The impact of seasonal regulation of metabolism on the life history of Antarctic krill

Dominik Bahlburg a,b,c, Bettina Meyer c,d,e, Uta Berger a

a Technical University Dresden, Forest Biometrics and Forest Systems Analysis, Penner Straße 8, D-01737 Tharandt
b Helmholtz Centre for Environmental Research Leipzig/Halle, Department of Ecological Modelling, Permoserstraße 15, D-04318 Leipzig
c Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelsfahrten 12, D-27570 Bremerhaven
d Institute for Chemistry and Biology of the Marine Environment (ICBM) Carl-von-Ossietzky University, Carl-von-Ossietzky-Straße 9-11, D-26111 Oldenburg
e Helmholtz Institute for Marine Functional Biodiversity (HIFMB), Ammerlander Heerstraße 231, D-26111 Oldenburg

ARTICLE INFO

Keywords:
DEB theory
Euphausia superba
Metabolic regulation
Temperature
Photoperiod

ABSTRACT

Antarctic krill up- and down-regulate their metabolism as a strategy to cope with the strong seasonal environmental fluctuations in the Southern Ocean. In this study, we investigate the impact of this light- and temperature dependent metabolic regulation on growth, reproduction and winter survival of krill. Therefore, we advance a bioenergetic growth model of krill by adding a data-derived scaling function of krill activity. With SERBIK (SEasonally Regulated Bioenergetic Krill growth model), we conduct a numerical experiment which tests the impact of such scaling on krill life history under two different winter food conditions: In the first scenario, we simulate life history of krill when winter food availability is low; in the second scenario, winter food availability is increased within realistic ranges. The results demonstrate that the scaling of metabolism is especially important during low food winters. Reducing metabolism during winter permits individuals to grow to larger body length, reproduce successfully and release a greater number of eggs. It further significantly reduces within-year size fluctuations caused by starvation during months with low food availability. Finally, SERBIK can be used in future spatial modelling studies which include movement of krill along latitudinal gradients and thus spatio-temporal gradients in light- and temperature.

1. Introduction

Antarctic krill (Euphausia superba, Dana, 1852 – hereafter krill) is considered a key species in the Southern Ocean ecosystem. Its enormous biomass and circumpolar distribution makes krill an important organism in the functioning of nutrient cycling, carbon export and trophic interactions in the Southern Ocean (Le Fèvre et al. 1998, Ballerini et al. 2014, Belcher et al. 2017). This central role, a rapidly changing environment (Gille 2002, Whitehouse et al. 2008) and the growing krill fisheries industry put pressure on the scientific community to improve the understanding of krill as individuals, populations and as part of a complex network of biogeochemical processes. In this context, it is necessary to go beyond phenomenological descriptions of the response of krill to environmental cues but explore and understand the underlying bio-physical processes mechanistically.

The response of krill to the physical environment is closely linked to its relatively complex life cycle. After hatching, krill goes through 12 larval stages until it reaches sexual maturity after approximately 2-3 years (Ikeda 1984; Ikeda 1987; Jia et al. 2014; Quetin et al. 1994). During this time, individuals undergo significant changes in their body shape (from rather compact nauplius larvae to elongated furciliae, juveniles and adults), feeding behaviour (yolk reserves or active feeding), their ability to store lipids and sexual maturation. The dynamics of these life-history traits are directly affected by the strong seasonal fluctuations in food and light availability, temperatures and sea ice.

Krill population, and thus biomass dynamics emerge from the interplay of many individual life histories. Therefore, a comprehensive mechanistic understanding of individuals’ life histories could open new doors for many theoretical and applied krill studies. However, the independence of individual krill life history on specific environmental drivers remains unclear. The Southern Ocean is a habitat characterized by strong seasonal fluctuations of light, temperature, food availability and sea ice extend. In order to survive in such an extreme environment, krill needs to find ways to cope with these strong fluctuations. The
resulting eco-physiological adaptations of the crustaceans are expressed as internal regulation of metabolism, adaptive behaviours or other strategies such as shrinkage. These adaptations, in turn, affect the dynamics of reproduction, growth and starvation which are commonly referred to as the “life history” of an individual. In this study, we focus on the seasonal scaling of krill metabolism as a particularly important adaptation to the strong seasonality in temperature and light availability of the Southern Ocean. Seasonal scaling of metabolism describes the up- and down-regulation of an individual’s metabolic activity which is mainly driven by light and temperature.

Therefore, we advance an existing bioenergetic model which describes the growth of individual krill based on the Dynamic Energy Budget theory (DEB, Jager and Ravagnan 2015). This theory describes the development of an individual as a function of energy intake and its subsequent allocation into reproduction and growth (Kooijman 2010). It has been successfully applied to a broad range of organisms such as Icelandic capelins (Einarsson et al. 2011), the Pacific oyster (Ren and Ross 2001) and even endoparasitic wasps (Lländres et al. 2015). Recent studies (Guillaumot et al. 2020; Croenevedel et al. 2020) emphasize how individual based modelling and DEB-theory can be especially useful for studying Antarctic species when habitat access is limited and data is sparse. The framework of bioenergetic modelling further holds the potential to project from individuals to population dynamics, which makes the development of a DEB-based krill model particularly interesting (Martin et al. 2013). The full theoretical background of DEB theory is described in Kooijman (2010) and a summary can be found in Jager et al. (2013). Parameterizing a DEB-based growth model, however, requires detailed knowledge about the ecophysiology of krill. Jager and Ravagnan (2015) propose a first version of such a model and demonstrate its general applicability to reproduce typical life history patterns. Nevertheless, it most notably lacks a seasonal component which scales krill metabolism under the influence of environmental drivers. In addition, the Jager and Ravagnan (2015) model has only been tested under “laboratory” conditions with ad libitum food availability and constant water temperatures of 0°C. The study presented is intended to overcome this lack of knowledge by (1) including environmental seasonality and thus, seasonality in the krill’s metabolism, and (2) parameterizing and validating the model against field data.

Another feature of the model proposed by Jager and Ravagnan (2015) is that the individual is running at “full blast” throughout its life. All physiological functions such as feeding and metabolism are constantly running at their maximum physiological rates. However, past and current research shows that the metabolism of krill undergoes strong seasonal oscillations with increased metabolic rates (measured as weight-specific oxygen consumption rates) during the Austral summer and reduced rates during winter (Brown et al. 2013; Kawaguchi et al. 1986; Meyer et al. 2010). During winter, mean respiration rates can correspond to only 29% of summer rates (Meyer et al. 2010; Meyer et al. 2010) and Atkinson et al. (2002) show that a similar scaling happens with winter feeding rates which can also be as low as 20% of summer rates when individuals are exposed to similar feeding conditions. These findings have been backed by long-term experimental studies which investigate annual metabolic dynamics under controlled laboratory conditions (Brown et al. 2013; Piccolin et al. 2018b). While it is clear that there is a strong seasonality in krill activity, the question of possible drivers has not yet been fully answered. More specifically, there is an ongoing debate about how much external factors (temperature, light availability, food concentration) or internal processes (e.g. molecular clocks) contribute to the annual up- and down-regulation of metabolism, respectively. Since there is evidence for both (Bisconti et al. 2017; Brown et al. 2010; Brown et al. 2013; Höring et al. 2018; S. Kawaguchi et al. 2007; Piccolin et al. 2018a; Piccolin et al. 2018b; Teschke et al. 2007), it is likely that a combination of external and internal processes regulate the activity of krill. In general, food, temperature and more recently light availability are often named as main drivers in the seasonal scaling of metabolism.

Temperature dependent scaling of metabolism is one of the key elements of metabolic theory of ecology (Clarke 2006) and annual temperature fluctuations should be reflected in the metabolic activity of krill. The exact functional relationship between krill metabolism and temperature has been subject to numerous studies (Hirche 1984, McWhinnie and Marciniak 1964, Ngan et al. 1997, Segawa et al. 1979, Tarling 2020). In summary, krill metabolism typically seems to follow the Van’t Hoff-Arrhenius equation which projects exponentially increasing metabolic costs with increasing temperature. Single studies such as McWhinnie and Marciniak (1964) and Ngan et al. (1997) report saturating metabolic rates above a critical temperature of ~5°C and Segawa et al. (1979) observed constant metabolic temperature between -1°C and 3°C. However, using a much larger dataset, Tarling (2020) found that the Van’t Hoff-Arrhenius equation is adequate in describing the thermal response of krill metabolism. Typical Q10-values, which estimate the rate at which metabolism increases with a temperature increase of 10°C, were found to be ~2.8. In addition, Tarling (2020) demonstrates that the response is generally independent of geographical location.

The photoperiod – or light exposure – has been linked to respiration rate either as a direct driver (Piccolin et al. 2018b; Teschke et al. 2007) or as a pacemaker which regulates the synchronicity of an endogenous regulation system (Brown et al. 2013, Höring et al. 2018). Similar to temperature, there are strong indications that metabolic rates increase with increasing light exposure of the individual. For instance, Teschke et al. (2007) simulated winter and summer light regimes of the Southern Ocean in order to investigate the physiological response of krill to differences in light exposure. They could observe that winter food assimilation rates could be as low as 36% of summer rates. Oxygen consumption was significantly lower when individuals were kept under complete darkness compared to high and reduced light availability. In addition, Piccolin et al. (2018a, 2018b) and Höring et al. (2018) demonstrate that light availability alone can drive seasonal patterns of respiration rates or gene expression. Furthermore, Seear et al. (2012) found that winter genes related to feeding activity, digestion and immunity were expressed at higher rates around South Georgia compared to the Antarctic Peninsula. Since winter light availability varies markedly between these two locations, it is possible that light has a role in regulating the expression of these genes. However, the authors could not find differences in the expression of genes involved in respiration.

In this study, we synthesize the new insights from the growing amount of data on seasonal scaling of krill metabolism to parameterize a temperature- and light dependent scaling function. This scaling function is then implemented into the bioenergetic growth model for krill introduced by Jager and Ravagnan (2015). We refer to the new model as Seasonally Regulated Bioenergetic Krill growth model (SERBIK).

With the introduction of SERBIK, we aim to answer two main questions:

1. How does the previous model version compare with a model version where metabolism is scaled as a function of temperature and light availability?
2. How does the seasonal scaling of metabolism impact the life history of krill individuals under different environmental conditions?

It has been suggested that the down-regulation of metabolism helps the individuals to reduce energetic demands during winter when food concentrations are low. A possible reason could be a better physiological condition before food availability starts to increase in spring since resources can be saved during the winter period. In order to address question 2, we generate two environmental datasets which are characterized by low and high winter food availability. The environmental data are derived from field measurements from the Palmer Research Station (Anvers Island, 64.77’S, 64.05’W), part of the Palmer Long Term Ecological Research program (Smith et al. 2013).
2. Methods

We use the R Programming Language (R Core Team 2020) for all coding. Data processing and visualization was done with help of the “tidyverse”-environment (Wickham et al. 2019)

2.1. Purpose

The purpose of the individual-based bioenergetic growth model is to predict the development of krill individuals as a function of water temperature, food availability and day length. A specific goal is the analysis of the importance of light- and temperature dependent regulation of metabolism on the life history of krill. The model is suitable to investigate inter-seasonal dynamics of krill development for a given latitude and allows intra-seasonal comparisons between different krill habitats. Trajectories for growth, stage development, reproductive output as well as starvation and ultimately death throughout the life of a krill individual for given environmental conditions are used to validate the model’s performance against empirical data.

2.2. Entities, state variables, and scales

The model consists of two entities - environment and the krill individual.

The environment has three state variables: temperature (water temperature in Kelvin), day length (hours between sunrise and sunset) and food concentration (density of chlorophyll a in mg m$^{-3}$ named as chla). The krill individual is characterized by four state variables, namely age (days), structural biomass (measured in mg dry weight), reproductive biomass (mg dry weight) and assimilate stored in the egg buffer (mg dry weight). More information about the entities and their state variables can be found in Table 1.

The model simulates 6 years (or 2190 days) of krill development with a timestep of 1 day. The life span of 6 years lies within commonly suggested maximum life span for krill (Nicol 1990). The model has no spatial component.

2.3. Process Overview and Scheduling

Update Environmental Conditions: temperature, day length, and food availability will be updated for the respective day.

Check Developmental Stage: the current stage (embryo, juvenile, or adult) will be assigned to the krill individual based on stage-specific classification criteria.

Growth: the daily net growth of the individual is determined based on the amount of assimilated energy. The energy is allocated to structural biomass. Growth can be either positive or negative (shrinkage) in case of energy shortages.

Reproduction: Spawning is triggered by a size-dependent threshold energy-level in the reproduction buffer which has to be reached within the spawning window (October 1st – March 31st).

2.4. Design concepts

2.4.1. Basic principles

We use a slightly simplified framework derived from standard DEB theory (Sousa et al. 2010) called “DEBkiss” which was introduced by Jager et al. (2013). While both models share the philosophy of describing life-history of an animal as a function of energy uptake and allocation, DEBkiss most noticeably lacks an intermediate energy storage between energy uptake (feeding) and energy allocation. A simplified scheme of the model is shown in Fig. 1.

2.4.2. Emergence

The model produces inter- and intra-annual fluctuations of body size, stage development and energy in the reproduction buffer as a result of a seasonally varying environment (chlorophyll a, light availability, temperature).

In addition, the (de)activation of light- and temperature dependent scaling of metabolism produces varying trajectories of life history,

2.4.3. Adaptation

The agents are not capable of adaptation or decision making.

2.4.4. Sensing

Individuals are aware of the current month in order to determine whether the current day lies within the reproductive period or not. They are also aware of ambient temperature, day length and food concentration.

2.4.5. Interaction

In this study, the model simulates only one individual at a time. Thus, there is no interaction between individuals.

2.4.6. Stochasticity

The model is deterministic and includes no stochastic processes.

2.4.7. Observation

At each time step, information about age, date, structural body mass, biomass stored in the reproduction buffer and energy stored in the egg buffer are output to a main data table which contains a broad overview about the state of the individual. In a separate table, the model records daily information on the bioenergetics such as energy assimilation, maintenance costs, energy deficits, whether and how much structural biomass has been assimilated and spawning events. Since the complete environmental dataset is generated at the model initialization, there is no need to specifically write out environmental information at each timestep.

2.5. Initialization

Per default, the simulation starts on January 1st. However, the initialization date can be set to any day of the year.

Table 1: State variables of the krill growth model and their properties

<table>
<thead>
<tr>
<th>Entity</th>
<th>State variable</th>
<th>Abbreviation</th>
<th>Value (range)</th>
<th>Unit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>environment</td>
<td>temperature</td>
<td>T</td>
<td>271.22–274.61</td>
<td>Kelvin</td>
<td>floating point number</td>
</tr>
<tr>
<td></td>
<td>day length</td>
<td>l_0</td>
<td>4.17–21.07</td>
<td>hours</td>
<td>floating point number</td>
</tr>
<tr>
<td></td>
<td>food concentration</td>
<td>chla</td>
<td>0.09–6.59</td>
<td>mg m$^{-3}$</td>
<td>floating point number</td>
</tr>
<tr>
<td>krill individual</td>
<td>age</td>
<td>a</td>
<td>1–2190</td>
<td>days</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>structural biomass</td>
<td>E_S</td>
<td>0.0001–348</td>
<td>mg dry weight</td>
<td>floating point number</td>
</tr>
<tr>
<td></td>
<td>reproductive biomass</td>
<td>E_R</td>
<td>0–0.159</td>
<td>mg dry weight</td>
<td>floating point number</td>
</tr>
<tr>
<td></td>
<td>assimilates in egg buffer</td>
<td>E_A</td>
<td>0–0.028</td>
<td>mg dry weight</td>
<td>floating point number</td>
</tr>
<tr>
<td></td>
<td>stage</td>
<td>s</td>
<td>1–3</td>
<td></td>
<td>integer</td>
</tr>
</tbody>
</table>
After the initialization date and total running time (default: 6 years/2190 days) are set, the environmental dataset for the entire simulation is generated starting at the respective initialization date. The user chooses between two environmental scenarios:

1. “palmer” – which represents annual food and temperature dynamics derived from field data from Palmer Research Station
2. “palmer winter boost” – which generates the same data for the summer months as “palmer” but increases food availability during winter, as described in Section 2.6.6

After the environment is generated, the krill individual is initialized with very low but non-zero structural biomass \(10^{-4} \text{ mg dry weight}\) and a full egg buffer which equals the assimilates contained within the eggs after spawning \(0.028 \text{ mg dry weight}\). Before the simulation starts, the user can choose whether light- and temperature-dependent scaling of metabolism should be active or not with the default being active.

2.6. Input Data

In order to address question 2, we generate two environmental datasets which are characterized by low and high winter food availability. The environmental data are derived from field measurements from the Palmer Research Station (Anvers Island, \(64.77\degree \text{ S, 64.05\degree \text{ W}\)}, part of the Palmer Long Term Ecological Research program (Smith et al. 2013). The environmental dataset contains daily climatological values of chlorophyll concentration \(\text{mg m}^{-3}\), water temperature (Kelvin), and day length (hours).

Daily day length (time between sunrise and sunset at Palmer station) is calculated with help of the R-package “suncalc” (Thiermel and Elmarhraoui 2019). For the chlorophyll concentrations we use a time series ranging from 1991–2018. The “palmer”-scenario consists of the average monthly chlorophyll \(a\) concentrations from this time series. The “palmer winter boost” scenario is composed of average chlorophyll concentrations during months where average chla > 1 mg m\(^{-3}\) and maximum observed chlorophyll concentrations for months where average chla < 1 mg m\(^{-3}\). Temperature data are calculated as daily mean surface water temperatures from the same time range.

This way, we create an environmental dataset which spans over 1 year. Since we do not consider interannual variation, the full environmental dataset used in the simulation consists of (six) consecutive repetitions of this annual dataset. The annual environmental dynamics are shown in Fig. 2.

2.7. Submodels

2.7.1. Update Environmental Conditions

In each timestep, the model extracts water temperature, food concentration and day length from the environmental dataset for the current day. These data are used as input data for the physiological functions defined in the following submodels.

2.7.2. Check Developmental Stage

The particular stage (embryo, juvenile, or adult) will be assigned to the krill individual. Consistent with DEB-theory, the individual goes through three developmental stages. Individuals start as embryos (stage 1) which first live off the energy reserves stored in the egg buffer. When the egg buffer is depleted, hatching occurs and the individuals advance into the juvenile stage (stage 2). Juveniles actively feed from the water column and invest energy into somatic growth and the reproduction buffer. However, the energy allocated to reproduction is completely burned which is interpreted as maturation of the gonads. After the

Fig. 1. Schematic depiction of the major compartments of the krill growth model. While in the non-feeding larval state, the individual assimilates energy from the egg buffer. When feeding, the individual ingests energy which is converted into assimilates at the rate \(c_v\). The assimilated energy, \(J_a\), is then allocated to structure (\(\kappa\)-branch) and reproduction (1-\(\kappa\) branch). Energy from the \(\kappa\)-branch is partially depleted as maintenance costs of structure \(J_M\) while the remainder, \(J_v\), goes into new structural biomass. Reproduction energy following the 1-\(\kappa\)-branch is allocated to the reproduction buffer. \(J_R\) equals the “1-\(\kappa\)-energy” minus some losses due to the conversion of assimilates into reproductive biomass.

Fig. 2. Mean seasonal dynamics of the environmental variables chla, temperature and day length derived from Palmer Station time series data (1991–2018). Dark bars in the chlorophyll plot show the annual food dynamics in the “palmer” scenario and the light grey bars show the increased winter food concentrations in the “palmer winter boost” scenario.
juvenile reaches a critical length of 35 mm, “puberty” is reached and the individual is considered an adult (stage 3, Siegel and Loeb 1994). In contrast to juveniles, adults are able to store assimilates in the reproduction buffer which enables spawning. Only adults can spawn. Based on these criteria (egg buffer depletion, critical length of 35 mm), the model assigns the respective developmental stage to the individual. This is necessary since it decides which food source is used and whether assimilates allocated to the reproduction buffer can be stored or not.

2.7.3. Growth

Growth in this model is the change of structural biomass \(K_S\) of krill over time. It is defined as the difference of assimilated food allocated to structural growth (“x-branch”) and structural maintenance costs (metabolism). Many growth-related processes scale with the volumetric length, \(L\). The volumetric length is part of DEB-theory and is defined as

\[
L = \sqrt[3]{\frac{K_S}{d_V}}
\]

where

\[
K_S\text{-structural biomass (mg dry weight)}
\]
\[
d_V\text{-dry weight density (mg dry weight mm}^{-3}\text{)}
\]

Thus, growth can be written as:

\[
dK_S \over dt = \varepsilon_S (kJ_A(L) - J_M(L)) (E_{deficit} = 0) - E_{deficit}
\]

where

\[
E_{deficit} \text{-conversion efficiency of assimilates to structural biomass}
\]
\[
\varepsilon_S \text{-fraction allocation to structural biomass}
\]
\[
J_A(L)\text{-total assimilated energy (function)}
\]
\[
J_M(L)\text{-structural maintenance costs (function)}
\]
\[
E_{deficit}\text{-Energy deficit}
\]

The equation contains a Boolean switch \((E_{deficit} = 0)\). A Boolean switch is an expression which behaves like a logical operator in programming. It returns 1 when the condition is true (aka \(E_{deficit} = 0\)) or 0 otherwise and thus “keeps” or “cancels out” the first part of the equation.

\[
E_{deficit} \text{ itself is defined as:}
\]
\[
E_{deficit} = (\lvert j_A(L) + E_h - J_M(L) \rvert > 0) \cdot \lvert j_A(L) + E_h - J_M(L) \rvert
\]

where

\[
E_h\text{-energy stored in the reproduction buffer}
\]

The equation contains another Boolean expression. The resulting \(E_{deficit}\) is positive when the assimilated energy and the energy stored in the reproduction buffer fail to cover somatic maintenance costs. Otherwise it equals 0.

In summary, three “growth scenarios” are possible:

1. Positive growth in case \(kJ_A(L) > J_M(L)\)
2. No growth in case \(kJ_A(L) \leq J_M(L)\) but assimilates in the reproduction buffer can cover the deficit
3. Negative growth in case \(kJ_A(L) < J_M(L)\) and assimilates in the reproduction buffer cannot cover the deficit

The assimilation of energy is described by a Holling type II function and is proportional to \(L^2\):

\[
J_A(L) = \begin{cases}
M_{reg}(l_D, T) \varepsilon_F \cdot 0.28 \Lambda_{max} L^2, & \text{if stage = 1} \\
M_{reg}(l_D, T) \varepsilon_F \frac{chla}{chla + k} \Lambda_{max} L^2, & \text{else}
\end{cases}
\]

with

\[
M_{reg}(l_D, T)\text{-light- and temperature dependent scaling function}
\]
\[
\varepsilon_F\text{-conversion efficiency of food to assimilates}
\]
\[
chla\text{-chlorophyll a concentration in the environment [mg m}^{-3}\text{]}
\]
\[
\Lambda_{max}\text{-maximum area-specific assimilation rate [mg dry weight mm}^{-2}\text{ d]}
\]
\[
L\text{-volumetric length [mm]}
\]

When the individual is still an embryo (stage = 1), energy from the egg buffer is assimilated with the rate 0.28. The assimilation rate is parameterized such that hatching occurs after \(\sim 30\) days. In the juvenile and adult stage, the amount of ingested food depends on the food density chla, volumetric length \(L\) and the metabolic scaling function \(M_{reg}(l_D, T)\) described below.

In contrast to food uptake, somatic maintenance \(J_M(L)\) is proportional to the body volume of the individual \(L^3\). This builds on the assumption that cells are three-dimensional structures which need “three dimensional maintenance”. Thus:

\[
J_M(L) = M_{reg}(l_D, T) J_{max} L^3
\]

where \(J_{max}\) stands for the maximum volume-dependent somatic maintenance flux. As with food uptake, somatic maintenance is regulated by the seasonal metabolic scaling function \(M_{reg}(l_D, T)\).

The seasonal metabolic scaling function \(M_{reg}(l_D, T)\):

\[
M_{reg}(l_D, T) \text{ scales structural maintenance costs and feeding activity as a function of water temperature } T \text{ and day length } l_D.
\]

\(M_{reg}(l_D, T)\) is composed of two independent sub-functions: a temperature dependent scaling function \(f_T(T)\) and a light dependent scaling function \(f_{l_D}(l_D)\):

Temperature-dependent scaling of metabolism is described using the Van’t Hoff-Arrhenius equation:

\[
f_T(T) = \frac{A e^{T}}{A e^{T_0}}
\]

where

\[
A\text{-pre-exponential factor}
\]
\[
E\text{-activation energy [eV]}
\]
\[
K \cdot\text{Boltzmann constant} = 8.617 \times 10^{-5} \text{ eV K}^{-1}
\]
\[
T\text{-temperature [Kelvin]}
\]

This way, temperature-dependent energy demand of an organism is directly linked to the temperature-dependence of enzyme kinetics. We use experimental data from Hirche (1984) in order to estimate the activation energy \(E\). The division by \(A e^{T_0}\) scales \(f_T(T)\) such that the physiological functions related to “krill activity” \(J_A(L)\) and \(J_M(L)\) return values equal to their original parameterization at \(0\) °C since the original model by Jager and Ravagnan (2015) is parameterized for water temperatures of \(0\) °C. Thus, for higher water temperatures, simulated krill activity will be increased in comparison to its reference value at \(0\) °C.

The second sub-function, light-dependent scaling of metabolism, is a linear function based on experiments carried out by Piccolin et al. (2018b). In their study, the authors investigate the response of krill activity \(J_A(L)\) at different light regimes, keeping all other variables constant. We fit a linear regression function to their data in order to derive \(f_{l_D}(l_D)\):

\[
f_{l_D}(l_D) = 0.035 l_D + 0.161
\]

where

\[
l_D\text{-photoperiod/day length in hours}
\]

In order to derive the linear regression, we scaled the experimental data of Piccolin et al (2018b) such that \(f_{l_D}(l_D)\) predicts 1 (or 100%) metabolic activity when day length \(l_D\) is at its maximum \((24 \text{ h})\). \(l_D\) is defined as the time between sunrise and sunset.

By multiplying both subfunctions, we arrive at the temperature- and light dependent metabolic scaling function:

\[
M_{reg}(l_D, T) = f_T(T)f_{l_D}(l_D)
\]

The functioning of \(M_{reg}(l_D, T)\) and its impact on the annual energy budget of a krill individual in the “palmer”-scenario is shown in Fig. 3.
For the environmental conditions used in this study, \(M_{\text{reg}}(lD, T) \) scales winter krill activity to 32% of the reference value obtained at 20 h of daylight and 0 \(^{\circ} \)C water temperature. During summer, krill activity can increase to 116% since water temperatures are higher than 0 \(^{\circ} \)C.

2.7.4. Reproduction

In this model, reproduction is driven by the amount of assimilates that are stored in the reproduction buffer as well as an annual spawning window that allows for egg release. Energy influx into the reproduction buffer comes from the 1-\(\kappa \)-branch when the individual is in the adult stage.

The reproduction buffer serves two purposes:

1. It is the compartment where assimilates are converted into eggs which are released when spawning is triggered.
2. If the ingested food cannot cover structural maintenance costs, energy from the reproduction buffer is allocated to the structure compartment in order to “pay” for the maintenance deficit. Therefore, it can also act as an energy buffer which can be burned under food shortage and prevent the loss of structural biomass.

In general, spawning is triggered when the assimilate dry mass in the reproduction buffer surpasses a size-specific threshold level within the spawning window (October 1st–March 31st). The threshold level-function \(E_{\text{rep}}(L_B) \) accepts body length \(L_B \) (in mm) as an input variable.

Table 2

Model parameters and their values. *95% Confidence interval for estimated parameters obtained via bootstrapping.

<table>
<thead>
<tr>
<th>Type</th>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Value (range)</th>
<th>Unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary functions</td>
<td>(f(T))</td>
<td>temperature-dependent metabolic scaling</td>
<td>0.3–1.25</td>
<td>-eV</td>
<td>Hirche 1984</td>
</tr>
<tr>
<td></td>
<td>(f_{\text{PP}}(lD))</td>
<td>light-dependent metabolic scaling</td>
<td>0.161–1</td>
<td>mg dry weight</td>
<td>Piccolin et al. 2018b</td>
</tr>
<tr>
<td></td>
<td>(M_{\text{reg}}(lD, T))</td>
<td>environmental scaling of metabolism</td>
<td>0.46–1</td>
<td>mg dry weight</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td></td>
<td>(J_g(L))</td>
<td>total assimilated energy</td>
<td>0–4.66</td>
<td>mg dry weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(J_{\text{SM}}(L))</td>
<td>structural maintenance costs</td>
<td>0–2.12</td>
<td>mg dry weight</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td></td>
<td>(E_{\text{deficit}})</td>
<td>energy deficit</td>
<td>0–1.06</td>
<td>mg dry weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(E_{\text{rep}})</td>
<td>reproduction energy threshold</td>
<td>63–164</td>
<td>mg dry weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(E)</td>
<td>activation energy</td>
<td>0.663 (0.633–0.693)</td>
<td>-eV</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td></td>
<td>(J_{\text{Mmax}})</td>
<td>maximum volume-specific somatic maintenance flux</td>
<td>0.0032</td>
<td>mg dry weight mm(^{-3}) d(^{-1})</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td></td>
<td>(w_e)</td>
<td>weight egg</td>
<td>0.028</td>
<td>mg dry weight</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td></td>
<td>(s_w)</td>
<td>spawning window</td>
<td>Oct.–Mar.</td>
<td>-</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td>derived variables</td>
<td>(L)</td>
<td>volumetric length</td>
<td>0.077–9.166</td>
<td>mm</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
<tr>
<td></td>
<td>(L_B)</td>
<td>body length</td>
<td>0.34–58.28</td>
<td>mm</td>
<td>Jager and Ravagnan (2015)</td>
</tr>
</tbody>
</table>

\(\kappa \) is the fraction allocation to structural biomass.

\(\varepsilon_{\text{S}} \) is the conversion efficiency assimilates to structure.

\(\varepsilon_{\text{F}} \) is the conversion efficiency food to assimilates.

\(\varepsilon_{\text{metab}} \) is the conversion efficiency structure to cover energy deficit.

\(\varepsilon_{\text{A}} \) is the conversion efficiency egg buffer to structure.

\(k_{\text{chla}} \) is the half saturation constant chlorophyll a uptake.

\(A_{\text{max}} \) is the maximum area-specific assimilation rate.

\(J_{\text{biox}} \) is the maximum volume-specific somatic maintenance flux.

\(c_{\text{BL}} \) is the conversion factor volumetric length to body length.

\(w_e \) is the weight egg.

\(s_w \) is the spawning window.

\(d_e \) is the dry weight density.

\(c_{\text{BL}} \) is the conversion factor volumetric length to body length.

\(\varepsilon_{\text{metab}} \) is the conversion efficiency structure to cover energy deficit.
L_B refers to the standard length of krill and can be derived from \(L \) with help of the shape correction coefficient \(\delta_M = 0.2 \) (Jager and Ravagnan, 2015) assuming isomorphy of krill.

\[
E_{\text{Rep}}(L_B) = (150.83L_B - 3027)w_{\text{egg}}
\]

where \(w_{\text{egg}} \) refers to the dry mass of a krill egg (0.028 mg, Table 2). \(w_{\text{egg}} \) also equals the weight of assimilates stored in the egg buffer which is depleted by the embryo.

According to this function, small adults (35 mm) will produce ~2250 eggs and fully grown individuals (59 mm) 5720 eggs. These values lie within low to intermediate ranges of count data which are summarized in Kawaguchi (2016), slightly higher than clutch sizes in the krill reproduction model of Constable and Kawaguchi (2018) but below those of a reproduction model by Tarling et al. (2007).

2.7.5. Mortality
Krill die after they reach an age of 6 years.

2.8. Model Sensitivity
We use a parameter screening (Morris method, (Morris 1991) to identify the parameters which have the highest impact on the model dynamics. The screening is performed for three different response variables in the two environmental scenarios (”palmer” and ”palmer winter boost”): Maximum body size, day of reaching maturity and the total number of eggs produced.

In conclusion, \(A_{\text{max}} \), \(\varepsilon_F \) and \(\kappa \) turn out to be the most influential parameters in most cases with each being positively correlated to maximum body size and total number of eggs produced. The number of eggs produced is negatively influenced by increases of these parameters meaning that individuals mature earlier at higher parameter values. The detailed sensitivity analysis can be found in the Supplementary Material.

2.9. Design of numerical experiments
In order to assess the impact of the light- and temperature dependent
scaling of krill metabolism, we run the model for two different environmental scenarios as mentioned above. After each of these runs, we analyze the maximum body size of the individual, size fluctuations, timing of spawning as well as total spawning output (number of eggs produced). We consider these life history traits to be indicative for the magnitude of “hardship” or “success” an individual experienced throughout its life.

In each of the environmental scenarios we perform model runs where the light- and temperature dependent scaling of krill metabolism is either switched on or off. When switched on, \(M_{\text{reg}}(L, T) \) scales food uptake as well as somatic maintenance costs as described in section 2.7.3. When switched off the light- and temperature dependent scaling function \(M_{\text{reg}}(L, T) \) is set to 1 which means that all physiological functions are running with their default parameterization. Thus, the “regulation off”-run acts as a control run. Consequently, differences in the model dynamics between “regulation off” and “regulation on” can be attributed to light- and temperature dependent scaling of krill metabolism.

3. Results

3.1. Simulation experiment 1 – the impact of seasonal regulation of metabolism during low food winters

When winter food is low (scenario “palmer”), krill reach maximum lengths of approximately 41 mm without and 46 mm with active metabolic scaling (Fig. 4a). The individuals reach the adult stage and therefore sexual maturity in their second year. After switching to the adult stage, the “regulated” and “unregulated” individuals start storing assimilates in their reproduction buffers but no spawning is triggered. With the onset of autumn and winter, these reserves are depleted in order to avoid starvation-induced shrinkage. However, after the full depletion of the energy reserves, the individuals start to reduce their size. This reduction is much stronger in the “unregulated” individual with size fluctuations of 16 mm compared to 10 mm in the “regulated” individual. The effect of the seasonal scaling function on the annual energy budget dynamics during the last simulation year are shown in Fig. 3.

Fig. 3 shows how the regulation of metabolism and feeding activity reduces the amplitude of starvation during the winter months. Without the metabolic regulation, the total winter energy deficit sums up to 99.5 mg C whereas with metabolic regulation, the deficit equals -81.3 mg C. During the process of shrinkage, the “unregulated” individual repeatedly regresses to the juvenile stage. When food concentrations increase again, the individual starts to grow until it reaches the adult stage again. However, the amount of assimilates which are then allocated to reproduction but never suffices to trigger a spawning event. In contrast, the “regulated” individual succeeds in spawning from its third summer on. Since the intra-annual size fluctuations are less pronounced, it does not regress into the juvenile stage and thus can store assimilates in the reproduction buffer as soon as spring sets in. The timing of the spawning is quite rhythmic with all three egg releases taking place in late February.

3.2. Simulation experiment 2 – the impact of seasonal regulation of metabolism during high food winters

When winter food concentrations are comparatively high (scenario: “palmer winter boost”), krill are able to reach larger sizes compared to the “palmer”-scenario from experiment 1 (Fig. 4b). The “regulated” and “unregulated” individuals grow to similar maximum sizes of 58 and 59 mm respectively after reaching the adult stage after 1 year. Individuals without seasonal metabolic scaling generally express higher growth rates and are generally larger compared to the “regulated” individual for the first 4 years. Therefore, individuals without metabolic scaling are able to reproduce earlier. Both individuals release eggs twice in their second summer – one year earlier than in the “palmer”-scenario. The distribution of spawning events is generally concentrated in December and January but isolated egg releases occur in spring (October) or autumn (March). The total reproductive output is slightly higher for “unregulated” individuals (22900 eggs) compared to “regulated” ones (21100 eggs).

In the third simulation year, the “unregulated” individual performs a spawning in late March which prevents it from building up sufficient energy reserves for the winter. As a consequence, starvation-induced shrinkage can be observed and the krill falls back to a slightly lower body length than the “regulated krill”. When the “regulated” individual performs a late spawning in March in the 4th simulation year, almost no shrinkage follows due to the reduced metabolic costs in winter. The size of both individuals starts to saturate in the 5th year when structural maintenance costs become so high that all assimilates allocated to structure via the \(\kappa \)-branch need to be burned.

4. Discussion

As already demonstrated in Jager and Ravagnan (2015), the model is capable of producing plausible trajectories of growth, development and reproduction of individual krill. In this study, we advance the model with the addition of a seasonal component which scales krill metabolism as a function of light and temperature. The activation of seasonal metabolic scaling comes with distinct effects depending on the food availability during winter:

When food concentrations are high, decreasing metabolism slows down growth and onontogenetic development of krill since individuals cannot exploit the full energetic potential of the available food. This is consistent with feeding experiments carried out by Meyer et al. (2010) who exposed krill individuals to a similar range of food concentrations during winter and summer. In their results, winter feeding rates were up to six times lower than summer rates. As a consequence, individuals would not be able to make use of high food concentrations during winter. It is open for discussion whether this should be considered a disadvantage of seasonal metabolic scaling or a rare side-effect of an adaptation which is most beneficial in harsh winters. Generally, winter food availability in the Southern Ocean is low and patchily distributed (Meyer et al. 2017; Shen et al. 2017). In the Palmer time series which is used in this study, only ~2% of the recorded chlorophyll a concentrations in June, July and August are higher than 0.25 mg m\(^{-3}\) (\(n = 509 \)). Even though these data should not be interpreted as being representative of the entire habitat of krill, they emphasize the rareness of high concentrations of autotrophs during winter.

According to our simulations, seasonal scaling of metabolism decreases the amount of intra-anual shrinkage experienced when feeding conditions are less favorable. It is unclear whether lethal threshold values of shrinkage exist and whether a dampening might be lifesaving. In our simulations, annual size minima during winter in “unregulated” individuals correspond to 62% of the summer length or 24% of the summer structural biomass (dry weight) which is much lower than any reported weight losses (Auerswald et al. 2015; Ikeda and Dixon 1982). The activation of seasonal metabolic scaling reduces the intra-annual size fluctuations by half to 80% winter length compared to summer length. The simulated dry weight reduction of ~50% compares to values on the upper end of non-lethal starvation-induced biomass losses reported from experiments and the field (Auerswald et al. 2015; Ikeda and Dixon 1982, Nicol et al. 1992). Consequently, light- and temperature driven scaling of metabolism might be a lifesaving adaptation which prevents potentially lethal starvation of krill during winter.

In addition, the down-regulation of metabolism is essential in order to allow successful reproduction in the subsequent summer in our model. In our simulations, it prevents annual regressions from the adult to the juvenile stage during winter. Remaining as an adult enables the krill to immediately invest energy into egg production once food concentrations increase in spring. Although the regression of the
reproductive organs of adult krill to a juvenile appearance is possible (Thomas and Ikeda 1987), it remains questionable whether any individual could survive the drastic developmental alternation as experienced by the “unregulated” krill in the “palmer” scenario. The sexual regression described by Thomas and Ikeda (1987) was not accompanied by a reduction in body length much in contrast to our simulations.

However, and in general agreement with our model results, Cuzin-Roudy and Labat (1992) found adult individuals with juvenile ovaries in early summer in regions of the Weddell Sea with high sea-ice cover and low winter food concentrations. In contrast, individuals from regions in the Scotia Sea with higher winter productivity had either fully developed ovaries or had already spawned at the same time. According to our model, a possible reason for this might be the interaction of different winter food concentrations and seasonal regulation of metabolism.

In summary, the SERBIK model quantifies the role of temperature- and light dependent scaling of metabolism in krill. We investigate the effects of such scaling on the life history of krill under two environmental scenarios – one characterized by rather high winter food concentrations and one characterized by low winter food concentrations. Our results indicate that seasonal metabolic scaling could be essential for krill survival when winter food concentrations are low. On the other hand, it slows down the development of krill when winter food concentrations are high. However, the augmented winter food time series that we use to demonstrate this is at the upper end of observed winter values and is probably a rare case in the Southern Ocean where winter food availability is generally low. According to our model, seasonal scaling also plays a key role for successful reproduction of krill since saving energy during winter allows individuals to build up reproductive energy reserves faster at the onset of spring.

Most importantly, the model provides a first parameterization of the photo-regulation of metabolism in a mechanistic krill growth model. This makes the model especially applicable for spatial simulation experiments where individuals move through latitudinal gradients with different annual light regimes. In order to improve the model, future work should advance the reproduction submodel. The current concept of a threshold energy value oversimplifies the mechanisms of krill reproduction which has been described in more detail in Constable and Kawaguchi (2018) and Kawaguchi et al. (2007). Jager & Ravagnan (2015) suggest an alternative reproduction function which forced in individuals to reproduce after a fixed number of days. This leads to variable clutch sizes at each spawning which depend on the amount of assimilates stored in the reproduction buffer. However, this approach is detached from environmental drivers and as such may not be an improvement to the current method.

5. Conclusion

In conclusion, this study introduces and demonstrates the functioning of a bioenergetic krill growth model with special focus on the seasonal regulation of krill metabolism. This advancement is important for the investigation of krill responses to environmental fluctuations in the extremely seasonal habitat of the Southern Ocean. As demonstrated in this study, down-regulating foraging activity and metabolism during winter strongly changes the model predictions on krill life history, especially when food availability during winter is low. Because of its relative simplicity, the model is suitable for research which wants to scale from individuals to populations since it allows for many simulation runs while keeping computational efforts comparatively low. The application of such models will therefore advance the understanding of the krill life cycle in the critical over-wintering period which is an important goal for management strategies.

CRediT authorship contribution statement

Dominik Bahlburg: Conceptualization, Methodology, Software, Formal analysis, Validation, Writing - original draft, Writing - review & editing, Visualization. Bettina Meyer: Conceptualization, Writing - review & editing, Resources, Supervision, Funding acquisition. Uta Berger: Conceptualization, Writing - review & editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We thank Dr. Sally Thorpe (British Antarctic Survey) and Dr. Eugene Murphy (British Antarctic Survey) for valuable discussions and comments on the manuscript. We also thank the Long Term Ecological Research Network for the open access to environmental data from Palmer Station. This work was supported by the German Research Foundation (DFG, grant number 411096565). The model code is available under https://github.com/dbahlburg/SERBIK

Supplementary materials

Supplementary material associated with this article can be found in the online version, at doi:10.1016/j.ecolmodel.2021.109427.

References

Cuzin-Roudy, Janine, Labat, Jean Philippe, 1992. Early summer distribution of Antarctic Krill (Euphausia Superba) in the Scotia Sea with higher winter productivity had either fully developed ovaries or had already spawned at the same time. According to our model, a possible reason for this might be the interaction of different winter food concentrations and seasonal regulation of metabolism.

In conclusion, this study introduces and demonstrates the functioning of a bioenergetic krill growth model with special focus on the seasonal regulation of krill metabolism. This advancement is important for the investigation of krill responses to environmental fluctuations in the extremely seasonal habitat of the Southern Ocean. As demonstrated in this study, down-regulating foraging activity and metabolism during winter strongly changes the model predictions on krill life history, especially when food availability during winter is low. Because of its relative simplicity, the model is suitable for research which wants to scale from individuals to populations since it allows for many simulation runs while keeping computational efforts comparatively low. The application of such models will therefore advance the understanding of the krill life cycle in the critical over-wintering period which is an important goal for management strategies.

