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Abstract: The usability of multispectral satellite data for detecting and monitoring supraglacial
meltwater ponds has been demonstrated for western Greenland. For a multitemporal analysis of
large regions or entire Greenland, largely automated processing routines are required. Here, we
present a sequence of algorithms that allow for an automated Sentinel-2 data search, download,
processing, and generation of a consistent and dense melt pond area time-series based on open-source
software. We test our approach for a ~82,000 km2 area at the 79 ◦N Glacier (Nioghalvfjerdsbrae) in
northeast Greenland, covering the years 2016, 2017, 2018 and 2019. Our lake detection is based on the
ratio of the blue and red visible bands using a minimum threshold. To remove false classification
caused by the similar spectra of shadow and water on ice, we implement a shadow model to mask out
topographically induced artifacts. We identified 880 individual lakes, traceable over 479 time-steps
throughout 2016–2019, with an average size of 64,212 m2. Of the four years, 2019 had the most
extensive lake area coverage with a maximum of 333 km2 and a maximum individual lake size
of 30 km2. With 1.5 days average observation interval, our time-series allows for a comparison
with climate data of daily resolution, enabling a better understanding of short-term climate-glacier
feedbacks.

Keywords: supraglacial lakes; 79 ◦N; Sentinel-2; lake area; automated detection; Greenland

1. Introduction

The accelerating ice loss of the Greenland Ice Sheet, especially during the last decade,
has been detected in multiple studies and marked the island as a focus of cryospheric,
atmospheric and oceanographic research and modeling [1–3]. Supraglacial lakes (SGL)
characterize the melt area (upstream the grounding line) of several marine-terminating
outlet glaciers [4,5]. SGL influence surface melts through lowering the albedo and can
affect ice flow velocities after drainage through reducing basal friction [6,7]. Furthermore,
the variability of their spatial extent and coverage has been reported to be linked to regional
variations of surface temperatures [4]. For the monitoring of these lakes, multispectral
satellite-based remote sensing is a reasonable method, as the areas that need to be moni-
tored are vast, and the SGL, except in the case of cloud cover, can be mapped efficiently
using single bands or band combinations. As a consequence, in (south-) west Greenland,
numerous studies have related spectral information from different sensors (Table 1) to
either in situ measurements of lake depths or sinks derived from digital elevation models
(DEMs, [8] and references therein).

Though potentially, there are numerous multispectral sensors available, each tech-
nique has merits and flaws, mostly regarding resolution, acquisition frequency, spatial
coverage and accessibility (Table 1). Thus, in most studies, a compromise must be made.
Sentinel-2 A/B (S-2), with its multispectral instrument (MSI), combines the advantages of
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the sensors above, having 10 m resolution with less than two days revisit interval for polar
areas available at no charge. Thus, even though data are only available since the launch of
S-2 A in June 2015, it offers an unprecedented chance to detect and monitor SGL in remote
and polar regions at high spatial and temporal resolution. Until now, there are only very
few studies that employ S-2 for the detection of supraglacial lakes or rivers [9,10].

Table 1. Multispectral sensors employed in previous studies of supraglacial lakes (SGL) on Greenland.

Satellite Sensor Visible Spectra
Resolution (m/Pixel)

Revisit Time in
Days (at 79 N) Cost Swath Width

(km)

Aqua/Terra MODIS 250 daily free of charge 2330

Landsat 7/8 ETM+/OLI 30 16 free of charge 185

WorldView 2/3 WV-3 Imager 0.3 daily Commercial—price
per km2 1 13.1

Terra ASTER 15 16 free of charge 60

Sentinel-2 MSI 10 ca. 1.5 days free of charge 290
1 pricing varies with respect to provider, archive/new acquisition, or processing level.

A common problem hindering an automated detection of SGL with multispectral
sensors over Greenland is clouds. This problem is enhanced by the gap between the revisits
of the satellite, especially for the Landsat series, as, if one or more acquisitions are unusable,
large gaps in the time-series can occur. Furthermore, standard cloud detection products
(Sen2cor, fmask) are optimized for vegetated and built-up areas but have deficiencies in
reliably separating ice and snow from clouds over polar areas (see Sections 3 and 4). Thus,
checking of data must be done manually, especially if only parts of the area of interest (AOI)
are cloud-covered. While for small areas and/or single days, this is a valid procedure,
processing of large areas or longer time-series requires a different solution.

The majority of all SGL detection studies for Greenland were carried out in western
Greenland, in the region between Disco Bay (~70◦N) and Kangerlussuaq (~67◦N) (Figure 1),
mainly because (a) of the number of SGL that appear here on the lower ice sheet each year,
and (b) this part of Greenland is comparatively well accessible and logistics for ground-
truthing of, e.g., lake depth is available [11]. Only very few studies were conducted outside
this area, e.g., at Petermann Glacier or northwest Greenland (Figure 1). The east coast of
Greenland, and especially the northeastern part, has been subject to only one previous
high-resolution multispectral study on SGLs [12]. Only one study using MODIS in 2009
covered the melting seasons 2002–2008 and found a maximum seasonal total lake area
of 149.6 km2 [13]. Contrasting to the spatial distribution of studies, northeast Greenland
is expected to show the greatest inland expansion of SGL in the coming decades [14].
However, continuous monitoring of SGLs is currently lacking.

With this study, we aim to:

1. develop a method that allows for continuous and automated detection of SGLs using
solely open-source software;

2. provide an up-to-date and high-resolution dataset of SGLs for the Northeast Green-
land Ice Stream (NEGIS) outlet glaciers, Nioghalvfjerdsbrae and Zachariæ Isstrøm;

3. detect characteristic features of melt pond development in northeast Greenland.
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Figure 1. (A): Overview of SGL studies on Greenland between 2007 and 2020 [5,13,15–28]. Studies are color-coded by the
year of publication. In case no exact coordinates were given in the respective study or a large area was monitored, the point
was approximated to the center of the area of interest. In the case of multiple publications of the same first author for the
same area of interest, only the first publication is shown. Studies covering the whole ice sheet, e.g., [29], are not shown. (B):
Area of this study with footprints of the S-2 granules and the ablation mask used. True-color image is a 4–3–2 band mosaic
of 19 June 2019. Background elevation model: Greenland Ice Sheet Mapping Project (GIMP) [30].

2. Materials and Methods
2.1. Area of Interest

The study region of ~82,000 km2 covers the ice sheet upstream the grounding lines
of Nioghalvfjerdsbrae (hereafter 79◦N Glacier) and Zachariæ Isstrøm between sea level
and ~1500 m a.s.l. The extent of ~150 km inland and, due to the widening of the glacier
bed into the ice sheet, ~300 km latitudinal, is covered by ten S-2 tiles (Figure 1). The glacial
dynamics of the region have been strongly affected by climate warming, e.g., through the
collapse of the floating tongue of Zachariæ Isstrøm in 2012 [31]. In contrast to the more
southern Greenland east coast, the catchment of NEGIS shows comparatively gentle slopes,
which enable the retention of surface meltwater upon the ice and thus the formation of
numerous lakes during the melting season.

2.2. Preprocessing of Sentinel-2 Data, Screening, and Preselection

In total, 39,919 S-2 A/B level-1C (L1C) scenes were downloaded from the Google
cloud storage using the Google Cloud SDK repository for Ubuntu (https://cloud.google.
com/storage/docs/public-datasets/sentinel-2?hL=de, last accessed 24 May 2020). We
requested a minimum data coverage of 90%, which was checked using quickviews, and
a full set of 10 granules; all data with higher no-data content and no full coverage were
removed. For all remaining days, the granules of bands 2 (blue, 0.460–0.520 µm), 3 (green,
0.534–0.582 µm) and 4 (red, 0.655–0.684 µm) were first reprojected to EPSG 3413 and then
separately merged. In order to circumvent misclassifications in the next steps, we removed
the areas not covered by the glacier (rock, ocean) using the GIMP land classification
map [30], which was edited manually using two true-color S-2 A images from July 2016 to
accurately delineate the up-to-date ice margin.

https://cloud.google.com/storage/docs/public-datasets/sentinel-2?hL=de
https://cloud.google.com/storage/docs/public-datasets/sentinel-2?hL=de
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S-2 data are available between mid of March and mid of September for northeast
Greenland, though the first and last day of the year (DOY) for which a complete set of
images was found varies between DOY 82–93, and 262–263, respectively. Though S-2 A
was launched in June 2015, the data coverage and quality for its first year were found too
low to facilitate a meaningful time-series analysis. With S-2 B starting in March 2017, the
year 2016 had the lowest data coverage among the 2016–2019 period, while the highest
number of complete scenes was found for 2019 (Table 2). On average, 120 complete scene
sets were found per year, resulting in an average interval of 1.49 days.

Table 2. S-2 data coverage by year, with day of the year (DOY) 1 as the day of the first complete set
for the respective year and DOY n as the last day with a complete scene set.

Year DOY 1 DOY n Complete Scenes Average Interval (Days)

2016 1 93 262 54 3.13

2017 86 262 106 1.66

2018 82 263 150 1.21

2019 77 263 169 1.10
1 S-2 A only, due to the start of S-2 B in March 2017.

2.3. Water Area Delineation

The complete algorithm developed to detect and calculate lake areas is summarized in
Figure 2. Following Pope and colleagues (2016), we applied a static band ratio of the blue
(band 2) and red (band 4) top-of-atmosphere reflectance, as successfully used in previous
studies for Landsat and MODIS [4,11,24,32]. We also tested the normalized difference water
index (NDWI) as used by Williamson and colleagues [9], but continued with the band
ratio due to comparable results but significantly less computation time (see Section 4.1.1).
For determination of the threshold which delineates ice/slush from water, we empirically
tested values between 1.0 and 2.4 in 0.2 steps and compared the resulting masks to true
color images for several dates and found >1.6 as the best fit. Subsequently, for all dates, the
B/R ratio was calculated, and the threshold of 1.6 applied, resulting in binary water masks
with 0 as ice and 1 as water.

Figure 2. Flowchart of the data and methods applied. Rounded rectangles are input data; gray
rectangles are processes, and blue parallelograms (intermediate) output.
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2.4. Postprocessing

The removal of noise is the main aim of postprocessing. Four main sources of noise
were identified and addressed:

• Water-soaked snow and meltwater channels;
• Lake ice on SGLs, resulting in “donut lakes” [33];
• Topographic shadows misclassified as water;
• Clouds and cloud shadows, covering lakes or being classified as water areas.

The effects of the subsequent steps are exemplarily visualized in Figure 3.

Figure 3. Postprocessing steps visualized by data of date 5 August 2019: (a) natural-color image (RGB, bands 4–3–2); (b)
binary mask after thresholding; (c) binary mask cropped to the ablation area; (d) cropped mask after topographic shadow
correction; (e) polygonized binary mask (with automatically created bounding box); (f) polygonized mask after dissolving;
(g) lake polygons after cropping with topographic sinks; (h) lake polygons (g) over the true-color image (a).

2.4.1. Area Reduction

To allow for faster computation, the binary B/R ratio images were first cropped to the
ablation area of 79 N. We define the eastern extent by the glacier outline mask (Section 2.2)
combined with the grounding line based on ERS-II SAR [34], and the northern and southern
boundaries are delimited by the extent of S-2 granules 26XMQ, and 26XMN/26XNN,
respectively. The western extent is limited by the surface mass balance equaling zero,
calculated using the regional atmospheric climate model version 2.3 (RACMO2.3) [35].

2.4.2. Topographic Shadow Masks

Especially in spring and autumn (March–May and September/October), due to the
low solar elevation angles of >70◦ from nadir (Figure A1), large shadows are cast on the ice
even though small topographic features such as hills, crevasses or seracs. These shadows
have a similar spectral blue-red ratio as water and thus are commonly misclassified using
the band ratio method [36]. To correct for these misclassifications, we applied a topographic
shadow model using the R package “insol” [37] (Figure A2). We used the ArcticDEM with
10 m resolution to fit the resolution of the S-2 derived water mask. Additionally, the sun
position (elevation and azimuth) is retrieved for the exact time of image acquisition from the
S-2 metadata. As the model requires substantial memory resources, we divided the DEM
first into parts covering each granule, and subsequently split each part into nine (3 × 3)
equal pieces and calculated the topographic shadows for each part and day separately.
Afterward, the small binary shadow masks were merged again to cover the whole AOI.
A random sample of 30 of the resulting binary masks from all years and seasons was
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compared visually to the natural-color image of the respective date to ensure fitting and
quality of the calculation; afterward, the shadow mask was subtracted from the previous
water mask.

As the computation of shadow masks is computationally expensive, we developed a
general function for the sun’s elevation and azimuth based on S-2 metadata of 2016, 2017
and 2018 to speed up this process. Validity-tested using the 2019 data, the pre-computed
shadow masks serve as a look-up table for future processing. To achieve that, we calculated
the mean for both parameters for each available acquisition and used a local regression to
predict the missing values and smoothen the existing ones in order to achieve an idealized
solar cycle (Figure A1). These estimated values of elevation- and azimuth angles were
used for the shadow calculations of 2019 and are also implemented in the continuously
running algorithm.

2.4.3. De-Noising and Filling

The shadow-corrected rasters were subsequently filtered using the sieve tool embed-
ded in the geospatial data abstraction library (GDAL, [38]). To find the lowest possible pixel
threshold to retain the maximum information and remove the maximum percentage of
noise, we incremented the size threshold starting with 10 at a connectedness of 8 (diagonal
pixels are counted as connected). We found the best tradeoff between signal and noise to
be reached at 150 pixels, thus setting the minimum detectable lake size to 15,000 m2 or
0.015 km2.

To accelerate computation, the conversion from raster to polygons should be done
at the earliest stage possible. We implemented this step after the removal of small pixel
clusters (sieving). The conversion to polygons included the filling of circular multipolygons
(“donuts”) by unifying multipart polygons into single parts.

2.4.4. Masking with Topographic Sinks

Supraglacial lakes are known to form in numerous surface sinks of the Greenland
Ice Sheet during each melt season. As sinks are generated by bedrock undulations, SGL
form at more or less the same position each year, rather than moving with the ice. It
has been suggested that their position is largely controlled by the underlying bedrock
topography [39]. Therefore, it is possible to detect potential lake locations by analyzing
topographic data of the ice sheet. For this, we employed the ArcticDEM, gridded to 100 m
spatial resolution [40]. In classical hydrologic applications, surface depressions are often
assumed to be artificial and are filled prior to the calculation of, e.g., stream networks.
This assumption does not hold for the Greenland Ice Sheet where surface depressions
exist. In order to detect these topographic sinks, we deployed the fill_depressions tool
implemented in the open-source geospatial analysis library WhiteboxToolsTM [41]. The
resulting depressionless DEM was then subtracted from the original DEM and differences
<0 were masked as sinks. Finally, we employed a 3 × 3 majority filter on the sink mask and
assigned an explicit ID to each sink.

To be able to track individual lakes, a spatial join was conducted to attribute the lakes
to their respective sinks. This resulted in 1035 individual sinks, covering between 0.01 and
97.4 km2, of which 880 were water-filled at least once.

2.4.5. Cloud Detection

Currently, no reliable procedure for S-2 exists that can separate all kinds of clouds
from ice- or snow-covered areas. The partial transparency of cirrus-type clouds further
complicates the issue. The scene classification map generated during the computation to
Level 2A generally allows for a separation of different cloud types and snow. Nonetheless,
the delineation of clouds over ice gives, based on a sample taken from different years,
months and weather conditions, different but not more accurate results compared to the
L1C cloud mask over northeast Greenland. Tests with other methods (e.g., fmask [42] or
SWIR reflectance [9]) resulted in similar unsatisfying cloud masks (see Section 4.1.2). An
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approach based on image time-series, as implemented in MAJA [43] or integrated into a
deep learning environment as with s2cloudless by Sentinel Hub (https://medium.com/
sentinel-hub/sentinel-hub-cloud-detector-s2cloudless-a67d263d3025) are promising, but
were not implemented in this study as they would have required substantial additional
technical effort.

As an intermediate solution, we implemented a two-step approach that, following the
MAJA approach, is based on the detection of changes in ground features over time.

Time-Dependent Lake Visibility

First, we combine the sink mask polygons with the polygonized lake mask of the date
in question and those of the previous and following 15 scenes. Iteratively, the sink IDs get
classified as

- 0, if no area intersection is detected at day x and (a) was not detected since the
beginning of the year, or (b) is not detected in the following 15 scenes;

- 1, if no area intersection is detected at day x but has already been detected since the
beginning of the year and reappears during the next 15 scenes;

- 2, if an intersection is detected (lake is visible).

Scenario 0 applies to the start (a) and the end (b) of the melt season and avoids wrong
classifications of still/already frozen or empty SGL. IDs classified as 1 are labeled as cloud
covered, and the (non-existing) area is replaced by the mean of the last and the next area.
Potential errors arise from fast-draining SGL or partial cloud coverage; these are discussed
in Section 4.1.2. This is a false-negatives correction intended to identify probably existing
but cloud-covered lakes.

Detection by Spatial Cloud Extent

The second step is based on the assumption that thick clouds (or their shadows) often
cover areas larger than a single SGL. To catch these larger clouds, we compare the water
polygons of each date before clipping with the sink mask to the polygons within the sink
mask to check if any water polygon overlaps more than one sink. If this is the case, the
respective lake IDs which are covered get labeled with 1 (cloudy, see above) for this date.
This is a false-positives correction, preventing dark clouds or cloud shadows from being
labeled as lakes.

2.5. Total Error Assessment

Potentially, several error sources can influence the outcome of the processing chain
and may add up or elevate each other out. The most important uncertainties arise from (a)
the B/R threshold choice, (b) the accuracy of the sink mask, (c) the rigidity of the sieving,
(d) the ability of the cloud filters to remove false classifications and (e) the accuracy of the
shadow masks. As each of the error sources are difficult to even estimate, we compare the
final product of the algorithm to a set of 100 manually identified lakes, randomly chosen
from the entire time series. This approach relates to the error assessment of Selmes and
colleagues [32] and was chosen as it ensures a completely independent dataset independent
of preconditions such as low cloud cover or large lake size. It should nonetheless be noted
that also a manual delineation introduces errors, as digitizing is (a) subject to interpretation
and (b) not constrained to pixel borders. To estimate this additional error, we adapted
the recommendations given by Paul and colleagues for glacier outlines [44] and repeated
the digitizing of 10 lakes of different sizes two times in order to get three individual and
independent sets. Additionally, for each sample scene date, we classified the degree of
cloud cover by visual inspection, ranging from 1 (no clouds at all) to 6 (extremely cloudy)
to be able to relate large errors to cloud conditions (other classes: 2 = rare/thin clouds; 3 =
few cloudy patches; 4 = medium cover; 5 = strong/thick cloud cover). We also classified
the quality of the merged RGB, based on, e.g., artifacts caused by fast moving clouds, or
partial missing data, in classes from 1 (perfect image) to 6 (barely useable).

https://medium.com/sentinel-hub/sentinel-hub-cloud-detector-s2cloudless-a67d263d3025
https://medium.com/sentinel-hub/sentinel-hub-cloud-detector-s2cloudless-a67d263d3025
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3. Results

For the whole period, lakes appeared in 880 of the 1035 sinks. The majority of all lakes
(93.73%) have an area below 1 km2 (Figure 4B). These lakes account for 48.63% of the total
detected lake area between 2016 and 2019. The largest single lake detected has an area of
30.49 km2 and appeared on 29 July 2019. The mean/median SGL size is 274,540/64,212 m2,
with a standard deviation of 775,750 m2. In total, the 10 S-2 granules cover an area of
82,427 km2, with the ablation mask covering 27,504 km2. The mean/median error is
2505/3870 m2 per lake, or 0.044/0.024 m2 per pixel (100 m2).

Figure 4. Sample statistics (dark) versus the whole dataset (bright): (A) number of sample scenes per year compared to the
total number of scenes per year; numbers above bars indicate sample number (total number); (B) distribution of lake sizes
for the whole dataset; (C) same as (B), only for the sample dataset.

3.1. Interannual Differences in Total Lake Area

Figure 5A shows the cumulated lake area for each analyzed date between 2016 and
2019. Among the three years, 2019 has the highest daily SGL area (333.19 km2 on 2 August),
four times larger than in 2018 (76.66 km2 on 21 August). The maximum occurred earliest in
2016 (24 July) and latest in 2018 (21 August). The maximum daily number of lakes is the
largest in 2019 (553), followed by 2016 (477), 2017 (423) and 2018 (288).

The melt onset can be defined as the date when free water is continuously present in
the snowpack [45]. After a few days of continuous melt days, SGL becomes visible through
the melt of covering ice or the confluence of mobile water. GL appeared earliest in 2017
and disappeared latest in 2018, the latter being delayed by 25 and 14 days compared to
2017 and 2016, respectively (Table 3). Though 2018 thus has the latest appearance and
simultaneously the lowest maximum total lake area, maximum lake extent and number
generally do not seem correlated with the timing of the melt season.

Table 3. Lake area characteristics per year. If there is still > 1 km2 of lake area at the end of the sensing
period, the melt season end cannot be determined (-).

Year Max Lake Area
(km2)

Date of Max Lake
Area (DOY)

Start of Melt
Season (DOY)

End of Melt Season
(DOY)

2016 265.39 24 July (206) 10 June (162) 19 September (263)

2017 153.26 3 August (215) 23 May (143) -

2018 76.66 21 August (233) 13 June (164) -

2019 333.19 2 August (214) 6 June (157) 18 September (261)
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Figure 5. (A) Time-series of S-2 derived lake area sums for 2016, 2017, 2018 and 2019; (B) median
lake area per 100 m altitude bin. Dot size: number of lakes per altitude and year.

3.2. Lake Altitude and Spatial Patterns

During 2016, 2017 and 2019, the highest number of lakes developed between 851 and
950 m a.s.l. (Figure 5B). For 2016 and 2019, this altitude also showed the largest SGL area
extent of all elevation bins (Figure 6), whereas, for 2017, lakes between 751 and 850 m a.s.l.
had the largest extent. This distribution coincides with the gentlest slopes of the glacier
surface between 750 and 950 m a.s.l. (Figure 7). The transition phase from the majority
of lake area being located below 750 m a.s.l. to above is short in 2016 and 2019, from 80%
to 20% of the lake area appearing below 750 m a.s.l. within 20 days for both years. This
period is accompanied by an area increase of 170 km2 in both years, cumulating into the
maximum of 265.39 km2 in 2016 (Figure 6).
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Figure 6. Lake area by elevation bins of 100 m as a percent of the total lake area per date between 1 May and 20
September (colored slices). Red dots show total lake area in km2. Values between observations (red dots) interpolated using
linear regression.
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Figure 7. SGL distribution for the dates of maximum lake extent 2016 (24 July), 2017 (3 August), 2018 (21 August) and 2019
(2 August), plotted over ArcticDEM superimposed by an S-2 band 4–3–2 mosaic of 19 June 2019. Bottom panel: lake area for
the same dates, summed upper 100 m elevation bin, versus the distance from the grounding line (colored lines). Black line:
surface height of 79 N Glacier in m a.s.l.
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4. Discussion
4.1. Consistency with Previous Studies
4.1.1. Northeast Greenland

Two studies have previously focused on SGL detection in the northeast Greenland
sector, though the study by Selmes and colleagues [32] also contains data from northeast
Greenland.

The first study by Sundal and colleagues [13] using MODIS covers the period 2003
to 2007. They report maximum daily SGL areas between 81.1 (2006) and 149.6 (2003) km2,
which is significantly less than our assessment (Table 2), though the lowest maxima are
comparable (76.66 km2 in 2018). This can be explained by mainly three factors: (1) the
resolution of MODIS is 250 m/pixel (Figure A3); thus, the minimum detectable SGL size
is 62,500 km2, thus lakes smaller than 0.1 km2 were not included in the study. For our
dataset, these lakes account for 58.78% of all lakes in number and 7% of the total SGL area.
(2) The former study reports lakes up to 1200 m a.s.l., whereas we found lakes up to 1400
m. This corroborates the findings of Gledhill and Williamson [4], who report a maximum
elevation gain of SGL of 418 m between 1985 and 2016 at a rate of 13.5 m/year. For the
maximum of 2019, lakes at elevations between 1200 m and 1400 m sum up to 50.7 km2,
accounting for 15% of the lake area for this day. For 2016, this difference is 15.9 km2/6%.
(3) Sundal and colleagues report an area of interest between 78.21◦N and 79.5◦N covering
17,500 km2, whereas our dataset covers 78.21◦N to 81◦N. Lakes between 79.5◦N and 81◦N
cover an area of 36.99 km2 for the maximum of 2019, accounting for 14.53% of this day’s
SGL area. Nonetheless, it should be noted that our study probably underestimates the true
lake area (Section 4.2) and that the difference may be even higher. Regarding timing, the
results are generally in agreement: the maxima are reached between DOY 202 and 223 for
the former study, and between DOY 206 and 233 in this study, with the dates being subject
to data availability. The active melt season varies between DOY 160–180 (143–164) and
DOY 258–278 (253–263) for the former study (this study).

The second and newer study by Schröder and colleagues [12] mainly employs po-
larimetric SAR (Sentinel-1), but also involves data from Sentinel-2 and covers the period
2017–2020. Their research area covers 76 to 80◦N and −22 to −34◦W, up to >2000 m a.s.l. As
two datasets with different properties and results are involved, they need to be compared
individually to the outcome of this study. In general, the SAR-based method results in sig-
nificantly larger water areas (up to a factor of 3) than the S-2 based detection methods. We
attribute this difference mainly to (a) the difference between the measured electromagnetic
spectra and thus the measured properties of the ground, (b) the inability of multispectral
sensors to penetrate ice and snow, and (c) the different definitions of SGL. The classification
of the Sentinel-1 backscatter is mainly based on the total reflection of the microwaves away
from the sensor and a resulting minimal backscatter due to the side-looking geometry of
the SAR sensor. Additionally, microwaves from the C-band are able to penetrate snow,
dependent on its water content and ice [46]. Potentially, these properties can be utilized
to measure the total water content of the glacier surface, including liquid water covered
by frozen surfaces. The latter is a major advantage over Sentinel-2 based classifications,
where only visible water can be detected. On the other hand, the SAR detection is heavily
influenced by liquid precipitation and the high water content in snow during the main
melt season [12]. Consequently, it is probable that, during summer, SAR SGL detection
overestimates lake areas, whereas multispectral methods underestimate the true lake area
during the early and late melt season. Therefore, a direct comparison of the total lake area
is challenging. For the Sentinel-2 dataset in the former study, the total lake area is generally
smaller than within our study, except for the maximum extent of 2019. We attribute this
mainly to the use of the NDWI with a threshold tested for west Greenland. Due to the
difference in radiation between 70◦N and 79◦N, a tuning of the threshold to local conditions
would probably have resulted in larger lake areas [47].
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4.1.2. Comparison with Other Areas in Greenland

A wealth of studies focusing on SGLs were performed in the perimeter of Jakobshavn
Glacier, West Greenland (Figure 1) using MODIS, Landsat, ASTER, or a combination of
these sensors. Due to the large number which would require a distinct review article
to compare, and the fact that most of the studies focus on determining lake depths and
volumes, we concentrate on studies (a) of great spatial extent, e.g., the whole ice sheet, and
(b) time-series studies, as these may deliver similar parameters such as melting season,
annual maxima, etc.

Of the sheet-wide studies, Selmes and colleagues [32] found a mean/median lake area
of 0.80/0.56 km2 (0.63 km2 for northeast Greenland), which is large compared to our results
but may be influenced by the minimum resolution of MODIS, preventing a large number
of small lakes from being detected (Section 3). Additionally, they report a maximum lake
size of 16.8 km2 for the whole Greenland Ice Sheet (GrIS), and a mean total lake area of
268 ± 79 km2 for northeast Greenland between 2005 and 2009. We attribute the differences,
especially in maximum lake size, to an upward migration of the ELA, especially in warm
years, and consequently an increase of the ablation area in higher altitudes. This is in
accordance with Liang and colleagues [48] as well as Gledhill and Williamson [4], who
confirmed that SGL area in high altitudes could vary largely, and single lakes may even
drive the dynamics of the whole SGL area for a region. As a contrast, we found lakes
close to the grounding line to exhibit similar areas independent of the year, which is in
accordance with previous time-series studies [22,48,49].

The peaks in the total lake area as reached in late July/early August, appear roughly
two to four weeks later than at Petermann Glacier [19], as well as in West Greenland [23],
though Fitzpatrick and colleagues report a spread of the date of maximum total lake
volume between 5 June and 8 August for the period 2002 to 2012 [15].

4.2. Area Delineation Performance
4.2.1. Static Band Ratio

The similarity of the spectral information of topographic shadows and water in the
blue and red band, compared to the near- and shortwave infrared, is a major disadvantage
of the B/R ratio and requires correction in postprocessing. When processing time-series,
the computation of the binary topographic shadow masks are required for each acquisition
and each granule to be analyzed. For the S-2 NDWI, either band 8 (NIR, 10 m resolution)
or band 12 (SWIR, 20 m resolution) needs to be resampled for each date. Consequently,
from a computation time perspective, NDWI is better suited for short time-series, as
processing shadow masks is time-consuming. Longer time-series, however, profit from
the pre-computed shadow masks so that the B/R ratio outperforms NDWI at a certain
point, which is subject to hardware resources and a number of scenes in question. For areas
without considerable topographic shadows, NDWI and B/R ratio without correction can
be expected to deliver similar results [47].

The majority of studies on SGLs use a band ratio with dynamic thresholding [29,32,50].
In theory, this approach is superior to static thresholding, as it is less vulnerable to low
contrast, as, e.g., with low sun angles, or if half-transparent cirrus clouds are present. Thus,
it may prevent outliers and is potentially applicable to larger areas [29]. Our decision for
a static threshold was mainly driven by the computational effort, which is less for static
band ratios and thus preferable for large datasets given limited resources. Leeson and
colleagues [51] suggested the combination of three different methods for the best accuracy
regarding lake size and number, which would have tripled the processing and analysis time.
In addition, Williamson and colleagues found that B/R ratio static thresholding resulted in
lower RMSE values than other SGL area algorithms if tuned to the study region [47]. Thus,
we are confident that our approach is adequate given the high number of scenes, but if
applied to other regions, the static threshold should be adapted or replaced by a dynamic
threshold if simultaneous analyses of different areas are desired.
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4.2.2. Cloud Correction

Step 1 of the cloud correction implements a time-dependent control that is based
on the dynamic nature of weather over northeast Greenland, e.g., with respect to the
position and strength of the jet stream and the NAO or the occurrence of katabatic winds
or piteraqs [52,53]. Though it is reasonable to assume that a lake is not masked by the same
cloud for several days, an obscuring for more than one scene is likely. The relatively long
threshold of ±15 days, covering ±10 scenes on average, increases the chance of finding a
cloud-free observation. This comes at the cost of the detection of rapid lake drainage and
refilling, which may happen in less than seven days [48,54], and the dis- and reappearance
of a lake within this period will be classified as clouded. As such, this classification step, as
well as step 2, acts as a low-pass filter for individual lakes. In addition, it is not possible to
detect partial cloud coverage of lakes using this procedure. The differentiation between
partial cloud cover and partial drainage does necessarily involve data from either other
bands or data sources.

To quantify the performance of cloud detection algorithms is a challenging subject, as,
aside from manually labeled datasets, no validation data exists. As manual classification
is a time-consuming task that additionally requires training, result validation is typically
done on a limited number of scenes, of which only a small percentage, if at all, covers snow-
or ice-capped surfaces [55–58]. As a comparison of algorithm performance, or an error
estimation for either the L1C-, Level-2A (L2A) cloud masks or fmask over ice are currently
lacking, we compared the results of our cloud correction algorithms for 50 randomly chosen
S2 scenes (granules 26XMP and 26XNP) to fmask and the L1C- and L2A classification masks
(Figure 8). The different cloud masks have individual properties, e.g., fmask differentiates
between several land cover types with clouds as one category, the L2A cloud mask grades
clouds by thickness/type, and the L1C cloud mask is simply binary. To compare these
different types, we generated binary cloud masks, in the case of fmask containing only the
categories clouds and else, and in the case of the L2A mask, all values deviating from 0
were classified as clouds. For our cloud correction, we used the cloud classification matrix
to classify the sinks as clouded or cloud-free, regardless of actual lake size.

Figure 8. Comparison example of cloud masking procedures for 3 July 2017 (a,c,e,g,i) and 7 July 2017 (b,d,f,h,j): a,b:
true-color image (band combination 4–3–2) of granule 26XNP; c,d: native level 1C cloud mask; e,f: fmask with default
configuration; g,h: level 2A cloud mask (20 m resolution); i,j: results from the cloud classification matrix applied to the sink
mask over the same granule. Labeled in pink are sinks where no lake was detected, purple are sinks where initially water
was detected but was labeled as cloud/cloud covered, and yellow are sinks where lakes were detected and not labeled
as cloudy.

Again, a classification of a cloud mask as even partially wrong is ambivalent, as,
through thin clouds, lakes may be detectable. Thus, a potentially high percentage of
detected lakes that are classified as cloud-covered is likely. To quantify the potential error
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adequately, we therefore also compared the lakes classified as cloudy by our procedure to
their cloud cover by the other masks (Figure 9).

Figure 9. (A) lakes classified as cloud-covered using our algorithm versus cloud cover by level-1C
(L1C) cloud mask, fmask and L2A cloud mask; (B) lakes classified as cloud-free using our algorithm
versus the aforementioned masks. Axes display the number of lakes per scene and day. Right corners:
root-mean-squared errors (RMSE) between the respective cloud masks and a perfect fit (dashed line).

The standard Level 1C cloud mask performs best on average. The fit of fmask,
especially for the cloud-free lakes, is strongly influenced by few heavy outliers (Figure 9B),
whereas the L2A cloud mask obviously overestimates cloud cover. The latter is presumably
skewed by our classification of light clouds as thick clouds. Comparing the fit of the
three cloud masks among each other, the L1C mask and fmask generally exhibit the least
differences (RMSE 10.89 for cloud-free lakes and 6.60 for clouded lakes, see Figure A4).

As these relations are relative to the cloud detection implemented in our processing
chain, these values must be regarded with caution, as we cannot assume the cloud detection
works perfectly and is probably still prone to errors, e.g., arising from partial cloud cover,
cloud shadows, or drainage events. Thus, the need for a better performing cloud detection
over ice and snow persists, and the results of this study would benefit substantially from
new and more exact approaches in this field.

4.2.3. Lake Drainage Detection

Rapid lake drainage events are one of the most interesting features of SGL, as these
may lead to a (local) increase in ice velocity [6,59,60]. Our SGL time-series offers, through
its high temporal and spatial resolution, the chance to detect rapid lake drainage events
occurring in less than two days. We tested the potential of the improved temporal and
spatial resolution on a known drainage event analyzed by Schröder and colleagues [12].
The lake (ID 577 in our dataset), located at N 78.87 W 21.73, has been found to drain
completely between 20 July 2017 and 26 July 2017 (Figure 10).
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Figure 10. Rapid drainage event between 20 July 2017 and 26 July 2017. (A): S-2 true-color images of each day within
the period, overlaid by the lake mask for the day in question (green = flagged as cloud-free, red-flagged as cloudy). (B):
detected lake size in km2 before (blue) and after (purple) cloud detection (left vertical axis), and flags of cloud detection by
time-dependent visibility (green) and spatial cloud extent (yellow, right vertical axis).

Within the seven-day period, the lake size is reduced from 2.34 km2 to 0.04 km2, equal
to 1.83% of the original lake area. Due to the daily resolution of our dataset within this
period, the timing of the drainage event can be narrowed down to have occurred between
20 July and 23 July 2017, thus complying with the criteria for rapid drainage events by
Morriss et al. [23], Fitzpatrick et al. [15] and Liang et al. [48]. A more exact determination
of the event is hindered by thick cloud cover, a problem that has been discussed in detail
by Cooley and Christoffersen [28]. According to the classification proposed in their study,
a lake must drain 90% of its maximum area within 24 h (given daily observations with
MODIS) to be classified as rapidly draining, while cloud-covered observations are excluded
from this period. As stated in Section 4.2.2, our two-step cloud detection prevents, in
probably most cases, the classification of an area reduction as rapid lake drainage due to
the interpolation interval of maximum15 days. This is perfectly illustrated by the example
in Figure 10, as the lake loses more than 90% of its area within 48 h; without consultation
of the cloud masks, this would, following Cooley and Christoffersen [28], not be classified
as rapidly draining. As 21 July is flagged as cloud-covered by cloud mask #1 and 22
July by cloud mask #2 (Figure 10), the drainage event should be classified as rapid. This
corroborates the findings that there is an observation bias in rapid drainage event analyses
based on multispectral satellite data due to cloud cover, hindering rapid drainage events
from being defined as such. We strongly agree that cloud masks, if available, should be
considered in the definition of the speed of lake drainage events.

4.3. Error Discussion

The calculated root means squared error (RMSE) between both sample datasets sums
up to 189,377.2 m2 (Figure 11A). This compares well to the root mean square deviation
(RSMD) of 0.22 km2 given by Sundal and colleagues [13], who compared a sample of
53 lakes obtained from MODIS and ASTER imagery. In contrast to the RMSD of 0.007 km2

given by Williamson and colleagues [9] using S-2 and Landsat 8, the RMSE is large; this
can be reasoned by several points: (i) the cloud correction implemented is still inferior to
manual checks, (ii) manually delineated lakes as ground truth sample introduce a larger
error compared to Landsat-derived lakes, where the same methodology was applied and
(iii) large errors in our sample dataset that mainly stem from low contrasts, with static
thresholding probably producing less exact results in these cases (Figure 11C).
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Figure 11. Comparison of automatically detected and manually digitized lakes. (A) Linear regression (solid line) of
manually (x-axis) and automatically (y-axis) derived lake areas. Point colors display cloud classes. Red rectangle: outlier
lake (sink number 1020 of 1035) of date 17 August 2019. (B) RGB composite of date 17 August 2019, classified as extremely
cloudy (class 6). (C) RGB closeup of the outlier (lake 1020, 30 m resolution) on the same date, with manually delineated
extent (green) and automatically detected extent (yellow). (D) Difference between pixel-based (yellow) versus manual
(green) delineation for lake 684, date 29 July 2018.

Setting a threshold to delineate ice from water is potentially risky, as the transition
from solid to fluid is not separated by a sharp border, but continuously, with intermediate
states such as slush; also, if the water is covered by an ice layer, the depth of the underlying
lake influences the reflectance, both of which have a continuous measure. As to this day,
the only way to minimize classification errors is an expert-driven manual mapping; every
automated procedure is a compromise between quantity and quality. Due to increasing
quality, detail and sources of satellite data, this conflict could potentially be minimized
through the increasing use of deep learning and/or artificial intelligence, both of which
are able to include the time domain in the analysis, and thus the evolution of the glacier
surface. Our approach to reducing the possible error through empirical identification
of the most precise threshold and the integration of the time domain in postprocessing
nevertheless aims at the best possible and most realistic results, though an exact error
cannot be quantified.
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5. Conclusions

Multiple studies mapping SGLs in Greenland have used MODIS, albeit its low spatial
resolution, or Landsat, which suffers from long repeat cycles, preventing short-term glacio-
logical or climate-induced processes from being detected. For all multispectral sensors,
cloud cover, especially over snow and ice, is an obstacle that is hard to overcome using
band combinations alone, thus hindering fully automated image processing and requiring
manual inspection of the data.

In this study, we explore the potential of S-2 to detect SGL in a fully automated way.
S-2 combines the merits of both MODIS (high temporal resolution) and Landsat (high spa-
tial resolution), especially in high latitudes. For the melt seasons 2016 to 2019, we detected
880 lakes with a minimum size of 0.015 km2 and an average temporal resolution of 1.5 days.
The main improvements on the few previous studies employing S-2 for this purpose are
(a) the consideration of topographic shadows, limiting the error induced by the spectral
similarity of shadows and water on ice, and (b) the implementation of a two-step cloud
filter that does not require manual inspection, and takes spatiotemporal characteristics
of clouds and lakes into account. The high temporal density of the dataset enables the
detection of rapid lake drainages as well as the analysis of the glacier surface’s changes
due to local weather phenomena, potentials which have only been initially tapped in this
study and demand for in-depth exploration of the data. As with all studies employing
multispectral data, clouds still introduce a potential source of error; thus, the accuracy of
the algorithms will benefit from any future progress in cloud detection using S-2 [61].

The whole processing chain was developed using free and open-source software
alone. It enabled us to detect and track 880 SGLs over four years, allowing insights into
spatial and temporal properties of surface melt of the NEGIS. The processing chain is
designed to be converted into a continuously running version with only minor changes,
so near real-time changes can be detected. Given the availability of cloud computing and
the continuous increase of storage and computation capabilities, the algorithms are also
scalable to investigate SGLs over larger areas or even the whole Greenland Ice Sheet.
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Appendix A

Figure A1. Average solar elevation for all granules at the time of sensing by S-2 for each day coverage
of the whole AOI could be retrieved. Black line is the mean smoothed by local regression; all circle
centers in the gray area fall within one standard deviation from the mean. Minimum solar elevation
is 79.6◦ from nadir on 19 September 2017; maximum is 55.7◦ from nadir on 22 June 2018.
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Figure A2. Algorithm for calculating topographic shadows for the whole area of interest (AOI)
per day, executed for each date with full coverage. Rectangles are input/output data; diamonds
are processes.
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Figure A3. Influence of pixel size on lake detection: contours of the largest detected lake using Sentinel-2 on 29 July 2019,
against MODIS band 1 reflectance of the same day (MOD09GQ, 250 m resolution).

Figure A4. Relations for the clouded (a–c) and cloud-free (d–f) test data for the L1C-, fmask- and L2A cloud masks, with
the respective RMSE. Color-code as displayed in Figure 9.
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