1) on the right hand side:

0 0
gg(l —a(Tog+0 -T)) = —ga$®

The left hand side of (22) reads

—AT AT 0¥
DT = DT,y +D:® =w- " +D,0 = “H ox +D;®
Then, the dynamics can be formulated as
00
D, (V*¥) = vV — 80—~ (29)
X
AT 0¥
DO ="""14xV0 . (30)

H o0x
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Non-dimensionalization of the problem yields equations including the dimen-
sionless Prandtl number o and the Rayleigh number R, which are the control pa-
rameters of the problem. One can take the layer thickness H as the length of unit, the
time T = H? /x of vertical diffusion of heat as the unit of time, and the temperature
difference AT as the unit of temperature.

Reduction of dimensions and the Lorenz system

Saltzman|(1962) derived a set of ordinary differential equations by expanding ¥ and
O in double Fourier series in x and z, with functions of ¢ alone for coefficients, and
substituting these series into and A complete Galerkin approximation

O e kma I
P(x,2,0) = Wi(r) sin ( —x ) x sin ( = 31)
(o= LY k,()sm(Hx) (H>
O(x,z,1) = Y. ) Oui(r)

k=11=1

cos (k;_r;lx) X sin <llfltz> (32)

yields an infinite set of ordinary differential equations for the time coefficients. He
arranged the right-hand sides of the resulting equations in double Fourier-series
form, by replacing products of trigonometric functions of x (or z) by sums of
trigonometric functions, and then equated coefficients of similar functions of x and z.
He then reduced the resulting infinite system to a finite system by omitting reference
to all but a specified finite set of functions of 7. He then obtained time-dependent so-
lutions by numerical integration. In certain cases all, except three of the dependent
variables, eventually tended to zero, and these three variables underwent irregular,
apparently non-periodic fluctuations. These same solutions would have been ob-
tained if the series had been at the start truncated to include a total of three terms.
Accordingly, in this study we shall let

X, 2,1t

ﬁ K W—X\2sin (%x) sin (%z) (33)
R, 1 Ta . (T . T
nR—Lﬁ O =YV 2cos (ﬁx) sin (Ez) —Zsin (2EZ) (34)

where X (¢), Y (¢), and Z(t) are functions of time alone.
It is found that fields of motion of this form would develop if the Rayleigh num-
ber

oH3AT
R, =58220 (39)
VK
exceeds a critical value
R.=n*a2(1+d°)° . (36)

The minimum value of R, namely 277* /4 = 657.51, occurs when a®> = 1/2. In fluid
mechanics, the Rayleigh number for a fluid is a dimensionless number associated
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with the relation of buoyancy and viscosity in a flow. When the Rayleigh number
is below the critical value for that fluid, heat transfer is primarily in the form of
conduction; when it exceeds the critical value, heat transfer is primarily in the form
of convection.

When the above truncation (33]34) is substituted into the dynamics, we obtain
the equations (Lorenz model):

X=—-0X+o0oY 37)
Y=rX-Y—-XZ (38)
Z=—bZ+XY (39)

Here a dot denotes a derivative with respect to the dimensionless time t; = 72H (1 +
a*)xt, while ¢ = vk~ is the Prandtl number, » = R, /R, and b = 4(1 +a*)~".

Equations [38] 39) are called Lorenz model in the literature (Lorenz|[1960,
1963}, 1984} [Maas| 1994 |Olbers|2001). The system may give realistic results when
the Rayleigh number is slightly supercritical, but their solutions cannot be expected
to resemble those of the complete dynamics when strong convection occurs, in view
of the extreme truncation. Figure[6|shows the numerical solution in the phase-space
with the parameters r = 28, ¢ = 10, and b = 8/3. The chaotic nature of this system
inspired climate scientist and scientists in general. This phenomenon had probably
the greatest impact of climate science to mathematics.

10 20 30
l

0
l

-10 0 10 20

Fig. 6 Numerical solution of the Lorenz model, in the X —Y phase-space with the parameters
r=28, c=10,and b = 8/3.
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Scaling in the climate system

As we will see now, the Coriolis effect is one of the dominating forces for the large-
scale dynamics of the oceans and the atmosphere. It is convenient to work in the
rotating frame of reference of the Earth. The equation can be scaled by a length-
scale L, determined by the geometry of the flow, and by a characteristic velocity
U. One can estimate the relative contributions in units of m/s? in the horizontal
momentum equations:

0 1
87: 4+ v.Vy = —EVp +2Q xv+  fric (40)
~— , UAL~1078 —— foU~10-5 vy /H2~10-13
U/T~10" 8P/(pL)~1073

where fric denotes the contributions of friction due to eddy stress divergence (usu-
ally ~ vV2v). Typical values are given in Table 1. The values have been taken for
the ocean.

It is furthermore useful to think about the orders of magnitude: Because of the
continuity equation U /L ~ W /H and since the horizontal scales are orders of mag-
nitude larger than the vertical ones, the vertical velocity is very small relative to the
horizontal. For small scale motion (like small-scale ocean convection or cumulus
clouds) the horizontal length scale is of the same order as the vertical one and there-
fore the vertical motion is in the same order of magnitude as the horizontal motion.
The timescales are related to T ~ L/U ~ H/W.

It is essential to think about the relative importance of the different terms in the
momentum balance . The Rossby Number Ro is the ratio of inertial (the left
hand side) to Coriolis (second term on the right hand side) terms

U?/L) U
Ro = w =— . “4n
(fu) fL
It is used in the oceans and atmosphere, where it characterizes the importance of
Coriolis accelerations arising from planetary rotation. It is also known as the Kibel
number. Ro is small when the flow is in a so-called geostrophic balance.

Projection methods: coarse graining and stable manifold theory

The structure of fluid dynamical models and thus climate models is valid for sys-
tems with many degrees of freedom, many collisions, and for substances which can
be described as a continuum. The transition from the highly complex dynamical
equations to a reduced system is an important step since it gives more credibility
to the approach and its results. The transition is also necessary since the active en-
tangled processes are running on spatial scales from millimetres to thousands of
kilometres, and temporal scales from seconds to millennia (Figs. E], E]) Therefore,
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|  Quantity [[Atmosphere][ Ocean |

horizontal velocity U 10 ms™T [ 107 Tms™!
vertical velocity w 10 ms™ | 1074 ms™!
horizontal length L 10%m 10%m
vertical length H 10*m 103m
horizonal Pressure changes |SP (horizontal) 103 Pa 10* Pa
mean pressure Py 103 Pa 107 Pa
time scale T 1035 107s
gravity (gravitation+centrifugal) g 10ms—2 10ms=2
Earth radius a 10" m 107 m
Coriolis parameter at 45°N | fo =2Qsingq || 10~*s~! 1074571
2nd Coriolis parameter at 45°N | fj = 2Qcos@y|| 107*s~! 1074571
density p 1 kgm™3 | 103kgm™3
viscosity (turbulent) v 107 kgm™3 |10 0 kgm™3

Table 1 Table shows the typical scales in the atmosphere and ocean system. Using these orders of
magnitude, one can derive estimates of the different terms in (#0).

the unresolved processes on subgrid scales have to be described. This is the typical
problem in statistical physics, known as the so-called Mori-Zwanzig approach (Mori
1965} [Zwanzig||1960, [1980). The basic idea is the evolution of a system through a
projection on a subset (macroscopic relevant part), where a randomness reflects the
effects of the unresolved degrees of freedom. A particular example is the Brownian
motion (Einstein||1905} |[Langevin|(1908). Another solution for the transition form
may degrees of freedom to the macroscopic laws goes back to |Boltzmann| (1896).
The Boltzmann equation, also often known as the Boltzmann transport equation
(Boltzmann||1896; [Bhatnagar et al||1954; |Cercignanil/[1990) describes the statistical
distribution of one particle in a fluid. It is one of the most important equations of
non-equilibrium statistical mechanics, the area of statistical mechanics that deals
with systems far from thermodynamic equilibrium. It is applied, for instance, when
there is an applied temperature gradient or electric field. Both, the Mori-Zwanzig
and Boltzmann approaches play also a fundamental role in physics. The microscopic
equations show no preferred time direction, whereas the macroscopic phenomena in
the thermodynamics have a time direction through the entropy. The underlying pro-
cedure is that part of the microscopic information is lost through coarse graining in
space and time.

In order to get a first idea of coarse graining, one one may think of the transi-
tion from Rayleigh-Bénard convection to the Lorenz system (section Convection in
the Rayleigh-Bénard system). In our formula, the Galerkin approximation
provided a suitable projector to simply truncate the series at some specified wave
number cut-off into a low-order system (such as in equations (33} 34). The mathe-
matical theory behind this truncation is called the center manifold theory (Oseledets
1968}; [Haken|[1983). We could arrive at the slow manifold of the climate system, to
which all the faster response variables (e.g., the atmosphere) are attracted. In math-
ematics, the slow manifold of an equilibrium point of a dynamical system occurs as
the most common example of a center manifold. One of the main methods of sim-
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plifying dynamical systems, is to reduce the dimension of the system to that of the
slow manifold—center manifold theory rigorously justifies the modelling (Lorenz
19865 |Arnold||1998; [Roberts|[2008f; |Arnold and Imkeller(1998)).

The Mori-Zwanzig formalism (Mori| 1965} |Zwanzig|1960) and the slow manifold
theory provide a conceptual framework for the study of dimension reduction and the
parameterization of less relevant variables by a stochastic process. It includes a gen-
eralized [Langevin| (1908) theory. [Langevin| (1908) studied Brownian motion from
a different perspective to Einstein’s seminal 1905 paper (Einstein|[1905), describ-
ing the motion of a single Brownian particle as a dynamic process via a stochastic
differential equation, as an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein
1930).

The Gaussian filtering of hydrodynamic equations that leads to the Smagorinsky
equations (Smagorinsky|/1963) is, in its essence, a version of coarse-graining. The
projection method includes the procedure to describe turbulent energy dissipation
in turbulent flows, where the larger eddies extract energy from the mean flow and
ultimately transfer some of it to the smaller eddies which, in turn, pass the energy
to even smaller eddies, and so on up to the smallest scales, where the eddies convert
the kinetic energy into internal energy of the fluid. At this scales (also known as
Kolmogorov scale), the viscous friction dominates the flow (Frisch|1996)).

Brownian motion, weather and climate

The daily observed maximum and minimum temperatures is often compared to the
“normal” temperatures based upon the 30-year average. Climate averages provide a
context for something like this winter will be wetter (or drier, or colder, or warmer,
etc.) than normal. It has been said ”Climate is what you expect. Weather is what
you get.” What is the difference between weather and climate? This can be also
answered by an example/a metaphor in the football league. Predicting the outcome
of the next game is difficult (weather), but predicting who will end up as German
champion is unfortunately relatively easy (climate).

For climate, this transition between the climate and weather scales has been for-
mulated conceptually (Hasselmann||{1976} |Leith/[1975), and later re-formulated in
a mathematical context (Arnold||2001; |Chorin et al||{1999} |Gottwald|2010). The ef-
fect of the weather on climate is seen by red-noise spectra in the climate system,
showing one of the most fundamental aspects of climate, and serving also as a null
hypothesis for climate variability studies.

In a stochastic framework of climate theory one may use an appropriate stochas-
tic differential equation (Langevin equation)

d
Salt) = £ + g0, “2)
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where § = %W(I) is a stationary stochastic process and the functions f,g: R" — R"
describe the climate dynamics. The properties of the random force are described
through its distribution and its correlation properties at different times. The process
& is assumed to have a Gaussian distribution of zero average,

<E&@)>=0 (43)
and to be d-correlated in time,
<EME(E+1)>=08(1) (44)

where § is the delta function defined by

/}% F(X)8(x—x0)dx = f(xo) - (45)

The brackets indicate an average over realizations of the random force. Formally:
&(¢) is a random variable, i.e. £(r)(a) with different realizations due to random
variable a. The expectation < &(¢) > is thus the mean over all @ :< & (¢) () >¢.
Using the ergodic hypothesis, the ensemble average () can be expressed as the time

average limrﬂm% jfﬁz
phase space eventually revisit the set. For a Gaussian process only the average and
second moment need to be specified since all higher moments can be expressed in
terms of the first two. Note that the dependence of the correlation function on the
time difference T assumes that £ is a stationary process. & is called a white-noise
process.

Additionally, there might be an external forcing F(x,¢) which is generally time-
, variable-, and space-dependent. In his theoretical approach, [Hasselmann| (1976)
formulated a linear stochastic climate model

dt of the function. Almost all points in any subset of the

S x() = At Ot +F() 46)
with system matrix A € R™*", constant noise term o, and stochastic process &.
Many features of the climate system can be well described by (6), which is analo-
gous to the Ornstein-Uhlenbeck process in statistical physics (Uhlenbeck and Orn-
stein|1930). Notice that o€ represents a stationary random process. The relationship
derived above is identical to that describing the diffusion of a fluid particle in a tur-
bulent fluid. In a time-scale separated system, during one slow-time unit the fast
uninteresting variables y perform many "uncorrelated’ events (provided that the fast
dynamics are sufficiently chaotic). The contribution of the uncorrelated events to
the dynamics of the slow interesting variables x is as a sum of independent random
variables. By the weak central limit theorem this can be expressed by a normally
distributed variable. Note, in the absence of any feedback effects Ax, the climate
variations would continue to grow indefinitely as the Wiener process. A perturba-
tion in a system with a negative feedback mechanism will be reduced whereas in a
system with positive feedback mechanisms, the perturbation will grow. In the one
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dimensional case, A can be rewritten as —A. The real part of A determines then the
stability of the system and is called feedback factor.

Climate variability and sensitivity

Imagine now that the temperature of the ocean mixed layer of depth h is governed
by a one-dimensional system

%ZflTWLQnetJrf(t): 47)
where the air-sea fluxes due to weather systems are represented by a white-noise
process with zero average < Qp,; >= 0 and J-correlated in time < Qe () Oner (£ +
7) >= 6(7). The function f(¢) is a time dependent deterministic forcing. Assume
furthermore that f(r) = ¢ - u(¢) with u(z) as unit step or the so-called Heaviside
step function. Because < Q. >= 0, < T(t) > can be solved using the Laplace
transform:

_ L [<TO)> ¢ 1
T = 1 F = 1 — 4
<T(t)>=2"{F5}t)=<¢ { A . s+)L} (48)
= T(0) - exp(—Af) + %(1 —exp(—A1)) 49)
because we have < T(0) >= T(0). As equilibrium response, we have
. c
AT:llgg<T(z) >_T (50)
The fluctuation can be characterized by the spectrum
N 1
S(w)=<TT* > (51)

VRN

and therefore, the spectrum and the equilibrium response are closely coupled (
fluctuation-dissipation theorem). In mathematics, this is called Wiener-Chintschin-
Theorem (Wiener|1930; Chintchinl[1934)). For some energy considerations, it is use-
ful to re-write equation (47) as

T

Co = —AcT + fe, (52)

with C = ¢,pdz as the heat capacity of the ocean. For a depth of 200 m of water
distributed over the globe, C = 4.2- 10°Wskg 'K~ x 1000kgm ™3 x 200m = 8.4 -
103Wsm~2K~!. The temperature evolution is

T(t) = T(0) -exp(—A/C1) + {C—C (1 - exp(~2c/Ct)) (53)
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The left hand side of represents the heat uptake by the ocean, which plays a
central role in the transient response of the system to a perturbation (53)).

Typical changes in fc are 4Wm~?2 for doubling of CO,, Ac = 1 —2Wm™2K~!.
The typical time scale for a mixed layer ocean is C/A¢c = 13 — 26 years . Please note
that the climate system is simplified by a slab ocean with homogeneous temperature
and heat capacity. This is an approximation as the heat capacity should vary in time
as the perturbation penetrates to deeper oceanic levels. The equilibrium temperature
change AT is
_4fe_c¢ (54)
Ac A
with values of AT =2 —4 K. The term CS = i is called climate sensitivity to a
radiative forcing A f¢:

AT

AT =CS - Afe . (55)

In the literature, the concept of climate sensitivity is quite often used as the equilib-
rium temperature increase for a forcing A fc related to doubling of CO». It is obvious
that the CS depends on the included sources of feedback of the system which are re-
lated to climate components and their respective time scales (e.g.,[Lohmann|(2018))).
Due to the non-normality in (46), the effective damping may not be directly related
to the eigenvalues of the system.

Non-normal growth of the climate system

In the one-dimensional case for x(#) = exp(at) we have the the inverse Laplace
transform
1 y+iT 1

_ -1 I st
explar) = 2 F()}0) = 5 Jim [ et

ds, (56)

and and the entire range of t is controlled t by the resolvent |ﬁ |. Using the Fourier
transformation, (6] with forcing F(t) is tranformed to

(iol —A)x = F (57)
%= (iol—A)'F (58)
where I is the identity. The so-called resolvent operator of matrix A is R(®) =

(iol —A)~!' The behavior of the norms ||exp(At)|| over the entire range of t is
controlled t by the resolvent norm ||R(®)||. If A is a normal operator

AAT = ATA (59)
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where T denotes the adjoint-complex operator, then
IR(@)[| = 1/dist(iw, 5 (A)) (60)

is completely determined by the spectrum o (A) alone. The operator dist denotes
the shortest distance of @ to the eigenvalues, the spectrum o (A). This explains the
success of eigenvalue analysis. In contrast to this, for non-normal operators the be-
havior of ||R(®)|| may deviate from that dramatically and hence in this context
pseudospectral analysis is just the right tool For example, there are problems in
fluid mechanics where 6(A) is contained in the left half-plane, which suggests lam-
inar behavior, but it protrudes strongly into the right half-plane, which implies that
||e*|| has a big hump before decaying exponentially fast to zero Reddy et al (1993);
Trefethen et all (1993)). More about the dynamics can be learned by examining the
pseudospectrum of A in the complex plane. Inspection of many geophysical systems
shows that most of the systems fail the normality condition. The € —pseudospectrum
of operator A is defined by two equivalent formulations:

Ae(A) = {zeC:||(d-A) ">}
= {z € C: [ smallest singular value of (z/ —A)] <&} . (61)

This set of values z in the complex plane are defined by contourlines of the resolvent
(zI —A)~!. The resolvent determines the system’s response to a forcing as supplied
by external forcing F (x,t), stochastic forcing g(x)&, or initial/boundary conditions.
The pseudospectrum reflects the robustness of the spectrum and provides informa-
tion about instability and resonance. One theorem is derived from Laplace trans-
formation stating that transient growth is related to how far the € —pseudospectrum
extends into the right half plane:

1
|lexp(Af)|| > =  sup Real(z) . (62)
€ zenc(n)

In terms of climate theory, the pseudospectrum indicates resonant amplification.
Maximal amplification is at the poles of (z —A)~!, characterized by the eigenfre-
quencies. In a mathematical normal matrix A, the system’s response is characterized
solely by the proximity to the eigenfrequencies. In the non-normal case, the pseu-
dospectrum shows large resonant amplification for frequencies which are not eigen-
frequencies. This transient growth mechanism is important for both initial value and
forced problems.

An atmospheric general circulation model PUMA |Fraedrich et al| (2005) is ap-
plied to the problem. The model is based on the multi-level spectral model described
by Hoskins and Simmons Hoskins and Simmons| (1975). For our experiments we
chose five vertical levels and a T21 horizontal resolution. PUMA belongs to the class
of models of intermediate complexity (Claussen et al| (2002); it has been used to un-
derstand principle feedbacks Lunkeit et all (1998)), and dynamics on long time scales
Romanova et al (2006). For simplicity, the equations are scaled here such that they
are dimensionless. The model is linearized about a zonally symmetric mean state
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providing for a realistic storm track at mid-latitudes [Frisius et al|(1998)). In a simpli-
fied version of the model and calculating the linear model A with n = 214, one can
derive the pseudospectrum. Fig.[7]indicates resonances besides the poles (the eigen-
values) indicated by crosses. The Im(z)—axis shows the frequencies, the Re(z) —axis
the damping/amplification of the modes. Important modes for the climate system
are those with —0.5 < Im(z) < 0.5 representing planetary Rossby waves. The basic
feature is that transient growth of initially small perturbations can occur even if all
the eigenmodes decay exponentially. Mathematically, an arbitrary matrix A can be
decomposed as a sum

A=D+N (63)

where A is diagonalizable, and N is nilpotent (there exists an integer ¢ € N with
N? =0), and D commutes with N (i.e. DN = NA). This fact follows from the Jordan-
Chevalley decomposition theorem. This means that we can compute the exponential
of (A t) by reducing to the cases:

exp(Ar) =exp((D+N)t) =exp(Dt) exp(Nt) (64)

where the exponential of Nt can be computed directly from the series expansion, as
the series terminates after a finite number of terms. Basically, the number g € N is
related to the transient growth of the system (¢ = 1 means no transient growth).

The resonant structures are due to the mode interaction: It is not possible to
change one variable without the others, because they are not orthogonal. Interest-
ingly, one can also compute the A" model, showing the optimal perturbation of a
mode through its biorthogonal vector which is the associated eigenvector of the ad-
joint A*. The analysis indicates that non-normality of the system is a fundamental
feature of the atmospheric dynamics. This has consequences for the error growth
dynamics, and instability of the system, e.g. Palmer (1996)); Lohmann and Schnei-
der| (1999). Similar features are obtained in shear flow systems Reddy et al| (1993);
Trefethen et al| (1993) and other hydrodynamic applications. This transient growth
mechanism is important for both initial value and forced problems of the climate
system |Farrell and Ioannou| (1996).

Predictability

In climate we may ask about our initial state? Climatologists always feel uncertain
when we want to give the initial values. There is always a more or less big inaccuracy
due to weather and uncertainties in many quantities which cannot be observed at
any time step (e.g. the deep ocean). The Lyapunov exponents A play an important
role in knowing the predictability of a system. This is because the larger they are,
the smaller the number of steps for which predictions can be made with a certain,
desired accuracy. Consider a trajectory x(¢) and a nearby trajectory x(¢) + 8 (¢) where
O(t) is a vector with infinitesimal initial length. As the system evolves, track how
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Fig. 7 Contours of log,,(1/€). The figure displays resonant structures of the linearized atmo-

spheric circulation model. The modes extend to the right half plane and are connected through
resonant structures, indicating for transient growth mechanism inherent in atmospheric dynamics.

6(¢) changes. The maximal Lyapunov exponent of the system is the number A such
that |6(7)| = |8(0)| - exp(At). A classical example is again the Lorenz system
[38] B9) where for large parts of the phase space, we have limited predictability
because initial errors can grow.

Every dynamical system has a spectrum of Lyapunov exponents, one for each
dimension of its phase space. Like the largest eigenvalue of a matrix, the largest
Lyapunov exponent is responsible for the dominant behavior of a system. In case of
weather and climate, this Lyapunov exponent is therefore also time-scale dependent.
Causality in climate has only a limited range in time and can only be verified in the
context of finite errors. Please note that even in classical mechanics, strict causal
relationships cannot be verified experimentally! It is true that the classical laws of
motion are generally deterministic. But the connection with the real physical world
is always possible only with limited accuracy due to the unavoidable measurement
errors. Therefore, the actual state can only be given with a certain probability distri-
bution within state ranges. In the usual discussion this important part of physics is
often faded out, one likes to limit oneself to the equations of motion alone.

Natural events also have their own time scales, namely the so-called Lyapunov
times t7,,4, (these result from the expansion rates at t7,,, = A1), This Lyapunov
time of a weather situation, it is about seconds to days, for climate years to decades.
We now have to compare the two relevant time scales ) and 7;,,,. Three cases are
possible:
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e The Lyapunov time of the climate system under investigation is much larger than
the humanly relevant time scale (f,qp >> fy): Then we can imagine the initial
state inaccuracy to be smaller and smaller in our minds, because this would only
increase the prediction time. Even if it would become infinite in our thoughts
because we let the measurement inaccuracy become zero, we would not even
notice it. Therefore, in these cases we consider the event (within the accepted
accuracy) to be predictable, causal.

e The human relevant time scale is much larger than the Lyapunov time of the in-
vestigated system (ty >>> f7,4p): In this case prediction is no longer possible, the
actual course is completely different from the expected one. We observe statisti-
cal, random behaviour, since we do not know the actual initial state.

e The relevant time scale is about as large as the Lyapunov time of the system un-
der study (ta =~ t1y4p): Then no exact but approximate predictions are possible;
it is also not entirely random, statistically. The predictions can even be improved
by measurement progress or by less demanding requirements for prediction ac-
curacy. A good example is the weather forecasts, which are only possible to a
limited extent; in the short and medium term they are now quite reliable.

In essence, therefore, causality depends on the time of interest in comparison to
the forecast time, whether we can regard a phenomenon “practically” as causal, as
predictable in (sometimes excellent approximation), or whether the event appears to
us to be completely random, or finally as lying in the transition area and is therefore
experienced as improvable by increasing the accuracy, i.e. as neither causal nor sta-
tistical. Climate is not only a differential equation; it must also be coupled to the real
world by specifying the initial values with measurement errors and by translating
the final values into measurable predictions. Thus it loses its purely mathematical,
causal character determined by the solution of differential equations.

Besides the initial conditions, uncertainties can appear through the external forc-
ing. Prominent external forcing are the change in greenhouse gases into the atmo-
sphere (e.g., Fig. [§) which strongly affect the long-term evolution of the Earth sys-
tem. Another external forcing is due to changes in insolation by orbital parameters.
There parameters vary on multi-millennial time scales (thousand years=ky) and can
be calculated by orbital theory. Milankovitch Milankovitch (1941) suggested the
ice sheet growth and decay is triggered by this external forcing. There are several
open questions for paleoclimate dynamics. Despite the pronounced change in Earth
system response evidenced in paleoclimatic records, the frequency and amplitude
characteristics of the orbital parameters, i.e. eccentricity (~100 ky), obliquity (~ 41
ky) and precession (~ 21 and ~ 19 ky), do not vary Berger and Loutre (1991), the
climate frequency does. The uncertainty on long time scale is usually dominated by
the external forcing, the short time scale by the initial value problem, the intermedi-
ate times at 10-50 years for the coming decades are dominated by internal variabil-
ity and uncertainty in model physics (Hawkins and Sutton|2009). The uncertainty
of global and especially regional temperature estimates on decadal to multi-decadal
time scales are manifested by large-scale coherent pattern like AMO, PDO, and the
the quasi-decadal mode (cf. Fig.[2). For a while people tended to think that determin-
istic models would still always provide the best models in these cases. One thought
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Fig. 8 Different climate scenarios with a coupled Earth system model (Ackermann et al |2020).
Time series of 11-year mean (a) CO, forcing as concentration of CO; equivalent in the atmo-
sphere, (b) global near-surface average temperature, (c) sea ice volume in the Northern Hemi-
sphere; shaded areas indicate 1 standard deviation;

of the climate system is that deterministic models would be completely adequate for
describing the Earth’s atmosphere, which is basically just a layer of gas subject to
external heating. As seen here, the phenomenon of stochasticity means that this is
not so. As in the Lorenz system, chaos is introduced into the climate system. So,
in many cases, for quite fundamental reasons, deterministic mathematical models
do not provide adequate models. Statistical models are mathematical models, each
replicate realization of which will be different from other realizations with the same
model, even under identical conditions. Statistical models are the major means of
making sense of the climate dynamics.

Boltzmann Dynamics

One of the most significant theoretical breakthroughs in statistical physics was due
to Ludwig Boltzmann (Boltzmann| (1896), Boltzmann| (1995) for a recent reprint
of his famous lectures on kinetic theory), who pioneered non-equilibrium statistical
mechanics. Boltzmann postulated that a gas was composed of a set of interacting
particles, whose dynamics could be (at least in principle) modelled by classical dy-
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Fig. 9 The wavelet sample spectrum of long-term climate change. The climate record is based on
Lisiecki and Raymo [Lisiecki and Raymo| (20035). The wavelet is calculated using Morlet wavelet
with @y = 6. Thin and thick lines surround pointwise and areawise significant patches, respectively.

namics. Due to the very large number of particles in such a system, a statistical
approach was adopted, based on simplified physics composed of particle streaming
in space and billiard-like inter-particle collisions (which are assumed elastic).

As already mentioned above, a fluid can be described by several physical theo-
ries, of different granularities. The fact that we can, in principle, recover the phe-
nomena predicted by the coarse-grained theories from solutions of the fine-grained
theories also suggests a non-conventional way of constructing numerical algorithms
for simulating fluid flows: instead of directly modeling the coarse-grained equations
(i.e. Navier-Stokes equations for human-scale flows), we can construct a simplified
model of the fine-grained equations, which will exhibit the same behavior at the
larger scales.

In the following, an example derived for the Lattice Boltzmann Model (LBM)
is shown which is related the thermohaline circulation. Water, that is dense enough
to sink from the surface to the bottom, is formed when cold air blows across the
ocean at high latitudes in winter in the northern North Atlantic (e.g. in the Labrador
Sea and between Norway and Greenland) and near Antarctica. The wind cools and
evaporates water. If the wind is cold enough, sea ice forms, further increasing the
salinity of the water because sea ice is fresher than sea water and salty water remains
in the water when ice is formed. Bottom water is produced only in these regions, and
the deep ocean is affected by these deep water formation processes. In other regions,
cold, dense water is formed, but it is not quite salty enough to sink to the bottom. At
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mid and low latitudes, the density, even in winter, is sufficiently low that the water
cannot sink more than a few hundred meters into the ocean. The only exception
are some seas, such as the Mediterranean Sea, where evaporation is so great that
the salinity of the water is sufficiently great for the water to sink to intermediate
depths in the seas. If these seas are can exchange water with the open ocean, the
waters formed in winter in the seas spreads out to intermediate depths in the ocean.
A numerical solution of this equation is shown in Fig. [I0]

(c) Linear temperature gradient (d) Flow including a ridge

Fig. 10 Four examples of the ocean flow for different boundary conditions, and fixed Prandtl
number=1 and Rayleigh number=45000. The contours show lines of constant vorticity; the colors
in the background display the temperatures (purple - warm, blue - cold). For the right scenarios, an
obstacle representing an oceanic sill is implemented.

Conclusions

Climate change occurred during the history of the Earth, the tectonic movements
over billions of years, and climate has varied between extremes before any an-
thropogenic action could have arisen. However, anthropogenic action in terms of
heavy usage of fossil fuel has the potential to affect the Earth to a point where
its habitability is significantly affected. In terms of the time scale, it is noted that
we might disturb planetary-scale processes in the course of a few decades. The
complication is due to the fact that the climate system has inherent fluctuations
(internal climate variability), uncertainties in model formulations, and scenario un-
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certainties for past and future climate scenarios. Modeling is necessary to produce
a useful understanding of abrupt climate processes. Model analyses help to focus
research on possible causes of abrupt climate change, such as human activities;
on key areas where climatic thresholds might be crossed; and on fundamental un-
certainties in climate-system dynamics. Improved understanding of abrupt climatic
changes that occurred in the past and that are possible in the future can be gained
through climate models. For climate science, most fundamental laws were discov-
ered decades ago (Landau and Lifshitz|1987) (although there are Navier-Stokes ex-
istence and smoothness problems in three dimensions, see: The Clay Mathematics
Institute, http://www.claymath.org/millennium-problems/). The system has specific
scales and characteristic numbers. Part of the uncertainty is due to the difficulty to
find a proper description of the system. Since it is hard to disagree with the simple
statement “more data are better”, the task here is rather to identify those dimensions
in the data space where invested resources may yield to a maximum of new informa-
tion. In this way, data assimilation techniques could help for an estimate of the state
of the system, but also its uncertainty (Kalman/|1960; Burgers et al|1998;|Nerger and:
Hiller(2013)).

High-resolution models are required to elucidate the causal chains in the cli-
mate system, notably during abrupt transitions of the last deglaciation, and pro-
vide a benchmark for future transitions under rapid CO; increase. Practically, given
the present high-performance computer capacities, efficient and parallelized model
codes, it is now possible to conduct simulations for 50-100 model years per day even
with a multi-scale ansatz (Sein et al/2018; [Lohmann et al|2020). Recent develop-
ments have considerably improved the computational efficiency and scalability of
unstructured-mesh approaches on high-performance computing systems (Danilov
et al|2017). 2017). The surface ocean current in such high-resolution simulation
(Fig. has a completely different structure including eddies than the structure in
coarse-resolution model.

Weather and climate extremes cause huge economic damages and harm many
lives each year (Franzke|2017). There is evidence that some types of weather and
climate extremes, like heat waves and flooding, have already increased or intensified
over the last few decades, and climate projections reveal a further intensification for
many types of weather and climate extremes in many regions though the uncertain-
ties still remain large. Future research may be enhanced along three directions data,
statistics, theory and models, leading to an increase in the current knowledge about
the climate evolution. It is crucial that researchers deepen or acquire the ability to
integrate all directions into their arsenal of mathematical methods.
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Fig. 11 Representation of small scale features of ocean currents in high resolution ocean models:
simulated velocity field: simulated velocity field in the North Atlantic at 100 m depth in December
1950 using FESOM with high-resolution locally eddy-resolving mesh based on|[Sein et al| (2018).
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