Tundra vegetation affects thaw depth response to soil temperature

Inge Grünberg¹, Evan J. Wilcox², Simon Zwieback³, Philip Marsh², and Julia Boike^{1,4}

- ¹ Alfred Wegener Institute, ² Wilfrid Laurier University, ³ University of Alaska Fairbanks, ⁴ Humboldt-Universität zu Berlin
- Results published: Grünberg et al. 2020: Linking tundra vegetation, snow, soil temperature, and permafrost, Biogeosciences, doi: 10.5194/bg-17-4261-2020

Research focus

As the Arctic is warming rapidly, vegetation changes. My research focus is the feedback of vegetation changes on climate and permafrost. In this study, we measured topsoil temperature (1-3 cm) at 68 locations below 6 vegetation types at Trail Valley Creek, NWT (Canada, 68.742°N, 133.499°W) and analysed the interaction between topsoil temperature variation in the different seasons, snow, and thaw depth.

OM

LAURIER

ALASKA

Geo.X Moses