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Abstract

In addition to observations and lab experiments, the scientific investigation

of the Arctic and Antarctic sea ice is conducted through the employment

of geophysical models. These models describe in a numerical framework

the physical behavior of sea ice and its interactions with the atmosphere,

ocean, and polar biogeochemical systems. Sea-ice models find application in

the quantification of the past, present, and future sea-ice evolution, which

becomes particularly relevant in the context of a warming climate system that

causes the reduction of the Arctic sea ice cover. Because of the sea-ice decline,

the navigation in the Arctic ocean increased substantially in the recent past,

a trend that it is expected to continue in the next decades and that requires

the formulation of reliable sea-ice predictions at various timescales. Sea-

ice predictions can be delivered by modern forecast systems that feature

dynamical sea-ice models. The simulation of sea ice is at the center of this

thesis: A coupled climate model with a simple sea-ice component is used to

quantify potential impacts of a geoengineering approach termed “Arctic Ice

Management”; the skill of current operational subseasonal-to-seasonal sea-

ice forecasts, based on global models with a varying degree of sea-ice model

complexity, is evaluated; and, lastly, an unstructured-grid ocean model is

equipped with state-of-the-art sea-ice thermodynamics to study the impact

of sea-ice model complexity on model performance.

In chapter 2, I examine the potential of a geoengineering strategy to

restore the Arctic sea ice and to mitigate the warming of the Arctic and

global climate throughout the 21st century. The results, obtained with a

fully coupled climate model, indicate that it is theoretically possible to delay

the melting of the Arctic sea ice by ∼ 60 years, but that this does not reduce

global warming. In chapters 3 and 4, I assess the skill of global operational
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ensemble prediction systems in forecasting the evolution of the Arctic and

Antarctic sea-ice edge position at subseasonal timescales. I find that some

systems produce skillful forecasts more than 1.5 months ahead, but I also find

evidence of substantial model biases and issues concerning data assimilation

and model formulation.

Chapter 5 deals with the impact of sea-ice model complexity on model

performance. I present a new formulation of the FESOM2 sea-ice/ocean

model with a revised description of the sea-ice thermodynamics, including

various parameterizations of physical processes at the subgrid-scale. The

model formulation grants substantial modularity in terms of sea-ice physics

and resolution. The new system is used for assessing the impact of the sea-

ice model complexity on the FESOM2 performance in different atmosphere-

forced setups with a specific parameter-tuning approach and a special focus

on sea-ice related variables. The results evidence that a more sophisticated

model formulation is beneficial for the model representation of the sea-ice

concentration and snow thickness, while less relevant for sea-ice thickness

and drift. I also highlight a dependence of the model performance on the

atmospheric forcing product used as boundary condition.

In the final part of this thesis, I formulate recommendations for future

developments in the field of sea-ice modeling, with particular emphasis on

FESOM2 and, more generally, on the modeling infrastructure under devel-

opment at the Alfred Wegener Institute.
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1. Introduction

The reader will forgive me if I begin this Ph.D. thesis with a brief digression,

but I cannot resist acknowledging what, for a lot of reasons, made this project

on sea-ice modeling possible and so exciting: the inorganic compound H2O

and its remarkable properties.

Every time an oxygen atom bonds covalently with two hydrogen atoms,

a H2O molecule is formed. This molecule is a fundamental brick for a lot

of substances on our planet, and incidentally, it is the prime constituent of

sea-ice. The electrons of this peculiar molecule cannot resist the charming

attraction of the oxygen nucleus, and, consequently, they can be found more

often in the oxygen vicinity than around the two hydrogen nucleus. The key

to the existence of sea ice as we know it resides in this electronic imbalance,

a behavior which in physical terms is described as polarity: the separation of

positive and negative electrical charges within a molecule. The H2O polarity

allows these molecules to interact with each other, and the strength of the

interactions varies depending on the thermal energy of the system, a quantity

which is measured by temperature. For temperatures below freezing (T<0◦C,

at standard environmental pressure and without solutes), the H2O molecules

are less mobile and geometrically organized in space, leading to a solid state

that we call ice. At higher temperatures (0◦C<T<100◦C), the molecular

motion is more energetic and chaotic, leading to a fluid state which we call

liquid water. Interestingly enough, H2O is one of the few known substances

for which the distance between molecules is slightly larger in the solid phase

compared to the liquid phase. This implies that the ice is less dense than

water and therefore fluctuates on it. As trivial as this behavior might appear

to everyone who ever sipped a cold drink on a summer day, our oceans would

look rather different if the H2O molecules would interact in other ways, with

thick sea ice filling the bottom of the ocean rather than covering the polar

seas as a dynamic reflective blanket.
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CHAPTER 1. INTRODUCTION

At this point, allow me to put aside my description of H2O and to pause,

just for a while, the suggestive speculations on sinking sea ice. I promise to

return to them at the end of this chapter. Before this, I will describe the

crucial role that sea ice plays in the climate system and for society, and I will

present the efforts of the scientific community for modeling this remarkable

material.

1.1 Sea ice in a changing climate system

Sea ice constitutes only a very small fraction of the total ice volume on our

planet. However, the Arctic and Antarctic sea-ice systems combined occupy

on average an area of 18 × 106 km2, which corresponds to approximately

5% of the surface of the global oceans. Because of its wide-spread coverage,

and due to the very different physical properties compared to the ocean

and atmosphere, the sea-ice plays a role of prime importance in the climate

system.

I previously condensed the description of sea-ice in the words “dynamic

reflective blanket”. As a blanket, sea-ice acts as a thermal insulator, reducing

the turbulent heat fluxes from the warmer ocean to the colder atmosphere

during winter, and mitigating the warming of the ocean by absorbing heat

during the polar summers (Notz, 2005). Sea-ice is overall a bright and thus

reflective material, and even brighter is the snow that precipitates from the

atmosphere and accumulates over it. For this reason, a large fraction of the

incoming solar radiation in sea-ice covered regions is reflected back to space,

contributing to keeping the polar atmosphere and ocean at relatively cool

temperatures all year round (Perovich, 2003). The sea-ice system is not con-

tinuous and rigid, but it is constituted by a dynamic ensemble of floes with

sizes that span over several orders of magnitude (Gherardi & Lagomarsino,

2015). Generally, the sea-ice cover is organized in larger floes during winter,

when multiple floes freeze together and the sea ice becomes thicker, more

compact, and less mobile. In contrast, it breaks into smaller heterogeneous

floes during summer, when the ice warms and becomes weaker (Stern et al.,

2018). The floes that constitute the sea ice move in response to atmospheric

winds, ocean currents, and interactions with other floes (Leppranta, 2009).

Therefore, sea-ice is not only a mediator of the atmospheric-oceanic heat

exchange, but also of the transfer of momentum from the atmosphere to the

2



1.1. SEA ICE IN A CHANGING CLIMATE SYSTEM

ocean. Furthermore, the seasonal formation of new sea-ice and the conse-

quent rejection of salty brine into the ocean destabilizes the water column

and contributes to support the ocean thermohaline circulation on a global

scale. In contrast, the melting of sea ice freshens the surface ocean and has

a stabilizing effect on its vertical stratification (Rahmstorf, 1999).

Even though the fundamental physical processes that lead to sea-ice for-

mation are very similar in the Arctic and in Antarctic regions, the resulting

sea-ice differs substantially between the two hemispheres. The Arctic ocean

is a rather closed environment, surrounded by the American and Eurasian

continents, and with few localized exchange gates with other oceans. The

configuration of the coastlines, in combination with the typical modes of

atmospheric and oceanic circulation, favors the recirculation of the sea-ice

into the Arctic basin and reduces its dispersion into warmer peripheral seas.

This allows a substantial part of the sea-ice cover to survive multiple melt-

ing season and to form thicker multi-year ice which, nowadays, can be found

mostly north of Greenland and off the Canadian Archipelago (Maslanik et al.,

2011). On the contrary, the Antarctic sea-ice forms in the Southern Ocean, a

wide ocean basin that surrounds the Antarctic continent and that is in direct

communication with warmer oceans at its northern boundaries. The seasonal

cycle of the Antarctic sea-ice extent is wider than in the Arctic, with a winter

expansion contained by the atmospheric jet stream and by the influence of

the Antarctic Circumpolar Current, followed by a rapid melting phase that

depletes most sea-ice cover. Nevertheless, some multi-year ice can be found

in few protected locations at the end of the melting season (mostly in the

Weddel Sea), while rigid and immobile patches of land-fast sea ice persist all

year round along the Antarctic coastlines (Fraser et al., 2020), attached to

the ice shelves or to grounded icebergs.

The Arctic and Antarctic sea-ice systems respond very differently to the

anthropogenic global warming that has affected our planet in the last decades.

While the Antarctic sea-ice extent features a slightly increasing but not statis-

tically significant trend since the beginning of satellite observational records

in the late ’70s (Parkinson, 2019), the Arctic sea ice exhibits a marked de-

cline (Mueller et al., 2018) in extent (Stroeve et al., 2007), volume (Gascard

et al., 2019), and age (Comiso, 2012; Kwok, 2018). The rapid mutations that

the sea-ice is facing, particularly in the Arctic, fostered the interest of the

scientific community in studying this system. On one hand, this responds

to an urgent need of understanding the impact of global warming on polar
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CHAPTER 1. INTRODUCTION

regions, of quantifying feedback mechanisms that could amplify or reduce

the current warming trends, and of preserving the fragile but rich ecosys-

tem that thrives around the sea ice. On the other hand, the technological

advances of our societies, in combination with the reduction of the sea-ice,

open the polar regions to a more sustained human presence that is expected

to grow in the near future (Larsen & Fondahl, 2015), demanding therefore an

in-depth understanding of the sea-ice system for enabling a safe, sustainable,

and proficuous development process of the polar regions.

1.2 Fifty years of sea-ice modeling

In addition to satellite observations, in-situ measurements, and lab experi-

ments, the study of sea-ice is nowadays carried out through the employment

of sophisticated mathematical models. The ultimate goal of these models is

to simulate quantitatively the behavior of the sea ice, its evolution, and its

interactions with the other components of the climate system.

When analyzing the evolution of sea ice models, I cannot refrain from con-

necting major developments in this field to fundamental advances in the field

of sea-ice observations. The understanding of the heat conduction in sea ice,

which led to the first mature sea-ice model of Maykut & Untersteiner (1971),

would not have been possible without the data collected during the Interna-

tional Geophysical Year in 1957-58. Before the availability of the first satellite

observations, the ‘Arctic Ice Dynamics Joint Experiment’ (AIDJEX)—a se-

ries of experimental campaigns carried out during the ’70s—laid the founda-

tions for understanding the motion of sea ice in the Arctic, which contributed

to the formulation of the first dynamical and thermodynamic model of sea ice

by Hibler (1979), featuring a Viscous Plastic (VP) sea-ice rheology. The ob-

servations from the ‘Surface Heat Budget of the Arctic’ (SHEBA) campaign

(Uttal et al., 2002) advanced our understanding of the interactions between

sea ice and snow with radiation, resulting in a series of more physically con-

sistent parameterizations added to the sea-ice models (e.g. Holland et al.

(2012)). The ‘Multidisciplinary drifting Observatory for the Study of Arctic

Climate’ (MOSAiC)—arguably the largest Arctic expedition in history—can

be considered the next step on this pathway, as this scientific initiative is ex-

plicitly designed to build a solid understanding of sea ice that will shape the

future of sea-ice modeling. In this respect, future modeling improvements
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1.2. FIFTY YEARS OF SEA-ICE MODELING

are expected in the description of the snow layer on top of the sea ice, in the

representation of biochemical processes, and finally in the exchange processes

at the interfaces between the sea ice, ocean, and atmosphere.

New and better sea-ice observations have not only contributed to improv-

ing model performances, but they are responsible for continuously shaping

the way we model the sea ice and how we analyze the model results. Right

after the first sea-ice concentration satellite retrieval became available in the

late ’70s, Parkinson & Washington (1979) formulated a sea-ice model that

allowed, for the first time, the coexistence of frozen sea ice and open water

in the same grid cell. Such a formulation survives today in our models as

the “sea-ice concentration” variable, and it is extremely successful because

it allows easy comparison between observations and model data. Forty years

afterward, many more examples of observational hybridization can be found

among the variables of our sea-ice models. For example, we are now able to

simulate the fraction of multi-year-ice, the sea-ice age, the sea-ice freeboard,

etc. The adoption of these formulations in models was fostered by the de-

velopment of compatible observations, mostly from remote sensing. In light

of the success of sea-ice models and of their broad application, the afore-

mentioned process has now also changed direction, with the requirements

of sea-ice modeling and data assimilation communities explicitly taken into

account when planning new satellite missions and observational campaigns.

The development of numerical sea-ice models has been driven not only

by the growing quality of observations but also by the availability of compu-

tational resources for running the models and for analyzing the results. As

described by Hunke et al. (2010), the first mature model of sea ice by Maykut

& Untersteiner (1971) was too detailed and sophisticated for the computing

capabilities of the time, and had to be simplified by Semtner (1976) to be

employed over larger domains and for climate applications. The implementa-

tion of an energy-conserving multi-layer sea-ice model for pan-Arctic setups

has only been established almost three decades later by Bitz & Lipscomb

(1999). As the computational resources available to the scientific community

grew steadily, pan-Arctic frontier sea-ice simulations feature, nowadays, very

high spatial resolutions that reach the kilometer-scale (Menemenlis et al.,

2008; Wang et al., 2020). At these resolutions, the continuum assumption,

which is the foundation of classical sea-ice models, starts to fail, as the model

resolution becomes comparable to the typical size of individual sea-ice floes.

This does not necessarily imply that the use of the Hibler-type VP models
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CHAPTER 1. INTRODUCTION

should be abandoned. In this respect, Ringeisen et al. (2019) show that the

MITgcm model (Losch et al., 2010) retains a remarkable consistency up to a

resolution of 25m. Nevertheless, alternative sea-ice model formulations be-

come attractive for certain types of applications that require high resolution.

For example, Hunke et al. (2020c) calls for the use of Discrete Element Mod-

els (DEM; e.g. Herman (2016)) for simulating the anisotropic sea-ice pack at

fine spatial scales (few hundred meters) and in small domains, a technique

that would find its natural application into the field of operational short-term

sea-ice forecasting.

In the past decades, sea-ice modeling played a key role in answering sev-

eral scientific questions with a broad impact on our society. In this respect,

the most remarkable achievement of sea-ice models is to have estimated cor-

rectly the declining trend of the Arctic sea-ice extent and volume, and to

have demonstrated the causal link between this trend and the increase of

greenhouse gases in the atmosphere (Notz & Stroeve, 2016). An interest-

ing aspect that characterizes this finding is the multi-model framework from

which it originated. The coordination and combination of different models

have proven to be effective strategies for reducing model uncertainties and

for increasing confidence in the model estimates, evidencing the importance

of initiatives such as the Climate Model Intercomparison Project (CMIP) for

formulating reliable climate projections.

At shorter timescales, sea-ice models are becoming more and more rel-

evant for institutions and organizations that formulate operational environ-

mental predictions (Jung et al., 2016). On one side, this is motivated by

the growing interest of stakeholders in a progressively ice-free and navigable

Arctic Ocean, which opens new opportunities for the development of these

regions, but which also emphasizes the need for predicting the evolution of

the Arctic sea-ice to prevent hazards and to reduce the risks associated with

the extreme polar environment (Emmerson & Lahn, 2012; Stephenson et al.,

2011). On the other side, improving the sea-ice representation in Earth

System Models (ESM) is considered beneficial to increase our predictive ca-

pabilities of the ocean and atmosphere, with important relapses on human

activities.
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1.3 To each question its model

After having introduced the foundations on which modern sea-ice models

rest, I continue this introductory chapter by presenting a rather drastic case

study that, even if abstract and far from our classical sea-ice modelling ex-

perience, helps nonetheless to illustrate the background from which one of

the arguments of this thesis arises.

Let us imagine, once more, a hypothetical world in which the H2Omolecules

behave differently from what we are used to, causing the sea ice to sink into

the ocean1. As the sea-ice density is represented by an arbitrary parameter in

most of the models currently in use, we could legitimately think of studying

this situation with one of these models. I embarked on such an exercise by

increasing the sea-ice density in the Finite-volumE Sea ice-Ocean Model ver-

sion 2 (FESOM2; Danilov et al. (2017)) sea-ice and ocean model to a value

10% larger than that of the ocean water. Interestingly, the model calculations

do not fail, nor does the model produce any warning to flag an inappropri-

ate density value. The outcome of the simulation is, not surprisingly, quite

different from what the physical intuition would suggest: even if denser, the

sea ice keeps fluctuating over the lighter ocean and does not sink into it. The

major aspect that differs compared to a standard simulation is the thickness

of the sea-ice, which is correctly reduced due to the higher density of the

material. Does this mean that the FESOM2 model is wrong? Technically

yes, in this situation FESOM2 produces nonphysical results. But, most im-

portantly, we are trying to answer a rather strange, yet legitimate scientific

question with an inappropriate tool that was not designed for this purpose.

In fact, while allowing the coexistence of water and ice at the surface of the

ocean, the model developers designed the sea-ice and ocean components of

FESOM2 making the assumption—very reasonable before my attempt—of a

complete separation of these two elements in the vertical column, with the

sea-ice that, if present, floats over the ocean no matter the relative density

of the two substances.

As described in Sec 1.2, both the complexity of sea-ice models and the

number of problems and applications that they can address grew substan-

tially over the past decades. Nevertheless, what has been demonstrated by

the previous case study is that, despite the efforts made to adopt model for-

1Interestingly, D2O in solid form or ‘heavy ice’, a close relative of the standard ice,
really sinks into H2O (Maitra & Zare, 2016)
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CHAPTER 1. INTRODUCTION

mulations simultaneously consistent with the laws of physics and with the

observed sea-ice phenomenology, sea-ice models still return only a simplistic

characterization of the real world and their performance is tightly connected

to the research questions formulated by the model users. For this reason,

each application that involves modelling should ideally adopt a specific and

appropriate formulation of the model itself. In practice, this is rarely the

case for sea-ice models, as the few available are shared across different sci-

entific fields and employed for various applications. The approach adopted

by the scientific community is surely efficient and not necessarily a bad one,

provided to not forget that the level of complexity that might be required

in some applications could become not justified, or even harmful, in other

cases. I will revisit this argument in the concluding chapter of the thesis in

light of the results presented in the continuation of this manuscript.

1.4 Scope and structure of the thesis

As emerges from the previous sections, the overarching theme of this Ph.D.

dissertation is sea-ice modeling. In practice, this broad topic is here analyzed

by following two main threads: the first concerns the investigations of sea

ice through models, while the second regards the investigation of sea-ice

models themselves. Although the majority of the studies here presented

focus on the sea ice in the Arctic, I try to maintain a global perspective on

the topic, keeping in mind that, as the laws of physics are the same in the

two hemispheres, a good model should in principle be equally adequate in

representing the Arctic and Antarctic sea ice.

The first thread of this thesis touches two of the scientific fields in which

modern sea-ice models find their core area of application: climate projections

at multi-decadal timescales on one side, and operational sea-ice predictions

up to seasonal timescales on the other. As this thesis will demonstrate, the

investigation of these problems is tackled with similar tools that nevertheless

present some fundamental differences The approaches for the sea-ice inves-

tigation are, in fact, tightly connected to the timescale of the problem, and

consequently to the scientific question and to the application requirements.

Climate projection studies typically deal with long timescales, and, in

practice, this translates into a so-called boundary condition problem. The

goal of these studies is understanding, in a statistical sense, the response

8



1.4. SCOPE AND STRUCTURE OF THE THESIS

of sea ice to external forcings (i.e. boundary conditions), which can be, for

example, the increase of greenhouse gases in the atmosphere. In this context,

Chapter 2 presents a study in which the sea-ice component of a fully coupled

climate model is adapted to investigate the impact on the climate system

of a hypothetical geoengineering approach to counteract the decline of the

Arctic sea ice. This geoengineering strategy, originally proposed by Desch

et al. (2017) and called ‘Arctic Ice Management’, foresees a large number

of winddriven pumps that shall spread seawater on the surface in winter to

enhance ice growth, allowing more ice to survive the summer melt. We tested

this hypothesis by modifying the surface exchange processes such that the

physical effect of the pumps is simulated, and by performing century-long

ensemble experiments that account for the increase of greenhouse gases in

the atmosphere. The main scientific questions relative to this chapter (Q1

and Q2) are summarized in the following box:

Q1 Can the actuation of the Arctic Ice Management strategy prevent
the decline of the Arctic sea ice?

Q2 Can this approach mitigate the effects of global warming in the
Arctic and beyond?

Chapter 2 has been published in the journal ‘Earth’s Future’ by Zampieri &

Goessling (2019) under the title ‘Sea Ice Targeted Geoengineering Can Delay

Arctic Sea Ice Decline but not Global Warming’.

In contrast to climate projections, operational sea-ice predictions deal

with much shorter timescales and attempt to predict, as accurately as pos-

sible, the trajectory between the present and the future sea-ice state. The

knowledge of the initial sea-ice state (but also of the ocean and atmosphere

initial conditions) is therefore crucial for a correct simulation of the sea-ice

evolution, leading to a so-called initial condition problem. Because a perfect

characterization of the initial state is in practice impossible, and because of

limitation and biases in our models, an ensemble of forecasts is produced

from slightly perturbed initial states, aiming to give indications on the range

of possible future states of the variable of interest and not only the most

likely one. In this context, Chapters 3 and 4 investigate the skill of sev-

eral operational forecasting systems in predicting the evolution of the sea ice
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edge at subseasonal to seasonal (S2S) timescales, both in the Arctic and in

the Antarctic. The verification methodology employed for evaluating these

forecasts is similar for both hemispheres, and it takes into account the prob-

abilistic nature of these ensemble forecasts. Furthermore, this study goes

beyond the classical sea-ice extent and area concepts by focusing instead on

the sea-ice spatial distribution, which is a relevant piece of information for

stakeholders and potential final forecast users. The main scientific questions

relative to these chapters (Q3 and Q4) are summarized in the following box:

Q3 How skillful are state-of-the-art operational forecast systems in
predicting the evolution of the Arctic and Antarctic sea-ice edge
at subseasonal timescales?

Q4 Which biases affect the S2S forecasting systems? And where do
they originate from?

Chapter 3 has been published in the journal ‘Geophysical Research Letters’

by Zampieri et al. (2018) under the title ‘Bright Prospects for Arctic Sea Ice

Prediction on Subseasonal Time Scales’. Chapter 4 has been published in

the same journal by Zampieri et al. (2019) under the title ‘Predictability of

Antarctic Sea Ice Edge on Subseasonal Time Scales’.

Chapter 5 develops the second thread of this thesis, shifting the focus

from the investigation of sea ice through modeling, to the investigation of

sea-ice models. Specifically, this chapter explores the impact of sea-ice model

complexity on the performances of an unstructured-mesh sea-ice model under

different atmospheric forcings. For making such a study possible, I have first

equipped the unstructured global sea-ice and ocean model FESOM2 with the

single-column sea-ice model Icepack, a set of physical parameterizations that

describe the sub-grid sea-ice processes not explicitly resolved in models. The

update has substantially broadened the range of physical processes that can

be represented by FESOM2. These new features are directly implemented

on the unstructured FESOM2 mesh, and thereby benefit from the unique

flexibility that comes with it in terms of spatial resolution. A subset of the

parameter space of three model configurations with increasing complexity

has been calibrated with an iterative Green’s function optimization method.
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This optimization creates the conditions to test fairly the impact of the model

complexity on the sea-ice representation in the FESOM2 model. The main

scientific questions relative to this chapter (Q5 and Q6) are summarized in

the following box:

Q5 Does a more complex and physically consistent formulation of a
sea-ice model lead to better sea-ice simulations?

Q6 How does the impact of different atmospheric forcings on sea-ice
simulations compare to the impact of model complexity?

Chapter 5 corresponds to a manuscript under review in the ‘Journal on

Advances in Modelling Earth Systems’ (at the time this thesis was written)

under the title ‘Impact of sea-ice model complexity on the performance of an

unstructured sea-ice/ocean model under different atmospheric forcings’.

Chapter 6 concludes this thesis and summarizes the main findings and

conclusions of my research. The results from the main chapters will be placed

in context with the overarching theme of the thesis and, based on these

final considerations, I will give an outlook and recommendations for future

developments in the field of sea-ice modeling.

Remarks Chapters 2, 3, 4, and 5 constitute either published or ready-for-submission

papers, which have been written together with my co-authors. The contributions of

each individual are detailed at the beginning of the respective chapters. I decided

to retain the original format of the manuscripts, which generates small inconsis-

tencies with the rest of this thesis regarding style, utilization of the first person

plural, and abbreviations. There is a certain degree of redundancy also content-

wise, as each paper is formulated to be independent from the others. I kindly ask

the reader to be indulgent and overlook these imperfections.
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2. Sea ice targeted

geoengineering can delay

Arctic sea ice decline but

not global warming1

Abstract

To counteract global warming, a geoengineering approach that aims

at intervening in the Arctic icealbedo feedback has been proposed.

A large number of winddriven pumps shall spread seawater on the

surface in winter to enhance ice growth, allowing more ice to survive

the summer melt. We test this idea with a coupled climate model

by modifying the surface exchange processes such that the physical

effect of the pumps is simulated. Based on experiments with RCP 8.5

scenario forcing, we find that it is possible to keep the latesummer sea

ice cover at the current extent for the next ∼60 years. The increased

ice extent is accompanied by significant Arctic latesummer cooling by

∼1.3 K on average north of the polar circle (20212060). However,

this cooling is not conveyed to lower latitudes. Moreover, the Arctic

experiences substantial winter warming in regions with active pumps.

The global annualmean nearsurface air temperature is reduced by only

0.02 K (20212060). Our results cast doubt on the potential of sea ice

targeted geoengineering to mitigate climate change.

1Chapter 2 has been published in the journal ‘Earth’s Future’ by Zampieri & Goessling
(2019) under the title ‘Sea Ice Targeted Geoengineering Can Delay Arctic Sea Ice De-
cline but not Global Warming’ I parameterized the geoengineering strategy in AWI-CM,
performed the simulations, and analyzed the data. H. F. Goessling participated in the
discussion of the results and contributed to the writing of the manuscript.
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2.1 Introduction

The declining trend of the Arctic sea ice extent (Comiso, 2012; Kay et al.,

2011; Stroeve et al., 2012; Lindsay & Schweiger, 2015), caused mainly by

anthropogenic greenhouse-gas emissions (Notz & Stroeve, 2016), is expected

to continue. Projections based on climate models foresee a largely ice-free

Arctic ocean in late summer around the mid-21st century in the business-

as-usual emission scenario (Collins et al., 2013; Jahn, 2018; Niederdrenk &

Notz, 2018; Notz & Stroeve, 2018). The replacement of the highly reflective

ice cover by the dark ocean has been described as one of the most severe

positive feedbacks in the climate system (Manabe & Stouffer, 1980) and

contributes to the Arctic warming amplification (Pithan & Mauritsen, 2014).

The Paris Agreement stipulates the reduction of greenhouse-gas emis-

sions to keep global warming well below 2◦C (United Nations, 2015; Corn-

wall, 2015). However, even if all national commitments to curb emissions will

be implemented, the 2◦C target will likely be exceeded significantly (Rogelj

et al., 2016). The discussion around alternative approaches based on climate

engineering—the anthropogenic large-scale modification of the Earth’s cli-

mate to mitigate global warming (Keith, 2001; Bellamy et al., 2017; Talberg

et al., 2018)—is highly controversial (Blackstock & Long, 2010; Hamilton,

2013; Givens, 2018). Nevertheless, with the prospect of insufficient emis-

sion reductions, the scientific examination of climate engineering strategies

appears advisable.

Several climate engineering approaches that focus on the Arctic sea ice

cover and the positive ice-albedo feedback have been proposed (Seitz, 2011;

Cvijanovic et al., 2015; Mengis et al., 2016; Desch et al., 2017; Field et al.,

2018). The Arctic Ice Management (AIM) strategy put forward in Desch

et al. (2017) (D17 hereafter), which attracted the attention of the scientific

community and the media alike (rated within the top 5% of all research out-

put2), entails the large-scale employment of wind-driven pumps that spread

seawater on the ice surface in the winter months. The sea ice and the snow

that is accumulated over it are materials with low thermal conductivity com-

pared to the ocean water. During the freezing season, even a thin layer of

sea ice limits the heat flux from the warmer ocean to the cooler atmosphere

considerably (Trodahl et al., 2001), reducing the growth of additional sea ice.

2Altmetric Attention Score of Desch et al. (2017): https://wiley.altmetric.com/

details/72217339

14

https://wiley.altmetric.com/details/72217339
https://wiley.altmetric.com/details/72217339


2.1. INTRODUCTION

The AIM approach aims to bypass the thermally insulating effect of sea ice,

allowing thereby more ice to grow thick enough during winter to withstand

the summer melt (Fig. 2.1).

Figure 2.1: Idealized representation of the 21st century sea ice system with and
without Arctic Ice Management (AIM). In unperturbed winter conditions (top
left) the sea ice and snow act as insulator reducing the heat flux from the warmer
ocean to the much colder atmosphere. The sea ice growth takes place mostly at
the ice-ocean interface and is relatively slow (dark blue fraction of the ice floes).
By summer (bottom left) most of the ice has melted, leading to an ice-free Arctic
ocean in the second half of the century and amplifying the warming through the
ice-albedo feedback (yellow fraction of ocean). In AIM conditions (top right) ocean
water is pumped onto the ice, leading to larger heat flux and rapid ice growth at
the surface. More ice withstands the summer melt (bottom right) and increases
the surface albedo.

Based on simple thermodynamical arguments and observations from an

ice mass balance buoy in the Beaufort Sea, D17 estimate that ∼1.4m of

seawater would need to be pumped onto the ice to generate ∼1.0m of ex-

tra ice thickness over the course of one winter at a typical location in the
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Arctic Ocean. They envisage the deployment of ∼10 million devices, each

comprising a wind turbine, a pump, a water tank, and a delivery system

that distributes the water over an area of 0.1 km2. D17 calculate that 1m

extra ice thickness would lead to a shift of the local melt date by ∼15 weeks

(3weeks per 0.2metres). They argue that it might be possible to maintain a

large part of the usually seasonal ice zone throughout the summer by appro-

priate annual repositioning and/or reseeding of the AIM array. Considering

associated albedo changes, D17 calculate a global annual-mean short-wave

radiative cooling by up to 0.14Wm−2. This is about half of the estimate by

Hudson (2011) for the global annual-mean forcing associated with a virtually

ice-free Arctic summer (0.3Wm−2) and a significant fraction of the current

anthropogenic radiative forcing by ∼1Wm−2.

Considering energy requirements, economical demands, as well as tech-

nical challenges, D17 conclude that such a major undertaking seems indeed

feasible. However, the question is left open what the quantitative response

of the Arctic as well as the global climate system would be. It is also unclear

whether the local thermodynamic considerations can be scaled up to the

whole Arctic. For example, the large-scale exposure of relatively warm ocean

water is expected to generate positive near-surface temperature anomalies.

Because the surface turbulent heat fluxes are proportional to the surface tem-

perature gradient (Wallace & Hobbs, 2006; Serreze et al., 2007), increased

winter temperatures might induce a negative feedback that dampens the

additional ice growth. Complex climate models that simulate the relevant

physics, including the general circulations of the atmosphere and the ocean,

can provide answers.

Here we use the Alfred Wegener Institute Climate Model (AWI-CM)

(Sidorenko et al., 2015; Danilov et al., 2015a; Rackow et al., 2016) to study

the efficacy of Arctic Ice Management and the response of the climate sys-

tem, in the Arctic and beyond. To this end we modify the parameterisation

of the surface heat and mass fluxes in ice-covered ocean regions north of the

polar circle (∼ 66.5°N) such that the effect of the AIM devices is simulated.

The modification is activated during the Arctic winter from October 21st to

March 21st from 2020 onward. The strength of the modification is modu-

lated with two parameters that affect the large-scale spatial extent and the

local efficiency of the pumps. A sensitivity analysis with respect to these

parameters is followed by a more detailed analysis based on ensemble sim-

ulations (4×unperturbed and 4×AIM) with RCP8.5 scenario forcing until
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2100. Moreover, we analyse the effect of an abrupt suspension of AIM in

2030 to test its reversibility.

2.2 Results

2.2.1 Regulating the strength of AIM

The impact of AIM depends on the strength of the modification applied. In

the real world, this would depend on the number and spatial distribution

of the deployed AIM devices, as well as their efficiency in distributing the

ocean water over the surrounding sea ice. To start with, we have performed

a simulation where a liquid layer is maintained over the whole ice cover,

allowing us to determine an upper bound for the impact of AIM on the

ice and on the global climate. This extreme scenario should be regarded

as an idealized case to test the response of the climate system to AIM. In

this experiment the mean Arctic ice thickness increases almost linearly by

∼2.1m per year from 2020 to 2030 (the historical 1850–2000 annual-mean

value is ∼1.8m). Thereafter the thickness growth slows down until the mean

thickness levels off around 65m from 2080 onward, corresponding to a pan-

Arctic ice volume of ∼ 900×103 km3 (Fig. A.1; right). The ice extent attains

values around 15 × 106 km2 in late winter (February) and 13.5 × 106 km2 in

late summer (September) (Fig. A.1; left). This implies almost a doubling

of the late-summer sea ice extent compared to historical conditions (1850–

2000). The ice thickness and extent stop growing due to the gradual warming

by increasing greenhouse-gas concentrations and, for the same reason, would

start to decline beyond 2100 despite AIM.

The near-surface temperature response in this extreme case is profound:

Averaged over 2021–2060 north of 66.5°N, the Arctic is colder by ∼5.2K in

September, compared to the 4-member ensemble of unperturbed runs with-

out AIM, but warmer by ∼10.6K in February when the pumps are active

(Fig. A.2; top). The northern middle latitudes (30°N–60°N), however, are
warmer by 0.5K–1.0K throughout the year. This implies that the radiative

cooling from the increased albedo is not strong enough to (over-)compensate

the effect from the direct Arctic winter warming which is transported to

lower latitudes by atmospheric advection and persists there in the ocean

mixed layer throughout the year. (The September warming of the north-

ern middle latitudes tends to be present already after a single AIM season
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(Fig. A.2; 2020), which is not compatible with the typical time scale for

oceanic transport.) The results raise the question whether a more moder-

ate implementation of AIM, where pumps are employed only where they are

needed to make the ice thick enough to survive the summer melt, might be

better suited to generate an overall cooling. A weaker AIM implementation

is also more realistic given that it seems unlikely that the AIM devices would

be able to maintain a closed cover of liquid water and also in regard to the

number of devices required: The extreme case corresponds to more than 10

times the number of devices envisaged by D17.

We have thus introduced two parameters that affect the large-scale spatial

extent and the local efficiency of the AIM devices: The Global Modulation

Parameter (GMP) determines an ice thickness threshold beyond which the

pumps are deactivated. Thereby the modification is active only in regions

with relatively thin ice, where extra ice thickness can reduce the chances of

the ice to melt completely over the course of the subsequent summer. In

contrast, the Local Modulation Parameter (LMP) determines which fraction

of the ice surface in model grid cells with active pumps is covered by wa-

ter. The LMP represents the spatial density of AIM devices as well as their

efficiency to maintain a liquid layer.

To explore the impact of the two parameters, we have conducted 9 sim-

ulations from 2020 to 2040 by combining 3 GMP values (1m, 2m, and 3m)

with 3 LMP values (25%, 50%, 75%) (Figs. 2.2 and A.3). Averaged over

all 20 years, the March sea-ice extent falls short of the historic level by 1.1–

1.7×106 km2 in any of these settings (Fig. 2.2). One reason for this low

sensitivity is that the historical winter sea ice edge is located south of the

southern bound of the AIM domain at 66.5° N, except in der Nordic Seas.

Furthermore, this reflects that the winter ice edge is largely controlled by

large-scale atmospheric (and oceanic) temperatures: if they never fall below

the freezing point, no ice can grow, irrespective of AIM. In contrast, the

September sea ice extent and the sea ice volume at any time of the year are

strongly sensitive to the two parameters, with larger values of the parameters

leading to larger extent and volume. The influence exerted by the thickness

threshold (the GMP) is stronger than the one by the local density/efficiency

(LMP). The LMP has only a minor influence for GMP = 1m, where the

impact of AIM is generally weak because 1m ice thickness is typically not

enough to withstand the summer melt. The influence of the LMP grows with

increasing GMP.
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Figure 2.2: The nine pie charts show the sea ice extent and volume anomalies in
nine sensitivity simulations (2020–2040) compared to historical conditions (1850–
2000) for March and September. The numbers inside the pie charts provide the
anomalies in 106 km2 for the sea ice extent and in 103 km3 for the sea ice vol-
ume. Each pie chart corresponds to one combination of the Global Modulation
Parameter (GMP; increasing from left to right) and the Local Modulation Param-
eter (LMP; increasing from bottom to top). The LMP and GMP choice defines
the active AIM domain (red area in the GMP maps) and therefore the strength
of the AIM in the simulations. The combination GMP = 2m and LMP = 25%
(marked in red) is used for the 21st century AIM simulations. AIM = Arctic Ice
Management

For the 21st century simulations discussed in the following we have chosen

GMP = 2m and LMP = 25%. This setting restores the summer sea ice

extent, which largely determines the ice-albedo feedback, quite accurately

to historical levels (Fig. 2.2). Moreover, assuming that a single AIM device

covers ∼ 0.1 km2, averaged over winter 2020–2040 this setting approximately

corresponds to 106 active devices (Fig. 2.3; bottom), as envisaged by D17.
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Figure 2.3: Top: Evolution of pan-Arctic sea ice extent (left) and volume (right)
in March (upper curves) and September (lower curves). Bottom left: daily number
of active devices as function of time of the year (vertical) and year (horizontal)
in the AIM simulations (ensemble mean). NSIDC = National Snow and Ice Data
Center, SI = Sea Ice, PIOMAS = Pan-Arctic Ice Ocean Modeling and Assimilation
System, AIM = Arctic Ice Management.

2.2.2 Arctic sea ice in the 21st century with AIM

The unperturbed simulations without AIM coherently project a virtually ice-

free Arctic ocean in late summer after 2060 (Fig. 2.3). The introduction of

AIM in 2020 induces a strong and sudden perturbation of the sea ice state. At

first a new quasi equilibrium close to historical conditions is reached within

a few years. Compared to the unperturbed ensemble, the sea ice volume

increases by ∼40% in March and ∼60% in September, and the September

extent increases by ∼40%, whereas the March extent is again hardly affected.

After the transition phase, however, the declining trend in sea ice volume

is similar for both ensembles. For the month of March (September), the

declining sea ice volume trend is −163± 2 km3

year
(−121± 3 km3

year
) for the control

ensemble mean and −182± 3 km3

year
(−144± 2 km3

year
) for the AIM ensemble mean

(Tab. A.1). Also the September sea ice extent shows a clear declining trend

due to the greenhouse-gas induced warming: −8.3 ± 0.3 × 104 km2

year
for the

control ensemble mean and −6.2± 0.2× 104 km2

year
for the AIM ensemble mean

(Tab. A.1). Based on the sea ice extent trends of the two ensemble means, a
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virtually ice-free Arctic ocean (sea ice extent< 1×106km2) occurs 66±6 years

later with AIM. While the exact delay depends on the parameter considered,

overall the Arctic sea ice decline is delayed by roughly 60 years through AIM.

Our approach entails that the number of active AIM devices continuously

changes in response to the spatial ice thickness distribution, both between

years and within a freezing season (Fig. 2.3, bottom-left). In early 2020,

immediately after the AIM activation, the number of active devices ( 20 ×
106) is particularly large because the sea ice thickness is below the thickness

threshold (GMP = 2m) in most places. Until around 2060, the area of

ice less than 2m thick and hence the number of active devices tends to

decrease monotonically from 10×106 to ≤ 5×106 devices over the course of

each freezing season. After 2060 the seasonal maximum is shifted gradually

towards the end of the freezing season because the greenhouse-gas induced

warming impedes the thickness growth, so that the seasonal ice area growth

becomes faster than the seasonal growth of the ice area with thickness ≥2m.

Similarly, the seasonally-averaged number of active devices grows towards

the end of the century because the ice area with thickness ≥2m declines

more rapidly than the total ice area.

If AIM would generate unanticipated detrimental effects of any kind, it

would be important that the approach is reversible. To test this, we have

branched off four additional simulations from the AIM ensemble in 2030

where AIM is turned off. The sea ice extent and volume return to the unper-

turbed trajectory within a transition period of less than 10 years (Fig. 2.3,

purple curves). This is consistent with earlier findings that there is no tipping

point associated with Arctic sea ice and the ice-albedo feedback (Tietsche

et al., 2011) and suggests that AIM is fully reversible. While this can be

regarded as a beneficial property of AIM, it also implies that the array of

devices would need to be maintained constantly to stay on a trajectory with

delayed Arctic sea ice decline. The rapid loss of the response to geoengineer-

ing once it is discontinued seems to be common to geoengineering techniques

trying to alter the Earth’s albedo (McCusker et al., 2014).

2.2.3 The climate impact of AIM

The increased surface albedo associated with the additional sea ice results

in significantly more reflected solar radiation in the Arctic during summer

(∼5.0Wm−2 at the top of the atmosphere in July north of the polar circle
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for 2021–2060; ∼6.5Wm−2 for 2061–2100; see also Fig. A.4). Averaged over

the globe, the solar radiative forcing due to AIM amounts to ∼0.25Wm−2 in

July (for 2021–2060 as well as 2061–2100), but only ∼0.02Wm−2 for 2021–

2060 and ∼0.08Wm−2 for 2061–2100 when averaged over the whole year.

The latter corresponds to slightly more than half of the estimate by D17,

and a quarter of the estimate by Hudson (2011) for a summer ice-free Arctic

Ocean.

In the Arctic, AIM leads to a consistent late-summer cooling (Fig. 2.4;

top-left; September). Averaged over the area north of the polar circle,

September near-surface (2m) temperatures are reduced by ∼1.3K during

the first half of the simulations (2021–2060) and by ∼1.4K during the sec-

ond half (2061–2100) compared to the unperturbed simulations. The Arctic

winter response is more heterogeneous in both space and time (Fig. 2.4; top-

left; February). In February, most areas of the Arctic Ocean are cooled by

AIM during the first decades (average temperature anomaly over cooling

regions is ∼-1.1K), whereas some peripheral seas including the Baffin Bay

area and the Kara Sea are subject to additional near-surface warming (av-

erage temperature anomaly over warming regions is ∼1K); on average the

Arctic is cooled by ∼0.3K. Towards the end of the century the regions with

AIM-induced warming expand further into the Arctic Ocean; the average

Arctic cooling turns into a warming by ∼0.5K. This adds to the 10.7K of

Arctic February warming in 2061–2100 relative to historical conditions in the

unperturbed simulations.

The Arctic temperature response (Fig. 2.4; top-left) is caused mainly by

four mechanisms:

1. In winter, the AIM devices maintain a layer of liquid water approxi-

mately at the freezing point on the ice surface. This leads to strongly

enhanced surface heat fluxes and warm temperature anomalies in areas

with active devices. This explains the February warming that expands

gradually from the peripheral regions to the central Arctic. Fig. 2.4

shows a clear correspondence between regions with warm temperature

anomalies (top-left; February) and the active AIM regions (bottom).

2. Some marginal thin-ice regions of the Arctic ice cover experience winter

cooling instead of warming despite active AIM devices, simply because

these regions are ice-free in the unperturbed simulations. These regions,

including the northern Barents Sea, have gained ice through increased
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Figure 2.4: Top-left: Near-surface (2m) temperature anomalies (AIM ensemble-
mean minus unperturbed ensemble-mean) for the periods 2021–2060 and 2061–
2100. Top-right: as before but for the total precipitation anomaly. Bottom: grid
cell fraction with active AIM devices. Note that the 25% upper boundary is defined
by the GMP. Stippling indicates local statistical non-significance of the anomaly
at the 95% confidence level according to a two-tailed t-test.

advection from AIM-affected upstream regions.

3. Regions with ice thicker than 2m that were previously subject to AIM

encounter weaker winter heat fluxes from the ocean to the cold atmo-

sphere due to the increased ice thickness compared to the unperturbed

simulations. Such thick-ice regions without AIM activity thus experi-

ence cold temperature anomalies. This explains the February cooling

in the central Arctic in 2021–2060.

4. In summer, the additional ice in the AIM ensemble has a direct cooling

effect on the atmosphere and surface ocean by latent heat absorption

associated with its melting, as well as an indirect cooling effect due to

the increased surface albedo and accordingly reduced solar radiative

heating. This explains the Arctic summer cooling.

While the impact of AIM on Arctic temperatures is substantial, lower-

latitude regions are only weakly affected. The strongest influence outside
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the Arctic is exerted on the northern North Atlantic (Fig. 2.4; top-left). In

particular the Irminger Sea and the Labrador Sea are affected by enhanced

ice export from the Arctic. The additional ice leads to a moderate cooling by

up to ∼1K that prevails year-round throughout the century, but the Atlantic

Meridional Overturning Circulation (AMOC) is not sensitive to these changes

(Fig. A.5). Outside the northern North Altlantic, the temperature response

to AIM is weak and mostly not statistically significant. Some late-century

anomalies, like the winter warming in central Eurasia and the summer cooling

south of Alaska, appear to be locally significant (Fig. 2.4; top-left), but

limited field significance for the middle and low latitudes as a whole suggests

that these temperature anomalies might be spurious.

The annual-mean near-surface temperature response of the northern mid-

dle latitudes (30°N–60°N) to AIM is close to zero (∼-0.04K and ∼-0.02K

in the first and second half of the simulations), with minor seasonality. This

means that the middle-latitude warming obtained with the extreme-AIM

experiment (Fig. A.2) can be prevented with a careful regulation of the in-

terference. However, a significant cooling outside the Arctic (and northern

North Atlantic) is still not accomplished. The annual global-mean near-

surface warming of ∼1.9K and ∼3.6K in the first and second half of the

unperturbed simulations is reduced by only ∼0.02K and ∼0.05K, despite

the intervention in the Arctic ice-albedo feedback.

Finally, a large-scale interference with the climate system can in principle

also affect other relevant aspects of climate besides radiation and tempera-

ture. The most obvious additional impact of AIM in our simulations is

an enhancement of the hydrological cycle and precipitation in regions with

warming and moistening due to active devices in winter (Fig. 2.4; top-right;

February). We also find a drying across the Arctic Ocean in summer (Fig. 2.4;

top-right; September), albeit less significant than the associated cooling. The

precipitation response beyond the Arctic is weak, and small regions with lo-

cally significant anomalies again appear not to withstand field significance

considerations. In general, the large-scale circulation does not respond coher-

ently to AIM in our simulations, despite the modified meridional near-surface

temperature gradient. We conclude that the impact of AIM on climate out-

side the Arctic (and the northern North Atlantic) is generally weak.
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2.3 Discussion

This study involves a number of simplifying assumptions and approxima-

tions. The AIM implementation neglects peculiarities associated with ice

formation at the surface instead of the bottom. Differences in the amount of

salt rejected during the freezing and related to the flooding of the snow cover

would have implications for the physical properties of the resulting sea ice, in-

cluding its surface reflectivity and its mechanical behaviour. More generally,

the use of a single climate model with necessarily simplified representations

for all components of the physical climate system implies that our results are

subject to uncertainty.

The difference between our estimate for the global annual-mean solar

radiative forcing of AIM (0.08Wm−2 for 2061–2100) and the estimates by

D17 (0.14Wm−2) and Hudson (2011) (0.3Wm−2) can have various reasons.

The amount of clouds prevailing over the Arctic in summer for instance

modulates the impact of changes in surface albedo. However, the Arctic

summer cloud cover in our simulations amounts to about 80%, which is in

line with the assumptions and observations used in D17 and Hudson (2011).

We also do not find a response of the summer cloud cover that would be strong

enough to explain the difference (Fig. A.4). Other relevant factors include

the assumed or simulated ice surface albedo and how it develops when melt

ponds form (which is treated by a diagnostic melt pond scheme in our model)

as well as the assumed or simulated sea-ice area difference. In fact the latter

might explain why D17 arrive at a higher estimate: They assume that the

albedo change would occur over the entire area of the Arctic Ocean (107 km2),

whereas the ice extent anomalies in our simulations amount to roughly half

of that area (depending on the year and time of the year; compare Fig. 3 for

September).

Another element of uncertainty arises from the way we regulate the

strength of AIM: Our implementation implicitly assumes that the deploy-

ment and relocation of devices is accomplished so efficiently that the evolving

areas with ice thinner than 2m are equipped with devices during the whole

winter. Our estimate of ∼ 10× 106 for the number of required devices, cor-

responding to the number suggested by D17, should thus be regarded as a

lower bound.

Our work does not consider the economic and technical feasibility of the
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construction, deployment, and maintenance of the enormous array of AIM

devices that would be required. It also does not touch the political and soci-

etal dimension associated with such a planetary-scale intervention. Moreover,

we do not attempt to provide precise estimates for the impacts of AIM on the

climate system. This also holds for possible impacts on permafrost thaw and

associated carbon emissions due to the summer cooling and winter warming

in Arctic land regions. Rather, our results constitute a first assessment of the

efficiency and impacts of AIM from a climate physics perspective. We find

evidence that AIM can in principle delay the Arctic sea ice decline by several

decades. Yet the cooling of lower latitudes, anticipated as a consequence of

the intervention in the ice-albedo feedback, fails to materialise. These results

cast doubt on the potential of sea ice targeted geoengineering as a meaningful

contribution to mitigate climate change.

2.4 Methods

2.4.1 The AWI climate model

We use the Alfred Wegener Institute Climate Model (Sidorenko et al., 2015;

Rackow et al., 2016, AWI-CM) which contributes to the Coupled Model

Intercomparison Project Phase 6 (Eyring et al., 2016, CMIP6). For the

atmospheric model component ECHAM6 (Stevens et al., 2013) we use the

coarse-resolution version with ∼ 1.8° grid spacing. For the unstructured-

mesh ocean and sea-ice model component FESOM-1.4 (Timmermann et al.,

2009) we use the “CORE2” mesh with a resolution of ∼25 km in the Arctic

and ∼ 1.27 × 105 surface nodes globally. Details on the influence of the

model resolution of the two model components can be found in Sein et al.

(2018) and Rackow et al. (2019). The sea-ice model (Danilov et al., 2015a)

includes an elastic-viscous-plastic (EVP) rheology and a thermodynamical

component based on (Parkinson &Washington, 1979), including a prognostic

snow layer (Owens & Lemke, 1990). The heat, momentum and mass fluxes

at the interface between the ocean (including the sea ice) and the atmosphere

are computed within the atmospheric model and exchanged 6-hourly via the

OASIS3-MCT coupler. The surface fluxes play a central role in this study

because the implementation of AIM in AWI-CM is based on the modification

of the surface exchange processes.
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2.4.2 AIM implementation

Our implementation of AIM acts on the vertical fluxes of heat, mass and

momentum across the ocean/ice-atmosphere interface. When AIM is active,

it is assumed that a fraction of the sea ice defined by the Local Modulation

Parameter (LMP) is covered by a thin but persistent water layer (PWL).

The PWL has the same temperature as the sea surface and is thus close to

the freezing point in regions with sea ice. The PWL is continuously restored

by the AIM devices as soon as the water freezes or evaporates. The lower

boundary of the atmosphere thus corresponds to an increased fraction of

open water because the PWL masks the sea ice underneath. The latent and

sensible heat fluxes, which represent the turbulent part of the surface heat

budget, are calculated for a correspondingly altered open water fraction.

Likewise, the surface thermal emissivity and the surface albedo are set to

open water values for the PWL-covered part, even though the shortwave

radiation plays a minor role during the Arctic winter. Since the PWL covers

the sea ice and inhibits ice sublimation, only evaporation from the PWL is

allowed in the AIM-affected part of the ice surface. Snow has a temperature

of at most 0°C, whereas the PWL is close to the freezing point of salty sea

water at ∼ −1.8°C. Snow falling into the PWL is thus immediately added

to the ice mass without latent heat changes, whereas snow falling into open

water is assumed to melt and absorb latent heat.

Formulated as a weighted average of the original fluxes over open water

(w) and ice (i), the total heat flux H and the total mass flux M thus depend

on the sea ice concentration Ai and the LMP as follows:

H = (1− LMP · Ai) (Q
w
S +Qw

L +Qw
LW +Qw

SW) + ...

...+ (LMP · Ai)
(
Qi

S +Qi
L +Qi

LW +Qi
SW

)
+ (1− Ai) (Psnow · Lf)

(2.1)

M = (1− LMP · Ai)Eevap + (LMP · Ai)Esubl + Psnow + Prain (2.2)

where Ai is the sea ice concentration, QLW and QSW are the net longwave

and shortwave radiation, Prain and Psnow are the liquid and solid precipitation,

Lf is the latent heat of fusion of melting ice, QS is the sensible heat flux, QL is

the latent heat flux, and Esubl and Eevap are the sublimation and evaporation

fluxes. The momentum flux calculation remains unchanged.
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This modified formulation is used from October 21st to March 21st (the

Arctic freezing season) in grid cells north of the polar circle (∼ 66.5°N) where
the ice thickness is below the Global Modulation Parameter (GMP). No GMP

is applied in the extreme AIM simulation.

Except for the described modifications, the sea ice physics remain the

same as in the standard FESOM model. The sea ice model does not include

a grounding scheme (i.e. no seabed stress is considered), and the ice thickness

is not limited by the ocean depth, which has implications for the realism of

our extreme AIM experiment in particular in shallow ocean regions.

2.4.3 Experimental setup

Our CMIP-type simulations are designed to test the response of the climate

system to AIM in a progressively warming climate. After a 700-year spin-up

simulation with constant CMIP6 pre-industrial (1850) forcing, we performed

a single simulation until 1999 with transient CMIP6 historical forcing. In

2000, small perturbations were applied to the atmospheric model to generate

a 4-members ensemble of simulations that continued until 2014 with CMIP6

historical forcing. Since the new CMIP6 scenario forcings (O’Neill et al.,

2016) were not yet available at the time, we used CMIP5 scenario forcing

from 2015 onward, accepting a minor discontinuity in the forcing. RCP 8.5

corresponds to the “business-as-usual” scenario where no substantial efforts

are implemented to curb greenhouse-gas emissions. The 4 unperturbed sim-

ulations were conducted until 2100.

In 2020 a total of 13 simulations was branched off from the unperturbed

simulations:

• 1 simulation with extreme AIM, that is, with LMP=100% and no GMP

applied, until 2100,

• 9 sensitivity simulations combining 3 GMP values (1m, 2m, and 3m)

with 3 LMP values (25%, 50%, 75%) until 2040, one of which (GMP=2m,

LMP=25%) is extended to 2100, and

• 3 additional simulations with GMP=2m and LMP=25% until 2100,

with each member of the resulting 4-member ensemble initialised from

one of the 4-member unperturbed ensemble.
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2.4.4 Simulated versus observed historical sea ice state

A realistic simulated sea ice state is an important prerequisite for a meaning-

ful quantitative assessment of AIM. The Arctic sea ice extent simulated for

the period 1979–2017 is in overall agreement with observations in terms of

mean value, trend, and inter-annual variability (Fig. 2.3; top-left), although

the model seems to slightly underestimate the March sea ice extent and fails

to simulate years with particularly low sea ice extent as they occurred in 2007

and 2012. The AWI-CM slightly underestimates the Arctic sea ice volume

compared to PIOMAS (Schweiger et al., 2011) during the period 1979–2005.

The more recent volume values are better represented. Nevertheless, the

model captures the declining sea ice volume trend (Fig. 2.3; top-right). The

spatial thickness distribution are also realistically simulated, with thicker ice

north of Greenland and the Canadian Archipelago compared to the rest of

the Arctic (Fig. A.6). The modelled sea ice thickness can be visually com-

pared to sea ice thickness satellite retrievals and reanalysis products (Wang

et al., 2016; Ricker et al., 2017).
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3. Bright prospects for

Arctic sea ice prediction

on subseasonal time scales1

Abstract

With retreating sea ice and increasing human activities in the Arctic

come a growing need for reliable sea ice forecasts up to months ahead.

We exploit the subseasonaltoseasonal prediction database and provide

the first thorough assessment of the skill of operational forecast sys-

tems in predicting the location of the Arctic sea ice edge on these

time scales. We find large differences in skill between the systems,

with some showing a lack of predictive skill even at short weather

time scales and the best producing skillful forecasts more than 1.5

months ahead. This highlights that the area of subseasonal prediction

in the Arctic is in an early stage but also that the prospects are bright,

especially for late summer forecasts. To fully exploit this potential, it

is argued that it will be imperative to reduce systematic model errors

and develop advanced data assimilation capacity.

1Chapter 3 has been published in the journal ‘Geophysical Research Letters’ by
Zampieri et al. (2018) under the title ‘Bright Prospects for Arctic Sea Ice Prediction on
Subseasonal Time Scales’. I downloaded and analyzed the S2S sea-ice forecasts and the
OSI-SAF and ASI sea-ice concentration observations. H. F. Goessling, T. Jung, and I par-
ticipated in the discussion of the results. I prepared the manuscript with the contribution
of all co-authors.
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3.1 Introduction

The observed rapid retreat of Arctic sea ice and the prospect of a virtually

ice-free Arctic Ocean in late summer by the middle of this century (Collins

et al., 2013; Wang & Overland, 2009; Overland & Wang, 2013; Stroeve et al.,

2007) have fueled socio-economic interests in the region (Emmerson & Lahn,

2012; Stephenson et al., 2011). As a consequence there is a growing demand

for reliable predictions of Arctic weather and sea ice across a wide range of

time scales, to reduce the risks that come with enhanced activities in the

high north (Jung et al., 2016).

Much of what is known about the skill of existing systems in predict-

ing Arctic sea ice is based on the Sea Ice Outlook (SIO) (Stroeve et al.,

2014)—an effort of the international research community that since 2008 has

been aiming to build and evaluate seasonal sea ice prediction capabilities. So

far, SIO dynamical predictions have shown limited skill, with simple statis-

tical forecasts being of comparable quality (Stroeve et al., 2014; Blanchard-

Wrigglesworth et al., 2017). On the other hand, perfect-model studies suggest

significant potential predictability at seasonal time scales (Tietsche et al.,

2014; Goessling et al., 2016a; Guemas et al., 2016), indicating that there is

scope for major improvements. On much shorter weather time scales (up

to ∼10 days ahead) high-resolution forecast systems are increasingly being

used by operational ice services (Carrieres et al., 2017; World Meteorologi-

cal Organization, 2017), and recently research has started into exploring the

predictability of sea ice on these shorter time scales (e.g. Mohammadi-Aragh

et al. (2018)).

The potential for skillful predictions of Arctic sea ice on subseasonal-

to-seasonal time scales has improved considerably through recent develop-

ments. Recognising the urgent need for a better representation of the sea

ice-ocean system, forecast centres are moving towards using fully coupled

models (Smith et al., 2015). This also holds for shorter weather time scales,

where features such as the location of the sea ice edge can feed back signif-

icantly to the atmosphere, thereby influencing the further evolution of the

coupled system (Jung et al., 2016). This development towards using cou-

pled models is reflected by the fact that six out of eleven forecast systems

contributing to the recently established Subseasonal to Seasonal (S2S) Pre-

diction database (Vitart et al., 2012, 2016) include dynamical sea ice compo-
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nents. These dynamical models replace relatively crude schemes where the

sea ice state is simply persisted from its initial state and/or relaxed towards

climatological conditions. In fact, the S2S database constitutes an unprece-

dented opportunity for a thorough assessment of state-of-the-art operational

predictions of Arctic sea ice on subseasonal timescales. Numerous refore-

casts are available for each of the contributing systems, which is critical for

making robust statements about the skill and the associated uncertainties.

Furthermore, the forecasts cover the whole annual cycle, allowing to deter-

mine seasonal variations in skill. To our knowledge, this study represents the

first assessment of these systems in the Arctic, showing that the field of sub-

seasonal prediction of Arctic sea ice is in a early stage, but also highlighting

that prospects for skillful predictions are bright.

3.2 Data

The ensemble forecasts analysed here have been obtained from the database

of the Subseasonal-to-Seasonal Prediction (S2S) project. Here we consider

only those six systems that include a sea ice model coupled to an atmospheric

and ocean model, thereby producing actual dynamical sea ice forecasts. The

only exception is the older ECMWF forecast system (ECMWF Pres.) where

the sea ice state is persisted for the first 15 days of the forecast and then

relaxed towards climatology. Archiving of real-time ensemble forecasts in

the S2S database started in January 2015 only. However, corresponding re-

forecasts are available approximately for the previous two decades. The S2S

forecast systems exhibit different forecast lengths, initialisation frequencies,

ensemble sizes, data assimilation methods and model physics (Tab. B.1).

Despite their differences, however, some forecast centers also share some of

the same model components, typically the ocean or sea ice model, includ-

ing the extreme case of UKMO and KMA which share the same forecasting

system altogether. Differences in ensemble size and initialisation frequency

exist between real-time forecasts and the corresponding reforecasts. The ini-

tialization strategy also varies among the systems: some feature a balanced

assimilation among sea ice,ocean and atmospheric components (EMCWF,

UKMO, KMA, NCEP), in contrast MF and CMA adopt a two tier initial-

ization strategy. To ensure a sufficiently large sample size, while allowing

comparability between the systems, our analysis is focused on the common
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reforecast period 1999–2010. The sea ice concentration fields from the S2S

database are provided on a 1.5°×1.5° longitude-latitude grid, although the

sea ice models run are at higher resolution (from 0.25°to 1°).

The verification is carried out against daily sea ice concentration data

from passive microwave (PMW) satellite measurements. As for the forecast

data, we use the 15% sea ice concentration contour to determine the location

of the ice edge. The main observational product used here is the Global

sea ice Concentration data record (OSI-SAF, 2016). Discrepancies between

true and observed ice edge locations are mainly caused by the presence of

summer melt ponds over the sea ice. These are interpreted as open water

by PMW sensors (Kwok, 2002; Notz, 2014) and cause a northward shift of

the ice edge (Comiso & Nishio, 2008). However, since most of the forecast

centers also assimilate PMW measurements, we expect this systematic error

to be propagated also to the forecasts and to have a limited impact on our

analysis.

3.3 Methods

We apply the recently introduced Spatial Probability Score (SPS; Goessling

& Jung (2018)) as verification metric, which can be regarded as the extension

of the Integrated Ice Edge Error (IIEE; Goessling et al. (2016a)) to proba-

bilistic ice edge forecasts. These metrics are specifically designed to capture

the accuracy of the forecasted ice edge and to overcome the limitations of

more widely used metrics such as the difference in pan-Arctic sea ice extent

or area. The latter only evaluate the total extent of the ice cover, but fail

to provide useful information about its spatial distribution. In contrast, the

SPS and the IIEE account not only for differences in total sea ice extent but

also for ice that is forecast at a wrong location.

The decomposition of the IIEE for the ensemble-median ice edge into

Overestimation (O) and Underestimation (U) or, alternatively, Absolute Ex-

tent Error (AEE) and Misplacement Error (ME) (Goessling et al., 2016a),

adds information to the SPS and provides insights into the origin of forecast

errors. O is the spatial integral of all areas where the forecast sea ice concen-

tration is above 15% but the observed sea ice concentration is below 15%; U

is the spatial integral of all areas where the forecast sea ice concentration is

below 15% but the observed sea ice concentration is above 15%. The AEE
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component represents the total difference in sea ice extent between forecast

and observation, while the ME component accounts for sea ice that is fore-

cast at a wrong location. A more extensive description of the verification

metrics can be found in Sec. B.2.

The computation of verification scores is conducted on a per-grid-cell

basis. Therefore it is necessary to remap either the forecast data or the

observations (or both) to a common grid and to investigate the impact of

the forecasts and observation resolution on our results. In the analysis, the

observational data were remapped by first-order conservative remapping to

the relatively coarse-resolution forecast data. Further details on the role of

resolution in observations and forecasts can be found in Sec. B.3. Only grid

cells that are classified as ocean (including sea ice) in all models and in the

observations were used (see the resulting land-mask in Fig. B.4. Employing

a common conservative land-mask guarantees an unbiased comparison of the

skill of different forecast systems.

A meaningful assessment of the forecast skill requires the introduction

of observation-based benchmarks based on the same metric employed for

measuring the forecast error. If the forecast error is lower than that of a

benchmark, the dynamical forecasting system has some predictive skill. Oth-

erwise, the observational record can be used to build a better forecast. We

have followed two strategies to construct a meaningful benchmark. Firstly,

we defined a climatological benchmark forecast as the 10-member ensemble

of states observed at the same time of the year during those 10 years preced-

ing the respective forecast target time. Secondly, we defined a persistence

benchmark based on the observed sea ice conditions one month before the

forecast target time (Blanchard-Wrigglesworth et al., 2010). The climatolog-

ical benchmark is more restrictive than the persistence benchmark for most

of the year (see Sec. B.4 and Fig. B.1) and is therefore used to assess the

skills of the S2S systems.

3.4 Results

3.4.1 Annual-mean sea ice forecast skill

The annual-mean skill of different forecasts in predicting the Arctic sea ice

edge can be inferred from Fig. 3.1. The most striking feature is that the

forecast skill varies substantially across the different systems. Compared to
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the climatological benchmark, the CMA and MF systems do not show any

predictive skill, even at initialization time. On the other hand, the ECMWF

system shows predictive skill all the way to a lead time of 45 days. The other

systems (KMA, NCEP and UKMO) are comparable to ECMWF for short

lead times; the error growth is larger, however, leading to a faster loss of

predictive skill.

The wide range of error growth rates among the different models is in

stark contrast to what can be found for predictions of atmospheric fields,

which are much more similar in terms of skill (Jung & Matsueda, 2016).

This highlights the fact that the field of sea ice prediction with weather and

climate models is still in its infancy.

Figure 3.1: Annual-mean skill in terms of the Spatial Probability Score (SPS)
of the different forecast systems (colored-solid lines) and the climatological bench-
mark forecast (gray-solid line) in predicting the Arctic sea ice edge as a func-
tion of lead time. Results have been averaged over the common reforecast period
1999–2010. Predictions with SPS values smaller than the climatological value
(≈ 0.55 · 106 km2) can be considered skillful. The shading and dashed lines indi-
cate ∼95% confidence intervals, based on standard errors obtained from the twelve
individual annual means. Note that the CMA forecast system is not depicted given
that its large errors lie outside of the range shown. ECMWF Pres. is based on
the predecessor ECMWF system, the main difference being that sea ice was not
simulated dynamically but prescribed based on a combination of persistence and
climatology. SPS = Spatial Probability Score; S2S = Subseasonal to Seasonal;
NCEP = National Centers for Environmental Prediction; CMA = China Meteo-
rological Administration; MF = Météo-France; ECMWF = European Centre for
Medium-Range Weather Forecasts; UKMO = UK Met Office; KMA = Korea Me-
teorological Administration.
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Although the skill of ECMWF, KMA, NCEP and UKMO at initial time

is much better than that of MF and CMA, initial errors are still quite large

(half the values of the climatological benchmark; Fig. 3.1). Given that, based

on satellite data, the sea ice conditions should be reasonably well known at

the time of the initialization, the large initial errors suggest that there is still

substantial scope for improving the data assimilation procedure and thereby

the prediction skill of subseasonal forecast systems.

The skill of the UKMO and KMA systems is almost identical (Fig. 3.1)

because of the same system shared. However, given that they represent in-

dependent forecast realizations (ensemble members) of the chaotic climate

system, their agreement demonstrates that the data available in the S2S

database allow to draw robust conclusions about the skill of sea ice fore-

casts. Furthermore, noting that UKMO ensemble size is larger than KMA

(Tab. B.1), the slightly higher skill of UKMO compared to KMA suggests

that ensemble size matters to improve sea ice edge predictions.

3.4.2 Seasonal variations in forecast skill and origins

of error

The results discussed so far were based on annually-averaged values. How-

ever, since high latitudes experience very different physical conditions at

different times of the year, it appears likely that the predictability of Arc-

tic sea ice is seasonally dependent. In this section, this seasonality will be

further explored.

Despite the specific biases affecting each system, a general feature of the

SPS, including the climatological benchmark, is a pronounced seasonal cycle

with two peaks at the end of the winter and summer seasons (Fig. 3.2).

This pattern can be explained by a corresponding seasonality of the ice edge

length, which reaches its maxima in late winter and in summer. In general,

a longer edge simply implies on average a larger area where forecast and

observations can disagree.

The ECMWF system achieves the largest skill in late summer, when ac-

tual predictions remain for all the lead times much better than climatological

forecasts, which exhibits particularly low skill in this period (Fig. 3.2, top

left). A possible explanation for this is that around September the uncer-

tainty in the ice-edge location is the largest due to higher mobility of the

ice. However, the ECMWF forecast system is able to capture a relatively
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Figure 3.2: Skill in terms of the SPS of individual forecast systems in predicting
the Arctic sea ice edge as a function of the time of the year (target date) and
for six different lead times (see legend). Results have been averaged over the
common reforecast period 1999–2010. Note that Day 60 is missing for NCEP
and ECMWF (both versions) due to their shorter lead time ranges, and that
Initial Time corresponds to Day 1 for all systems except NCEP and MF where
it corresponds to Day 2 for technical reasons. SPS = Spatial Probability Score;
S2S = Subseasonal to Seasonal; NCEP = National Centers for Environmental
Prediction; CMA = China Meteorological Administration; MF = Météo-France;
ECMWF = European Centre for Medium-Range Weather Forecasts; UKMO =
UK Met Office; KMA = Korea Meteorological Administration.

large fraction of that variability and therefore the forecast error is not larger

around September than at other times of the year. Lower relative skill is

found from October through July; during this time of the year only short-

term forecasts out to ∼18 days achieve meaningful skill compared to the

climatological benchmark.

The error components provide further insights into the performance of the

ECMWF forecast system. An evident feature is a peak in SPS in July for

short lead times (Initial, Day 8 and Day 18) (Fig. 3.2, ECMWF). This reflects

a less accurate initialization of the ice edge compared to the rest of the year.

The O,U error decomposition (Fig. B.2) reveals that the peak is associated

with a development of a substantial model bias: The initial position of the

ice edge is systematically underestimated (O ≈ 0% and U ≈ 100%) from

July to October.

Interestingly, the forecasts less accurately initialized in July produce com-

parably skillful long-range (day 45) predictions for late summer, with an ap-

proximate balance between O and U (O ≈ 40% and U ≈ 60%, Fig. B.2) and

the ME dominating over the AEE (ME ≈ 70% and AEE ≈ 30%, Fig. B.3). A
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possible reason for this apparent contradiction is that the skill in late Septem-

ber, which marks the beginning of the freezing season, is related to sources

of predictability residing in components of the climate system other than

the sea ice. For example, the heat content stored in the surface ocean could

influence the sea ice edge position in the early freezing season (Blanchard-

Wrigglesworth et al. (2010); Sec. B.4). The underestimation of the initial

ice edge in the ECMWF system continues until late September, affecting

the forecasts at longer lead times in October. The striking transition at the

beginning of the freezing season, when the underestimation and the absolute

extent error components start to dominate, hints at a delayed onset of the

ice growth season in the ECMWF system.

A similar seasonal cycle as for ECMWF can be found for UKMO, KMA

and NCEP, at least for forecasts out to 8–18 days, which show still some

skill. For longer lead times (beyond day 18), UKMO and KMA show a rapid

error growth in August and September. The decomposition of the forecast

error reveals that this deterioration of skill is associated with the develop-

ment of a substantial model bias that is reflected by an underestimation

of the integrated Arctic sea ice extent (O ≈ 10% and U ≈ 90%, Fig. B.2,

KMA and UKMO). The NCEP system exhibit notable differences in how

the initially similar imbalances evolve with lead time (Fig. B.2, NCEP).

In particular, the dominance of overestimation in January and February

increases, and an initially balanced state in August and September turns

overestimation-dominated with lead time, pointing to positive model biases

for sea ice extent during these months. In contrast, a rapid transition from

overestimation-dominated to underestimation-dominated errors around the

end of September hints at a delayed onset of the ice growth season in the

model, similar as in the ECMWF system.

The CMA system, which is outperformed by the climatological bench-

mark for all lead times and times of the year, exhibits particularly large er-

rors from August to October (Fig. 3.2, CMA). From July to September the

skill decreases (i.e., the SPS increases) with lead time, implying that very

large initial errors during this part of the year are amended over the course

of the forecast model integration towards a less unrealistic state. Further-

more, the CMA system considerably overestimates the Arctic sea ice extent

from November to June, and underestimates the extent even more strongly

from July to October (Fig. B.2, CMA). Moreover, the CMA system features

a series of negative SPS spikes in spring; the cause of these can be tracked
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down to a single forecast bust associated with an erroneous initialisation on

25 March 2007.

The MF system is approximately as skillful as the climatological bench-

mark from October to April, with only a weak dependence on lead time

(Fig. 3.2, MF). During the melting season from May to September, how-

ever, the MF system is less skillful and exhibits large initial errors that are

slightly amended with growing lead time. Errors in long-term prediction in

September are dominated by an underestimation of the pan-Arctic sea ice

cover, whereas biases play a minor role in the MF system at other times of

the year. This suggests that a more accurate initialisation of the MF sys-

tem might already be sufficient to improve ice-edge forecasts of this system

considerably.

3.4.3 The benefit of using a more realistic representa-

tion of sea ice and ocean

ECMWF updated its operational forecast system in November 2016. Until

then, sea ice conditions were determined based on the persistence of the ini-

tial conditions for the first 15 forecast days, followed by a relaxation towards

average sea ice conditions observed during the five years preceding the fore-

cast target time (ECMWF Pres.). The change to a more advanced approach,

in which sea ice dynamics and thermodynamics are explicitly represented by

a sea ice model, provides a unique opportunity to study the impact of this

critical development of the forecast system. Note that the system update also

included an increase of the ocean model resolution from 1°to 0.25°. For our

assessment we exploit the fact that reforecasts for 1999–2010 are available for

both versions of the ECMWF system. Figure B.4 illustrates recent forecasts

from the two ECMWF system versions in comparison with the observed sea

ice edge derived from different passive-microwave products (OSI-SAF, 2016;

Spreen et al., 2008).

The accuracy of the ice-edge location in the initial conditions is similar for

the two versions of the ECMWF system; with increasing lead time, however,

the version with explicit sea ice physics included quickly outperforms the

older version with simple sea ice treatment (Figs. 3.1 and 3.2). This highlights

that investments in forecast system development can lead to major advances

in predictive skill.

Not surprisingly, using persistence, even for short lead times, leads to
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an overestimation of sea ice during the melting season from April to August

and an underestimation during the growing season from October to February

(Fig. B.2, ECMWF Pres., dark and light blue lines). Around day 18 of the

forecasts, the older version of the ECMWF system exhibits an intermittent

increase in skill that is a result of the gradual transition from initial-state

persistence towards average conditions of previous years (Fig. 3.1). In fact,

the temporary decrease of the SPS from day 19 to day 22 suggests that

the older version could have benefited from an earlier transition towards

climatological sea ice fields.

3.4.4 Case study: the summer of 2007

Some of our main results can be further illustrated by considering subsea-

sonal sea ice forecasts for the exceptional summer of September 2007, which

was the first in a series of summers with anomalously low Arctic sea ice ex-

tent. Not surprisingly, the climatological forecast clearly overestimates the

ice extent in large parts of the Arctic (Fig. 3.3). The ECMWF system clearly

captures the observed sea ice edge in its 30-days forecast. The ECMWF en-

semble spread appears reasonable, with probabilities transitioning smoothly

from 0 to 1 along the observed ice edge. This indicates that the ensemble is

reliable, that is, neither under- nor over-dispersive. In contrast, the NCEP

forecast, although clearly more skillful than the climatology, is overconfident

regarding the ice edge location, with probabilities transitioning sharply from

0 to 1 in disagreement with observed ice edge. The UKMO and KMA systems

produce very similar forecasts, including a region at about 170◦W where the

amount of sea ice is strongly underestimated, also confirming the similarity of

the systems. The CMA model is a clear outlier in the sense that initialization

and model errors lead to the complete absence of Arctic sea ice during this

time of the year. The MF forecast is characterised mostly by overestimation

of the ice extent in the Siberian sector, combined with an underestimation

along eastern Greenland. This misplacement suggests that the MF system

does not capture the particularly high sea ice transport trough Fram Strait

which occurred in summer 2007. In this specific year, the persistence bench-

mark provides a better representation of the September ice edge than other

empirical schemes based on the climatological sea ice state (ECMWF Pres.

and the climatological benchmark forecast). This suggests that the use of the

climatological benchmark has particularly pronounced drawbacks in unusual
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years such as 2007, which are more common in a rapidly changing climate.

Figure 3.3: 30-day forecasts for 15 September 2007 of the sea ice probability
(probability that sea ice concentration exceeds 15%) as obtained from different
forecast systems and from climatological and persistence benchmarks. The ob-
served sea ice edge (15% contour of OSI-SAF sea ice concentration) is also shown
(red contour). ECMWF = European Centre for Medium-Range Weather Fore-
casts; UKMO = UK Met Office; KMA = Korea Meteorological Administration;
NCEP = National Centers for Environmental Prediction; CMA = China Meteo-
rological Administration; MF = Météo-France.
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3.5 Discussion

This paper provides the first overview of the subseasonal skill of state-of-the-

art coupled forecast systems in predicting the sea ice edge in the Arctic. By

exploiting the recently established S2S database, we find a surprisingly large

range of skills with some of the systems showing no skill at all, even at short

weather time scales, and the best system producing skillful forecasts up to

45 days in advance. The fact that prediction skill is largest in late summer

suggests that useful long-range forecasts can be provided to stakeholders

during a time of the year when marine operations peak.

Our analysis of error components has revealed that seasonally dependent

model biases play a critical role. This calls for dedicated efforts to improve

the realism of coupled models in the Arctic, with the ultimate aim of reduc-

ing systematic model errors. Bias correction could be a means to improve

real-time forecasts. In fact, a method specifically designed to bias-correct

ice-edge forecasts has been recently proposed (Director et al., 2017), and

the reforecasts needed for bias correction are available in the S2S database.

However, the size of the biases in some of the models, which are comparable

in size or even larger than the anomalies one would like to predict, suggests

that non-linearity may be an issue.

The large differences in the accuracy of the initial conditions for sea ice

between the systems is related to the way how the forecasts are initialized,

that is, the way how observations are assimilated into the coupled models.

A major difference between the CMA and MF systems and the other (more

skillful) systems is that the former two systems do not directly assimilate any

sea ice observations into their models, unlike the other systems that assimi-

late sea ice concentration. In principle, one could have expected to see some

skill also for the CMA and MF systems because (i) they do assimilate other

ocean variables that affect the sea ice, in particular sea-surface temperature

(SST), and (ii) the evolution of the atmosphere, which largely drives sea ice

anomalies, is constrained through the assimilation of atmospheric observa-

tions. However, our results indicate that these aspects are not sufficient to

generate realistic sea ice initial states, and that direct assimilation of sea ice

observations is required.

Even the systems with a more accurate initialisation of sea ice (ECMWF,

UKMO, KMA, and NCEP) exhibit considerable ice-edge initial errors that
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amount to about half of the error of the climatological benchmark. This

agrees well with the assessments of the Arctic sea ice cover in reanalyses by

Chevallier et al. (2016) and Uotila et al. (2018), who found a substantial

spread in the sea ice edge position between reanalyses, particularly in late

summer. Several mechanisms could contribute to the initial error: one is that

adjustments of sea ice concentrations based on other assimilated variables

(in particular SST) to obtain more consistent states introduce inaccuracies

in the ice-edge location. Constraints related to delays in the availability

of observational sea ice products might also contribute to the initial errors,

although it is not obvious whether such constraints applying to real-time

operations are also an issue for the reforecasts.

We conclude that the accuracy of sea ice initial states needs further re-

search and will be critical to advance the field of Arctic sea ice forecasting on

subseasonal time scales. While for short-range summer predictions (below 10

days) or subseasonal winter predictions a correct initialization of the sea ice

concentration field might be sufficient to achieve skillful forecasts of the ice

edge, for longer timescales the role of the sea ice thickness initialization will

be crucial, especially during the melting season. In this regard, new satellite

observational products have the potential to improve sea ice initial conditions

considerably. Of particular interest are, for example, sea ice thickness obser-

vations from multiple instruments, with a proven potential to help constrain

sea ice initial states (Mu et al., 2017; Day et al., 2014).

The sea ice prediction is a central element of major international efforts

such as the Polar Prediction Project along with its flagship activity, the Year

of Polar Prediction (Jung et al., 2016), suggesting that there is an opportunity

for resource mobilization and international coordination that promises immi-

nent progress. This factors, and the already achieved progress documented

by our analysis, indicate that the prospects for subseasonal prediction of

Arctic sea ice are bright.
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4. Predictability of Antarctic

sea ice edge on subseasonal

time scales1

Abstract

Coupled subseasonal forecast systems with dynamical sea ice have

the potential of providing important predictive information in polar

regions. Here, we evaluate the ability of operational ensemble predic-

tion systems to predict the location of the sea ice edge in Antarctica.

Compared to the Arctic, Antarctica shows on average a 30% lower

skill, with only one system remaining more skillful than a climatolog-

ical benchmark up to ∼30 days ahead. Skill tends to be highest in

the west Antarctic sector during the early freezing season. Most of the

systems tend to overestimate the sea ice edge extent and fail to capture

the onset of the melting season. All the forecast systems exhibit large

initial errors. We conclude that subseasonal sea ice predictions could

provide marginal support for decisionmaking only in selected seasons

and regions of the Southern Ocean. However, major progress is possi-

ble through investments in model development, forecast initialization

and calibration.

1Chapter 4 has been published in the journal ‘Geophysical Research Letters’ by
Zampieri et al. (2019) under the title ‘Predictability of Antarctic Sea Ice Edge on Sub-
seasonal Time Scales’. I downloaded and analyzed the S2S sea-ice forecasts and the
OSI-SAF sea-ice concentration observations. H. F. Goessling, T. Jung, and I participated
in the discussion of the results. I prepared the manuscript with the contribution of all
co-authors.
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4.1 Introduction

Reliable predictions of the sea ice edge location are becoming increasingly im-

portant to ensure the safety of human activities at both poles. Furthermore,

providing skillful predictions has been recognized as an important scientific

challenge that will need to be addressed in the coming years (Alley et al.,

2019). Previous efforts of the research community have focused mostly on

the Arctic, partly due to the higher economic interests that are at stake and

due to its proximity to highly-populated regions. While the number of stake-

holders that requires sea ice predictions in the Arctic is relatively large and

ranges from shipping companies to tourism (Stephenson et al., 2011; Emmer-

son & Lahn, 2012), Antarctic sea ice predictions in the past were relevant

mostly for logistical aspects related to research activities. However, in recent

years the tourism industry is flourishing also around Antarctica (Eijgelaar

et al., 2010), and the presence of the fishing industry in the Southern Ocean

is also expected to increase (Cheung et al., 2010; Smetacek & Nicol, 2015),

calling for reliable Antarctic sea ice forecasts to manage the risks that come

with enhanced activities.

Sea ice forecasting is not only relevant at short “weather” timescales (fore-

casts up to 10 days ahead), but also at subseasonal and seasonal timescales

(forecasts from weeks to months ahead). The work by Chen & Yuan (2004)

is one of the first attempts at providing seasonal predictions of the Antarc-

tic sea ice cover using a statistical approach. Holland et al. (2013) evaluate

the mechanisms of Antarctic sea ice predictability. More recently, Ordoñez

et al. (2018) compared sea ice predictability between the Arctic and Antarc-

tic. Both these studies are based on climate models as research tools. The

systematic investigation of operational sea ice prediction systems, with the

assimilation of the observed sea ice state and possibly ensemble-based, is still

at a very early stage.

While the Sea Ice Outlook (Stroeve et al., 2014; Blanchard-Wrigglesworth

et al., 2017) has established a framework to build and evaluate Arctic late-

summer sea ice prediction capabilities in 2008, a similar exercise for the

Antarctic region, targeting the February sea ice minimum (SIPN South—

2017–2019), has been initiated only very recently (Massonnet et al., 2018,

2019), that is almost ten years later. In fact, the international scientific

community has recognized the need to advance the field of sea ice prediction
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at both poles simultaneously (Jung et al., 2016; Goessling et al., 2016c). In

this sense, the present study contributes to closing an important knowledge

gap.

The recently established database of the Subseasonal to Seasonal (S2S)

Prediction Project (Vitart et al., 2012, 2016) has proven to be valuable for

evaluating the predictive skill of operational S2S ensemble forecast systems

in the Arctic (Zampieri et al., 2018; Wayand et al., 2019). The availability

of comprehensive sets of both reforecasts and real-time forecasts allows for

a robust assessment of the forecast skill over a relatively long time period

(> 10 years), covering the whole seasonal cycle. Here, we extend the analysis

by Zampieri et al. (2018) for the Arctic, to Antarctica, addressing the two

following guiding questions:

• Are fully coupled forecasting systems in the Antarctic better than

observation-based benchmark forecasts in predicting the sea ice edge?

• Does the predictive skill of dynamical forecast systems differ between

the two hemispheres?

Thereby, the goal is to establish a reference against which future progress in

Antarctic sea ice prediction can be quantified. To our knowledge, this study

is the first assessment of the S2S forecast systems in the Antarctic, especially

when it comes to focusing on the sea ice edge position, which is a crucial

variable for navigation and for planning human activities in the Southern

Ocean.

4.2 Data and Methods

The sea ice forecasts are verified against observations using a verification

metric suitable for quantifying the accuracy of the sea ice edge location.

The resulting forecast error is compared to that of observation-based bench-

mark forecasts to assess the predictive skills of the forecast systems and to

understand associated shortcomings and model biases. This section briefly

describes the main features of forecasts, observations, verification metrics

and benchmark forecasts used in this study. A more detailed description of

the methods, forecasts and observations can be found in the work of Zampieri

et al. (2018), including its supplements.

47



CHAPTER 4. ANTARCTIC SEA ICE PREDICTION

4.2.1 Forecasts and observations

The ensemble sea ice forecasts considered here belong to the S2S Database (Vi-

tart et al., 2016), which provides sea ice concentration as a standard output

variable. Here we focus on the six forecasting systems that employ a dynam-

ical sea ice model in their coupled model: the National Centers for Environ-

mental Prediction (NCEP), China Meteorological Administration (CMA),

Météo-France (MF), European Centre for Medium-Range Weather Forecasts

(ECMWF), UK Met Office (UKMO) and the Korea Meteorological Admin-

istration (KMA) forecast systems. Additionally, we also consider the old ver-

sion of the ECMWF forecast system in which the sea ice concentration was

prescribed based on combining initial sea ice fields with relaxation towards

climatological fields (ECMWF Pres.), a method that could be described as

damped persistence. The technical features of these forecast systems are

quite diverse: they differ in terms of initialization frequency (from daily to

monthly), ensemble size (from 3 to 15 ensemble members), forecast length

(from 44 to 60 days) and assimilation strategy. Only some of the systems

directly assimilate sea ice concentration from observations and none of them

assimilates sea ice thickness. Here, we consider the raw forecast data without

calibration (bias/drift correction). The S2S Model Description2 includes a

detailed description of the S2S forecast systems.

The observations used to verify the forecasts are daily sea ice concentra-

tion fields retrieved from passive-microwave satellite measurements (OSI-450

– OSI-SAF (2016); Lavergne et al. (2019)). The sea ice edge has been defined

as the 15% sea ice concentration contour line for both the forecast ensemble

members and the observations. The verification results are averaged over

a 12-years reforecast period (1999–2010) common to all of the S2S forecast

systems. All the analyses have been conducted with the sea ice observa-

tion fields interpolated to the 1.5◦ × 1.5◦ grid on which the S2S forecasts

are provided. A common conservative land-sea mask has been obtained by

combining the land-sea masks of all the models and observations based on

the following criteria: if a grid cell is classified as land in one forecast system

or in the observations, such classification is extended to all the other forecast

systems, thus excluding that grid cell from all the analyses. The verification

has been constrained to this land mask to allow a fair comparison between

the different systems.

2https://software.ecmwf.int/wiki/display/S2S/Models
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4.2.2 Verification metrics

The basic verification metric employed in this study is the Spatial Probability

Score (SPS) (Goessling & Jung, 2018), which is defined as follows:

SPS =

∫
A

(Pf (x)− Po(x))
2 dA. (4.1)

Pf and Po are the local sea ice probabilities (SIP: the ensemble-based prob-

ability of sea ice concentration being above a certain threshold—here 15%

if not differently stated) of respectively forecast and observation at location

x. A property of the SPS that makes this metric suitable for verifying en-

semble forecasts is its ability to deal directly with probabilities, which allows

avoiding degrading probabilistic forecasts to deterministic ones. Since the

sea ice observations considered here are deterministic and not probabilistic,

their SIP simply consists of binary fields with 0 (no ice) and 1 (ice-covered

cell). A is the integration domain, which is the northern hemisphere for the

Arctic forecasts and the southern hemisphere for Antarctic forecasts.

Unlike the pan-Arctic sea ice extent, which measures only the total sea

ice coverage, the SPS is designed to capture the accuracy of the sea ice spa-

tial distribution and thus that of the sea ice edge location. Furthermore, the

SPS can be decomposed into an Overestimation component (0 – SPS fraction

caused by a local overestimation of the ice edge extent) and an Underestima-

tion component (U – SPS fraction caused by a local underestimation of the

ice edge extent), which provide additional insight into the type of the fore-

cast error (Goessling et al., 2016a; Zampieri et al., 2018). Finally, the SPS

can be also normalized (Norm. SPS) if divided by the length of the sea ice

edge (Goessling et al., 2016a; Melsom et al., 2019; Palerme et al., 2019). The

Norm. SPS provides an estimate of the average distance between the (prob-

abilistic) forecast edge and the (deterministic) observed edge. An advantage

of this version of the metric is that it is easily understandable by potential

forecast users. In this study, the length of the observed climatological sea

ice edge, defined as the median of the climatological SIP (Fig. C.1), is used

as normalization factor to assess longitudinal variations in Antarctic sea ice

forecast skill (Sec. 4.3.3).
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4.2.3 Benchmark forecasts

The predictive skill assessment of the forecast systems is based on the follow-

ing approach: if for a given lead time the forecast SPS is lower than the SPS

of some observational-based benchmarks, we consider this system to have

predictive skill for that lead time. We employ two benchmark forecasts as

a reference to assess the predictive skills of the S2S forecast systems: 1. a

probabilistic climatological forecast (CLIM) based on the observed sea ice

conditions of the 10 years previous to the forecast target time at the same

time of the year and 2. a deterministic persistence forecast (PERS) based

on the observed sea ice state at the forecast initial time.

4.3 Results

4.3.1 Comparison of the annual-mean forecast skills at

the two poles

The annual-mean forecast skills in predicting the Arctic and Antarctic sea

ice edge location are shown in Fig. 4.1 in terms of the SPS. In the following,

we first focus on the Antarctic and then compare the predictive skills in the

two hemispheres.

The ECMWF system (yellow line) is overall the most skillful system when

it comes to predicting the Antarctic ice edge location. The system outper-

forms the CLIM and PERS benchmark forecasts from about day 5 to day

∼30. The UKMO and KMA forecast systems (green and purple lines), which

share the same model configuration, exhibit virtually identical results and

show marginal predictive skill from day 8 to day 15. The old version of the

ECMWF forecast system (ECMWF Pres. – magenta line) is less skillful than

the benchmarks at all lead times and is characterized by a non-monotonic

growth of the forecast error. The non-monotonicity is caused by the blend-

ing of different observations: first, the initial sea ice conditions are persisted

up to day 15 of the forecast, and afterwards, the sea ice concentration is

relaxed towards the climatological state based on the observations of the 5

years before the forecast target date.

The NCEP forecast system (light blue line) shows a rapid growth of the

forecast error and has on average no predictive skill over the benchmarks.

The wide uncertainty band is the result of large inter-annual variability of
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Figure 4.1: Annual-mean forecast skill in predicting the sea ice edge location in
terms of the SPS of the different S2S systems (colored-solid lines), the climatolog-
ical benchmark (constant gray-solid line) and the persistence benchmark (growing
gray-solid line) as a function of forecast lead time for the Antarctic (left) and Arctic
(right) regions. Note the different scales for the SPS. The averaging is performed
over the common 12-years reforecast period (1999–2011). The shading and dashed
lines indicate ∼95% confidence intervals, based on standard errors obtained from
the twelve individual annual means. SPS = Spatial Probability Score; S2S = Sub-
seasonal to Seasonal; NCEP = National Centers for Environmental Prediction;
CMA = China Meteorological Administration; MF = Météo-France; ECMWF =
European Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office;
KMA = Korea Meteorological Administration.

the NCEP forecast error. The MF forecast system exhibits an error 30%

larger than CLIM already at initial time, growing further with lead time.

Finally, the CMA forecast system (not visible in Fig. 4.1 because out of

range for all lead times) is affected by strong biases related to the lack of

assimilation of sea ice observations as well as to significant model biases in

the polar regions. In the Antarctic, the ice edge extent is almost always and

everywhere underestimated (Fig. 4.3), pointing to a wide-spread warm bias

in the CMA system.

The results indicate some similarities between the two hemispheres. Firstly,

the model ranking in the Antarctic is comparable to that in the Arctic. The

only exception is the NCEP forecast system, which shows a degradation of its

predictive skill in the Southern Ocean relative to the skills of the other sys-

tems and benchmarks. With the exception of April and May, the NCEP sea

ice edge extent tends to be overestimated in most places (Fig. 4.3), pointing

to a prevailing cold bias. Since the same sea ice model physics are imple-

mented for both hemispheres, our results suggest that the NCEP forecast
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system would benefit from a more careful tuning of its parameters to match

better the observed state in the Southern Ocean. A second feature common

to the two hemispheres is the large initial error, which amounts to ∼ 50%

of the CLIM error in the decently initialized systems (ECMWF, UKMO,

KMA). As described in Zampieri et al. (2018), the initial error can have mul-

tiple sources, such as the adjustment of the sea ice edge to the sea surface

temperature during the data assimilation, employment of different sea ice

observations in the assimilation and verification phases and finally interpola-

tion errors due to the regridding of the model and observational data to the

coarse S2S grid. Understanding the relative contributions of different sources

to the total initial error is challenging and beyond the scope of the present

study.

Selected forecasts users might be interested in the verification of differ-

ent sea ice concentration contours rather than the usual 15% threshold that

defines the ice edge. Fig. C.2 shows a moderate error reduction when consid-

ering a higher threshold (50%), both for the forecast systems (only ECMWF

is displayed) and for the climatological benchmark. This leads to a slight

increase of the predictive skill at longer lead times (the forecast loses predic-

tive skills at day 39 instead of day 37) that could be explained by a reduced

sensitivity of the compact ice to weather events. Moreover, we observe a

substantial reduction of the initial error (∼40%), suggesting that this error

is in part caused by a misrepresentation of dispersed sea ice in the marginal

ice zone.

Finally, an obvious difference between the annual-mean forecast errors in

the two hemispheres is their overall magnitude. The Antarctic SPS is on

average ×2.6 larger than the Arctic SPS. This difference is in part explained

by the fact that the Antarctic sea ice edge is on average ×1.8 longer than

the Arctic one (Fig. C.1). If one assumes errors in terms of ice edge dis-

tance to be regionally independent, then the forecast SPS would tend to be

proportional to the length of the edge. However, under this assumption, the

sea ice edge length difference can explain only ∼70% of the hemispheric SPS

discrepancy, while the remaining ∼30% reflects increased errors in terms of

ice-edge distance in the Antarctic. A way to account for variations in ice

edge length explicitly is to normalize the SPS with the ice edge length; such

an approach is taken in Sec. 4.3.3.
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4.3.2 Seasonality and components of the Antarctic fore-

cast error

One of the strengths of the S2S Database is the availability of forecasts all

year round for a period of time longer than a decade. This allows us to assess

seasonal variations of the forecast error.
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Figure 4.2: Skill in predicting the Antarctic sea ice edge location in terms of
the SPS of seven individual S2S forecast systems. The results have been averaged
over the common 12-years reforecast period (1999–2011). The SPS is displayed for
six different lead times (see legend) as a function of the target date (expressed in
days of the year). The different resolution with respect to the target date reflects
differences in the initialization frequency of the reforecasts. Note the different SPS
scale adopted for the CMA forecast system. SPS = Spatial Probability Score;
S2S = Subseasonal to Seasonal; NCEP = National Centers for Environmental
Prediction; CMA = China Meteorological Administration; MF = Météo-France;
ECMWF = European Centre for Medium-Range Weather Forecasts; UKMO =
UK Met Office; KMA = Korea Meteorological Administration.

The CLIM benchmark forecast exhibits seasonal variations of the SPS

that correlate well to the length of the sea ice edge (Fig. 4.2, dashed curves;

compare with Fig. C.1). The SPS reaches its minimum value in March,

immediately after the annual sea ice extent minimum and when the sea ice

edge is the shortest. The CLIM SPS slowly grows during the following months

as the ice edge becomes longer and stretches further to the north. The CLIM

SPS maximum is finally reached during the melting season in November and

December when the Antarctic sea ice edge is the longest.

In general, the S2S forecast systems exhibit similar seasonal variations as

the CLIM benchmark, in particular at the initial time. The only exception

is CMA, which, as already mentioned, is affected by strong model and data
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Figure 4.3: Relative contributions to the Integrated Ice Edge Error of the
ensemble-median ice edge from Overestimation(O) versus Underestimation (U) of
individual S2S systems as a function of the time of the year (target date) and for
six different lead times (see legend). Results have been averaged over the common
reforecast period 1999–2010. SPS = Spatial Probability Score; S2S = Subsea-
sonal to Seasonal; NCEP = National Centers for Environmental Prediction; CMA
= China Meteorological Administration; MF = Météo-France; ECMWF = Eu-
ropean Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office;
KMA = Korea Meteorological Administration.

assimilation related biases that we do not further discuss. The ECMWF

seasonality is in line with the CLIM benchmark, with the forecast error ap-

proaching the climatological error with increasing lead time. Only during

the second half of the freezing season (May to August) the forecast errors

at longer lead times significantly exceed the CLIM error due to an overall

overestimation of the sea ice edge extent (Fig. 4.3 – ECMWF). The UKMO

and KMA systems show a similar freezing-season bias, also linked to an over-

estimation of the ice edge extent. These two systems exhibit an additional

degradation of the predictive skills during the melting season (December and

January, Fig. 4.2) for lead times longer than 18 days. This suggests that

the two systems have difficulties transitioning into the sea ice melting regime

when initialized during a maximum-extent phase. The NCEP forecast system

is characterized by a similar bias that is largest during the melting season.

Specifically, NCEP strongly overestimates the ice edge extent during most

of the year, except in the first two months of the freezing season (March to

May – Fig. 4.3).
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4.3.3 Regional skill in terms of ice edge distance

Fig. 4.4 displays the longitudinal variation of the forecast and CLIM bench-

mark errors in terms of the Norm. SPS. In agreement with our previous

findings, only the ECMWF forecast system is still partially skillful after one

forecast month. The forecast error exceeds the error of the climatological

benchmark after 32 forecast days in the east Antarctic sector (from 80◦E

to 170◦E; Fig. 4.4) and even earlier in the Haakon VII Sea. However, the

system is skillful up to day 44 in some portions of the West Antarctic sector

(Ross, Amundsen and Weddell Seas), where the Norm. SPS remains up to

40 km lower compared to CLIM. The other forecast systems lose their pre-

dictive skill much faster and none of them is skillful at the monthly range

in any location around Antarctica (Fig. 4.4). The very similar UKMO and

KMA systems are on average skillful up to day 18 (green lines lower than

CLIM), whereas the remaining systems lose their predictive skill before day

8 (ECMWF Pres. and NCEP) or are not even skillful at initial time (MF

and CMA).

The skill in predicting the sea ice edge location differs substantially among

the S2S forecast systems. However, the analysis of the annual-mean longi-

tudinal variation of the forecast error reveals also some features common

to multiple systems. The forecasts are overall less skillful (relative to the

climatological benchmark) in the eastern Antarctic [0◦E;180◦E] than in the

western Antarctic [−180◦E;0◦E]. This does not necessarily imply that the

models are particularly good at capturing the evolution of the sea ice edge in

the West Antarctic regions, but rather that the climatological forecasts are

more accurate in the eastern sectors because of a lower sea ice edge variabil-

ity. Both CLIM (Fig. 4.4; gray-dashed line) and the S2S forecasts (coloured

lines) exhibit larger errors in terms of ice edge distance (Norm. SPS) in the

Ross and Weddell Seas, suggesting that formulating accurate subseasonal sea

ice edge predictions in these regions is challenging because of the high com-

plexity and variability of the local climate system. Our results agree with

Massonnet et al. (2018) who find large sea ice area prediction uncertainties

in the Weddell and Ross Seas for late summer.
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Figure 4.4: Annual-mean sea ice edge forecast error in terms of the Norm. SPS
of seven individual S2S forecast systems and of the CLIM benchmark as a function
of longitude. The results are averaged over the common 12-years reforecast period
(1999–2010) and displayed for 6 lead times (see legend). The longitude domain
[−180◦E, 180◦E] is divided into 24 equally-spaced bins. Note the different Norm.
SPS scales adopted for the forecast systems. Geographical names of the main
oceanic sectors and ice shelves are indicated in respectively black and blue in
the upper-left plot. Norm. SPS = Normalized Spatial Probability Score; NCEP
= National Centers for Environmental Prediction; CMA = China Meteorological
Administration; MF = Météo-France; ECMWF = European Centre for Medium-
Range Weather Forecasts; UKMO = UKMet Office; KMA = Korea Meteorological
Administration.
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A further error peak can be observed in the west Haakon VII Sea (0◦E to

40◦E). Unlike the previous error peaks in the Ross and Weddell Seas (fea-

tured both in the CLIM benchmarks and the S2S forecasts), the west Haakon

VII Sea error peak is more pronounced for the forecast systems (ECMWF,

ECMWF Pres., UKMO, KMA and NCEP) than for the CLIM benchmark.

The NCEP system displays a particularly fast error growth with lead time

in this region. In contrast, in the more skillful systems (ECMWF, UKMO

and KMA) this regional error peak appears to be caused mainly by accord-

ingly large initial errors (≥ 100 km). More generally, the Antarctic average

initial error in these systems is considerable (≥∼ 70 km), suggesting again

that investments into the sea ice initialization procedure appear promising

to enhance predictive capacity.

4.4 Discussion

This study provides the first thorough assessment of the skill of current opera-

tional ensemble forecasting systems in predicting the location of the Antarc-

tic sea ice edge on subseasonal timescales. We find that only one of the

considered forecast systems outperforms two benchmarks (persistence and

climatology) for a wide range of lead times, namely from about 5–30 days.

On average, the other systems perform worse than either persistence or cli-

matology at any lead time considered here. The forecasts are in general more

skillful in the west Antarctic sector than in the east Antarctic sector, where

the climatological benchmark forecast provides a more accurate estimate of

the sea ice edge location. In particular, the ECMWF forecast system out-

performs the climatological benchmark forecast in the Ross, Amundsen and

Weddell Seas, where predictive skill up to 44 days into the forecast is found.

We identify two types of errors that are common to several forecast sys-

tems: (i) a “freezing-season bias” that affects ECMWF, UKMO, KMA and

MF and (ii) a “melting-transition bias” that affects UKMO, KMA and NCEP

(Balan-Sarojini et al., 2019; Blockley & Peterson, 2018). Both are caused by

a systematic overestimation of the sea ice edge location (i.e. predicted to be

too northward). While the first bias can be explained by a misrepresentation

of thermodynamical processes in the coupled models, with the oceanic sur-

face cooling and freezing too rapidly, the second bias could be linked to an

initial overestimation of the sea ice thickness, which would delay the melting
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onset and thus the ice edge retreat in spring. At the moment we are not able

to test this last hypothesis because the S2S Database does not include sea

ice thickness as a standard output variable.

The hemispheric comparison reveals that differences between the Arctic

and Antarctic cannot be explained by differences in the sea ice edge length.

This holds not only for the S2S forecast systems but also for the climatological

benchmark forecast, suggesting that larger model biases in the Southern

Ocean are not the major cause for this difference, but rather that this is

due to an intrinsic property of the Antarctic climate system. The Antarctic

forecast skill degradation points to a higher variability of the Antarctic sea

ice edge at subseasonal timescales compared to the Arctic. Similar differences

in skill between the hemispheres have been found for atmospheric predictions

in polar regions and beyond (Jung & Matsueda, 2016; Bauer et al., 2015).

Given the relatively large forecast errors—ranging from 50 km to 250 km

even for the best forecast systems—sea ice edge forecasts with state-of-the-

art operational systems need to be used carefully. However, there might be

some useful applications already. One example relates to the medium-term

planning of ship tracks to optimize the provision of research stations in the

Antarctic continent during the brief Antarctic summer and at the beginning

of the freezing season. Furthermore, the probabilistic nature of the S2S

forecasts could be beneficial for identifying the possibility of extreme sea ice

conditions.

Our results suggest that current sea ice edge forecast capabilities for the

Southern Hemisphere are lagging behind those for the Northern Hemisphere.

Nevertheless, we anticipate that major improvements in forecast models and

initialization techniques, together with further in-situ observations to better

understand the physical processes at the atmosphere-sea ice-ocean interfaces,

will render Antarctic sea ice forecasts a valuable resource for guiding opera-

tional decision-making in the Southern Ocean.
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5. Impact of sea-ice model

complexity on the performance

of an unstructured sea-ice/ocean

model under different

atmospheric forcings1

1Chapter 5 corresponds to a manuscript under review in the ‘Journal on Advances
in Modelling Earth Systems’ (at the time this this was written) with the title ‘Impact
of sea-ice model complexity on the performance of an unstructured sea-ice/ocean model
under different atmospheric forcings’. I implemented the single-column model Icepack
into the FESOM2 sea-ice and ocean model and I formulated the software for the Greens’s
function optimization and for the analysis of the simulation results. I downloaded and
processed the ERA5 atmospheric forcing while F. Kauker did the same for the NCEP
product. J. Froehle worked on the visualization of some model results and observations.
H. Sumata developed the scripts for the cost function computation and processed the
sea-ice observations used in the optimization procedure. I prepared the manuscript with
contributions from all co-authors.
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Abstract

We have equipped the unstructured-mesh global sea-ice and ocean

model FESOM2 with a set of physical parameterizations derived from

the single-column sea-ice model Icepack. The update has substan-

tially broadened the range of physical processes that can be repre-

sented by the model. The new features are directly implemented on

the unstructured FESOM2 mesh, and thereby benefit from the flex-

ibility that comes with it in terms of spatial resolution. A subset

of the parameter space of three model configurations, with increas-

ing complexity, has been calibrated with an iterative Green’s function

optimization method to test fairly the impact of the model update

on the sea-ice representation. Furthermore, to explore the sensitivity

of the results to different atmospheric forcings, each model configura-

tion was calibrated separately for the NCEP-CFSR/CFSv2 and ERA5

forcings. The results suggest that a complex model formulation leads

to a better agreement between modeled and the observed sea-ice con-

centration and snow thickness, while differences are smaller for sea-ice

thickness and drift speed. However, the choice of the atmospheric

forcing also impacts the agreement of FESOM2 simulations and ob-

servations, with NCEP-CFSR/CFSv2 being particularly beneficial for

the simulated sea-ice concentration and ERA5 for sea-ice drift speed.

In this respect, our results indicate that the parameter calibration

can better compensate for differences among atmospheric forcings in

a simpler model (i.e. sea-ice has no heat capacity) than in more energy

consistent formulations with a prognostic ice thickness distribution.
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5.1 Introduction

Sea-ice is a key component of the climate system (Dieckmann & Hellmer,

2010) and it plays a central role as a physical regulator of the energy ex-

change between atmosphere and ocean in polar regions (Döscher et al., 2014).

Furthermore, sea-ice represents by itself a platform where large ecosystems

thrive (Spindler, 1994), and it is a fundamental element in the lives of coastal

human communities in the Arctic (Cooley et al., 2020). Because of the strong

and rapid transformations that sea-ice has faced in recent years due to global

warming (particularly in the Arctic; Notz & Stroeve (2016)), there is an ur-

gent need to better understand and being able to quantify the physical and

biogeochemical mechanisms regulating the sea-ice system, to inform decision-

makers and various stakeholders. Reliable dynamical sea-ice models are fun-

damental tools for accurately predicting the evolution of sea ice at multiple

timescales, from days to centuries into the future.

In the past decades, there has been a constant development of more com-

plex and physically consistent sea-ice model formulations, summarized by

Hunke et al. (2010) and Notz (2012), and of which we give a brief overview

in Sec. 5.2.2. At the same time, the resolution of sea-ice and ocean mod-

els has increased due to the growing availability of computational resources,

and so has the resolution and quality of the atmospheric reanalyses used to

force the models. These developments, together with the growing availability

of more accurate sea-ice observations to constrain our models, have lead to

better sea-ice simulations. Multiple studies attribute a relevant role in im-

proving the sea-ice model performances to more realistic model formulations

(Vancoppenolle et al. (2009); Massonnet et al. (2011); Flocco et al. (2012);

Roach et al. (2018b), among others). However, in the framework of the Cou-

pled Model Intercomparison Project (CMIP), the SIMIP Community (2020)

(Sea Ice Model Intercomparison Prohect) shows that it is unclear to what

degree differences between CMIP6, CMIP5, and CMIP3 sea-ice simulations

are caused by better model physics versus other changes in the forcing. In the

field of subseasonal and seasonal sea-ice forecasting, simple dynamical mod-

els exhibit predictive skills comparable or even better than those of more

complex forecast systems (Zampieri et al., 2018, 2019), suggesting that the

yeartoyear variability, the skill of the atmospheric models, and the quality

of initial conditions dominate the variation in ensemble prediction success
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(Stroeve et al., 2014). In conclusion, to what extent the model complexity

impacts the quality of sea-ice simulations remains an open question always

evolving with our models (Blockley et al., 2020).

A key aspect to examine when assessing the relative performances of mul-

tiple model formulations is whether these are all appropriately tuned (Miller

et al., 2006). Because of an interdependency of model parameters and a lack

of comprehensive ice and snow observations, the model parameters are in

general underconstrained (Urrego-Blanco et al., 2016), and their systematic

calibration can substantially impact the quality of the simulations (Turner

et al., 2013b; Massonnet et al., 2014; Ungermann et al., 2017; Sumata et al.,

2019a; Roach et al., 2018a). Furthermore, acknowledging the substantial dif-

ferences between the reanalysis products used to force the sea-ice models in

stand-alone setups (Batrak & Müller, 2019), we argue that the same model

configuration should be also optimized separately for different forcing con-

ditions. As shown by Miller et al. (2007), the behavior of a specific model

formulation can change substantially based on the forcing used.

Most of the relevant sea-ice parameterizations and modeling strategies de-

veloped over the years have been collected by the scientific community and

integrated into sophisticated sea-ice models, the most advanced and com-

plete of which is arguably CICE, (Hunke et al., 2020a). The CICE model is

distributed in combination with the Icepack column-physics package (Hunke

et al., 2020b) – a collection of physical parameterizations that account for

thermodynamic and mechanic sub-grid processes not explicitly resolved by

the models. Because of its modularity, Icepack can be conveniently imple-

mented in ocean and sea-ice models other than CICE. In this regard, this

study presents a new version of the Finite-volumE Sea ice-Ocean Model ver-

sion 2 (FESOM2; Danilov et al. (2017)) that exploits the capabilities of

the Icepack column physics package. As we describe in Sec. 5.2.2, the de-

velopment of the FESOM2 sea-ice component has been mostly focused on

dynamical aspects, while the adopted sub-grid sea-ice parameterizations were

quite simple and outdated if compared to those implemented in other sea-

ice models. This resulted in a partially inconsistent physical formulation of

the standard FESOM2 model, caused for example by the missing represen-

tation of the sea-ice internal energy. The inclusion of Icepack in FESOM2

has substantially broadened the range of sea-ice physical processes that can

be simulated by the FESOM2 model, making it an ideal tool for answering

the scientific questions posed below.
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Based on the new FESOM2-Icepack implementation, we designed a set

of experiments to assess the impact of the sea-ice model complexity on the

quality of the sea-ice simulations. Ten parameters from three distinct model

setups are optimized with a semi-automated calibration technique and com-

pared to different types of sea-ice and snow observations. Because we deal

with a standalone ocean and sea-ice model (i.e. no coupling to an atmospheric

model) the calibration process is conducted separately for two different at-

mospheric reanalysis products used to force FESOM2. Based on the outcome

of the calibration and the resulting model performance, we try to address the

following questions:

1. Does a more complex and physically consistent formulation of the sea-

ice model lead to better sea-ice simulations given the resolution, cover-

age and uncertainty of satellite Earth Observations (EO) of the sea-ice

available today?

2. How does the impact of different atmospheric forcings on the sea-ice

model performance relate to the impact of model complexity?

3. Which sea-ice formulation can be calibrated more effectively?

The remainder of this paper is organized as follows: the method section

presents the standard (Sec. 5.2.1) and Icepack (Sec. 5.2.2) FESOM2 formula-

tions, followed by the theoretical description of the Green’s function approach

for the calibration of the model parameter space (Sec. 5.2.3). We then de-

scribe the experimental setups employed in the study and we present the

practical implementation of the calibration technique (Sec. 5.2.4), as well as

the observations used for constraining the parameter space and for validating

the model results (Sec. 5.2.5). The results section (Sec. 5.3) describes the

impact of the parameter optimization on the model performances in terms

of cost function reduction. Furthermore, we explore the discrepancies of the

various optimized model configurations by comparing the simulated sea-ice

and snow state to different types of observations, and by linking this to

differences in the optimized model parameters. Finally, the computational

performances of three model setups is analyzed for assessing the sustainabil-

ity of more sophisticated, and thus computationally more demanding, sea-ice

setups for diverse modeling applications (Sec. 5.4.3).
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5.2 Methods

5.2.1 Standard sea-ice formulation in FESOM2

Danilov et al. (2015b) describes in detail the numerical implementation of

the Finite Element Sea-Ice Model (FESIM), which is the standard sea-ice

component of FESOM2. Three alternative algorithms are available for solv-

ing the sea-ice momentum equation: a classical elastic-viscous-plastic (EVP)

approach coded following Hunke & Dukowicz (1997) plus two modified ver-

sions of the EVP solver: the modified EVP (mEVP; Kimmritz et al. (2015)),

and the adaptive EVP (aEVP; Kimmritz et al. (2016)). Three sea-ice tracers

are advected based on a finite element (FE) flux corrected transport (FCT)

scheme (Lhner et al., 1987): the sea-ice area fraction ai, and the sea-ice and

snow volumes per unit area, vi and vs. The thermodynamic evolution of sea

ice is described by a simple 0-layer model (i.e. the sea-ice and snow layers

have no heat capacity) that follows Parkinson & Washington (1979). The

interaction between the radiation and sea ice is mediated by four constant

albedo values (dry ice, wet (melting) ice, dry snow, and wet (melting) snow)

that respond to changes in the atmospheric near-surface temperature, thus

including an implicit description of the radiative effect of melt ponds during

the melting season. No incoming shortwave radiation penetrates through the

snow and sea-ice layers.

5.2.2 Icepack implementation in FESOM2

Icepack (Hunke et al., 2020b) – the column physics package of the sea-ice

model CICE – is a collection of physical parameterizations that account for

thermodynamic and mechanic sub-grid processes not explicitly resolved by

the hosting sea-ice model. The modular implementation of Icepack allows

the users to vary substantially the complexity of the sea-ice model, with

the possibility of choosing between several schemes and a broad set of ac-

tive and passive tracers that describe the sea-ice state. Similarly to FESIM,

Icepack can make use of a simple 0-layer sea-ice and snow thermodynam-

ics scheme (Semtner, 1976). However, two more sophisticated and energy

consistent multi-layer thermodynamics formulations, taking into account the

sea-ice enthalpy and salinity, are also available: the Bitz & Lipscomb (1999)

thermodynamics (BL99 hereafter), which assumes a temporally constant sea-
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ice salinity profile, and the “mushy layer” implementation, with a prognostic

sea-ice salinity description (Turner et al., 2013a). To account for the sea-ice

thickness variations typically observed at sub-grid scales, Icepack discretizes

the sea-ice cover in multiple classes, each representative of a sea-ice thick-

ness range, and describes prognostically the evolution of the Ice Thickness

Distribution (ITD) in time and space (Bitz et al., 2001). The processes lead-

ing to changes in the ITD are sea-ice growth and melt, snow-ice formation

(flooding), and mechanical redistribution (i.e. sea-ice ridging and rafting due

to dynamical deformation; Lipscomb et al. (2007)). In terms of the interac-

tion between sea ice and radiation, Icepack includes two more sophisticated

parameterizations in addition to a simple albedo scheme similar to that of

FESIM. In the “CCSM3” formulation, the surface albedo depends on the

sea-ice and snow thickness and temperature, and it is defined separately for

the visible and infrared portion of the spectrum. The main difference be-

tween this and the constant albedo approach is a reduction of the surface

reflectivity for thin sea-ice or snow. The even more sophisticated “Delta-

Eddington” formulation exploits the inherent optical properties of snow and

sea ice for solving the radiation budget (Holland et al., 2012), and it can be

combined with three explicit prognostic melt pond schemes (Holland et al.,

2012; Flocco et al., 2010; Hunke et al., 2013). Finally, the Icepack radiation

implementation allows the penetration of part of the incoming shortwave ra-

diation through snow and sea ice, leading to additional energy absorption in

the water column below the sea ice.

Icepack v1.2.1 has been implemented in FESOM2 and can now be used

as an alternative to the standard FESIM thermodynamic module. As the

standard FESIM implementation, the Icepack column-physics subroutines

run every ocean time step. All the Icepack variables are defined directly on

the FESOM2 mesh, ensuring an optimal consistency between the ocean and

the sea-ice components of the model. The inclusion of Icepack in FESOM2

required a revision of the calling sequence within the sea-ice model (Fig. 5.1),

which now follows that of the CICE model (Hunke et al., 2020a). The coef-

ficients mediating the momentum and heat exchanges between atmosphere

and ice, previously constant in FESIM, have been updated and are now com-

puted iteratively based on the stability of the atmospheric near-surface layer

(Jordan et al., 1999). The solution of the momentum equation for comput-

ing the sea-ice velocity does not change when running in FESOM2-Icepack

configuration. Two alternative formulations of the sea-ice strength P are
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available in Icepack and can be used in the EVP solver:

Thermodynamics
• 0 lyr.
• BL99
• Mushy layer

Mechanical
redistribution

Tracers
advection

Dynamics 
• EVP
• mEVP
• aEVP

Radiation
• Constant
• CCSM3
• Delta-Eddington

Dynamics 
• EVP
• mEVP
• aEVP

Tracers
advection

Radiation & 0 lyr.
thermodynamics

FESOM2 - Icepack

Standard FESOM2 

Figure 5.1: Schematic describing the calling sequences of the Standard FESOM2
and FESOM2-Icepack implementations.

Hibler (1979): P = P ∗ve−C∗(1−ai) (5.1)

Rothrock (1975): P = CpCf

∫ ∞

0

h2ωr(h)dh (5.2)

where h = v/a is the ice thickness, P ∗, C∗, and Cf are empirical parameters,

Cp = ρi(ρw − ρi)g/(2ρw) is a combination of the gravitational acceleration

and the densities of ice and water, and ωr(h) is a function that represents

the effective sea-ice volume change for each thickness class due to mechanical

redistribution processes. In this study, the Hibler (1979) approach (H79

hereafter) is adopted for all model setups instead of the Rothrock (1975)

approach (R75 hereafter). The reasoning behind this choice will be discussed

in Sec. 5.2.4.

In the FESOM2 implementation of Icepack, each tracer is advected sep-

arately using the FE-FCT scheme by Lhner et al. (1987) as described in

Kuzmin (2009). The tracer advection is based on the conservation equation

∂tT +∇ · (Tv) = 0 , (5.3)

where T is a generic advected tracer with no dependencies and v is the sea-

ice velocity that solves the momentum equation. If a tracer T2 depends on

another tracer T1, the advected quantity that satisfies Eq. 5.3 is T = T1T2.

This concept can be generalized for a tracer with more than one dependency.

Icepack comes with a vast set of required and optional tracers. As for the

standard FESIM, ai, vi, and vs are required tracers. However, in Icepack

these three variables are defined separately for each ice thickness class. The

skin temperature of the sea-ice, or in the presence of snow of the snow, Ts
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is also defined separately for each thickness class and depends on ai for the

advection. If the BL99 or mushy thermodynamics are used, the enthalpy of

sea-ice and snow layers (qi,qs), and the sea-ice salinity si become also required

tracers and depend on vi or vs. Several more tracers are available (melt pond

fraction and depth, sea-ice age, first-year ice fraction, level ice fraction and

volume, etc.) depending on the chosen setup of the model. All these tracers

are implemented in the FESOM2-Icepack model.

5.2.3 Green’s function approach for the optimization

of model parameters

The Green’s function approach is a simple, yet powerful method that, given

some observations, can be used for the calibration of the parameter space of

general circulation models (Stammer & Wunsch, 1996; Menemenlis & Wun-

sch, 1997; Menemenlis et al., 2005; Nguyen et al., 2011; Ungermann et al.,

2017). The practical realization of one iteration of this method requires to

compute an ensemble of n sensitivity simulations by perturbing separately

each one of the n parameters that we choose to optimize. The Green’s

functions of these sensitivity simulations are then combined through discrete

inverse theory for constructing an optimal linear solution that minimizes the

difference between the model state and the observations, and which corre-

sponds to a set of optimal parameter perturbations. Menemenlis et al. (2005)

and Ungermann et al. (2017) provide an extensive mathematical derivation

of the method. Here, we limit our description to a few important points.

Given a vector of m observations y and their measurement uncertainties

σσσ, the relationship between the observations and a model operator G can be

expressed as

y = G(ννν) + ϵϵϵ , (5.4)

where ννν contains a generic set of n parameter perturbations around a ref-

erence state ννν0, and ϵϵϵ represents the discrepancy between the observations

and the model results. The optimal set of parameters νννopt can be obtained

by minimizing a quadratic cost function

F = ϵϵϵTR ϵϵϵ , (5.5)

where R, the covariance matrix of ϵϵϵ, is assumed to be a simple diagonal
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matrix with elements Rij = (σi)
−2 (with i, j = 1 . . .m), meaning that obser-

vation errors are considered independent. In this study, each element of R

is further divided by the total number of observations of its corresponding

observation type. In this way, the same weight is given to each observational

type employed in the optimization. We assume now that a linearization of

the system holds, and that the model operator G can be represented by a

matrix G, so that the misfit between observations and the control simulation

(for which ννν = 0) can be expressed as

∆y = y −G(0) = Gννν + ϵϵϵ . (5.6)

In practice, G is an m× n matrix constructed by combining the Green’s

function for each of the parameter perturbations ννν = (ν1 . . . νn). Specifically,

gggj—the jth-column of the matrix G—is

gggj =
G(νννj)−G(0)

νj
, (5.7)

where G(νννj) is the sensitivity simulation where only the parameter νj is

perturbed. The set of optimal parameters that minimizes the cost function

is given by

νννopt = ννν0 + (GTRG)−1GTR∆y . (5.8)

Even if the Green’s function approach is a robust method for tuning the

model effectively, there is no guarantee that the estimated optimal parame-

ters lead to a model state that corresponds to a global minimum of the cost

function, in particular if the cost function is not a “well-behaved” function

as in the case of sea-ice observations. In this respect, the results by Sumata

et al. (2013) shows that a stochastic optimization method is more appropri-

ate for finding a global minimum of the cost function than gradient descent

methods as the Green’s function approach (Figs. 4 and 5 of Sumata et al.

(2013) reveal the heterogeneity of the sea-ice concentration cost function).

In the context of this study, where the model optimization is performed for

three model configurations each forced with two sets of atmospheric bound-

ary conditions, the Green’s function approach has been chosen because it

provides a balance between the effectiveness of the method, simplicity of

implementation, and associated computational costs.
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5.2.4 Model simulations

All model simulations are run on a global mesh with 1.27 × 105 surface

nodes and 46 vertical levels. This unstructured mesh has approximately a

1° resolution over most of the domain, but it is refined along the coastlines,

in the equatorial regions, and north of 50°N, where the resolution reaches

∼25km (see Fig. 4a in Sein et al. (2016) for more details on the mesh).

The atmospheric boundary conditions used to force the FESOM2 model are

derived from two reanalysis products: the European Centre for Medium-

Range Weather Forecasts Reanalysis, 5th Generation (ERA5) global reanal-

ysis (Hersbach et al., 2020) and the NCEP Climate Forecast System (NCEP

hereafter; Saha et al. (2010, 2014)). The fields used to force the model are

the 2-m air temperature and specific humidity, the 10-m wind velocity, the

downward longwave and shortwave radiation, and the liquid and solid precip-

itations. The ocean component of the FESOM2 model is initialized in 1980

from the PHC3 ocean climatology (Steele et al., 2001). A sea-ice thickness

of 2m is set at initial time in regions with sea surface temperature below

the freezing temperature of sea water of typical salinity for the inner Arctic

surface ocean.

The Green’s function approach for parameter optimization is applied to

three different model setups of increasing complexity:

C1 Low-complexity configuration corresponding to the standard FESIM im-

plementation within FESOM2, as described in Sec. 5.2.1.

C2 Medium-complexity configuration based on the FESOM2-Icepack imple-

mentation described in Sec. 5.2.2. This configuration features an ITD

with 5 thickness classes, the BL99 thermodynamics (4 sea-ice layers

and 1 snow layer), and the CCSM3 radiation scheme.

C3 High-complexity configuration based on the FESOM2-Icepack imple-

mentation. Like C2, C3 features an ITD with 5 thickness classes and

the BL99 thermodynamics. The CCSM3 radiation is replaced by the

Delta-Eddington scheme, and the melt ponds are prognostically de-

scribed with the CESM parameterizations (Holland et al., 2012).

Each configuration is optimized twice, once for each atmospheric forcing

employed: ERA5 (suffix “E” hereafter) and NCEP (suffix “N” hereafter).

This leads to a total of 6 optimal parameter sets, each one optimized by
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Figure 5.2: Schematic of one iteration of the Green’s function approach for
parameter optimization as employed in our study for each configuration. When
the second iteration is performed, the optimized model run computed at the end
of the first iteration serves as control run for the second one.

performing two iterations of the Green’s function method. A schematic of

the Green’s function optimization procedure is displayed in Fig. 5.2. Each

configuration undergoes a 20-year spin-up (1980–2000) to guarantee a real-

istic state of the modelled upper ocean and of the sea-ice cover in (quasi-

)equilibrium with the chosen atmospheric forcing product and the individual

parameter set. The model optimization window is limited to the 14 years

period 2002–2015, i.e. the cost function is evaluated in this period.

The R75 formulation of the sea-ice strength is arguably more physically

consistent than the H79 formulation, as it includes information about the

ITD in each grid cell and it considers potential energy changes associated

with the redistribution. However, Ungermann et al. (2017) show that the

H79 approach leads to a better fit between model data and observations

when properly tuned. In addition, the R75 sea-ice strength is much more

non-linear then H79 one. For these reasons, and for being able to compare

the C1 setup (no ITD; only H79 available) to the C2 and C3 setups (with

ITD; both H79 and R75 available), all the simulations here presented employ
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the H79 sea-ice strength formulation.

Because the finite availability of computational resources limits in practice

the number of parameters that can be optimized with the Green’s function

approach (a separate sensitivity run is needed for each parameter one in-

tends to optimize), the parameters have been chosen based on their ability

to influence the sea-ice state of the model, as described in previous studies

(Massonnet et al., 2014; Urrego-Blanco et al., 2016; Ungermann et al., 2017;

Sumata et al., 2019a). In total, 10 model parameters are optimized for each

of the three model setups (Tab. 5.1). The chosen parameters act on various

sea-ice parameterizations: thermodynamics, dynamics, radiation, and me-

chanical redistribution. Some are common to all three configurations (αO,

kS, P
∗, C∗, and cIO), while others are specific to the formulation of each

setup. Note that δP has been classified as radiation parameter (Tab. 5.1a)

because the chosen melt pond scheme describes only the radiation effects of

melt ponds. The ice-atmosphere drag coefficient cIA has not been optimized

following the results of Massonnet et al. (2014), which show that optimizing

the atmospheric drag is not necessary if P ∗ and cIO are already optimized.

5.2.5 Observational products

The Green’s function optimization method is based on three types of monthly

averaged satellite observations and their uncertainties: sea-ice concentration,

thickness, and drift (Fig. 5.2). We employ the OSI SAF Global Sea Ice

Concentration Climate Data Record v2.0 (EUMETSAT Ocean and Sea Ice

Satellite Application Facility, 2017) for the period 2002–2015. The retrieval

of this product is based on passive microwave data from the SSM/I (Special

Sensor Microwave/Imager) and SSMIS (Special Sensor Microwave Imager/-

Sounder) sensors (Lavergne et al., 2019). The data are distributed on a

polar stereographic 25km resolution grid, which is approximately the same

resolution of our model in the Arctic.

Two complementary sea-ice thickness datasets are considered during the

freezing season (October to April): the monthly northern hemisphere sea-

ice thickness from Envisat (2002–2010; Hendricks et al. (2018b)) and from

CryoSat-2 (2011–2015; Hendricks et al. (2018a)). The merged CryoSat-

2/SMOS sea-ice thickness product has not been considered for the parameter

optimization because we decided to prioritize the optimization of thick sea-

ice regions over the marginal ice zone. The evolution of the thin ice cover
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(a) Optimized parameters in C1
Ocean albedo αO Therm. conductivity snow kS
Dry sea-ice albedo αId H79 ice strength const. P ∗

Wet sea-ice albedo αIw H79 ice strength const. C∗

Dry snow albedo αSd Ice-ocean drag cIO
Wet snow albedo αSw Lead closing param. H0

(b) Optimized parameters in C2
Ocean albedo αO Therm. conductivity snow kS
Visible sea-ice albedo αIv H79 ice strength const. P ∗

Infrared sea-ice albedo αIi H79 ice strength const. C∗

Visible snow albedo αSv Ice-ocean drag cIO
Infrared snow albedo αSi Redistribution ridged ice µ

(c) Optimized parameters in C3
Ocean albedo αO Therm. conductivity snow kS
Sigma coeff. for ice albedo RI H79 ice strength const. P ∗

Sigma coeff. for snow albedo RS H79 ice strength const. C∗

Sigma coeff. for pond albedo RP Ice-ocean drag cIO
Melt pond shape δP Redistribution ridged ice µ

Parameter types
Radiation Sea-ice thermodynamics
Sea-ice thickness / ITD Sea-ice dynamics

Table 5.1: Model parameters optimized for each of the three model con-
figurations C1, C2, and C3. The division of the model parameters in four
groups reflects the sea-ice model aspect regulated by the parameters. These
groups are defined and color-coded as follows: radiation=blue, sea-ice thick-
ness / ITD = gray, sea-ice thermodynamics=green, and sea-ice thermody-
namics=red.
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is implicitly constrained by the parallel employment of sea-ice concentration

observations during the optimization, which compensates, at least to some

extent, for the exclusion of the SMOS observations from the optimization.

Following Sumata et al. (2019a), sea-ice drift data covering the whole

seasonal cycle are obtained by combining three different pan-Arctic low-

resolution products: the OSI-405 (Lavergne et al., 2010), the sea-ice mo-

tion estimate by Kimura et al. (2013), and the Polar Pathfinder Daily 25

km EASE-Grid Sea Ice Motion Vectors, Version 2 (NSIDC Drift hereafter;

Tschudi et al. (2010); Fowler et al. (2013)). OSI-405 is the drift product with

the smallest observational uncertainties (Sumata et al., 2014) and therefore,

when possible, it is preferred to the others. The estimates by Kimura et al.

(2013) are used in summer because the OSI-405 temporal coverage is limited

to the winter months. The NSIDC Drift data are used to cover a gap left by

the other two products during part of 2011 and 2012.

Additionally, the model simulations are compared to other types of sea-ice

observations than those employed for the Green’s function optimization. As

for the northern hemisphere, the southern hemisphere sea-ice concentration is

taken from the OSI SAF Global Sea Ice Concentration Climate Data Record

v2.0. Starting from 2016, we use the operational extension of the OSI-450,

denominated OSI-430-b, for both hemispheres (EUMETSAT Ocean and Sea

Ice Satellite Application Facility, 2019). The retrieval of snow depth on top

of the sea ice is based on an empirical algorithm that uses passive microwave

satellite observations from the AMSR-E (Advanced Microwave Scanning Ra-

diometer; Rostosky et al. (2019b)) and AMSR-2 (Rostosky et al., 2019a)

sensors, as described by Rostosky et al. (2018).

5.2.6 Cost Function

The optimization of the model parameter space leads to modifications of the

sea-ice state and, consequently, to a variation of the cost function measuring

the mismatch between model results and observations. Studying the cost

function represents therefore a useful approach to assess changes in model

performance. Before presenting the main findings of our study, we clarify

some aspects related to the cost function formulation and interpretation.

From a mathematical viewpoint, the cost function F (Eq. 5.9) employed in

the assessment of the model performances is the same quadratic cost func-

tion that is minimized during the Green’s function parameter optimization
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(Eq. 5.5):

F =
1

No

No∑
i=1

(yi − xi)
2

σ2
i

, (5.9)

where yi is a single observation with standard deviation σi, xi is the cor-

responding model value, and No the total number of observations. In the

context of model performance evaluation, F is computed separately for each

observation type at different stages of the parameter optimization procedure

(before optimization, after one iteration, and lastly after the second itera-

tion). Assuming that the observations represent accurately the “true” state

of the sea-ice cover, a change in cost function (cF ) can indicate an improve-

ment (cF < 0) or degradation (cF > 0) of the model performance. Note that,

due to the quadratic nature of the cost function, F= 4 indicates that, on

average, the mismatch between model results and observations is equal to 2

(=
√
4) standard deviations of the observations.

Although the initial parameter values of different model setups before the

optimization has been made as homogeneous as possible, the pre-optimization

cost function values differ inevitably for each model configuration (Fig. 5.3).

This behavior depends on multiple factors:

1. The intrinsic ability of a specific model formulation to reproduce the

observed state.

2. The quality of the employed atmospheric forcing and its compatibility

with each model formulation.

3. The “distance” of each pre-optimization parameter set from the op-

timized one (i.e. how well the model parameters are manually tuned

already).

The relative contribution of these factors is difficult to quantify and can

change substantially depending on the variable of interest (e.g. sea-ice con-

centration, thickness, etc.). An obvious consequence of point 3 is that a

configuration far from its optimal state can be optimized more effectively

than a configuration closer to it. For being able to evaluate more reasonably

a property that we call the model “flexibility”—the extent to which a model

configuration can be optimized for a variable—we propose a normalized ver-
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sion of cF for each of the model variables and observations considered:

ĉF =

√
Ff −

√
Fi√

Fi

·

√
min{FC1-E

i , . . . , FC3-N
i }

Fi

, (5.10)

where Fi and Ff are the cost function values respectively before and after

the Green’s function parameter optimization. The square-roots in Eq. 5.10

are introduced as compensation for the quadratic nature of the cost function.

In practice, the normalized formulation ĉF (Fig. 5.3; gray percentages) has

the effect of reducing the cost function change in those configurations that

start further away from the optimal state before the optimization, providing

a suitable metric for assessing the flexibility of the model configurations.

5.3 Results

5.3.1 Sea-ice concentration and position of the ice edge

The Green’s function parameter optimization improves the model representa-

tion of the sea-ice concentration for each of the six configurations considered

(Fig. 5.3; top-left). The C3 setup shows better performances than C1 and C2

both under ERA5 and NCEP atmospheric forcing, suggesting that a more

complex formulation of the sea-ice model is beneficial for accurately simulat-

ing this variable. In the Icepack setups C2 and C3, the employment of the

NCEP forcing leads to better results than ERA5 in terms of the absolute val-

ues of the cost function. In contrast, the cost function values of the optimized

C1 configurations are comparable under ERA5 and NCEP forcing. Overall,

the C1 setup shows higher flexibility, and it is capable of compensating more

effectively for differences in boundary conditions.

Simulating correctly the sea-ice edge position is a requirement for ev-

ery modern sea-ice model. Because the definition of the ice edge position is

based on the sea-ice concentration, one might expect the parameter calibra-

tion technique based on sea-ice concentration observations to also improve

the representation of this feature. This assumption is reasonable, with one

caveat: the observational uncertainties of the sea-ice concentration are largest

in the vicinity of the ice edge, slightly reducing the weight of these key re-

gions on the total cost function and prioritizing the optimization of pack ice

locations, where however the agreement between model and observations is

generally already good. Here we analyze the correctness of the sea-ice edge
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Figure 5.3: Cost function values for the period 2002–2015 at the three stages
of the Green’s function parameter optimization (x-axis). The cost function mea-
sures the average mismatch between the state of six model configurations (y-axis)
and four observational products in the Arctic region: sea-ice concentration, drift,
thickness, and snow thickness (only the first three observation types are used in
the Green’s function optimization). The suffixes “-E” and “-N” indicate the em-
ployment of the ERA5 and NCEP atmospheric reanalysis used to force the three
model setups C1, C2, and C3, respectively. The percentages in black font indicate
the cost function change cF induced by the optimization. The percentages in gray
font refer to ĉF , the normalized the cost function change.

position based on two metrics, the Integrated Ice Edge Error (IIEE), and the

Absolute Extent Error (AEE; Goessling et al. (2016b)), a component of the

IIEE (Fig. 5.4). The AEE is defined as the absolute difference in sea-ice ex-

tent between model and observations. However, two different configurations

of the sea-ice edge can lead to the same sea-ice extent, hence to an AEE = 0.

The IIEE is designed to overcome this issue and penalizes situations where

sea ice is misplaced in the model simulations compared to the observations.

In terms of IIEE and AEE, the ranking of the six optimized model con-

figurations for the Arctic (Fig. 5.4; top row) confirms what emerges from

the analysis of the sea-ice concentration cost function: the C3-N configura-

tion performs best while the C2-E configuration performs worst, exhibiting
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Figure 5.4: Seasonal variation of the northern hemisphere (top) and southern
hemisphere (bottom) Integrated Ice Edge Error (IIEE) and Absolute Extent Error
(AEE) for six optimized model configurations (C1-E to C3-N) averaged over the
period 2002–2015. The IIEE and AEE are computed based on the monthly median
ice edge, which is defined as the 15% contour line of the sea-ice concentration. The
shading indicates the∼95% confidence intervals, based on standard errors obtained
from the fourteen individual monthly values.

an error peak in summer for both the IIEE and AEE. This error is caused

by a strong sea-ice underestimation. Overall, the NCEP forcing leads to

a better sea-ice edge representation than ERA5. In all the configurations,

both the error magnitude and its variability are largest in late spring and in

early summer, while lowest during the winter months. This might suggest a

better representation in the model of the physical processes regulating the

sea-ice freeze-up compared to those regulating its melting. Furthermore, the

2m temperature transition across the sea-ice edge in the atmospheric forcing

is much sharper during the freezing season than during the melting season,

allowing little freedom to the sea-ice model where to place the sea-ice edge

and leading to better winter performances.

The ice-edge position analysis has been repeated for the Southern Ocean

(Fig. 5.4; bottom row), whose sea-ice observations have not been considered

in the parameter optimization. The results evidence some similarities with
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the Arctic: the IIEE and AEE are largest during the melting season and

lowest in winter when the sea-ice extent reaches its maximum. As for the

Arctic, the six configurations exhibit a larger error spread during the summer

months. The ranking of the model setups in terms of IIEE and AEE changes

substantially in the hemispheres. In Antarctica, the C2 setup, which had the

worst performances in the Arctic, exhibits the lowest IIEE and AEE from

February to June, followed by the C3 and C1 setups. The situation is inverted

from July to January when the differences among the model configurations

are however much smaller. Overall, in the Southern Ocean, the Icepack

setups C2 and C3 perform comparably or better (depending on the season

considered) than the standard FESOM2 formulation C1.

5.3.2 Sea-ice thickness

The analysis of the sea-ice thickness cost function reveals similar performance

of different model configurations (Fig. 5.3; bottom-left plot). The cost func-

tion values around 1 indicate that, on average, the mismatch between model

results and observations is of the same magnitude as the observations un-

certainties. After optimization, the model setup C1 exhibits slightly better

performance than the C2 and C3 for both atmospheric forcings. Coinci-

dentally, C1 is also the model setup that benefits more from the parameter

optimization, with the C1-E and C1-N configurations showing respectively a

∼ −17% and ∼ −20% normalized cost function change. In contrast, the C3-

N configuration, which ranks first before optimization, is negatively affected

by the optimization and exhibits a ∼ 6% normalized cost function increase.

The model simulations have been compared to three distinct sea-ice thick-

ness observational products (Fig. 5.5): the Envisat and CryoSat-2 products,

which target the thicker sea-ice (>1m) for different periods, and the merged

CryoSat-2/SMOS product, which combines the capability of the SMOS sen-

sor to detect thin sea-ice with the CryoSat-2 measurements in thicker regions.

When compared to the observations, the performance of the model configura-

tions changes slightly depending on the choice of the observational product.

The Envisat and CryoSat-2 comparison reveal a general underestimation of

the average sea-ice thickness by all the model configurations (Fig. 5.5; upper

and middle plot). To a certain extent, this underestimation is a consequence

of the absence of essentially all thin sea-ice from these observational products,

while the thin ice is still present in the model simulations and can be included
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in the average thickness computation if the spatial distribution of the sea-

ice thickness is different in model simulations and observations. In contrast,

the CryoSat-2/SMOS measurements provide a more complete picture of the

sea-ice thickness up to the ice edge. It is therefore more compatible with

the model results and allows a more robust comparison. Consequently, the

agreement between this observational product and the model results is better

(Fig. 5.5; bottom plot).

Overall, the sea-ice thickness discrepancies among the optimized model

configurations are moderate: on average 25cm, and up to 60cm (Fig. 5.5).

The average sea-ice thickness of different configurations tends to converge

towards the end of the freezing season, while the spread is slightly larger at its

beginning.The results evidence wider discrepancies in terms of model setups

than in terms of the atmospheric forcing employed, with C1 having on average

a thicker sea-ice cover than C3 and C2. All the model configurations represent

fairly well the observed inter-annual variability and the seasonal cycle. For

example, both the model simulations and the observations coherently indicate

a relatively low sea-ice thickness over the periods 2012–2013 and 2016–2018,

and relatively thick sea-ice in 2014–2015. Overall, the model performance in

terms of sea-ice thickness is generally better than that of most of the global

oceansea ice reanalyses from the Ocean Reanalyses Intercomparison Project

(ORA-IP) analyzed by Uotila et al. (2018) and Chevallier et al. (2017). Note

that most of the models analyzed in ORA-IP assimilate sea-ice concentration

and/or sea-surface temperature, in addition to other non sea-ice variables.

5.3.3 Sea-ice drift

The sea-ice drift is the model variable for which the parameter optimization

procedure is least successful, with a normalized cost function change of on

average ∼ −1%, and for which the cost function values of different model

configurations are most similar (Fig. 5.3; upper-right plot). This behavior

can be explained by the fact that the formulation of the dynamic solver has

an effect on the simulated sea-ice velocity at least as large (if not more)

as the employment of different atmospheric boundary conditions, of sea-ice

rheology, and of ice-ocean dynamical interactions (Losch et al., 2010). In

this respect, all the model configurations considered here share the same EVP

solver for the sea-ice momentum equation, which constrains substantially the

model behavior, and which cannot be calibrated through the optimization
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Figure 5.5: November to April average sea-ice thickness for six model configu-
rations (C1-E to C3-N) and for the Envisat (top plot), CryoSat-2 (middle plot),
and CryoSat-2/SMOS (bottom plot) satellite observations. The ∼95% confidence
intervals of the observations are indicated by the gray shading (not visible for
CryoSat-2 and CryoSat-2/SMOS), based on 2 standard deviation of the average
sea-ice thickness computed through error propagation assuming spatially uncor-
related uncertainties (which is not necessarily the case). The model results have
been restricted to the locations within the satellites orbits (< 81.45°N for Envisat
and < 87°N for CryoSat-2) where monthly observations are available.
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of model parameters. The remaining variability of model performances in

terms of sea-ice drift appears to be linked to the choice of the atmospheric

forcing. The sea-ice drift optimization is effective only for configurations

running under the ERA5 atmospheric forcing, which features a cost function

reduction. In contrast, the optimization impact on the configurations running

under the NCEP forcing is very small. The poor sea-ice drift performance of

C2-E is caused by the summer biases affecting the sea-ice concentration and

thickness described in the previous sections.

C1-E C2-E C3-E 

C1-N C2-N C3-N 
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N
CE

P

C1 C2 C3

Figure 5.6: April 2015 monthly averaged sea-ice drift speed of six model config-
urations (C1-N to C3-E) and of the OSI-405 observations.

The simulated sea-ice drift represents well the observed spatial features

of the sea-ice circulation in the Arctic, as evidenced by the case study in

Fig. 5.6. Here, we limit our analysis to a single month (April 2015) because

averaging the sea-ice drift over multiple months and/or years could lead to

the cancellation of compensating errors. The anticyclonic circulation in the

Beaufort Sea is well represented, as well as the meandering transpolar drift,

and the sea-ice export through Fram Strait and the Baffin Bay. The model

drift fields are overall smoother and less detailed than the observed drift field.

This is caused partially by the finite resolution of the atmospheric forcing

and partially by shortcomings of the numerical implementations of the sea-ice
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model. A clear aspect that emerges from all the simulations is that the sea-ice

in the model is generally slower than the observations, particularly where the

drift is faster (e.g. cost of Alaska, Baffin Bay, and Kara Sea). This feature

is also evident in Fig. 5.7, which is largely dominated by a positive bias.

However, the ERA5 configurations tend to overestimate the speed of slow

sea-ice (vice <∼ 5 cm s−1), which results in a too strong sea-ice recirculation

from the transpolar drift into the Beaufort gyre Fig. 5.6. Such a feature is

better captured by the NCEP configurations, whose levels of performance

remain nevertheless worse than ERA5 over most of the Arctic domain.

Figure 5.7: April 2015 sea-ice drift speed bias (observation – model; y-axis) for
six model configurations (C1-N to C3-E) as function of the of the observed OSI-
405 sea-ice drift speed (x-axis). The plot is constructed by dividing the observed
sea-ice drift speed in equally spaced intervals of width 1 cm s−1, for which the
corresponding bias values are grouped and averaged. We do not consider observed
sea-ice speeds vice > 15 cm s−1 because of the low number of observational points
and of the consequent low significance of the results.

5.3.4 Snow thickness

Although snow thickness winter observations have not been employed in the

Green’s function optimization procedure, the analysis of its cost function

gives an interesting insight into the performances of the analyzed model

configurations concerning this variable. Fig. 5.3 (bottom right plot) shows

two distinct behaviors for the Icepack setups C2 and C3, and for the standard
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FESOM2 setup C1. The performance of the latter is worse than that of

C2 and C3, before and after the parameter optimization procedure, and

regardless of the employed atmospheric forcing. At the same time, C1 is the

only setup on which the Green’s function optimization has a positive impact,

suggesting again greater flexibility of this setup compared to the other two.

The C1 snow thickness improvements are likely linked to a better-simulated

sea-ice concentration, which presence it mandatory for the accumulation of

the precipitated snow.
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Figure 5.8: April snow thickness and snow thickness anomalies averaged over
the period 2002–2015 for four configurations: C1-N, C1-E, C3-N, and C3-E. The
C2 setup has not been displayed because its results in terms of snow thickness are
very similar to the C3 setup. The April snow thickness observations averaged over
the same period are mapped in the bottom-right corner of the panel.
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Discrepancies in snow precipitation between different atmospheric reanal-

ysis can be due to the different atmospheric models, data assimilation tech-

niques, and observations used for the production of the reanalysis. Barrett

et al. (2020) show that this is also the case in the Arctic, where the snow

precipitation is higher in the NCEP products compared to ERA5. In this re-

spect, our results are in good agreement with the previous studies: the snow

over sea ice in the ERA5 configurations is thinner than that in the NCEP

configuration (Fig. 5.8; bottom row). Furthermore, the snow in the C1 setup

is overall thicker than that in C2 and C3 for both forcing products (Fig. 5.8;

right column). This is likely due to the ridging parameterization adopted

in Icepack, which assumes that a fraction of the snow that participates in

the ridging (50% in our setups) is lost in the ocean, where it melts eventu-

ally. A comparable snow sink is missing in the standard FESIM formulation,

hence the thicker snow layer. The observed snow thickness lies in between

the NCEP and ERA5 configurations of the C2 and C3 setups. These ex-

hibit comparable cost function values, attributable however to model biases

of opposite sign, positive for NCEP and negative for ERA5.

5.4 Discussion

5.4.1 Optimized parameters

Fig. 5.9 compares five optimized parameters for the six model configurations

analyzed here. Overall, differences in model formulation appear to have a

larger impact on optimized parameter values than differences in atmospheric

forcings. Some of the parameters vary more coherently than others. For

example, the optimized ice-ocean drag cIO values are systematically larger

than the control, for all the setups. In this respect, our results are in good

agreement with Sumata et al. (2019b), which finds an optimized cIO value of

0.00847 for the NAOSIM model, but they differ from the optimal estimates

of Ungermann et al. (2017) (0.00664 for the MITgcm model) and Massonnet

et al. (2014) ([0.00294, 0.00378] for the NEMO-LIM3 model, also associated

to a much lower value of P ∗ compared to our simulations). All the previously

mentioned models run with the NCEP atmospheric forcing.

The calibration of P ∗ leads to minor parameter changes for the setups C1

and C3. In contrast, P ∗ is reduced in both configurations of the C2 setup.

This parameter reduction is likely a consequence of the negative thickness
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and concentration biases of this setup, which is mitigated in part by reducing

the sea-ice strength. A less stiff sea-ice cover leads to more ridging in winter

and, in turn, to an increase of the sea-ice volume and extent. A similar

consideration can be made for the relatively high values of C∗ for the C2

configurations, which also concur with a reduction of the sea-ice strength.

Only the C1-E configuration shows a pronounced reduction of C∗, which

implies an increase of the sea ice strength.

The ocean albedo exhibits two different types of behavior: αO =∼ 0.085

for the Icepack setups while αO =∼ 0.042 for the standard FESOM2 setup, a

factor-two difference. Note that the treatment of the ocean albedo is equally

simplistic in all the model setups considered (no dependency on the incident

angle of solar radiation). Therefore, differences in model formulations with

respect to this parameter cannot explain the dual behavior observed. Such

a feature might be likely linked to different assumptions in the model imple-

mentation of the processes regulating the lateral melting of sea-ice, which is

impacted by the ocean surface temperature and in turn influenced by αO.

The reader should consider that αO is the only parameter chosen for the

calibration with a substantial impact on the global ocean rather than only

on the polar regions. Although both values fall inside the admissible ob-

servational range (Jin et al., 2004), a choice in one or the other direction

could impact and possibly degrade the model performances concerning the

ocean temperatures outside the Arctic. Such a parameter should therefore

be manipulated with extreme care, and it could be optimized much more

effectively by constraining the optimization procedure with sea-surface tem-

perature observations. Nevertheless, in uncoupled setups varying αO has a

limited effect on the simulated sea surface temperature because this variable

is also constrained by the near surface temperature from the atmospheric

forcing. Such an assumption does not hold in fully coupled setups, where a

correct ocean albedo formulation becomes crucial.

Urrego-Blanco et al. (2016) describe the prime role of the snow thermal

conductivity kS in regulating the winter growth of sea-ice in the CICE model.

A large kS allows more heat transfer from the ocean to the atmosphere during

winter, enhancing the bottom growth of sea ice and leading to a thicker sea-

ice cover. The opposite is true for a low kS. Apparently, the Green’s function

parameter optimization effectively exploits this mechanism to reduce the sea-

ice thickness biases in the model configurations (Fig. 5.3; bottom-left plot):

the Icepack C2-E, C3-E, and C2-N configurations—negatively biased before
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the optimization—see an increase of kS. The C1-E and C1-N configurations,

both positively biased in snow and sea-ice thickness before the optimization,

experience a reduction of kS. C3-N, which before the optimization exhibits

the best sea-ice thickness correspondence between model results and obser-

vations, is the configuration with the lowest kS change.

Figure 5.9: Model parameters (x-axis) at three stages of the Green’s function
parameter optimization. The control values of the parameters are indicated in
gray. For each setup, the numerical value of the optimized parameters is reported
in black below each point. Only the parameters common to the C1, C2, and C3
model setups are shown. The suffixes “-E” and “-N” indicate respectively the
employment of the ERA5 and NCEP atmospheric reanalysis used to force the
three model setups.
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5.4.2 Shortcomings of the parameter optimization

The first unsatisfactory outcome of the parameter optimizations regards the

very weak sea-ice drift performance improvement (Sec. 5.3.3) compared to

that of sea-ice concentration and thickness. This behavior is likely caused

by our choice of excluding the ice-atmosphere drag coefficient cIA from the

optimization. While the results by Massonnet et al. (2014) indicate that the

optimization of P ∗ and cIO is sufficient for improving the sea-ice drift, we

observe that this does not hold any longer when multiple parameters are

optimized simultaneously and constrained with multiple observational types,

at least in the FESOM2 model. As a consequence of a slower sea-ice drift

in our simulations, an over-optimization of thermodynamic and radiative

processes (e.g. enhanced formation of new sea-ice or melting) might have

occurred to compensate for the reduced sea-ice transport outside the Arctic.

In future studies and tuning exercises, we will revisit this hypothesis by

explicitly optimizing cIA in the attempt to better constraining the drift field.

A second aspect that deserves some discussion concerns the overall poor

performance of the C2 model setup, and particularly of C2-E. This configu-

ration exhibits a strong negative bias in sea-ice concentration and thickness

during summer, which consequently impacts the model performance also in

terms of sea-ice drift and snow thickness. This bias likely results from a

misrepresentation of the sea-ice radiative processes in the model and, once

more, it might be due to an unwise choice concerning the parameters for

the optimization. The C2 setup employs the CCSM3 radiation scheme, in

which, as described in Sec. 5.2.2, the sea-ice and snow albedo values are split

into a visible and an infrared component with a thickness and temperature

dependence. These four albedo values have been optimized in the present

study (Sec. 5.1). However, the model parameters that regulate the thickness

and temperature dependence of the albedo have not been optimized, leading

to a poor representation of the melting processes. We observe that both the

simpler radiation scheme employed in C1 and the complex delta-Eddington

radiation formulation used in C3 respond to the parameter optimization bet-

ter than the CCSM3 scheme, likely because they can be constrained with

fewer model parameters.
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5.4.3 Computational costs

The increased complexity of the FESOM2 extended sea-ice model comes with

a non-negligible price in terms of computational costs. Fig. 5.10 shows that

the sea-ice computations of the Icepack setups C2 and C3 are approximately

four times slower than C1, the simpler standard FESOM2 setup. This be-

havior was expected and caused partially by the more detailed formulation

of Icepack thermodynamics, but primarily by the growing number of tracers

needed to describe the sea-ice state. These tracers need to be advected sep-

arately by the FE-FCT scheme, which translates into a linear increase of the

cost for each additional tracer. Furthermore, a set of tests has been imple-

mented to guarantee the conservation of enthalpy, freshwater, and salinity

during the advection process, which further increases the computational re-

quirements. An incremental remapping scheme for the advection of sea-ice

tracers similar to that implemented in CICE (Lipscomb & Hunke, 2004),

which is conservative and becomes very efficient when the number of tracers

is large, will be considered in the future for further reducing the computa-

tional cost of the FESOM2-Icepack implementation.

Running FESOM2 with Icepack remains nevertheless feasible, and repre-

sents a viable option for future modeling studies with a focus on polar regions.

The mesh employed for this study is designed with most of the surface nodes

in sea-ice active regions, causing the sea-ice computations to account for a

substantial part of the model budget, and thus constituting a rather extreme

case if compared to CMIP-type applications. The relative cost of the Icepack

computations will be lower in meshes with most of the nodes in non-sea-ice

regions. Furthermore, in high-resolution simulations (1km to 4km), the con-

tribution of the EVP solver is expected to become predominant over the

advection of tracers, due to the increasing number of sub-cycles needed for

reaching a converging solution of the momentum equation. An in-depth in-

vestigation of the computing performances of the FESOM2-Icepack model

for a broader range of scenarios will be the topic of a future study.

5.4.4 Future prospects for the FESOM2 sea-ice repre-

sentation

As described in Sec. 5.2.2, the options offered by Icepack in terms of sea-

ice physics go beyond those explored in this study. In particular, future
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Figure 5.10: Relative computational cost of the sea-ice component of three
FESOM2 setups (C1, C2, and C3). The values are normalized by the C1 wall
time. All the simulations run on the same machine, with the same computational
mesh, and under the ERA5 forcing. The bars indicate the maximum and minimum
values registered among the computing CPUs. The number of tracers advected in
each setup is also reported.

work will focus on the impact of a highly resolved ITD on the simulated

sea-ice thickness and drift (possibly at high spatial resolution), and on the

exploration of the floe-size distribution parameterizations. Future FESOM2-

Icepack model simulations could also serve as boundary conditions for de-

tailed single-column studies with Icepack in a Lagrangian framework (e.g.

Krumpen et al. (2020)), allowing to retain a high physical consistency be-

tween the driving model and the single-column model.

Most of the model configurations here analyzed show a minimum in AEE

in July (Fig. 5.4; top right), suggesting that the IIEE is mostly caused by sea-

ice misplacement rather than by a wrong representation of the sea-ice extent.

This behavior could in part reflect the fact that our model cannot simulate

the processes leading to land-fast sea-ice formation, both in its standard

formulation and with Icepack. The absence of this persistent sea-ice type
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impacts the detachment location of the pack ice from the Arctic coastline

and in turn the correctness of the sea-ice edge position for this month. Model

formulations that enable, to a certain extent, the simulation of land-fast sea

ice in shallow seas already exist (Lemieux et al., 2015, 2016) and will be

considered for future versions of the FESOM2 model.

The FESOM sea-ice and ocean model plays a central role in the climate

modeling and forecasting activities at the Alfred Wegener Institute (AWI),

and it is part of different versions of the CMIP6 AWI Climate Model (AWI-

CM; Sidorenko et al. (2015); Rackow et al. (2016); Sidorenko et al. (2019);

Semmler et al. (2020)). In this respect, we plan to couple the new FESOM2-

Icepack setup to the latest climate model configuration under development

at AWI, which uses the open-source version of the Integrated Forecast Sys-

tem (OpenIFS) as the atmospheric model. The availability of a more detailed

sea-ice description in a fully coupled setup will enable a better understanding

of the interactions between a warming atmosphere and sea ice. At the same

time, the new coupled configuration will allow to perform sea ice-oriented

climate modeling studies (e.g. Zampieri & Goessling (2019)) under more

physically consistent assumptions. Finally, FESOM2-Icepack will be inte-

grated in the Seamless Sea Ice Prediction System (SSIPS; Mu et al. (2020))

and thus equipped with the Parallel Data Assimilation Framework (PDAF;

(Nerger & Hiller, 2013)) for assimilating ocean and sea-ice observations with

an Ensemble Kalman Filter.

5.5 Summary and conclusions

This study presented a new formulation of the sea-ice component of the

unstructured-mesh FESOM2 model. The update, which exploits the state-

of-the-art capabilities of the sea-ice single-column model Icepack, improves

the physical description of numerous sea-ice sub-grid processes while retain-

ing a modular structure that enables the user to adapt the sophistication of

the sea-ice model formulation to the requirements of a specific investigation.

Because of this modularity, the new FESOM2 formulation allows to investi-

gate the impact of the sea-ice model complexity on the performance of the

sea-ice simulations under two different atmospheric forcings. Our findings

indicate that the sophisticated C3 setup performs systematically better than

C2 and C1 concerning the Arctic sea-ice concentration and snow thickness,
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supporting the hypothesis that an elaborated model formulation leads to a

more appropriate representation of the sea ice. However, the results also

indicate that the setup ranking that emerges for the sea-ice concentration

in the Arctic does not hold in the Southern Ocean, which has not been in-

cluded in the optimization; here the C2 setups perform best. The current

generation of atmospheric forcings and sea-ice/ocean models is therefore still

not fully balanced and fails to guarantee an adequate representation of the

sea ice in both hemispheres simultaneously. For other variables, model com-

plexity appears to play only a marginal role in defining the quality of sea-ice

simulations. This is the case for sea-ice thickness and drift, for which the

differences between the various FESOM2 configurations are small and inde-

pendent of model sophistication. Finally, we find that the simple C1 setup

responds better to the optimization procedure, showing larger improvements

compared to C2 and C3, and thus suggesting that a less complex model can

be tuned more effectively.

In addition to the model formulation, also the choice of the atmospheric

forcing product influences substantially the sea-ice simulations. Concerning

the sea-ice concentration, the Icepack setups C1 and C2 perform much bet-

ter when forced with the NCEP product compared to ERA5, both in the

Arctic and in the Antarctic. The C1 setup exhibits similar results for NCEP

and ERA5 in the Arctic, while the NCEP forcing outperforms ERA5 in the

Antarctic. The opposite is true for the sea-ice drift and the snow thickness

variables, which benefit from the employment of the ERA5 product instead

of NCEP. In summary, both the atmospheric forcing products here analyzed

have strengths and weaknesses that should be considered when employing

them to force sea-ice and ocean simulations.

The results of this study are valid for sea-ice/ocean only simulations,

where the atmospheric conditions are prescribed from reanalysis products.

Some of the findings might not hold in a fully coupled framework, where

the atmosphere responds both thermodynamically and dynamically to sea-

ice and ocean changes. A similar study could be implemented in a fully

coupled configuration by optimizing the climatological sea-ice state of the

model using the observational climatology as constraint. We plan to perform

such a study for our modeling framework once the FESOM2-Icepack setup

will be coupled to the OpenIFS atmospheric model.

We conclude this manuscript by underlining, once more, the importance

of the semiautomatic parameter calibration for this study. Without the two
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cycles of Green’s function optimization, our results would have conveyed a

rather different message, erroneously indicating that the Icepack configura-

tions perform systematically better than the standard FESOM2 model for

most of the variables considered (Fig. 5.3; large circles). The systematic op-

timization of the sea-ice parameters is certainly a time-consuming operation

that requires a non-negligible amount of computing resources. Nevertheless,

we recommend this approach, in some form, in future studies that aim to

assess advances in the field of sea-ice modeling to guarantee a fair evaluation

of sea-ice models.
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and outlook

6.1 Summary and conclusions

The present section summarizes the main findings of the studies presented

in the previous chapters of this dissertation. In doing so, answers to the

scientific questions formulated in the introduction are explicitly provided.

Chapter 2 investigates the response of the sea ice and of the climate system

to the AIM geoengineering strategy, which aims at intervening on the Arctic

icealbedo feedback by mitigating the effects of global warming on polar re-

gions. Based on CMIP5-type climate simulations under a RCP 8.5 scenario

forcing and with a modified sea-ice description to account for the AIM effects,

I show that keeping the latesummer sea ice cover at the current extent for

the next ∼ 60 years is in principle possible, from a physical point of view, if

at least ∼ 107 AIM devices are deployed in the Arctic (Question Q1, page 9).

This estimate concerning the number of devices is conservative as the model

implementation of AIM is much more flexible in terms of the device position-

ing and activation than a hypothetical real-world deployment. Compared to

scenario simulations without AIM, the increased sea-ice extent and volume

generate a significant summer cooling of approximately 1.3 K during the 40-

year period 2021–2060 north of the Arctic circle, and of approximately 1.4 K

in 2061–2100. However, this cooling signal is confined over sea-ice covered

regions and it is not conveyed to lower latitudes, reducing the capacity of this

method to be effective on a planetary scale. Besides, the Arctic experiences

substantial winter warming in regions with active pumps, as relatively warm

water is directly exposed to the cold winter Arctic atmosphere. Overall, the
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global annualmean nearsurface air temperature is reduced by just 0.02 K for

the period 2021–2060 in AIM simulations, indicating that this sea ice tar-

geted geoengineering strategy does not have the potential to mitigate climate

change (Question Q2, page 9).

Chapter 3 shifts the focus of this thesis from the area of multi-decadal cli-

mate projections to the field of operational sea-ice predictions. In this con-

text, I assess, for the first time, the skill of stateoftheart operational sea-ice

forecasts collected in the database of the Subseasonal-to-Seasonal Prediction

Project. The focus of this study is exclusively on the Arctic region. A new

probabilistic verification metric, which quantifies the accuracy of the sea-ice

edge position in a meaningful way, is employed to evaluate the forecast per-

formances concerning this key parameter for potential forecast users. The

results indicate that the inclusion of a prognostic dynamical sea-ice model

is beneficial in terms of forecast skill compared to diagnostic descriptions of

the sea ice based on observational statistics. The forecast systems feature

a surprisingly wide range of skills, with the best system producing skillful

forecasts up to 45 days in advance, while other systems show no predictive

skill at short weather time scales or even at the forecast initialization. Fur-

thermore, the prediction skill of the more skillful forecast system is highest

in late summer, suggesting that valuable subseasonal sea-ice edge forecasts

can be already provided to stakeholders during the most active time of the

year in terms of Arctic navigation (Question Q3, page 10). Despite these

promising results, my findings point to several issues that affect the S2S fore-

cast systems, emphasizing large space for improvements in the future. The

most important of these shortcomings is a generalized large forecast error at

initial forecast times, which calls for additional efforts in improving the tech-

niques for the assimilation of sea-ice and ocean observations into the forecast

systems (Question Q4, page 10).

Chapter 4 applies the methodologies presented in chapter 3, using the same

forecast database to the investigation of the Antarctic sea-ice prediction ca-

pabilities at subseasonal timescales. Compared to the Arctic, Antarctic fore-

casts show larger errors and, on average, a 30% lower prediction skill, with

only one system remaining more skillful than a climatological benchmark
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up to 30 days lead time (Question Q3, page 10). The investigation of the

longitudinal variation of the forecast error shows that the prediction skill

tends to be highest in the West Antarctic sector, with the ECMWF system

being skillful up to 44 forecast days, while it is lower for other Southern

Ocean locations. In general, the majority of the forecast systems show an

overestimation of the sea ice edge position and fail to capture the onset and

development of the melting season. The highest forecast skill is found from

March to May, after the onset of the freezing season. As for the Arctic fore-

casts, large errors at initial time affect all the forecast systems. I link these

errors to an inaccurate assimilation and erroneous model representation of

the dispersed sea ice cover (i.e. low sea-ice concentration) in the marginal

ice zone (Question Q4, page 10).

Chapter 5 has the double purpose of presenting the new sea-ice formula-

tion of the unstructured FESOM2 sea-ice and ocean model, and of assessing

the impact of the improved sea-ice description on the model performance in

uncoupled sea-ice/ocean simulations. More specifically, I have equipped the

unstructured global sea-ice and ocean model FESOM2 with a set of physical

parameterizations derived from the single-column sea-ice model Icepack. The

simple 0-layer sea-ice and snow thermodynamics have been replaced with a

set of multi-layer parameterizations that take the enthalpy and salinity of

the ice into account. The new system can simulate prognostic thickness and

floe-size distributions (also jointly), accounting for sea-ice ridging and for

processes regulating the break-up and healing of sea-ice floes. A sophisti-

cated delta Eddington multi scattering solar radiation parameterization and

three prognostic melt-pond schemes are also available. The implementation

of Icepack in FESOM2 has been designed to maintain the modular architec-

ture of Icepack, which allows to easily vary the complexity of the sea-ice de-

scription. To compare fairly eventual improvements or drawbacks associated

with the changing model complexity, I optimized a subset of the parame-

ter space of each tested model configuration by applying a Green’s function

optimization technique. The results indicate that a complex model formula-

tion leads to a better agreement between modeled and the observed sea-ice

concentration and snow thickness, while differences are smaller for sea-ice

thickness and drift speed (Question Q5, page 11). However, the choice of

the atmospheric forcing also impacts the agreement between simulations and
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observations, with NCEP-CFSR/CFSv2 being particularly beneficial for the

simulated sea-ice concentration and ERA5 for sea-ice drift speed (Question

Q6, page 11). Furthermore, the results indicate that the parameter calibra-

tion can better compensate for differences among atmospheric forcings and

for model deficiencies in a simpler model setting (where sea-ice has no heat

capacity) compared to more energy consistent formulations with a prognostic

ice thickness distribution.

6.2 Outlook

This thesis is a collection of several scientific studies that deal, in various

ways, with the investigation of the Arctic and Antarctic sea-ice systems

through the application of complex geophysical models. The topics inves-

tigated in the main chapters of this dissertation are quite heterogeneous,

helping to formulate some more general considerations concerning this excit-

ing field of science.

The first thread of this thesis concerns sea-ice modeling studies that can

be connected to two distinct scientific fields: sea-ice projections at multi-

decadal timescales and operational sea-ice predictions at subseasonal timescales.

As I argue in Sec. 1.4, the approaches and assumptions for the study of sea ice

in these two scientific areas differ substantially on multiple levels, mostly be-

cause of the largely different timescales addressed. Nevertheless, the sea-ice

modeling tools employed in these two fields retain, probably out of conve-

nience, very similar physical formulations. This aspect calls for some further

considerations regarding the appropriateness of the various model formula-

tions for answering some of the specific scientific questions discussed in this

thesis.

In terms of climate projections, the coupled model that has been chosen

for the study of the AIM strategy resulted, in principle, adequate for investi-

gating the impact of this geoengineering approach on the Arctic sea ice and

climate. However, the sea-ice model formulation based on a 0-layer thermo-

dynamics did not allow to explicitly resolve the AIM surface water layer in

the model, preventing me from drawing any consideration regarding the AIM

impact on the vertical temperature and salinity profiles inside the sea ice. In

this respect, a prognostic model description of sea-ice enthalpy and salinity

(such as that implemented in Icepack) would have been beneficial and could
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have enabled a broader and, to some extent, more complete study.

In the context of sea-ice predictions, we demonstrate that a prognostic

description of the sea ice through the employment of a geophysical sea-ice

model is beneficial, in terms of predictive skills, compared to a prescribed

description of the sea ice based on observational statistics and persistence.

Nonetheless, the comparison of different forecasting systems revealed no cor-

relation between the forecast skill and the physical complexity of the forecast

sea-ice model, with ECMWF—the best performing forecast system both in

the Arctic and the Antarctic—featuring only a very simple description of

the sea ice. This suggests that model complexity may be less relevant for

subseasonal sea-ice predictions than the quality of the initial conditions and

the skill of the atmospheric and ocean models coupled to the sea-ice one.

Several scientific arguments go against my previous considerations and find-

ings, and call for increased model complexity in the field of sea-ice prediction.

Accounting for more physical processes in our sea-ice models could facilitate

the development of new observational operators, enabling the assimilation of

more and better observations in our models (Burgard et al., 2020a,b). Fur-

thermore, unresolved physical processes could hold back some unexplored

sources of predictability. For example, there is evidence that the melt ponds

at the beginning of the summer season (currently not explicitly simulated

by the S2S forecast system) are a strong predictor for the September sea-ice

minimum (Schrder et al., 2014).

In light of the previous considerations, I propose two simple strategies for

dealing successfully with the heterogeneous and rapidly evolving field of sea-

ice modeling. These strategies can be summarized by the words modularity

and community, and bring this concluding part of the dissertation in touch

with the second thread of the thesis: the study and development of sea-ice

models.

Modularity is a key requirement for present and future sea-ice modeling

infrastructures, as it allows to tailor the model setup to specific scientific

applications, optimizing at the same time the use of computational resources

and storage space dedicated to model simulations. In this respect, mod-

ularity is the compass I followed when designing the upgrade of the ther-

modynamic sea-ice component of FESOM2 through the integration of the

single-column model Icepack into it. The resulting model formulation grants

full flexibility in terms of model sophistication, adoption of passive tracers,

number of vertical layers in sea-ice and snow, number of ice thickness and floe
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size classes, etc. Furthermore, the new sea-ice thermodynamics is embedded

into the FESOM2 numerical environment, which, due to the employment of

unstructured computational meshes, features an unique flexibility in terms

of the placement of spatial resolution. In conclusion, the implementation

of Icepack into FESOM2 brings the model a step closer to having a fully

seamless formulation.

Working in close collaboration with the rest of the sea-ice modeling com-

munity is a second strategy that gives the best chances of developing a

healthy and well-performing modeling infrastructure. In this respect, having

implemented the Icepack subroutines in FESOM2 by following a modular

approach guarantees to receive model updates and corrections in an efficient

and timely manner. Furthermore, sharing one modeling infrastructure with

hundreds of scientists around the world maximizes synergies, which translates

into a more direct applicability and assimilation of major scientific advances,

and into a larger reach of our own findings and developments.

As described in Section 5.4.4, the development of the FESOM2-Icepack

model implementation will allow sea-ice modelling initiatives at at the Alfred

Wegener Institute as well as at collaborating institutions to expand. A better

representation of the sea-ice physical processes at the subgrid scale makes the

FESOM2 model more suitable for cross-field studies, such as those involving

biogeochemistry. At the same time, the new model lays the foundations for

a physically more consistent coupling between the sea ice, atmospheric, and

oceanic modeling components, that will enable more detailed sea-ice stud-

ies in the context of climate and paleoclimate projections. Finally, once the

FESOM2-Icepack system will be equipped with data assimilation capabil-

ities, the more accurate sea-ice description will enable robust studies that

investigate the impact of the sea-ice model formulation on the quality of

sea-ice forecasts at different timescales, allowing to properly tailor the model

formulation to the requirements of these applications.
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A.1 Figures and tables

Figure A.1: Evolution of pan-Arctic sea ice extent (left) and volume (right) in
February (black curves) and September (blue curves) for theextreme AIM simula-
tion, where a liquid layer is maintained over the whole ice cover during the period
20202100.

1This appendix contains the supplementary information of the published paper ‘Sea
Ice Targeted Geoengineering Can Delay Arctic Sea Ice Decline but not Global Warming ’
by Zampieri & Goessling (2019)
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Figure A.2: Top: Near-surface (2 m) temperature anomalies (extreme case sim-
ulation minus control ensemble-mean) for the periods 2020, 2021–2060 and 2061–
2100. Bottom: total precipitation anomalies (extreme case simulation minus con-
trol ensemble-mean) for the periods 2020, 2021–2060 and 2061–2100. Stippling
indicates local statistical non-significance of the anomaly at the 95% confidence
level according to a two-tailed t-test.
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Figure A.3: Evolution of pan-Arctic sea ice extent (left side) and volume (right
side) in February (top plots) and September (bottom plots) for the 9 sensitivity
simulations (2020–2040) and for the control ensemble-mean (black lines). The
combinations of the Global and Local Modulation Parameters (GMP and LMP)
in the legend defines each sensitivity simulation.
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Figure A.4: Left: Total cloud cover anomalies (AIM ensemble-mean minus con-
trol ensemble-mean) for the periods 2021–2060 and 2061–2100. Right: Net solar ra-
diation energy flux anomalies (AIM ensemble-mean minus control ensemble-mean)
for the periods 2021–2060 and 2061–2100. Stippling indicates local statistical non-
significance of the anomaly at the 95% confidence level according to a two-tailed
t-test.
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Figure A.5: Annual mean maximum North Atlantic meridional overturning cir-
culation (AMOC) anomaly (AIM ensemble-mean minus control ensemble-mean)
computed between 43N and 47N. The blue crosses indicate years with statisti-
callysignificantanomaliesat the 95% confidence level according to a two-tailed t-
test.

Figure A.6: March and September mean sea ice thickness over the historical
period 1850–2000.
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Table A.1: Sea ice volume (March and September) and sea ice extent
(September) linear fits for the Control and AIM ensembles. Two different
70 years periods have been chosen for the two ensembles: 1980–2050 for
the control ensemble and 2030–2100 for the AIM ensemble. The March
sea ice extent has not been considered because not sensitive to the AIM
implementation. The intercept values are all computed by considering 1980
as origin of the x axis.
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B.1 Introduction

This Supporting Information further details some aspects that have been

discussed only briefly in the method section of the paper. Text B.2 provides

a theoretical description of the SPS and the IIEE, the verification metrics

employed in our analysis. This includes the error decompositions of the

IIEE, which are used to characterize model shortcomings in more detail.

Although the metrics themselves have been already described in previous

literature, we believe that reporting here a brief summary is beneficial for

the readership of the paper. Moreover, an additional new aspect of our

paper is to consider the SPS as the sum of the IIEE for the ensemble-

median edge and a residual term, the properties of which are discussed here.

Text B.3 gives a deeper insight into the choice of the resolution at which

the analysis is performed. Furthermore, we investigate the sensitivity of the

results to different observational products. Finally, Text B.4 describes the

main features of two different observation-based benchmark forecasts and

outlines their respective advantages and drawbacks.

The main features of the S2S forecast systems considered in the analysis

are summarized in Tab. B.1. Fig. B.1 provides some details on the SPS

of the climatological benchmark forecasts (CSPS) and of the persistence

benchmark forecasts (PSPS), including uncertainties and error decomposi-

tions. The error components of the IIEE for the S2S forecast systems are

shown in Figs. B.2 and B.3, while the maps in Fig. B.4 illustrate the compari-

son between the older and the new ECMWF forecast system. The figure also

depicts multiple observed ice edges to exemplify observational uncertainties,

as well as the common (maximum-overlap) land mask that is applied to all

1This appendix contains the supplementary information of the published paper ‘Bright
prospects for Arctic sea ice prediction on subseasonal time scales’ by Zampieri et al. (2018)
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model data and observational data for our analysis.

B.2 Text S1

The following paragraphs provide some details on the verification metrics

employed in our analysis, thereby complementing the “Methods” section of

the paper.

To account for the probabilistic nature of the S2S ensemble forecasts we

apply the recently introduced SPS, which has been devised specifically for

the verification of probabilistic contour forecasts (Goessling & Jung (2018)).

The SPS is defined as the spatial integral of the local (Half) Brier Scores.

Applied to the sea ice edge (the 15% sea ice concentration contour), we have

SPS =

∫
S

(Po [sic ≥ 15%] (x⃗)− Pf [sic ≥ 15%] (x⃗))2 dS , (B.1)

with Po [sic ≥ 15%] and Pf [sic ≥ 15%] defined as the ensemble-based local

probability of a sea ice concentration above 15%, respectively for observation

and forecast. In this study, the integration domain S is the entire Arctic.

Note that the SPS is also meaningful when applied to deterministic sea ice

edge forecasts with a binary probability distribution. In this case, the system

is described only by two probability values, 1 = ice and 0 = no ice, and

the SPS is equivalent to the IIEE. This allows the evaluation of both

deterministic and probabilistic forecasts in the same framework, with the

SPS as a common verification metric.

The IIEE can be decomposed into Overestimation (O) and Underesti-

mation (U) components or, alternatively, into Absolute Extent Error (AEE)

and Misplacement Error (ME) components, which provides insight into the

origin of forecast errors (Goessling et al. (2016a)):

IIEE = O + U (B.2)

and

IIEE = AEE +ME , (B.3)

where O is the spatial integral of all areas where the forecast sea ice con-

centration is above 15% but the observed sea ice concentration is below 15%,
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and U is the spatial integral of all areas where the forecast sea ice concen-

tration is below 15% but the observed sea ice concentration is above 15%.

Further, it is AEE = |O − U |, which implies that ME = 2 ·min (O,U). The

two types of decomposition are not independent of each other: A forecast

with either too much ice everywhere (O/IIEE ≈ 100%) or too little ice ev-

erywhere (O/IIEE ≈ 0%) must also be characterized by a dominance of

the Absolute Extent Error (AEE/IIEE ≈ 100%). Nevertheless, the two de-

compositions are not completely redundant and reveal different aspects of

forecast errors. For example, a forecast system that is unbiased with respect

to the total sea ice extent (O ≈ U , where the overline denotes a time aver-

age) can be dominated either by absolute extent errors or by misplacement

errors, depending on the spatial pattern of regional biases as well as the

spatial degrees of freedom of ice-edge variations (Goessling et al. (2016a)).

To take advantage of the additional information these decompositions

provide, we consider the SPS as the sum of the IIEE for the ensemble-

median ice edge and a residual:

SPS = IIEE + r . (B.4)

The ensemble-median ice edge is the 50%-contour of the forecast sea

ice probability (Pf [sic ≥ 15%]). The residual r is zero for a deterministic

forecast and can be either positive or negative for a probabilistic forecast.

For example, if the observed ice edge coincides exactly with the forecast

median ice edge, then r is positive, meaning that a larger error is assigned to

the full probabilistic forecast compared to the perfect ensemble-median ice

edge. Typically, however, non-binary forecast probabilities tend to reduce

the error, at least as long as they are reliable (Goessling & Jung (2018)).

In this case, r tends to be negative, which is consistent with the premise

that probabilistic forecast information should add value to a “deterministic”

forecast such as the one defined by the ensemble median.

B.3 Text S2

To test the sensitiveness of our results to the employment of different observa-

tional products, we repeated parts of our analysis with sea ice concentration

data derived from passive microwave measurements using the ASI retrieval

algorithm (Spreen et al., 2008). Given the higher resolution of this obser-
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vational product (∼6 km instead of ∼25 km of OSI-SAF), the resulting 15%

contour line encompasses in this case also small areas of open water within

the main ice edge (Fig. B.4, orange contour line). When the analysis is per-

formed on the observational grids, the result differs depending on the chosen

sea ice concentration product. The ASI-based forecast errors are on average

25% larger than the OSI-SAF-based errors, mostly because of the small areas

of open water within the main ice edge (not shown). However, for the same

reason, the reference benchmark error is also higher when based on the ASI-

derived sea ice edge, leading to equivalent considerations in terms of the S2S

forecast skills. On the contrary, if the analysis is performed on the coarser

model grid, the choice of the observational product plays a minor role. In

fact, the ASI and OSI-SAF ice edges are almost equivalent if interpolated to

the 1.5°×1.5°S2S longitude-latitude grid. Regridding the observations to the

model grid has therefore been preferred to guarantee higher stability to the

analysis.

The S2S forecasts data are provided on a common 1.5°×1.5° longitude-

latitude grid, even though the models originally run at higher resolutions

varying between 0.25° and 1°. To test whether our results are affected by the

interpolation operated on the forecasts, we have repeated our analysis for 5

ECMWF forecast provided at the model native resolution (0.25°). The test

reveals that the sensitivity to the remapping procedure is small. The SPS

is on average 10% higher when computed on the high-resolution native grid

compared to the low-resolution S2S mesh. Once again, this discrepancy does

not affect our estimations of the forecast predictive skill, since the reference

benchmark error would also increase when computed at higher resolution and

therefore compensate for the slight SPS increase.

In conclusion, the previous tests reveal that the best and most conve-

nient configuration to perform the analysis is that where the OSI-SAF ob-

servations are interpolated by a first-order conservative remapping to the

coarse-resolution forecast grid.

B.4 Text S3

Here we provide further details about the main features of the benchmark

forecasts. As mentioned in the main body of the paper, two strategies have

been followed to define the observation-based benchmarks: a climatological
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forecast (CSPS) and a 1-month persistence forecast (PSPS)(Blanchard-

Wrigglesworth et al., 2010). Given the different nature of the two approaches,

the mechanisms leading to eventual predictive skills are also different and

highly seasonal dependent.

The CSPS is built by definition on the climatological record, therefore

it is generally more skillful (i.e. lower error) when the sea ice edge under-

goes a low year-to-year variability and less skillful when the variability is

higher. This feature is well captured by the CSPS, as shown in Fig. B.1

(top-left plot). The CSPS reaches its minimum value (∼ 0.35 × 106 km2)

in June and November when the sea ice edge is shorter and constrained by

the topographic position of the coastlines. Therefore, the seasonality in the

CSPS is primarily influenced by a corresponding seasonality in the length

of the Arctic ice edge. Two maximums are reached in correspondence with

the maximum and minimum Arctic sea ice extent in March and September.

In these months the sea ice edge is longer and less coherent because influ-

enced by the high atmospheric and ocean year-to-year variability and by the

decadal sea ice declining trend. In particular, the CSPS is least skillful in

September (∼ 0.75×106 km2), when the declining sea ice extent trend is more

pronounced. Consistently, the error decompositions reveal that the CSPS is

slightly dominated by overestimation, meaning that the climatology predicts,

in general, more ice than observed.

The skill of the persistence-based benchmark forecast relay on an ocean-

memory mechanism. The surface heat content of the Arctic ocean is highly

correlated with the amount of time for which the ocean surface is ice-free and

therefore exposed to the atmosphere. The ocean heat content has a strong

impact on the onset of the melting and freezing seasons, becoming therefore a

source of potential predictability. In light of the previous considerations, one

would expect the 1-month persistence benchmark to be most skillful for at

most 1 month after the maximum and minimum sea ice extent are reached,

and least skillful during transient periods of rapid advance and retreat of the

ice edge. This feature is well captured by the PSPS in Fig. B.1 (bottom-left

plot, turquoise curve). A sharp minimum (∼ 0.6× 106 km2) can be observed

at the beginning of October, less than one month after the September min-

imum, while a second less pronounced minimum is evident in late March,

after the smooth transition between freezing and melting season. The O–U

decomposition shows a strong bimodal trend which is coherent with the defi-

nition of persistence benchmark: overestimation is dominant during the melt
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season and underestimation during the freezing season.

To conclude, both the CSPS and PSPS appear to be meaningful choices

to evaluate the predictive skill of the S2S forecast systems, with seasonally

dependent advantages and drawbacks. However, the CSPS is systematically

lower than the PSPS, with the only exception of a relatively short 20-days

window between September and October. We, therefore, consider the CSPS

to be generally a more restrictive benchmark with lower seasonal variability.

The CSPS represents in our opinion a better and fairer reference to assess the

skill of subseasonal sea ice forecasts in representing the ice edge position. As

we show in the paper, exceptions are certainly possible for specific periods in

some years. The persistence benchmark is much more skillful, and therefore

restrictive, than the climatological benchmark for forecasts targeting a period

shortly after the September minimum in years with an exceptionally low sea

ice extent.
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B.5 Figures and tables

Forecast System Initialisation Freq. Ensemble Size Range

ECMWF ×2 weekly 10+1 46 days
UKMO ×4 monthly 6+1 60 days
KMA ×4 monthly 2+1 60 days
NCEP daily 3+1 44 days
MF ×2 monthly 14+1 61 days
CMA daily 3+1 60 days
ECMWF Pres. ×2 weekly single sea ice state 46 days

Forecast System Sea Ice Model SIC Assimilated

ECMWF LIM 2 yes
UKMO CICE 4.1 yes
KMA CICE 4.1 yes
NCEP GFDL SIS yes
MF GELATO 5 no
CMA GFDL SIS no
ECMWF Pres. none no

Table B.1: Summary of some key characteristics of the reforecasts from
the S2S database used in this study. The ensemble size is given as n+1
to emphasize the availability of n perturbed ensemble members and 1 un-
perturbed control run. Sea ice concentration is abbreviated by SIC. The
forecast systems are indicated by the following acronyms: ECMWF = “Eu-
ropen Centre for Medium Weather Forecasts”, UKMO = “United Kingdom
Meteorological Office”, KMA = “Korean Meteorological Administration”,
NCEP = “National Centers for Environmental Protection”, MF = “Météo
France”, CMA = “Chinese Meteorological Administration”
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Figure B.1: First row left: Spatial Probability Score of the climatological bench-
mark forecasts (CSPS) based on the respective previous ten years as a function
of the time of the year, averaged over the period 1999–2010. The shading and
dashed lines delineate ∼95% confidence intervals, based on two times the standard
error obtained from the twelve individual annual means. Second row left: Spatial
Probability Score of the 1-month persistence benchmark forecasts (PSPS) as be-
fore. Middle column: Relative contributions to the Integrated Ice Edge Error of
the climatological ensemble-median edge (first row) and persistence edge (second
row) from Absolute Extent Error (AEE) versus Misplacement Error (ME); Right
column: As middle column, but contributions from Overestimation (O) versus
Underestimation (U).
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Figure B.2: Relative contributions to the Integrated Ice Edge Error of the
ensemble-median ice edge from Overestimation (O) versus Underestimation (U)
of individual S2S systems as a function of the time of the year (target date) and
for six different lead times (see legend). Results have been averaged over the com-
mon reforecast period 1999–2010. Note that Day 60 is missing for NCEP and
ECMWF (both versions) due to their shorter lead time ranges, and that Initial
Time corresponds to Day 1 for all systems except NCEP and MF where it corre-
sponds to Day 2 for technical reasons.
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Figure B.3: Relative contributions to the Integrated Ice Edge Error of the
ensemble-median ice edge from Absolute Extent Error (AEE) versus Misplace-
ment Error (ME) of individual S2S systems as a function of the time of the year
(target date) and for six different lead times (see legend). Results have been aver-
aged over the common reforecast period 1999–2010. Note that Day 60 is missing
for NCEP and ECMWF (both versions) due to their shorter lead time ranges,
and that Initial Time corresponds to Day 1 for all systems except NCEP and MF
where it corresponds to Day 2 for technical reasons.
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B.5. FIGURES AND TABLES

Figure B.4: Forecasts of the probability of occurrence of sea ice (probability that
sea ice concentration exceeds 15%) for August 2016 with simplified (ECMWF Pres,
left column) and advanced treatment (ECMWF, right column) of sea ice in the
ECMWF forecast system (see text for detail on model formulation). Top row:
Day-1 forecasts (≈ initial state). Bottom row: Day-32 forecasts. The absolute
date is shifted by one day due to different initialization times. The forecast sea
ice Probability (probability that the sea ice concentration exceeds 15%), shown by
the color scale, is overlaid with 15% sea ice concentration contours based on three
different observational products (see legend).
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C. Appendix to Chapter 41

C.1 Figures and tables

Figure C.1: Seasonal variation of the Arctic and Antarctic climatological sea ice
edge length based on satellite observations. The sea ice edge climatology is based
on the 12-years period 1999–2010.

1This appendix contains the supplementary information of the published paper ‘Pre-
dictability of Antarctic sea ice edge on subseasonal time scales ’ by Zampieri et al. (2019)
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Figure C.2: Annual-mean forecast skill in predicting the sea ice edge location in
terms of the SPS of the ECMWF forecastsystems (solid line) and of the climatolog-
ical benchmark (dashed line) for two different sea ice concentration contours (15%
and 50%). ECMWF = European Centre for Medium-Range Weather Forecasts.
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D. Additional papers and datasets

related to this thesis

In the framework of my Ph.D., I contributed to other scientific studies outside

the scope of this thesis and to the compilation of scientific datasets. I give a

brief overview of these activities in the following sections.

D.1 Co-author papers

“Leads and ridges in Arctic sea ice from RGPS data
and a new tracking algorithm” has been published in the jour-

nal ‘The Cryosphere’ by Hutter et al. (2019) (including L. Zampieri). This

manuscript describes two methods for detecting and tracking linear kinematic

features (LKFs) in sea ice deformation data and it builds an LKF dataset

for the entire observing period of the RADARSAT Geophysical Processor

System (RGPS). I rewrote the original version of the tracking algorithm in

Python, which has been used as a basis for further developments by the lead

author of the study.

“Toward a Data Assimilation System for Seamless Sea Ice Pre-

diction Based on the AWI Climate Model” has been published in

the ‘Journal of Advances in Modeling Earth Systems ’ by Mu et al. (2020)

(including L. Zampieri). This manuscript describes and evaluates the data

assimilation component of a seamless sea-ice prediction system for the for-

mulation of sea-ice forecast at different timescales. The system is based on

the fully coupled climate model developed at the Alfred Wegener Institute,

Helmholtz Center for Polar and Marine Research (AWICM, v1.1). In this

context, I gave technical support in relation to the atmospheric model com-

ponent ECHAM6.
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I contributed to writing both papers.

D.2 Datasets

“Linear Kinematic Features (leads & pressure ridges) detected

and tracked in RADARSAT Geophysical Processor System (RGPS)

sea-ice deformation data from 1997 to 2008” has been published on

the ‘PANGAEA’ repository by Hutter et al. (2019) (including L. Zampieri)

as supplement to Hutter et al. (2019).

“Sea ice targeted geoengineering simulation with the AWI Cli-

mate Model” has been published on the ‘PANGAEA’ repository by Zampieri

& Goessling (2019) as supplement to Zampieri & Goessling (2019).
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Table D.1: Abbreviations

AEE Absolute Extent Error

aEVP adaptive EVP

AIDJEX Arctic Ice Dynamics Joint Experiment

AIM Arctic Ice Management

AMOC Atlantic Meridional Overturning Circulation

AMSR Advanced Microwave Scanning Radiometer

AWI Alfred Wegener Institute, Helmholtz Centre for Polar and

Marine Research

AWI-CM Alfred Wegener Institute Climate Model

BL99 Bitz & Lipscomb (1999) thermodynamics

CCSM3 Community Climate System Model version 3

CESM Community Earth System Model

CLIM Probabilistic climatological forecast

CMA China Meteorological Administration

CMIP Coupled Model Intercomparison Project

CMIP3 3rd phase of CMIP

CMIP5 5th phase of CMIP

CMIP6 6th phase of CMIP

D17 Desch et al. (2017)

DEM Discrete Element Model

ECMWF European Centre for Medium-Range Weather Forecasts

ERA5 ECMWF Reanalysis, 5th Generation

ESM Earth System Models

EVP Elastic Viscous Plastic

FCT Flux Corrected Transport
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Table D.1 – Continued from previous page

FE Finite Element

FESIM Finite Element Sea-Ice Model

FESOM2 Finite-volumE Sea ice-Ocean Model version 2

GMP Global Modulation Parameter

H79 Hibler (1979) sea-ice strength formulation

IIEE Integrated Ice Edge Error

ITD Ice Thickness Distribution

KMA Korea Meteorological Administration

LIM3 Louvain-la-Neuve sea Ice Model version 3

LMP Local Modulation Parameter

ME Misplacement Error

mEVP modified EVP

MF Météo-France

MITgcm Massachusetts Institute of Technology General Circula-

tion Model

MOSAiC Multidisciplinary drifting Observatory for the Study of

Arctic Climate

NAOSIM North Atlantic Arctic Ocean Sea Ice Model

NCEP National Centers for Environmental Prediction

NCEP-CFS NCEP Climate Forecast System

NEMO Nucleus for European Modelling of the Ocean

NSIDC National Snow and Ice Data Center

O Overestimation

ORA-IP Ocean Reanalyses Intercomparison Project

OSI-SAF Ocean and Sea Ice Satellite Application Facility

PDAF Parallel Data Assimilation Framework

PERS Deterministic persistence forecast

PIOMAS PanArctic Ice Ocean Modeling and Assimilation System

PMW Passive Microwave

PWL Persistent Water Layer

R75 Rothrock (1975) sea-ice strength formulation

RCP Representative Concentration Pathway

TOA Top Of the Atmosphere

S2S Subseasonal to Seasonal

SHEBA Surface Heat Budget of the Arctic
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SI Sea Ice

SIO Sea Ice Outlook

SIMIP Sea Ice Model Intercomparison Project

SIP Sea Ice Probability

SIPN Sea Ice Prediction Network

SMOS Soil Moisture Ocean Salinity

SPS Spatial Probability Score

SSIPS Seamless Sea Ice Prediction System

SSM/I Special Sensor Microwave/Imager

SSMIS Special Sensor Microwave Imager/Sounder

SST Sea Surface Temperature

UKMO UK Met Office

U Underestimation

VP Viscous Plastic
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